
Energy/Reliability Trade-offs in Fault-Tolerant
Event-Triggered Distributed Embedded Systems

Junhe Gan1 Flavius Gruian2

1 Department of Informatics and Mathematical Modelling
Technical University of Denmark, Denmark

{juga, pop, jan}@imm.dtu.dk

Paul Pop1 Jan Madsen1

2 Department of Computer Science
Lund University, Sweden
flavius.gruian@cs.lth.se

Abstract— This paper presents an approach to the synthesis
of low-power fault-tolerant hard real-time applications mapped
on distributed heterogeneous embedded systems. Our synthesis
approach decides the mapping of tasks to processing elements,
as well as the voltage and frequency levels for executing each
task, such that transient faults are tolerated, the timing con-
straints of the application are satisfied, and the energy consumed
is minimized. Tasks are scheduled using fixed-priority preemptive
scheduling, while replication is used for recovery from multiple
transient faults. Addressing energy and reliability simultaneously
is especially challenging, since lowering the voltage to reduce the
energy consumption has been shown to increase the transient fault
rate. We presented a Tabu Search-based approach which uses an
energy/reliability trade-off model to find reliable and schedulable
implementations with limited energy and hardware resources. We
evaluated the algorithm proposed using several synthetic and real-
life benchmarks.

I. INTRODUCTION

Safety-critical applications have to function correctly, meet
their timing constraints and be energy-efficient even in the
presence of faults. Such faults might be permanent (e.g., dam-
aged microcontrollers or communication links), transient (e.g.,
caused by electromagnetic interference), or intermittent (ap-
pear and disappear repeatedly). The transient faults are the
most common [1], and their number is increasing due to the
rising level of integration in semiconductors.

Researchers have proposed several hardware architecture so-
lutions, such as TTA [2], that rely on hardware replication to
tolerate a single permanent fault in any of the components of
a fault-tolerant unit. Such approaches can be used for tolerat-
ing transient faults as well, but they incur great hardware costs.
Alternatives to such purely hardware-based solutions are ap-
proaches such as re-execution, replication, and checkpointing.
Several researchers have shown how the schedulability of an
application can also be guaranteed with appropriate levels of
fault-tolerance [3–5].

With regard to energy minimization, the most common ap-
proach that allows energy/performance trade-offs during run-
time of the application is dynamic voltage and frequency scal-
ing (DVFS) [6]. DVFS aims at reducing the dynamic power
consumption by scaling down operational frequency and cir-
cuit supply voltage. A considerable amount of work has been
done on DVFS. See [6] for a survey.

Incipient research has analyzed the interplay of en-
ergy/performance trade-offs and fault-tolerance techniques

[7–9]. Redundancy-based fault-tolerance techniques (such as
re-execution and replication) and DVFS-based low-power
techniques compete for the available slack. The interplay of
power management and fault recovery has been addressed in
[8], where checkpointing policies were evaluated with respect
to energy. In [7], time redundancy was used in conjunction with
information redundancy, which does not compete with DVFS
for slack, to tolerate transient faults. In [9], fault tolerance and
dynamic power management were studied, and rollback recov-
ery with checkpointing was used to tolerate multiple transient
faults in distributed systems.

Addressing energy and reliability simultaneously is espe-
cially challenging because lowering the voltage to reduce en-
ergy consumption has been shown to increase the number of
transient faults exponentially [10]. The main reason for such
an increase is that, with lower voltages, even very low energy
particles are likely to create a critical charge that leads to a tran-
sient fault. However, this aspect has received very limited atten-
tion. Zhu [11] has proposed a reliability-aware DVFS heuris-
tic for uni-processor systems, and a single-task checkpointing
scheme was evaluated in [10]. Researchers have also addressed
reliability in the context of temperature-aware design. Their fo-
cus has been on limiting the operating temperature in order
to increase the life-time of the system [12]. Such a technique
could be used in conjunction with our approach.

In [13], we show how re-execution and active replication
can be combined in an optimized implementation that leads
to a schedulable fault-tolerant application without increasing
the resources required. In [14], we consider the energy versus
reliability trade-offs in the context of distributed time-triggered
systems, where tasks and messages are scheduled based on a
static-cyclic scheduling policy, and transient faults are tolerated
using task re-execution.

In this paper, we consider heterogeneous distributed event-
triggered systems, where tasks are scheduled using fixed-
priority preemptive scheduling, and messages are scheduled us-
ing fixed-priority non-preemptive scheduling. Transient faults
are tolerated through task replication. In this context, we pro-
pose an optimization approach that decides offline the mapping
of tasks to processing elements and the voltage and frequency
levels for executing each task, such that transient faults are tol-
erated, the timing constraints of the application are satisfied,
and the energy consumed is minimized. We have developed a
novel Tabu Search-based approach for the synthesis of fault-
tolerant event-driven systems that takes into account the influ-
ence of voltage and frequency scaling on reliability. Our offline
approach can be used in conjunction with existing online DVFS

978-1-4244-7516-2/11/$26.00 ©2011 IEEE

8C-2

731

techniques [15] to further reduce the energy consumption under
reliability constraints.

The next two sections present the system architecture and
the application model, respectively. The energy and reliability
models are presented in Section IV. Section V presents our
problem formulation and a motivational example. Section VI
outlines our proposed reliability-aware mapping, voltage and
frequency scaling approach (MVFS). An evaluation of the pro-
posed algorithm is presented in the last section.

II. SYSTEM MODEL

We consider hardware architectures consisting of a set N of
heterogeneous processing elements (PEs) and interconnected
by a communication channel. Tasks are scheduled using fixed-
priority preemptive scheduling. We have shown [16] how real-
istic protocols such as FlexRay can be taken into account dur-
ing the analysis and synthesis. However, for simplicity, in this
paper we use a simple non-preemptive fixed-priority bus. We
ignore the energy consumption of the bus, but we do take the
bus timing into account during schedulability analysis.

In this paper we address the energy consumption in PE,
which is a major component of the system-level energy con-
sumption, and use the system-level power model from [17].
Thus, a processing element Ni is characterized by a set of oper-
ating modes, where each operating mode, ΛNi

j = (f Ni
j , vNi

j , pNi
j),

is described by three parameters: f Ni
j is the operating clock fre-

quency of Ni running in mode j, which is measured in Hz;
vNi

j is the supply voltage measured in Volts; pNi
j is the power

spent measured in Watts. We denote normalized frequency F
and normalized voltage V where FNi

j = f Ni
j / f Ni

max and V Ni
j =

vNi
j /vNi

max, respectively.
Switching between operating modes requires time and en-

ergy. We take this overhead into account through a matrix of
time overheads X and a matrix of energy overheads Y . Each el-
ement Xj!, j ! !, is the time overhead required to mode-switch
from j to !. Similarly, each element Yj!, j ! !, denotes the en-
ergy consumption when switching modes from j to !.

In this paper we are interested in tolerating transient faults,
which are the most common faults in today’s embedded sys-
tems [1]. The fault rate λ has been reported [10] in the range
10−8−10−6 faults per second on each chip. We assume that
faults are detected at the completion of a task’s execution, and
the overhead of fault detection is included in the task’s worst-
case execution time (WCET). In [13] we have shown how re-
execution, which provides time-redundancy, and active repli-
cation, which provides spatial-redundancy, can be combined in
an optimized implementation that reduces the fault-tolerance
overheads. In this paper, we use active replication to tolerate
transient faults.

III. APPLICATION MODEL

We model an application as a set Γ of periodic real-time
tasks. The mapping of a task τi to Nj is captured by the function
M : Γ → N , i.e., M (τi) = Nj. This mapping is not yet known
and will be decided by our approach presented in Section VI.
For each task τi we know the WCETs of CNj

i (in the maximum

speed operating mode) with respect to each Nj where it could
be mapped and executed, the period Ti and deadline Di. We as-
sume that the deadlines are smaller or equal to the periods, i.e.,
Di ≤ Ti. Each task τi is assigned a unique priority.

Tasks are divided into two categories: critical and non-
critical. To prevent the application failure, critical tasks have
to tolerate transient faults. We assume that for each critical task
τi, the designer will specify a desired redundancy level ki, i.e.,
how many replications of τi have to be introduced. The desired
redundancy level depends on the functionality and implemen-
tation of the task, and is captured by the function F : Γ → !,
i.e., F (τi) = ki. If ki = 0, the task is non-critical. A critical task
and its replicas could be mapped on the same PE and run at
different modes, or mapped on different PEs.

Each execution of a periodic task is called a job. The jth job
of task τi is referred to as Ji j. In this paper, we assume that all
the jobs Ji j of task τi are assigned offline to the same operating
mode1 (i.e., run in the same operating voltage and frequency).
The assigned mode of task τi is captured by the function L :
Γ →

{
ΛM (τi)
!

}
. For simplicity, we do not consider the situa-

tion when an intermediate mode can be obtained by using two
modes applied to different execution segments of the same task,
as in [17]. However, our approach can be extended to consider
this aspect.

Tasks communicate asynchronously through buffers, i.e., a
reader task will block if the buffer is empty and a writer task
will block if the buffer is full. We assume that the buffer size
have been determined such that there is no overflow or under-
flow [18], and we know the size of each message.

IV. ENERGY/RELIABILITY TRADE-OFF MODEL

The reliability of executing a task, Ri, is defined as the prob-
ability of its successful execution, and it is captured by the ex-
ponential failure law [19],

Ri = e−λc (1)

where λ is the average fault rate, and c is the execution time of
the task.

The reliability of a critical task, Rrep
i , is increased through

introducing ki replicas. Rrep
i is expressed as the probability of

not having all these tasks fail,

Rrep
i = 1−

ki+1

∏
i=1

(1−Ri) (2)

Note that when ki = 0 (i.e., the task is non-critical), Rrep
i = Ri.

Considering independent faults, the reliability Rs of the system
is calculated by,

Rs =
|Γ′|

∏
i=1

Rrep
i (3)

where |Γ′| denotes the number of tasks in Γ′, the complete set
of tasks, including the replicas.

The assigned redundancy levels are only valid under the as-
sumption that the system reliability Rs does not fall below a

1Jobs might execute in different modes depending on the online power man-
agement scheme.

8C-2

732

specified reliability goal Rg. If Rs is below Rg, the fault rate
might be higher and thus more redundancy might be necessary
to tolerate the increased number of faults.

For a task τi mapped on Nj and executed in mode !, its
WCET ci is calculated by: ci = CNj

i /FNj
! . The application is

executed periodically with a hyperperiod2 TΓ′ . The energy con-
sumption ES of the task set Γ′ within TΓ′ is calculated by:

ES = ∑
τi∈Γ′

⌈
TΓ′

Ti

⌉
· pNj

! · ci +O (4)

where pNj
! · ci is the energy consumed by each job of τi mapped

on Nj and run in mode !,
⌈

TΓ′
Ti

⌉
is the number of τi’s jobs within

TΓ′ , and O is the sum of mode switching overheads detected by
the schedulability analysis.

However, the energy is also linked to reliability, not only per-
formance. The fault rate is determined by the operating mode
which the system runs in, i.e., the supply voltage v and the op-
erating frequency f . In [10], it is assumed that when PE runs
in the minimum voltage and frequency level, the fault rate in-
creases 10d times compared to that of PE running in the maxi-
mum voltage and frequency level.

λmax = λ(ΛNj
min) = λ(ΛNj

max) ·10d = λmin ·10d (5)

where d (> 0) is an PE-specific constant.
We derive Eq. 6 from [10]3. Recall that normalized fre-

quency F and normalized voltage V are used.

λ(ΛNj
!) = λ0 ·Fα ·10−βV (6)

where λ0 = λmin is the average fault rate of a system running on
the maximum speed operating mode with the highest operating
frequency and supply voltage, α and β could be calculated by
Eq. 5 and Eq. 6.

We can now update the Eq. 1. When a periodic task τi is
mapped on Nj and executed in mode !, its reliability Ri is cal-
culated by:

Ri = e−λ(Λ
N j
!)

⌈ TΓ′
Ti

⌉
ci (7)

Since the fault rate increases exponentially when supply
voltage and operating frequency decrease, switching the oper-
ating mode has an impact on the system reliability.

V. PROBLEM FORMULATION

The problem we are addressing in this paper can be formu-
lated as follows. Given (1) an application modeled as a set Γ of
tasks, with associated redundancy levels captured by function
F , (2) an architecture consisting of a set N of heterogeneous
PEs that work under different operating modes Λ, and (3) a
reliability goal Rg which bounds the system reliability Rs, we
are interested in synthesizing an implementation S , such that
the deadlines of all tasks are satisfied, the system reliability is

2hyperperiod is equal to the least common multiple of all tasks’ periods.
3 [10] provides the fault rate formula when a system runs in normalized

frequency F and the corresponding normalized voltage V = F · Vmax = F . But
we also consider the case V ! F .

within the imposed reliability goal, i.e., Rs ≥ Rg, and the energy
consumption is minimized.

Synthesizing an implementation S = (M , L) means decid-
ing offline (1) the mapping M of tasks and replicas to the PEs
and (2) the operating mode L for executing each task.

A. Motivational Example

Let us consider the example in Fig.1 where we have a task
set of six tasks (four tasks and two replicas) mapped on an
architecture of two PEs. The WCETs, periods, deadlines and
priorities of all tasks are presented in Fig.1(a). τ1 and τ2 are
critical tasks and they are replicated once. We denote the repli-
cated task of τi as τ′i and its jobs as J′i j. Recall that tasks are
periodic and they are executed in accordance to fixed-priority
preemptive scheduling (e.g. RM).

The operating modes of two PEs are given in Fig.1(b), which
also contains λ0, α, and β (we assume the same values for both
PEs in this example, but they should be PE-specific). The hy-
perperiod of the application is TΓ = 100. In Fig.1(c) and (d),
the height of the rectangle indicates the operating mode which
the task is running in. The timeline on each PE considers the
scenario when all tasks are released at t = 0 and executed up
to their WCETs. However, tasks might be released at different
times and could be finished earlier. In Section VI.A, we discuss
the schedulability analysis and the assumptions considered.

For the discussion, we use a reference which runs all the
tasks in the maximum speed operating mode and attempts
to reduce the energy consumption by mapping the tasks on
the low energy consumed PEs, without missing the deadlines.
We present the referenced energy consumption E0 and system
reliability R0

s after (a) and (b). The reliability goal Rg is given
as well.

The typical approach for energy minimization is to decide
the mapping and the operating mode for each task such that

Fig. 1 Mapping and VFS Example

8C-2

733

Fig. 2 Runtime behavior for an arbitrary instance

the energy consumed is minimized and the deadlines are sat-
isfied. Such an implementation, denoted with Sc, is shown in
Fig.1(c). Sc meets all tasks’ deadlines and reduces the energy
by 42.58%, compared to E0. However, Sc does not meet the
system reliability goal. Since 1 − Rs captures the probability
of failure, we use Eq. 8 to measure the degeneration of the sys-
tem reliability:

θ =
1−Rs

1−R0
s

(8)

where R0
s is the system reliability of initial solution. According

to Eq. 8, the probability of failure for Sc is 160 times greater
than that of the initial solution.

By carefully deciding the mapping M and operating modes
L , it is possible to reduce the negative impact on reliability
without a significant loss of energy savings. Another imple-
mentation Sd shown in Fig.1(d) fulfills all timing and reliability
requirements, with only 0.45% loss in energy savings while
comparing the energy reduction result between Sc and Sd .

Additional energy savings can be obtained at runtime by
exploiting the available slack, because, for instance, a task
may finish before its WCET. Several such online management
schemes have been proposed, such as [15]. Our offline opti-
mization can work in conjunction with any of them. The con-
cern is whether we can obtain further gains without impacting
the reliability goal. Any online DVFS scheme would have to
use Rg as a constraint.

Fig.2 considers the case in Fig.1(d) where J′11 finished ear-
lier. An online DVFS scheme can, in principle, avoid executing
replicas if the current job of the original task does not experi-
ence a fault, but such a discussion is beyond the scope of this
paper. The shadow of the rectangle shows the offline optimized
solution of Fig.1(d). At runtime, the available slack will be ex-
ploited by scaling voltage and frequency to execute J21, which
further increases the energy savings to 50.66%. Although the
reliability is slightly decreased to 0.999961, it is still within Rg.
In general, a task that finishes earlier will increase reliability
(Eq. 7) and this can be translated into energy gains.

VI. TABU SEARCH-BASED ALGORITHM

The problem presented in the previous section is NP-hard. To
solve it, we propose a Tabu Search-based approach, which de-
cides offline the mapping M and operating mode L for execut-
ing each task. Tabu Search (TS) [20] is an optimization meta-
heuristic which iteratively explores the solutions in the vicin-
ity (neighborhood) of the current solution, selecting the ones
which optimize the cost funtion. TS would avoid being stuck

in a local optimum by allowing selection of non-improving so-
lutions. Our proposed cost funtion in Eq. 9 captures the energy
minimization under timing and reliability constraints:

cost(S) = ES +WR ·max(0,Rg−Rs)+Wr ·max(0,rS) (9)

where the first term is the energy consumption of running the
implementation S within TΓ′ , the second term is the reliability
constraint and the third term represents the timing constraint.
Instead of considering solutions which do not meet timing and
reliability constraints as infeasible, we chose to penalize them
heavily in the cost function by giving large values to WR and Wr.
This allows us to explore infeasible regions of the search space
and drive the search towards feasible regions. rS is “degree of
schedulability” which is presented in Section VI.A.

Algorithm 1 presents our reliability-aware mapping, voltage
and frequency scaling optimization (MVFS). MVFS takes the
complete the task set Γ′ and the architecture N as inputs, and
returns the implementation S = (M , L) which minimizes the
cost function. The search starts from an initial solution S 0

(line 1) which is a mapping such that the utilization of the PEs
is balanced and the communications are minimized. All tasks
are assigned the maximum speed operating mode.

The neighborhood of the current solution is generated using
design transformations (moves) that change the current system
implementation S now (lines 3 and 5). The neighborhood might
be very large, thus we consider a limited number of neighbor-
ing solutions called a candidate set, denoted with C . We per-
form two types of design moves in MVFS: (1) mapping moves
(M -moves) and (2) voltage and frequency scaling moves (L-
moves).

From a current solution, M -moves are performed by mov-
ing a task from one PE to another PE, or swapping two tasks
between two PEs. Since evaluating all neighboring mappings
can be extremely expensive for large task set, we use a prob-
ability of performing M -moves (PM). Although it is possible
to miss excellent solutions, the computational overhead is sig-
nificantly reduced and randomness is introduced which can act
as an anti-cycling mechanism. An L-move is generated by ran-
domly assigning operating mode for each task. For each neigh-
boring mapping, a number of L-moves (nL) are added to the
candidate set C .

We evaluate all candidates in C (line 7). For selecting a new
solution, we first attempt to select an improved solution with

Algorithm 1 MVFS
1: S 0 ← InitialSolution(Γ′, N); S now ← S 0

2: while max iterations is not exhausted do
3: C ←M -moves(S now, PM)
4: for each solution S new

i ∈ C do
5: C ← L-moves(S new

i , nL)
6: for each solution S new

j ∈ C do
7: Calculate ∆ j = cost(S now) − cost(S new

j)
8: end for
9: end for

10: S now ← SelectNewSolution(∆ j, length tl)
11: S ← SaveBestSolution(S now)
12: end while
13: return S

8C-2

734

the largest improvement compared to current solution, as long
as it is not on the tabu list or the tabu status can be aspirated4.
If no such improved solution exists, we randomly select a non-
improved solution to be new solution as long as it is on non-
tabu status. Randomly accepting non-improving moves intro-
duces the diversification, which forces the search into previ-
ously unexplored areas of the design space.

We record the last length tl design transformations (both
M -moves and L-moves) to the tabu list in order to prohibit
reverse transformations. The selection of new solution and the
maintenance of tabu list are done inside the SelectNewSolu-
tion function (line 10). Then, SaveBestSolution function (line
11) saves the new solution if it is the best solution so far. After
max iterations without an improvement, the algorithm stops
and the best-found-solution S is reported.

A. Schedulability Analysis

To determine the schedulability of an implementation we
use response-time analysis [21] to calculate the worst-case re-
sponse time ri of every task τi, which is compared to the dead-
line Di. The basic analysis presented in [21] has been extended
over the years. For example, the state-of-the-art analysis in [22]
considers arbitrary arrival times and deadlines, offsets and syn-
chronous inter-task communication (where a receiving task has
to wait for the input of the sender task), and the analysis in [17]
takes into account the time needed for the mode-switching
overheads.

Our focus in this paper is exploring the trade-off between
energy and reliability. Hence, we decide to use the basic anal-
ysis from [21]. We do, however, take communication into ac-
count to make sure that the mapping solutions do not create too
much bus traffic. We consider a non-preemptive fixed-priority
bus and during the design space exploration we mark as infea-
sible solutions which result in a bus utilization over 100%. The
utilization is calculated from the bus speed, the size of the mes-
sages exchanged over the bus and period of the sender tasks.

The schedulability of an implementation S is captured using
the “degree of schedulability”, rS over all tasks:

rS =

{
d1 = ∑i max(0,ri−Di) i f d1 > 0
d2 = ∑i(ri−Di) i f d1 = 0

(10)

If the application is not schedulable, there exists at least one ri
greater than the deadline Di, therefore the term d1 of the func-
tion will be positive. In this case rS is equal to d1. However,
if the application is schedulable, then each ri is smaller than
the corresponding deadline Di. In the case d1 = 0 and we use
d2 as the rS , as it is able to differentiate between two design
alternatives, both leading to a schedulable application.

VII. EXPERIMENTAL RESULTS

For the evaluation of our approach, we used ten synthetic
benchmarks and five real-life case studies. In all benchmarks,
a quarter of the tasks were considered critical and for each crit-
ical task we introduced one redundancy. We used three types

4A tabu status can be aspirated when the solution has a better cost func-
tion than that of the current best-known solution, since it will not produce any
cycling in the exploration of the design space.

TABLE 1 THREE TYPES OF PEs

Fast PE Medium PE Slow PE
Freq. Volt. Power Freq. Volt. Power Freq. Volt. Power
[MHz] [V] [W] [MHz] [V] [W] [MHz] [V] [W]
500 1.2 9.2 300 1.4 4.3 133 1.1 1.36
600 1.25 12 350 1.5 5.6 166 1.2 1.9
700 1.3 15.1 400 1.6 7.1 200 1.3 2.58
800 1.35 18.6 450 1.7 8.95 233 1.4 3.4
1000 1.4 25 500 1.8 11.4 266 1.5 4.4
α = −6.5, β = −0.039 α = −8.9, β = −0.038 α = −6.5, β = −0.039

of PEs described in Table 1. The minimum failure rate (when
system runs at the maximum speed operating mode) of all PEs
was set to λ0 = 10−6. We used a reference for all experiments,
the system energy consumption E0

S and reliability R0
s obtained

by our MVFS approach, but without performing L-moves (i.e.,
no mode changes that all tasks are run with the highest fre-
quency and voltage). The reliability goal Rg is set such that we
accept a probability of failure which is ten times larger than
R0

s , i.e., Rg = 1 − 10(1 − R0
s). We tuned the MVFS parameters

so that the results were as close as possible to optimal (i.e., no
improvements were seen with a longer run-time).

In the first experiment we wanted to evaluate the quality of
MVFS as the systems become larger. Table 2 presents the ex-
perimental setup details and the results. We used five synthetic
benchmarks of 10 to 105 tasks (including replicated tasks)
mapped on architectures with 2 to 6 different types of PEs.
The results obtained with MVFS are presented in the last two
columns. The increase in the failure probability θ was calcu-
lated using Eq. 8 and had to be smaller or equal to 10 in order
to meet the reliability goal Rg. Alongside the MVFS results, we
also present the results obtained with MVFS−. This is an im-
plementation which minimizes the energy, but without concern
for reliability (the reliability constraint, the second term in Eq.
9, is removed). As we can see from Table 2, columns 5 and 6,
minimizing the energy without considering reliability leads to a
dramatic increase in the probability of failure, which increases
more than 100 times in most cases. However, our MVFS ap-
proach is able to keep the system reliability Rs within the spec-
ified Rg, without a significant loss in energy savings (last col-
umn) compared to MVFS− (column 6).

In the second experiment we wanted to determine the abil-
ity of MVFS to find good quality solutions as the utilization
of the system increases. The experimental setup and the results
obtained are presented in Table 3. We used a synthetic bench-
mark with 25 tasks (20 tasks and 5 replicated tasks) mapped on
a heterogeneous architecture with 3 different types of PEs. We
varied the execution times resulting in five cases correspond-
ing to various initial utilization (column 5), from 27.21% to
71.98%. More energy can be saved in the less utilized systems
since more slack could be used for lowering operating voltage

TABLE 2 SYNTHETIC BENCHMARKS: DIFFERENT SYSTEM SIZES

Numbers of MVFS− MVFS
Test PEs Orig. Repl. θ Saved θ Saved
Set Tasks Tasks [times] E [%] [times] E [%]
1 2 8 2 166 28.23 10 24.64
2 4 31 8 112 28.56 10 25.28
3 4 42 11 137 30.47 10 26.04
4 6 63 16 104 25.92 10 21.92
5 6 84 21 57 22.78 10 20.57

8C-2

735

TABLE 3 SYNTHETIC BENCHMARKS: VARYING INITIAL UTILIZATION

Numbers of Initial MVFS− MVFS
Test PEs Orig. Repl. Util. θ Saved θ Saved
Set Tasks Tasks [%] [times] E [%] [times] E [%]
1 3 20 5 27.21 198 29.57 10 25.00
2 3 20 5 41.00 121 26.55 8 23.02
3 3 20 5 52.73 101 25.26 9 21.05
4 3 20 5 61.56 72 22.94 10 20.09
5 3 20 5 71.98 7 12.76 7 12.76

TABLE 4 REAL-LIFE BENCHMARKS

Numbers of MVFS− MVFS
Benchmarks PEs Orig. Repl. θ Saved θ Saved

Tasks Tasks [times] E [%] [times] E [%]
networking-cords 2 13 3 141 28.01 10 20.49
auto-indust-cords 4 24 6 77 22.68 10 17.87

telecom-cords 4 30 8 129 28.16 9 19.57
3 Apps together 6 67 17 64 15.26 10 13.86

Smart-phone 2 61 16 60 18.71 9 15.23

and frequency without missing the deadlines. As expected, us-
ing MVFS is especially important where the energy saving po-
tential is greater, because reliability is significantly impaired
without it.

Finally, we evaluated MVFS in real-life case studies. Five
benchmarks were selected from the Embedded System Syn-
thesis Benchmark Suite (E3S), version 0.9 [23], and Smart-
Phone Benchmarks [6]5. The experimental setup details and
the results obtained are presented in Table 4. As can be seen,
this evaluation confirms the results obtained from the synthetic
benchmarks. This means that by using MVFS we are able
to eliminate the negative impact of energy minimization on
reliability with minimal loss in energy savings.

VIII. CONCLUSION

In this paper we addressed the mapping, voltage and fre-
quency scaling for fault-tolerant hard real-time applications
mapped on distributed embedded systems where tasks and
messages are scheduled using an event-driven scheduling pol-
icy. We captured the effect of voltage and frequency scal-
ing on system reliability, and we showed that if the supply
voltage and the operating frequency are lowered to reduce en-
ergy consumption, reliability is significantly reduced. That is
why we proposed a Tabu Search-based approach that takes
reliability into account when performing task mapping and op-
erating mode assignment. As the experimental results show, our
Tabu Search-based strategy is able to produce energy-efficient
implementations which are both schedulable and fault-tolerant.
By carefully deciding the mapping, operating voltage and fre-
quency of each task, we showed that it is possible to eliminate
the negative impact of energy minimization on reliability with
minimal decrease in energy savings.

REFERENCES

[1] C. Constantinescu, “Trends and challenges in VLSI circuit reliability”,
IEEE Micro, 23, pp.14-19, 2003.

[2] H. Kopetz and G. Bauer, “The Time-Triggered Architecture”, Proceed-
ings of the IEEE, 91(1), pp. 112-126, 2003.

5We only used the applications of MP3 decoder, GSM decoder, JPEG en-
coder and JPEG decoder.

[3] A. Bertossi and L. Mancini, “Scheduling Algorithms for Fault-
Tolerance in Hard-Real Time Systems”, Real Time Systems, 7(3), pp.
229-256, 1994.

[4] A. Burns, R. Davis, S. Punnekkat, “Feasibility Analysis for Fault-
Tolerant Real-Time Task Sets”, Euromicro Workshop on Real-Time Sys-
tems, pp. 29-33, 1996.

[5] Y. Zhang and K. Chakrabarty, “Energy-Aware Adaptive Checkpointing
in Embedded Real-Time Systems”, DATE Conf., pp. 918-923, 2003.

[6] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles, System-Level Design
Techniques for Energy-Efficient Embedded Systems, Springer, 2003.

[7] A. Ejlali, B. M. Al-Hashimi, M. Schmitz, P. Rosinger, and S. G.
Miremadi, “Combined Time and Information Redundancy for SEU-
Tolerance in Energy-Efficient Real-Time Systems”, Very Large Scale
Integration (VLSI) Systems, 14(4), pp. 323-335, 2006.

[8] R. Melhem, D. Mosse, and E. Elnozahy, “The interplay of power man-
agement and fault recovery in real-time systems”, IEEE Transactions on
Computers, 53(2), pp. 217-231, 2004.

[9] Y. Zhang and K. Chakrabarty, “Dynamic adaptation for fault tolerance
and power management in embedded real-time systems”, ACM Trans-
actions on Embedded Computing Systems, vol. 3, pp. 336-360, 2004.

[10] D. Zhu, R. Melhem and D. Mossé, “The Effects of Energy Management
on Reliability in Real-Time Embedded Systems”, Proc. of the Interna-
tional Conference on Computer Aided Design, pp. 35-40, 2004.

[11] D. Zhu and H. Aydin, “Reliability-Aware Energy Management for Pe-
riodic Real-Time Tasks”, IEEE Transactions on Computers, 58(10), pp.
1382 - 1397, 2009.

[12] Coskun, A. K.; Simunic Rosing, T.; Mihic, K.; De Micheli, G.; and
Leblebici, Y. “Analysis and Optimization of MPSoC Reliability”, Jour-
nal of Low Power Electronics, vol.2, no. 1, pp. 56-69, 2006.

[13] Paul Pop, Viacheslav Izosimov, Petru Eles, and Zebo Peng, “Design
Optimization of Time- and Cost-Constrained Fault-Tolerant Embedded
Systems With Checkpointing and Replication”, Very Large Scale Inte-
gration (VLSI) Systems, IEEE Transactions, 17(3), pp.389-402, 2009.

[14] Paul Pop, Kre Harbo Poulsen, Viacheslav Izosimov, and Petru Eles,
“Scheduling and voltage scaling for energy/reliability trade-offs in fault-
tolerant time-triggered embedded systems”, Hardware/software code-
sign and system synthesis, pp. 233-238, 2007.

[15] F. Gruian, “Hard real-time scheduling for low-energy using stochas-
tic data and DVS processors”, International Symposium on Low Power
Electronics and Design, pp. 41-55, 2001.

[16] Pop, T. and Pop, P. and Eles, P. and Peng, Z. and Andrei, A., “Timing
analysis of the FlexRay communication protocol”, Real-time systems,
pp. 205-235, 2008.

[17] E. Bini, G. Buttazzo and G. Lipari, “Minimizing CPU energy in real-
time systems with discrete speed management”, ACM Transactions on
Embedded Computing Systems, vol.8, no.31, 2009.

[18] S. Manolache, P. Eles, and Z. Peng, “Buffer space optimisation with
communication synthesis and traffic shaping fornocs”, Proceedings of
Design, automation and test in Europe, DATE ’06, pp. 718-723, 2006.

[19] Barry W. Johnson, “Design and Analysis of Fault-Tolerant Digital Sys-
tems”, Addison-Wesley, 1989.

[20] F. Glover. “Tabu Search”, ORSA Journal on Computing, 1(3), pp. 109-
206, 1989.

[21] G. Buttazzo, Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications, Springer, 2005.

[22] J. C. Palencia and M. G. Harbo, “Schedulability Analysis for Tasks with
Static and Dynamic Offsets”, Proceedings of the IEEE Real-Time Sys-
tems Symposium, p. 26, 1998.

[23] Homepage: http://ziyang.eecs.umich.edu/dickrp/e3s, Embedded System
Synthesis Benchmark Suite(E3S), 2009.

8C-2

736

