
Multi-ASIP Platform Synthesis for Event-Triggered
Applications with Cost/Performance Trade-offs

Deepak Gangadharan, Laura Micconi, Paul Pop, Jan Madsen
Embedded Systems Engineering, DTU Compute, Technical University of Denmark

E-mail:{dega,lmic,paupo,jama}@dtu.dk

Abstract—In this paper, we propose a technique to synthesize
a cost-efficient distributed platform consisting of multiple Appli-
cation Specific Instruction Set Processors (multi-ASIPs) running
applications with strict timing constraints. Multi-ASIP platform
synthesis is a non-trivial task for two reasons. Firstly, we need
to know the WCET of tasks in target applications to derive
platforms (including synthesized ASIPs) in which the tasks are
schedulable. However, the WCET of tasks can be known only
after the ASIPs are synthesized. We break this circular depen-
dency by using a probability distribution of the WCET of a task
(further referred to as the WCET uncertainty model), which takes
into account the underlying microarchitectural configurations
for the ASIP implementation. Secondly, the datapath area of
the multi-ASIPs synthesized is an important design factor that
contributes significantly towards the overall cost of the platform.
We propose an area estimation model and a WCET uncertainty
model that consider the effect of task datapath similarity. Based
on these two models, we support the designer in exploring
cost/performance trade-offs during the platform synthesis. We
propose an Evolutionary Algorithm-based approach to solve this
multiobjective optimization problem. The proposed approach
has been evaluated using several benchmarks and it provides a
number of multi-ASIP platform solutions exploring the trade-offs
in the cost/performance design space.

I. INTRODUCTION

Current distributed embedded platforms use heteregenous
processing elements (PEs) to run various applications from
the automotive, multimedia and networking domains. These
platforms are increasingly employing Application Specific
Instruction Set Processors (ASIPs) to provide a high degree
of flexibility and good performance. We call the set of tasks
for which the ASIP is synthesized and tuned as task clus-
ter. During ASIP synthesis, the processor microarchitectural
parameters such as number and data widths of registers and
memory blocks and number of functional units (considering
task-level parallelism) are tuned for the task cluster. These
parameters influence the WCET of the tasks clustered on an
ASIP as well as the area of the datapath (i.e., the portion that
performs computations) of the synthesized ASIP. However,
as the design space of the microarchitectural parameters is
considerably large, it is infeasible to evaluate all possible task
clustering solutions considering the microarchitectural design
space in order to synthesize the optimal platform solution that
minimizes cost and provides the best possible performance. In
this paper, we consider datapath area as cost and probability of
schedulability of target real-time applications as performance
of the synthesized platform solution.

In this paper, multi-ASIP platform synthesis derives plat-
form solutions consisting of the number of ASIPs required
along with tasks clustered on each ASIP such that there is si-
multaneous minimization of platform cost (based on minimiz-

ing ASIP datapath area) and maximization of the probability
of schedulability of applications. This is not straightforward
as the underlying microarchitectural design space is large.
Moreover, in order to derive platform solutions that ensure that
the tasks in the applications are schedulable under strict timing
constraints, the WCET of the tasks must be known. However,
the WCET of a task is known only after the ASIPs are
synthesized (i.e., after the task cluster on the ASIP is decided)
as WCET depends on the microarchitectural configurations and
datapath of the ASIP. It is necessary to break this circular
dependency in order to derive good platform solutions while
considering the large microarchitectural design space. To add
to the above difficulty, the task similarities also need to be
considered to derive good task clusters and therefore good
platform solutions that minimize cost. Two tasks are said to
have similarities if some of the operations constituting the tasks
are identical and datapath resources implementing them can be
shared. This will be further explained in Section III.

In the context of platform synthesis methods, we group the
existing research efforts into the following categories.
1) Firstly, there are platform synthesis approaches that do not
consider ASIPs. There is a large body of work in this category
[7], [10], [15], [16] and the assumption is that the details of
each component are known.
2) There are platform synthesis approaches which consider
multiple ASIPs. Some of these approaches [3], [14] assume
that the ASIPs have been synthesized, whereas in [18], a
small set of microarchitectural configurations is considered and
an ASIP is synthesized for each considered microarchitecture
before deriving the platform. Hence, these approaches severely
limit the design space, disregarding potentially very good
solutions because they do not take into account the ASIP
microarchitecture design space during platform synthesis.
3) Orthogonal to our problem. there has been significant
amount of work done in the domain of custom instruction
selection and synthesis. An Integer Linear Programming (ILP)
formulation and a heuristic approach is proposed in [12] to
derive instruction-set extensions that reduce the WCET of a
task.
4) To the best of our knowledge, there is no work on platform
synthesis with multiple ASIPs, where the ASIPs are not
synthesized beforehand. Consequently, there have been no
works in this category where multiple objectives of area cost
and schedulability of target applications are considered for
optimization.

In this paper, we address the circular dependency using
a WCET uncertainty model that considers all possible ASIP
microarchitectural configurations. Our uncertainty model also
accounts for similarities among tasks in a task cluster. We
propose a platform synthesis approach that uses the WCET



uncertainty model to derive a platform including multiple
ASIPs. Our proposed approach uses an Evolutionary Algo-
rithm (EA) to obtain a Pareto-front of solutions that includes
solutions optimized for both cost and schedulability of target
applications.

There are two approaches for handling real-time applica-
tions namely Event-Triggered (ET) and Time-Triggered (TT)
approaches [9]. In the ET approach, all activities are initiated
whenever a significant event occurs. On the other hand, all
activities in the TT approach are initiated at a predetermined
point in time. In this work, we consider applications consisting
of tasks that are event triggered. ET systems require a dynamic
scheduling strategy where an appropriate task is initiated in
response to an event. Here, we use fixed-priority preemptive
scheduling (fpps) to schedule tasks in the applications.

We exploit task similarities to synthesize cost-efficient
platform solutions by leveraging resource sharing techniques
employed in the synthesis of Custom Instruction Set Exten-
sions (ISEs) [19], [20], where resources for similar operations
in two tasks are shared while the datapath is designed. More
specifically, as a result of this resource sharing, the ASIP dat-
apath area is minimized by clustering tasks which have higher
similarity in datapath operations. The tasks are represented as
Data Flow Graphs (DFGs). We assume that graph merging
techniques as described in [19], [20] will be employed to merge
similar portions of the task DFGs in order to design a cost-
efficient ASIP datapath.

The paper is organized as follows. In Section II, we present
the System Model and introduce the WCET uncertainty model
without including the effects of task similarities. Then, we
define the problem and explain how task similarities have been
accounted for in our area estimation technique and WCET
uncertainty model (Section III). The motivational example,
which highlights the advantages of our multi-ASIP platform
synthesis method is presented in Section IV. In Section V, we
discuss the genetic algorithm based approach, which derives
the Pareto-front of solutions. The experimental results for a
set of benchmark applications are presented in Section VI and
our conclusions are drawn in Section VII.

II. SYSTEM MODEL

The system consists of multiple target applications and
the underlying hardware that consists of PEs. Each target
application is modeled as a task graph A =< V ,E >, where
V represents the set of vertices of the task graph or the set of
tasks {τi} (where i ≤ L and L is the total number of tasks in an
application) and E represents the set of edges that represent the
communication among the tasks. The PEs are denoted by PE j,
where PE j is the j-th PE. The PEs may be composed of ASIPs
and other PEs, such as General Purpose Processors (GPPs) and
Digital Signal Processors (DSPs). The architectural details and
timing behavior of GPPs and DSPs are well defined. Although
we consider only ASIPs in the rest of the paper, our method
can handle the inclusion of GPPs and DSPs.

Tasks are grouped into clusters, e.g., a task τi is grouped
into a cluster S j, where S j is the task cluster on the processing
element PE j. Each task τi has a period Ti. When there are
multiple target applications, we aggregate the tasks in all
the applications into one global task set. Consequently, for

all the target applications, we try to meet a global deadline
(which is explained later in Section III-C. The area required
for implementation of each task τi on an ASIP is denoted by
ai.

A. Modeling WCET uncertainty

As mentioned in Section I, there is a circular dependency
between the schedulability of a platform solution and the
WCET of a task Ci. This arises due to the existence of a large
number of microarchitectural configurations, which cannot be
practically evaluated during platform synthesis. However, in
order to obtain good solutions, it is necessary to consider a
large number of microarchitectural configurations during plat-
form synthesis. Our approach to break the circular dependency
is to model the WCET Ci as a probability distribution.

The variability of WCET Ci of a task τi is due to the large
number of possibilities in ASIP implementation on which task
τi will run, and does not reflect the variation in execution
time, which is due to variation in the input data and modern
architectural features such as branch prediction. The final
implementation of the ASIP running τi will only be available
after the time-consuming ASIP microarchitecture synthesis.
We use the probability distribution of Ci during design space
exploration (DSE) in order to avoid synthesizing every ASIP
microarchitecture corresponding to changes in task clustering.

The designer can capture the probability distribution func-
tion of the WCET Ci of a task τi by capturing the two bounds:
the smallest WCET value Cl

i (WCET lower bound) and the
largest WCET value Cu

i (WCET upper bound). These bounds
can be estimated by the designer on the basis of his/her
knowledge of the tasks’ characteristics and the possible range
of ASIP microarchitectures. For example, the upper bound
can correspond to a sequential execution of τi on the slowest
ASIP considered, whereas the lower bound could correspond
to an ASIP specifically tailored for τi and which fully exploits

Ciu

Cil

W
CE

T 
CD

F 

Time Units 
Fig. 1: A Sample WCET CDF



TABLE I: Micro-architecture features explored

Task Issue
width

num.
ALU

num.
MUL

RF
size

Data
Cache
(KB)

Data
Cache
Line
(bytes)

Load
slot

Store
slot

mp3
decoder

1,2,3,
4,5,6,
7,8

4,5,6,
7,8

2,3,4,
5,6,7,

8

32,
64

4, 8,
16

16,
32,
64,
128

4 2

jpeg
decoder

2,3,4,
5,6,7,8

4,
5,6,7,

8

1,2,3,
4,5,6,
7,8

16,
32,
64

4, 8,
16

16,
32,
64

4 2

the parallelism within τi (using As Soon As Possible (ASAP)
scheduling of the task DFG). Within these two values, we fit a
Normal distribution for Ci that models the WCETs of the task
executing on an undefined ASIP that has not been synthesized
yet.

The cumulative distribution function (CDF) P(Ci ≤ x) is
the probability that WCET Ci has a value lesser than or equal
to x. Alternatively, the task WCET CDF is an indication of the
percentage of ASIP configurations that would allow Ci to be
lesser than or equal to x. The distribution is built by deriving
the mean and the standard deviation values. Firstly, the mean
is calculated by taking the average of the bounds Cl

i and Cu
i

(Cl
i+Cu

i
2 ). Then, the standard deviation is calculated based on

the well known equations of the Normal distribution CDF.
The CDF is completely defined once the mean and standard
deviation are known. A sample WCET CDF is shown in Fig. 1.
For GPPs, DSPs and legacy PEs, there is no uncertainty in
WCET. Therefore, if the WCET of a task τi on any of these
PEs is y, then the CDF of τi converges to a step function
or a single value, which can be expressed as P(Ci = y) = 1.
Finally, we define the task information tuple for every task τi
as Γi = {Cu

i ,C
l
i ,ai,Ti}.

We now present simulation results that support our claim
that normal distribution is a good approximation to model
the WCET of a task. We discuss the results for two tasks of
different size and complexity: a mp3 decoder (part of the MAD
library [1]) and a jpeg decoder [2]. The variation of the WCET
of these tasks is measured for several micro-architectural
configurations using the VEX [6] simulator developed at
HP laboratories. The simulator models a VLIW architecture
that could in principle be used in ASIPs. Table I presents
the microarchitecture design space used for the experiments.
We varied the number of arithmetic and logic units (ALU),
multipliers (MUL), registers in the register file (RF), the issue,
load and store slots, the data cache size and the data cache line
size. Within the parameters in Table I, we considered a large

TABLE II: Microarchitectures associated to the WCET upper
and lower bounds

Task WCET Issue
width

num.
ALU

num.
MUL

RF
size

Data
Cache
(KB)

Data
Cache
Line
(bytes)

Load
slot

Store
slot

mp3
decoder

Cl 8 8 8 64 16 128 4 2
Cu 1 4 2 32 4 16 4 2

jpeg
decoder

Cl 8 8 8 64 16 64 4 2
Cu 2 4 1 32 4 16 4 2

500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(
C i<x

)

C (ms)

Experimental CDF
Our CDF model P(Ci<x)

Lower bound Cl

Upper bound Cu

Fig. 2: Comparison of our proposed CDF model (P(Ci ≤ x))
with the simulation results for mp3 decoder task

6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(
C i<x

)

C (ms)

Experimental CDF
Our CDF model P(Ci<x)

Lower bound Cl

Upper bound Cu

Fig. 3: Comparison of our proposed CDF model (P(Ci ≤ x))
with the simulation results for jpeg decoder task

number of micro-architectural configurations: 1,632 for the
mp3 decoder task and 1,068 for the jpeg decoder task. For each
micro-architecture configuration, we compiled and simulated
the execution of the tasks thereby obtaining the number of
processor cycles required. Assuming a processor frequency
of 100 MHz, we compute the corresponding execution times
in ms. For a particular microarchitecture,the largest value of
the execution time was considered as WCET after extensive
simulations with multiple input files. We know that such a
value does not represent the WCET, which is a theoretical
upper bound determined through analysis, but we believe this
value is a good approximation for our experiments.

We construct the CDF of WCET for the mp3 decoder
and jpeg decoder tasks from the simulation data. These are
plotted using a blue line in Fig. 2 and Fig. 3 for mp3 and jpeg
decoder respectively. The CDFs obtained using our WCET
uncertainty model are plotted using a green line. Our WCET
uncertainty model (the green CDF) was obtained as explained
earlier, considering a Normal distribution between the lower
bound Cl

i and upper bound Cu
i of WCET. As mentioned

earlier, we assume that these bounds are provided by the
designer by evaluating two extreme microarchitectures from
the range considered for the mp3 and jpeg decoder. The



microarchitecture corresponding to the upper and lower bounds
of the WCET for the two tasks are summarized in Table II.
The results shown in the CDF plots substantiate our claim that
using a Normal distribution for WCET is a good approximation
to capture the WCET uncertainty. It is important to mention
here that the proposed WCET uncertainty model is used only
for design space exploration, and not for providing timing
guarantees.

III. PROBLEM FORMULATION

Given multiple target applications where each application
is modeled as a task graph A , task information tuple Γi for
each task τi in each application, a global deadline d and a
set of PEs such as DSPs, GPPs and legacy PEs, the problem
is to synthesize a multi-ASIP platform that simultaneously
minimizes cost and maximizes the schedulability probability
of target applications.

Synthesis of a multi-ASIP platform means performing
DSE to decide on the clustering of tasks that also takes into
account the microarchitectural design space and subsequently
synthesizing the microarchitecture of each ASIP. Our platform
synthesis flow is shown in Fig. 4. Based on a set of target
applications and the interconnection details, the input parame-
ters available from the designer are the task information tuple
(as discussed in Section II-A) and the message transmission
times on the interconnection platform. We consider a bus-
based platform in the paper. These input parameters along
with the global deadline d and the task similarity parameters
(Section III-A and Section III-B) are then used by the various
components of the platform synthesis stage. The Uncertainty
Model has been discussed in Section II-A. The Area Esti-
mation Model will be discussed later in Section III-A. The
performance and cost quantities derived from these two models
are then used for a multiobjective DSE. The DSE includes
a Monte Carlo Simulation (MCS) loop (Section III-C). Each
MCS loop iteration performs schedulability analysis to verify if
the candidate platform solution is schedulable (Section III-C).
The output of the Platform Synthesis stage consists of the
number of ASIPs required and the cluster of tasks on each
ASIP, which can then be synthesized.

There can be a set of legacy components that have to
be used in the architecture and it is also possible that some
tasks might be clustered on some specific PEs by the designer.
Our optimization takes these constraints into account. In the
end, we get a cost-efficient platform solution consisting of
several ASIPs and possibly also other legacy PEs and the
tasks clustered on each PE. We exploit the task similarities
during DSE to reduce the cost of the platform. In the following
subsections, we explain how ASIP datapath area and WCET
uncertainty model are influenced by task similarities.

Let us consider two tasks τ1 and τ2 represented by their
DFGs G1 and G2 as shown in Fig. 5(a). The DFGs consist
of nodes that perform some operation of the task such as
addition, multiplication, bit shifting etc. as shown in Fig. 5(a).
The clustering of two tasks is represented as the merging of the
DFGs G1 and G2 and the merged graph (shown in Fig. 5(b))
represents the datapath of the ASIP with the corresponding
task cluster comprising of τ1 and τ2. The shaded parts in
Fig. 5(a) depict the task similarities between tasks τ1 and τ2.

Fig. 5: A Graph Merging (or Task Clustering) Example

Task similarity arises due to the identical set of nodes (that
perform same functionality) and edges connecting these nodes
in the task DFGs which can be merged in order to share the
resources required to implement the nodes. In Fig. 5(a), the
nodes {a1,a2,a4,a5} in G1 are similar to nodes {b1,b2,b5,b7}
in G2. In the clustering process, similar nodes are merged
together (as shown in Fig. 5(b)) to reduce the area of the final
ASIP datapath.

The existing graph merging techniques for datapaths have
tried to optimize for area [13] and latency [19] of the resulting
merged datapath. In [13], compatibility graphs are used to de-
tect the similar nodes in the merged DFGs. Datapath merging
is done using the compatibility graphs to minimize area. On
the other hand, area and latency are traded off during datapath
merging in [19]. In this paper, we assume that the designer
would adopt a datapath merging technique more optimized
for area as cost is one of our optimization objectives. This
merging method can be used by the designer before the DSE
stage in order to find the area required to implement each task
if synthesized alone and the area required for a task pair if
clustered together on an ASIP. These areas can be computed
by using area values of standard components such as an adder,
multiplier, etc. During DSE, we estimate the area required
for various task clusters and the effect on WCET and hence
schedulability of the solution.

A. Area Estimation Model

Let the area required for implementation of each task
(represented by DFG Gi) on ASIP be ai. In our experiments,
we use the number of gates as the unit of area. Let the merged
area of two clustered tasks (represented by DFGs Gi and G j)
be ai, j. Then the area of the clustered tasks can be computed
as aGiG j = ai +a j −ai, j +ao

i, j, where ao
i, j is the area overhead

due to the introduction of the Sel node. The node Sel selects
one of the inputs and passes it to the output. Depending on the
percentage of dissimilar nodes, the number of Sel nodes may
vary, which also affects the area of clustered tasks. The area
overheads for task pairs can also be computed before DSE.
Let the number of Sel nodes introduced during task merging
be NSel and the area of a standard Sel component be aSel . Then
the area overhead due to task merging is NSel ×aSel .



Platform Synthesis Input Output 

main(){ 

…

} 

main(){ 

…

} 

main(){ 

…

} τ1 

m1 m2 

τ3

τ2 

τ6 

τ1 

τ3 

Cluster 1 

Bus 

W 

Bus

WW

Interconnection library 

τ6
τ1
τ3

Cluster 1

Uncertainty Model 

Derivation 
of Task 

Information 
Tuple 

Message 
Transmission 

Time 

Me
Tran

Target Applications 

De
of

Info

Uncertainty Model

+ 
Area Estimation Model 

Design Space Exploration 

Monte Carlo 
Simulation 

with 
Schedulability 

Analysis 

Evolutionary 
Algorithm 

E

τ7 

τ2 

τ4 
τ7

τ2
τ4

τ11τ11τ15

Cluster 2 

Cluster M 

Deadline 
d 

Deadline De
d

Fig. 4: Our Multi-ASIP Platform Synthesis Flow

In order to compute the area requirements of more than two
tasks, after the area of the clustered task pair aGiG j is computed
as shown earlier, the merged/clustered task pair are considered
as a new task with area requirements aGiG j . If another task
represented by DFG Gk is clustered with this new task, then
the area of the merged nodes between DFGs GiG j and Gk is
given by

ai, j,k = min
x∈{i, j}

(Area o f similar nodes between Gx and Gk) (1)

As shown in Eqn. 1, we consider the merged area between
GiG j and Gk as the minimum of the area requirements of
similar nodes between tasks in GiG j and Gk in order to
reduce the area overhead which may also contribute to WCET
(discussed in Section III-B). The area overhead when DFGs
GiG j and Gk are merged is

ao
i, j,k = Area overhead between Gk and Gmin (2)

where Gmin is the graph among Gi and G j that has minimum
area of similar nodes with Gk. The area after the third task
(represented by DFG Gk) is merged with GiG j is given by
aGiG jGk = aGiG j + ak − ai, j,k + ao

i, j,k. This clustering and area
estimation can be iteratively performed until all the tasks
clustered on a PE are included. In this paper, we estimate
the area based on a task clustering order that clusters tasks
on ASIPs in the order of fixed task priority so that tasks with
higher priority incur lesser overhead in critical path of the
DFG (explained in Section III-B. If there are M ASIPs in
the platform solution and if the area of task cluster on each
ASIP, computed as described above, is denoted by ACn, where
1 ≤ n ≤ M, then our optimization objective for area cost is to
minimize ∑M

n=1 ACn.

B. Effect of Clustering on WCET Uncertainty Model

There might be a variation in WCET CDF of a task due
to overheads in the critical path of a task, when it is clustered
with another task/group of tasks. This additional overhead is
incurred when the tasks are merged in order to reduce area as
shown in the graph merging example in Fig. 5. For the task
with DFG G2, there were three critical paths before merging
: b1 → b5 → b7, b3 → b6 → b7 and b4 → b6 → b7 (all paths
with the same maximum length of critical operations). Due to
merging, there is an additional overhead of a select node (Sel)
in the second and third critical paths. This can result in a shift
of the estimated upper and lower bounds of the WCET CDF.
The above mentioned overhead arises from the group of nodes
that are not merged and feed an input to one of the merged
nodes. This overhead is significant when the grouped nodes
constitute a custom instruction and this custom instruction is
implemented on a custom hardware unit.

If the WCET overhead for a task during clustering of two
tasks is δ cycles (or some unit of time), Cu is the upper bound
on the WCET and Cl is the lower bound on WCET, then
the WCET CDF for the task is formulated by shifting the
upper and lower bound as Cu

new = Cu + δ and Cl
new = Cl +

δ respectively. The WCET overhead for each task pair can
be found before DSE when the area overhead is computed
as the number of introduced Sel nodes is known. Here, we
only consider the sharing of resources in the datapath while
accounting for the change in WCET bounds and WCET CDF.
The sharing of memory and other resources is not considered
in this paper.



C. Schedulability Analysis

Stochastic Schedulability Analysis was proposed in [8]
where each job/task had different execution times and the
execution time was modeled as a probability distribution.
However, in our case, this analysis is not possible because each
job/task has the same WCET for a specific microarchitectural
configuration and the WCET varies with different microarchi-
tectural configuration. Thus, as explained earlier, WCET is a
stochastic variable. Our approach is to use MCS to sample
randomly, in each iteration, a new value for Ci based on its
CDF. As MCS is known for being time consuming, a reduced
number of samples has been used to speed up the execution.
We randomly sample 5000 values from the WCET CDF of
each task. In each MCS iteration, the sampled Ci value is
used to compute the number of tasks serviced within the
global deadline d. The schedulability probability (which is our
performance objective) is then computed using the number of
tasks serviced, which is explained in detail next.

In this paper, we consider fpps policy to schedule tasks.
However, our platform synthesis technique can be used in the
context of other scheduling policies also. Firstly, we define
service as the number of jobs of a task processed by each ASIP
within a deadline d. The global deadline that we consider here
is the hyperperiod1. The schedulability analysis is performed
by computing the worst-case time remaining for each task and
therefore worst-case service provided to each task. We use the
worst-case service as the parameter for schedulability analysis
because exact service offered to each task is not known until
the ASIP architectures are defined. Moreover, instead of using
conventional response time analysis (RTA) for schedulability,
we use the worst-case service based approach because a large
number of applications (such as multimedia applications) that
will be run on the ASIP would require a certain number of jobs
of a task to be serviced in a particular time interval instead of
having individual job deadlines. Towards this, we firstly find
the worst-case remaining time ∆i for each task τi in accordance
to the fpps policy, which is given by:

∆i = max








∆h − ∑
τ j∈hp(τi)

(
∆h

Tj

)
Cj



 ,0




 (3)

where hp(τi) is the set of tasks which have higher priority
than task τi and are clustered together with τi on the same
ASIP. Here Tj and Cj are the period and WCET (it is one
of the sampled points from the WCET CDF), respectively,
of the higher priority task τ j. The hyperperiod is denoted by
∆h. We use Eqn. 3 to compute the worst-case remaining time
for a task τi in an interval equal to the hyperperiod. For this,
we first compute the worst-case number of jobs (computed
as ∆h

Tj
) of all higher priority tasks and the worst-case times

required to process them (computed as
(

∆h
Tj

)
Cj). The worst-

case processing times of tasks τ j are then summed up to get
the worst-case processing time of the higher priority tasks in
hp(τi) and this is finally subtracted from the hyperperiod to
get the worst-case remaining time for task τi. If there is no
remaining time after the higher priority tasks are processed,
then we set ∆i = 0. Tasks having the longer critical path are
assigned a higher priority [11].

1least common multiple (LCM) of the periods of the tasks

In order to analyze the schedulability of tasks, we compute
the worst-case number of processed jobs of each task over the
time interval ∆h. Once the worst-case remaining time of each
task ∆i is obtained, we can compute the worst-case number of
processed jobs of each task as shown below

Ji =

{⌊
∆i
Ci

⌋
if ti > ∆i

∆h
Ti

else
(4)

where ti =
(

∆h
Ti

)
Ci is the worst-case processing time for

maximum possible number of jobs of task τi in an interval
∆h.

The worst-case number of processed jobs of each task
can be used to evaluate the overall schedulability of the task
clusters on M ASIPs using the schedulability metric as shown
below:

SM =

{
SM +1 if ∑i Ji = ∑i

∆h
Ti

SM else
(5)

If the task clustering on the ASIPs is schedulable (i.e., all
jobs of the tasks mapped to M ASIPs are serviced in time
∆h or ∑i Ji = ∑i

∆h
Ti

), then schedulability metric value SM is
incremented. If the task clustering is not schedulable, then SM
remains at the same value. For each iteration of MCS, SM
is computed. To incorporate message communication between
tasks on the bus, we check for schedulability of messages on
the bus by ensuring that the bus utilization is below 100%.
Although this does not guarantee the worst-case end-to-end
schedulability, we provide the task clusters that have a high
probability for schedulability of tasks and messages. This can
be used as the starting point for ASIP synthesis. Once the
ASIPs are synthesized, a detailed end-to-end schedulability
analysis can be performed using techniques proposed in [17].
Let us assume that there are P iterations of MCS corresponding
to P sample points of WCET probability density function of
each task. Then the probability of schedulability of the plat-
form solution is computed as pSM = SM

P if the bus utilization is
less than 100%, otherwise pSM is set to zero. Our optimization
objective for performance is to maximize pSM .

IV. MOTIVATIONAL EXAMPLE

The motivating example consists of a task set with 10 tasks.
The area values ai for each task if synthesized alone on an
ASIP are given in Table III. For 10 tasks, there are 100 values
for δi, j, ai, j and ao

i, j corresponding to each task in a task pair.
Therefore, we do not show it here.

In the conventional case, without the uncertainty model
and the area estimation model considering task similarities,
the designer would characterize the WCET of each task τi
with an average value Cavg

i . In this case, there cannot be any

TABLE III: WCET values (in ms) and Datapath Area (in
KGates) for the Motivating Example

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10

Cu
i 16.5 13.2 12.1 6.6 7.7 8.8 13.2 8.8 7.7 14.3

Cl
i 9 7.2 6.6 3.6 4.2 4.8 7.2 4.8 4.2 7.8

Cavg
i 15 12 11 6 7 8 12 8 7 13

ai 150.6 180.5 300.7 109.7 99.2 106.5 250.3 130.4 115.6 260.6



0 0.2 0.4 0.6 0.8 1
1050

1100

1150

1200

1250

1300

1350

Schedulability (pSM)

A
re

a 
(in

 K
ga

te
s)

DSE within 2101 clustering alternatives

SFM
Pareto_OM

Fig. 6: Clustering solutions using SFM and Pareto OM
approaches

optimization of the datapath area as task similarities are not
considered and therefore clustering will not minimize area.
The Cavg

i are presented in Table III. The optimization objective
in this case is schedulability probability considering the Cavg

i
values of tasks. We denote this straightforward approach as
SFM. The Cl

i and Cu
i values for each task τi are presented

in Table III. The task WCET CDFs are constructed using
these WCET bounds and δi, j values. In our proposed approach,
δi, j, ai, j, ao

i, j, Cl
i and Cu

i are used to optimize both area and
schedulability. We denote our approach as Pareto OM, which
stands for Pareto Optimal Clustering method.

The optimization results obtained using the two methods
SFM and Pareto OM are shown in Fig. 6. It is quite evident
from the plot that the SFM approach gives a clustering solution
which has zero schedulability probability in the presence of
task similarities. On the other hand the Pareto OM approach
provides more than one clustering solution, which have good
schedulability probabilities. More precisely, it provides a so-
lution with a 90.66% chance for the tasks to be schedulable.
Moreover, it is also interesting to note that the datapath area
obtained using the Pareto OM approach (approx. 1132 Kgates
for the best performance solution) is lower than that obtained
using the SFM approach (approx. 1326 Kgates).

V. COST AND PERFORMANCE OPTIMIZATION

The design space of the possible clustering solutions is
huge and cannot be exhaustively explored. Therefore, we pro-
pose a Genetic Algorithm (GA)-based optimization approach.
In particular, among the algorithms described in literature, we
use a controlled elitist GA (a variant of the Non-dominated
Sorting Genetic Algorithm-II (NSGA-II) [4]) for multiobjec-
tive optimization.

GA is a metaheuristic optimization strategy that follows
the principles of natural evolution. It defines an initial set of
randomly generated candidate solutions called “population”.
Each candidate solution is identified by a string called “chro-
mosome”. A set of solutions from the initial population un-
dergo “recombination” and “mutation” to combine and vary the
existing chromosomes (parent solutions) and therefore replace

the existing population with one that has a better “fitness
value“. This new set of solutions form the next generation
over which the earlier steps are repeated.

The controlled elitist GA that we use allows mantaining
some diversity in the population by also retaining solutions
with a lower fitness value across different generations. This
is important for the convergence to an optimal Pareto front.
The GA causes the population to evolve towards a better
one until a termination condition is reached. In our case the
algorithm stops when there is no improvement in the fitness
of the population after a certain number of generations gmax.

In a candidate solution, a chromosome is encoded as a
string in which each element called ”gene” represents a task
τi and the value assigned indicates the jth index of PE j on
which the task is clustered. The initial population is composed
of n solutions. From this initial population, a set of solutions
is selected as the parent population, which undergoes the next
few steps. Firstly, recombination (or crossover) is performed
according to a probability pc. We used a standard single point
crossover: given two parents, they are partitioned at a random
point and the resulting parts of the two parents solutions are
combined to generate a child solution if a randomly generated
number ≤ pc. Mutation is then applied on the children gen-
erated from crossover. A probability pm is used to determine
if each single gene of a child solution is randomly changed
or not (i.e. modify the PE associated to each task). After
mutation n offspring solutions are generated. Finally, out of the
2n solutions (n parent solutions + n offspring solutions), the
best n solutions are selected according to the fitness function.
The steps discussed earlier are repeated until a certain number
of generations are traversed. The parameters gmax, n, pc and
pm have been tuned according to the results obtained running
multiple executions of the algorithm with different synthetic
applications.

In this work, the fitness function consists of two opti-
mization objectives discussed in Sections III-A and III-C.
The computation of datapath area/cost considering the task
similarities is performed as presented in Section III-A whereas
schedulability probability (pSM) is computed as presented in
Section III-C. These computations are performed for every
candidate platform solution in each generation of GA.

VI. EXPERIMENTAL RESULTS

To evaluate the effectiveness of our Pareto OM approach
in deriving a multi-ASIP platform, we used 3 real-life bench-
marks from the Embedded System Synthesis Benchmark Suite
(E3S), version 0.9 [5] and 4 synthetic benchmarks. The real-
life benchmarks used from E3S are consumer-cords, telecom-
cords and networking-cords. The details of the benchmark
and the obtained results are presented in Table IV. We also
synthesized 6 benchmarks and their details and obtained results
are presented in Table V. In each of the tables, the number of
tasks constituting each benchmark is given in column 2 and the
number of ASIPs used for task clustering is given in column
3. We provide the area cost (in Kgates) and performance
results (in terms of schedulability probability pSM) obtained
with the SFM approach in columns 4 and 5 respectively. The
same results obtained with Pareto OM approach are shown in
columns 6 and 7 respectively.



0 0.2 0.4 0.6 0.8 1
350

400

450

500

550

600

650

700

750

Schedulability (pSM)

A
re

a 
(in

 K
ga

te
s)

DSE within 7301 clustering alternatives

SFM
Pareto_OM

Fig. 7: Comparison of results using SFM and Pareto OM for
consumer-cords

The values for WCET upper and lower bounds of each task
(both for real-life and synthetic benchmarks) are not shown
here due to lack of space. The WCET value given in the
real-life benchmark was considered as the average WCET
value Cavg

i of task τi and the WCET upper (Cu
i ) and lower

(Cl
i ) bounds of each task were obtained by scaling Cavg

i with
some multiplication factors. For the synthetic benchmarks, the
value of Cavg

i was generated and the values of Cu
i and Cl

i
were obtained by scaling the corresponding Cavg

i . For real-
life benchmarks, the area of each task τi (denoted as ai) was
obtained from the code size of tasks in the E3S benchmark
and area of real implementation of a well known task (from
the benchmark) on a processor. For instance, if the area of the
real implementation of a well known task τ j (such as FFT)
obtained from literature is areal

j and the code sizes of tasks τi
and τ j are csi and cs j respectively, the area of the task τi was
computed as areal

j × csi
cs j

. In the case of synthetic benchmarks,
these values were generated.

Now we discuss how the values that account for task
similarity were obtained. Once the area values required for
the implementation of each task were obtained, for real-life
benchmarks, we obtained the merged area of two clustered
tasks (τi and τ j) ai, j and the area overhead introduced ao

i, j by
looking at the task similarity as explained in Section III-A. In
the case of synthetic benchmarks, these values were generated
such that they did not exceed the area of each task. The
WCET overhead δ (see Section III-B) introduced due to task
clustering was obtained from the merged nodes in the case
of real-life benchmarks. In the case of synthetic benchmarks,

TABLE IV: Real-Life Benchmarks

Benchmark
Number of SFM Pareto OM

tasks ASIPs Area pSM Area pSM

consumer-cords 12 2 531.011 0% 532.5 74.88%
network-cords 13 2 182.845 0% 182.845 95.96%
telecom-cords 30 3 1163.929 0% 1148.896 98.16%

TABLE V: Synthetic Benchmarks

Benchmark
Number of SFM Pareto OM

tasks ASIPs Area pSM Area pSM

synth 1 24 4 408.092 0% 394.665 94.04%
synth 2 30 4 521.364 0% 377.344 75.72%
synth 3 34 4 615.237 0% 407.307 55.02%
synth 4 46 6 723.982 0.16% 493.012 94.22%

these values were manually generated such that the WCET
overhead did not exceed Cavg

i value of each task in a clustered
task pair.

The parameters of GA were tuned so that results obtained
converge towards the optimal result. The initial population size
was set to n = 100. The crossover and mutation probability
were set to pc = 0.4 and pm = 0.2 respectively. The GA termi-
nated when there was no improvement in the fitness function
for 6 generations. The maximum number of generations were
set to gmax = 100. Both the optimization approaches SFM and
Pareto OM were implemented in Matlab 2012 and run on
Intel Core i7 CPU (2.8 GHz). The runtime of the benchmarks
ranged between 10 minutes to 1 hour.

In our experiments, we present the advantage of our pro-
posed platform synthesis approach Pareto OM in comparison
to the SFM approach for real-life benchmarks and synthetic
benchmarks. The experimental setup details and the results
obtained using both the approaches are presented in Table IV
and Table V. The Pareto OM approach generates a pareto
front of solutions. We only report the solution that gives
maximum schedulability probability, but still has lesser area
than what is obtained using SFM in Table IV and Table V.
It is clear from the results that the solution obtained using
Pareto OM approach outperforms the solution obtained using
SFM approach for all the real-life and synthetic benchmarks.
In order to compare the performance of the two approaches,
the clustering solution obtained by SFM was then evaluated
under the inclusion of WCET uncertainty and task similarity
effects.

We also present the pareto plots for the real-life and
synthetic benchmarks. For consumer-cords (Fig. 7), using
Pareto OM approach, there are two solutions which have
a high schedulability probability, but require higher area in
comparison to the SFM approach. Therefore, a better choice
would be to select the solution given in Table IV. The
comparison between the SFM approach and the Pareto OM
approach for network-cords is shown in Fig. 8. Although the
Pareto OM approach returns a couple of solutions with almost
comparable area cost to the solution given by SFM approach,
these solutions have a higher probability of schedulability once
they are synthesized into ASIPs. This result highlights the
fact that for network-cords, the solution that optimizes for
performance is not able to exploit the task similarities well to
reduce area. The comparison between the SFM approach and
the Pareto OM approach for telecom-cords is shown in Fig. 9.
In this case, there a few solutions proposed by Pareto OM
that have higher probability of schedulability in comparison to
the solution proposed by SFM with significant area savings.
This result is because the task similarities in telecom-cords are
well exploited by the Pareto OM approach. However, there
are fewer points on the pareto front because the message



0 0.2 0.4 0.6 0.8 1
110

120

130

140

150

160

170

180

190

Schedulability (pSM)

A
re

a 
(in

 K
ga

te
s)

DSE within 2001 clustering alternatives

SFM
Pareto_OM

Fig. 8: Comparison of results using SFM and Pareto OM for
network-cords

0 0.2 0.4 0.6 0.8 1
600

700

800

900

1000

1100

1200

Schedulability (pSM)

A
re

a 
(in

 K
ga

te
s)

DSE within 5701 clustering alternatives

SFM
Pareto_OM

Fig. 9: Comparison of results using SFM and Pareto OM for
telecom-cords

schedulability condition (Section III-C) on the bus was not
satisfied.

Comparison of SFM approach and the Pareto OM ap-
proach for synth 1 is shown in Fig. 10. In this case, our
Pareto OM approach exhibits better clustering solutions giv-
ing better area cost and performance in comparison to SFM
approach. This is because the similar area among clustered
tasks and WCET overhead are significant factors that consid-
erably affect the optimality of the clustering solutions. Fig. 11
shows the comparison of SFM approach and the Pareto OM
approach for synth 2. There are multiple clustering solutions
shown for synth 2, which save considerable area in comparison
to SFM approach for a small reduction in pSM , but still having
a higher pSM in comparison to the clustering solution proposed
by SFM approach in red marker. Better clustering solutions

0 0.2 0.4 0.6 0.8 1
260

280

300

320

340

360

380

400

420

Schedulability (pSM)

A
re

a 
(in

 K
ga

te
s)

DSE within 10101 clustering alternatives

SFM

Pareto_OM

Fig. 10: Comparison of results using SFM and Pareto OM for
synth 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
340

360

380

400

420

440

460

480

500

520

540

Schedulability (pSM)

A
re

a 
(in

 K
ga

te
s)

DSE within 5401 clustering alternatives

SFM
Pareto_OM

Fig. 11: Comparison of results using SFM and Pareto OM for
synth 2

were also observed for synth 3 (Fig. 12) and synth 4 (Fig. 13)
using the Pareto OM approach. However, for synth 3, the
schedulability probability is lower than the other synthetic
benchmarks because the contention on the bus due to inter-
processor task communication does not satisfy the message
schedulability condition.

VII. CONCLUSION

In this paper, we have proposed a multi-ASIP platform
synthesis approach. This is challenging as the schedulability
of tasks clustered on an ASIP depends on the WCET of
the task and the WCET of the task is known only when
the ASIP is synthesized. We break this circular dependency
by introducing a WCET uncertainty model. A datapath area
estimation model is also proposed. The two models have taken
task similarity into account while clustering. We propose a



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
300

350

400

450

500

550

600

650

Schedulability (pSM)

A
re

a 
(in

 K
ga

te
s)

DSE within 4201 clustering alternatives

SFM
Pareto_OM

Fig. 12: Comparison of results using SFM and Pareto OM for
synth 3

0 0.2 0.4 0.6 0.8 1
400

450

500

550

600

650

700

750

Schedulability (pSM)

A
re

a 
(in

 K
ga

te
s)

DSE within 10101 clustering alternatives

SFM
Pareto_OM

Fig. 13: Comparison of results using SFM and Pareto OM for
synth 4

GA-based multiobjective optimization approach to get a pareto
front of solutions that enables cost performance trade-offs for
the multi-ASIP platform. The efficacy of our approach has
been evaluated using real-life and synthetic benchmarks. From
the experimental results, it was widely observed that our pro-
posed approach (Pareto OM) provided a number of platform

solutions that exhibited lesser cost and higher schedulability
probability in comparison to the SFM approach.

REFERENCES

[1] MAD, MPEG Audio Decoder. http://www.underbit.com/products/mad/.
[2] Mamps project, partitioned jpeg decoder algorithm. http://www.es.ele.

tue.nl/mamps/example.php.
[3] C. Brehm, T. Ilnseher, and N. Wehn. A scalable multi-asip architecture

for standard compliant trellis decoding. In International SoC Design
Conference (ISOCC), pages 349–352, 2011.

[4] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
Nsga-ii. Lecture notes in computer science, 1917:849–858, 2000.

[5] R. Dick. Embedded system synthesis benchmarks suite, 2002.
[6] J. A. Fisher, P. Faraboschi, and C. Young. VEX, a VLIW Example.

http://www.hpl.hp.com/downloads/vex/.
[7] T. Kangas, P. Kukkala, H. Orsila, E. Salminen, M. Hännikäinen, T. D.

Hämäläinen, J. Riihimäki, and K. Kuusilinna. Uml-based multiproces-
sor soc design framework. ACM TECS, 5:281–320, 2006.

[8] K. Kim, J. L. Diaz, L. L. Bello, J. M. Lopez, C.-G. Lee, and S. L.
Min. An exact stochastic analysis of priority-driven periodic real-time
systems and its approximations. IEEE Transactions on Computers,
54(11):1460–1466, 2005.

[9] H. Kopetz. Real-time systems: design principles for distributed embed-
ded applications. Springer, 2011.

[10] A. Kumar, S. Fernando, Y. Ha, B. Mesman, and H. Corporaal. Multipro-
cessor systems synthesis for multiple use-cases of multiple applications
on fpga. ACM TODAES, 13(3):40, 2008.

[11] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating
directed task graphs to multiprocessors. ACM Computing Surveys,
31(4):406–471, 1999.

[12] T. Mitra and P. Yu. Satisfying real-time constraints with custom
instructions. In CODES+ISSS, pages 166–171, 2005.

[13] N. Moreano, E. Borin, C. De Souza, and G. Araujo. Efficient
datapath merging for partially reconfigurable architectures. IEEE TCAD,
24(7):969–980, 2005.

[14] O. Muller, A. Baghdadi, and M. Jézéquel. From parallelism levels to a
multi-asip architecture for turbo decoding. IEEE TVLSI, 17(1):92–102,
2009.

[15] H. Nikolov, T. Stefanov, and E. Deprettere. Multi-processor system
design with espam. In CODES+ISSS, pages 211–216, 2006.

[16] H. Nikolov, T. Stefanov, and E. Deprettere. Systematic and automated
multiprocessor system design, programming, and implementation. IEEE
TCAD, 27(3):542–555, 2008.

[17] J. C. Palencia and M. G. Harbour. Schedulability analysis for tasks with
static and dynamic offsets. In IEEE Real-Time Systems Symposium,
pages 26–37, 1998.

[18] S. L. Shee and S. Parameswaran. Design methodology for pipelined
heterogeneous multiprocessor system. In 44th DAC, 2007.

[19] M. Zuluaga and N. Topham. Resource sharing in custom instruction
set extensions. In IEEE SASP, pages 7–13, 2008.

[20] M. Zuluaga and N. Topham. Design-space exploration of resource-
sharing solutions for custom instruction set extensions. IEEE TCAD,
28(12):1788–1801, 2009.


