
Architecture Synthesis for Cost-Constrained

Fault-Tolerant Flow-based Biochips

Morten Chabert Eskesen∗, Paul Pop∗, Seetal Potluri∗

∗Department of Applied Mathematics and Computer Science, Technical University of Denmark

Abstract—In this paper, we are interested in the synthesis of
fault-tolerant architectures for flow-based microfluidic biochips,
which use microvalves and channels to run biochemical appli-
cations. The growth rate of device integration in flow-based
microfluidic biochips is scaling faster than Moore’s law. This
increase in fabrication complexity has led to an increase in
defect rates during the manufacturing, thereby motivating the
need to improve the yield, by designing these biochips such that
they are fault tolerant. We propose an approach based on a
Greedy Randomized Adaptive Search Procedure (GRASP) for the
synthesis of fault-tolerant biochip architectures. Our approach
optimizes the introduction of redundancy within a given unit cost
budget, such that, the biochemical application can successfully
complete its execution within its deadline, even in the presence
of faults, and the yield is maximized. The proposed algorithm
has been evaluated using several benchmarks and compared to
the results of a Simulated Annealing metaheuristic.

I. INTRODUCTION

Microfluidics-based biochips (also referred to as lab-on-a-

chip) integrate different biochemical analysis functionalities

on-chip, miniaturizing the macroscopic biochemical processes

to a sub-millimeter scale. These microsystems offer several

advantages over the conventional biochemical analyzers, e.g.,

reduced sample and reagent volumes, faster biochemical reac-

tions, ultra-sensitive detection and higher system throughput,

with several assays being integrated on the same chip [1], [2].

Biochips are used in many application areas like in vitro

diagnostics (point-of-care), drug discovery (high-throughput

screening, hit characterization), biotechnology (process mon-

itoring and development) and ecology (agriculture, environ-

ment, homeland security) [2]. During the last decade, a

significant amount of work has been carried out on the

individual microfluidic components as well as the microfluidic

platforms [2]. There are several types of biochip platforms,

each having its own advantages and limitations [2].

In this paper, we focus on flow-based biochips, in which

the microfluidic channel circuitry on the chip is equipped

with integrated microvalves, that are used to manipulate more

complex units such as mixers, micropumps, multiplexers etc.,

with several hundreds of such units being accommodated on a

single chip [2]. Analogous to its microelectronics counterpart,

this approach is called microfluidic Very Large Scale Inte-

gration (mVLSI) [3]. The soft lithography technology used

for fabricating flow-based biochips, has advanced faster than

Moore’s law [4].

As these biochips grow more complex (commercial biochips

are available, which use more than 25,000 valves and about

a million features to run 9,216 polymerase chain reactions in

parallel [5]), the manual methodologies used currently will not

scale, and hence will become highly inadequate. Therefore,

researchers have started to propose top-down design method-

ologies. A survey of the recent developments in mVLSI,

including an overview of the proposed top-down automatic

physical design methods, is presented in [6].

A roadblock in the deployment of biochips is their low

reliability. Physical defects can be introduced during the

fabrication process, which can reduce the manufacturing yield.

Additionally, this may lead to failure of the biochemical

application, which can be costly because of the need to redo

lengthy experiments, using expensive reagents and often hard-

to-obtain samples, and can be satefy-critical, e.g: in case of

a cancer misdiagnosis. Researchers have started to propose

fault models and test techniques for mVLSI biochips [7]. To

increase the yield, and also to prevent the failures during the

operation of biochip, we advocate the use of fault-tolerant

biochip design. To address the case, when the consequences

of failure are drastic, researchers have already considered

introducing redundancy to provide fault-tolerance in mVLSI

biochips. The manually designed ”Mars Organic Analyzers”

biomarker detector chip [8] is an example in this context.

In this paper, our assumption is that the faults are detected

during testing, and that the biochemical application is recom-

piled offline to avoid the detected faults. We are interested

to introduce redundancy during the design (synthesis) stage,

such that the applications can still be recompiled and run

successfully on a defective biochip. In the past, fault-tolerant

design strategies have been proposed for the droplet-based

biochips [9]; these biochips have a regular array structure,

composed of electrodes which manipulate the droplets. In

this context, redundant electrodes are introduced, so that, in

case the electrodes in the original architecture become faulty,

recompilation can be done to replace faulty electrodes with

the redundant ones, to achieve fault-tolerance. However, these

approaches are not suitable for mVLSI biochips.

In this paper, we propose a fault-tolerant design strategy,

which takes the following inputs: (1) An initial architecture

without fault-tolerance, modeled as netlist (i.e., the com-

ponents in the architecture and their interconnections); (2)

An application model represented using a sequencing graph,

where each node is an operation and edges capture fluid

dependencies; (3) Fault model; and (4) A set of constraints

imposed by the designer, and produces a fault-tolerant archi-

tecture for the given biochip, such that the biochip unit cost is

minimized. An architecture is fault-tolerant, if the application

Figure 1. Structure of a valve fabricated using soft lithography

can successfully complete its execution, even in the presence

of faults.

II. FAULT MODEL AND SYSTEM MODEL

Biochips are fabricated using multilayer soft lithogra-

phy [10], using a cheap, rubber-like elastomer (polydimethyl-

siloxane, PDMS) with good biocompatibility and optical trans-

parency being used as the fabrication substrate. Physically, the

biochip can have multiple layers, but the layers are logically

divided into two types: flow layer and the control layer.

The basic building block of a biochip is a micro-mechanical

valve (also known as microvalve, as shown in Fig. 1), which

restricts/permits the fluid flow, and hence used to manipulate

the fluid in the flow layer (blue). As shown in Fig. 1, the

microvalve is controlled using an external air pressure source,

through a control pin z1. Control pins provide access to the

control layer (red). The flow layer is connected to a fluid

reservoir, through a pump that generates the fluid flow. When

the pressure source is not active, the fluid is permitted to flow

freely (open valve). When the pressure source is activated, high

pressure causes the elastic control layer to pinch the underlying

flow layer (point a in Fig. 1), thereby blocking the flow at point

a (closed valve). Next, we describe our fault model.

A. Fault Model

It is known that the growth rate in complexity of these

mVLSI biochips is faster than Moore’s law [4], thereby

increasing the defective rates proportionately. Broadly speak-

ing, the consequences of the defects can be described as

either a block or a leak [7], [11]. We assume that the

designers, will specify for a biochip A, a fault model

Z = (VF , CF , vmax, cmax), where VF and CF are a finite set of

valve and channel faults respectively, while vmax and cmax

specify the maximum number of valve and channel faults,

respectively, that may occur in the architecture A at the same

time. We have a general fault model, where the sets VF and CF

contain all the valves and all the channels, respectively. This

means that the biochip A may experience any combination

of vmax valve failures and cmax channel failures. However,

we also allow the designers to specify a certain list of faults

based on their experience, gained from fabricating biochip A,

as follows. A valve fault V F (N,w, t) ∈ VF may occur in a

component N ∈ N , where w is the particular valve affected

inside component N , and t denotes the type of fault, which

could be stuck open or stuck closed. Similarly, a channel fault

Table I
COMPONENT LIBRARY (L): FLOW LAYER MODEL

Component Phases(P) C H
Mixer Ip1 / Ip2 / Mix / Op1 / Op2 0.5 s 30 × 30

FT-Mixer Ip1 / Ip2 / Mix / Op1 / Op2 0.5 s 30 × 30

Filter Ip / Filter / Op1 / Op2 20 s 120 × 30

FT-Filter Ip / Filter / Op1 / Op2 20 s 120 × 60

Detector Ip / Detect / Op 5 s 20 × 20

FT-Detector Ip / Detect / Op 5 s 20 × 40

Separator Ip1 / Ip2 / Separate / Op1 / Op2 140 s 70 × 20

FT-Separator Ip1 / Ip2 / Separate / Op1 / Op2 140 s 70 × 40

Heater Ip / Heat / Op 20◦ C/s 40 × 15

FT-Heater Ip / Heat / Op 20◦ C/s 40 × 30

Storage Ip or Op - 90 × 30

FT-Storage Ip or Op - 90 × 40

Metering Ip / Met / Op1 / Op2 - 30 × 15

Multiplexer Ip or Op - 30 × 10

CF ∈ CF may occur either in a component N ∈ N denoted with

CF (N, t) or in a channel D, denoted with CF (D, t), where t is

the type of fault, which can be a block or a leak. An example

fault list specified by the designers, for the architecture in

Fig. 3 (that uses the mixer in Fig. 2a), is given in Table II.

We define a fault scenario as any combination of faults in

the fault model Z, considering the maximum number of faults

vmax and cmax. Thus, a possible fault scenario in our example

could be {V F1, V F3, CF1, CF3}. Considering all combinations

of faults in Z, |Z| fault scenarios are possible. We define an

architecture as being fault-tolerant to Z, if an application G

is able to complete successfully within its deadline dG under

all (|Z|, in our case) the possible fault scenarios in Z. Next,

we describe how to design components, such that they tolerate

faults.

B. Fault-Tolerant Components

The components of a biochip are built using microvalves

and channels, e.g., mixers (see an example mixer in Fig. 2a),

switches (which control the fluid flow at channel intersections),

micropumps etc. We use a dual-layer component modeling

framework, consisting of a flow layer model and a control layer

model. The flow layer model (P, C,H) of each component N ∈

N is characterized by a set of operational phases P, execution

time C and geometrical dimensions H. Table I shows a flow

layer model library, obtained from [12]. In this table, columns

H and C give the geometrical dimensions (length×width,

scaled with a unit length being equal to 150 µm [12]) and the

execution times of the component respectively. The execution

times do not include the time required to fetch the input fluids

or to remove the output fluids from the component. The control

layer model captures the valve actuation details C required

for the on-chip execution of all operational phases P of a

component. The components in the library L are built from

microvalves and channels; some components such as heaters

also include actuators, and components such as detectors

consist of sensors. Fig. 2(a) shows the example of a pneumatic

mixer, implemented using nine microfluidic valves, v1 to v9.

The valve-set {v1, v2, v3} acts as the input switch, {v7, v8, v9}

as the output switch and {v4, v5, v6} as the on-chip pump used

Figure 2. Rotary mixer: (a) regular design (b) fault-tolerant design

Table II
EXAMPLE FAULT MODEL FOR ARCHITECTURE IN FIG. 3

Name Vertex (N ∈ N)/ Valve affected (w) Type (t)
V F1 Mixer1 / v5 Open

V F2 S6 / v3 Open

V F3 S5 / v2 Open

V F4 S3 / v3 Open

Name Component (M ∈ N , /∈ S) Type (t)
/ Connection Di,j ∈ D

CF1 Heater1 Block

CF2 Filter1 Block

CF3 S2 → Storage-8 Block

CF4 S1 → Mixer1 Block

to perform the mixing. To mix, input and output valves (v1 and

v8) are closed, while valves in the valve-set {v2, v3, v7, v9} are

opened and the mixing operation is initiated, by opening and

closing valves in the valve-set{v4, v5, v6} in a sequence which

generates a pumping action [12]. We assume that the designers

will include in library L, the fault-tolerant versions of some

components (prefixed with ”FT–” in Table I), which are able to

tolerate certain types of faults. A possible fault-tolerant design

of the mixer in Fig. 2(a) is presented in Fig. 2(b) (see [11]

for details). The critical function of the mixer in Fig. 2(a), is

its pumping action, achieved by the valve set {v4, v5, v6}. The

mixer in Fig. 2(b) can tolerate one stuck-open valve failure in

the pump {v4, v5, v6} by adding a redundant valve v13 to the

pump. As explained earlier, the failure is determined during

testing, and the application is recompiled to avoid the failing

valve and use the redundant valve as a replacement. Depending

on its design, a fault tolerant component will tolerate a given

set of faults, and may use an increased chip area and execution

time, due to the added redundancy, as shown earlier in Table I.

C. System model

We model the biochip architecture as a topology graph

A(N ,D), where each element in the vertex set N represents

a component and each element in the edge-set D represents

a fluidic channel. An example biochip architecture shown in

Fig. 3, which has two inputs (In1 and In2), two outputs (Out1
and Out2), one mixer, one heater, one filter, seven switches (S1
to S7) and eight storage reservoirs (the component ‘Storage-

8). We model a biochemical application using a sequencing

graph G = (O, E), where each vertex Oi ∈ O represents an

operation that can be bound to a component Nj using a

binding function B : O → N , and the edge set E models

the dependency constraints in the assay. Each vertex has an

associated weight C
Nj
i , which denotes the execution time

Figure 3. Biochip architecture example

Figure 4. Example application graph G

required for the operation Oi to be completed on component

Nj . Similarly, ei,j ∈ E is an edge from Oi to Oj , which

indicates that the output of Oi is the input of Oj . Applications

have a deadline dG , by which they have to complete their

execution. Next, we describe our problem formulation.

III. PROBLEM FORMULATION

Given a netlist A, a component library L, an application

graph G, with a deadline dG and a fault model Z, the problem

is to determine a fault tolerant netlist, A+, such that the biochip

is fault tolerant and its unit cost is minimized.

Let us consider the architecture A in Fig. 3, which does not

have any redundancy for fault-tolerance and the application

graph G in Fig. 4. We are interested in synthesizing an

architecture A+ such that when application G is run on it,

it is tolerant to the faults given by Z = (VF , CF , 2, 2), with

VF and CF given by Table II and such that the biochip unit

cost is minimized. A straightforward solution (SFS) to the

problem is to add redundancy to the original netlist A, for each

fault listed in the fault model Z, such that the locally added

redundancy helps in tolerating the faults. For our example,

such a straightforward solution (SFS) is depicted in Fig. 5a.

Thus, fault-tolerant switches, S3, S5 and S6, have been added to

compensate for the failing valves in Z. Similarly, a redundant

channel has been added to compensate for the blocked channel

S2 → Storage-8. No channel has been added to make the

S1 → Mixer1 channel redundant, as it is not needed by

virtue of Mixer2. Such an approach leads to a costly fault-

tolerant architecture A+, because not all faults in Z will occur

simultaneously (maximum vmax = 2 valve faults and cmax = 2

channel faults may occur according to the model).

We define the unit cost Cost
A+ as the sum of the total

number of valves and channels in A+, which represents a

measure of the complexity of the biochip (in principle, our

method is capable of using any other cost models, provided

by the designer). Thus, for Fig. 5a, we have Cost
A+ = 129.

Figure 5. Fault-tolerant architecture solutions

The focus of this paper is to propose a method to optimize

the introduction of redundancy such that the cost of the fault

tolerant architecture A+ is minimized. Such an optimized

solution, which is also fault-tolerant to all the possible fault

scenarios in Z, is depicted in Fig. 5b. In this solution, the

fault tolerant variants of filter, heater and mixer have replaced

the original components, and thus can tolerate some of the

faults in the fault model. In addition, two redundant channels

have been added to compensate for the two blocked channels.

Routing is still possible even though there are valves failing

in some switches. The cost of the architecture in Fig. 5b

is 96, which is significantly cheaper compared to SFS. The

assumption is that the fault-tolerant architecture synthesis is

part of a methodology, which has the following steps: (1)

An architecture A is created by the designer either manually

or using synthesis tool flows [12], [13]; (2) A fault-tolerant

netlist A+ is synthesized for A; (3) Considering an application

graph G with a deadline dG and a fault model Z; (4) Physical

synthesis of the fault-tolerant netlist A+ thus generated in step

2 using a physical synthesis tool like [12]; (5) Fabricating

the biochip using the physical layout obtained in the step 3;

and finally (6) Testing and diagnosing each of the biochips

to determine if they have permanent faults using techniques

such as the one proposed in [7]. The locations of faults

are determined during this step. We compile the biochemical

application G on A+, avoiding the use of faulty components

or channels, using a technique such as [14].

The focus of this paper is on the second step of the method-

ology i.e., the fault-tolerant architecture synthesis problem.

Note that if in Step 5 (Testing), we detect faults which are not

in the fault model Z given by the designer, or if the netlist

A+ turns out not to tolerate a detected fault present in Z,

we will discard the chip. This will reduce the yield of the

fabrication process, but will guarantee that all the biochips can

be successfully used even if they contain permanent faults. The

next section explains the details of the optimization strategy

used to synthesize the fault-tolerant netlist A+.

Figure 6. Fault Tolerant Architecture Synthesis (FTAS)

IV. OPTIMIZATION STRATEGY

The problem presented in the previous section is NP-

hard [15], because we have to use binding and scheduling

of G on A+, to check if A+ can execute G such that it

completes within its deadline dG , in every fault scenario in Z.

Our optimization strategy is depicted in Fig. 6 and it is based

on Greedy Random Adaptive Search Procedure (GRASP) [16].

GRASP is an iterative metaheuristic, which consists of a con-

struction phase and a local search phase. In the construction

phase, the GRASP algorithm builds an initial solution based on

a list of candidate design transformations. Subsequently, the

local search phase explores the neighborhood of this initial

solution to find the local optimum. Each solution visited

is evaluated using an objective function, which has to be

minimized. GRASP runs for a number of iterations and returns

the best solution amongst them. We use the following objective

function to evaluate a visited architecture A+

Obj(A+) = Wft ×
∑

f∈FS−

¬ft+Ws ×
∑

f∈FS−

max(0, δ − dG) + Cost(A+)

(1)

The objective function has three terms. The third term,

Cost(A+), captures the unit cost of the architecture, which

has to be minimized, and which is defined in Section III. The

first two terms check if A+ is fault-tolerant.

The first term checks if, in every fault scenario f ∈ FS,

where FS is the set of all possible fault scenarios in Z, the

architecture is still connected, considering the faults in f . An

architecture is connected (denoted with Boolean variable ft) if

there exists a route between any two components that have to

be connected, i.e., have to exchange fluids. If the components

become disconnected because of the faults in f (denoted with

¬ft), we cannot successfully run the application. We use

a Breadth First Search algorithm to check for connectivity.

Next, to successfully run our application G on A+, we need

to complete its execution within its deadline dG , in every

fault scenario f ∈ FS. This is checked in the second term

of the objective function. We use binding and scheduling to

determine the completion time dG of the application G on A+

with the faults in f , which is then compared to the deadline

dG (see Section IV-B).

Note that the first two terms are constraints, i.e., if the

architecture is fault tolerant, they are zero, and thus we

minimize Cost(A+). However, if the architecture is not fault

tolerant, we strongly penalize the objective function with the

penalty weights Wft and Ws, so that the optimization will

focus on searching for a fault-tolerant solution instead of

minimizing Cost(A+).

An essential component of the algorithm is the generation of

a new solution, starting from the current one, which is called

a design transformation or move. Normally, we would have

to use all the fault scenarios in FS when doing the tests for

connectivity and scheduling. However, this is computationally

infeasible for large biochips that have complex fault models.

Therefore, our heuristic in this paper uses only a subset FS− ⊂

FS of fault scenarios. A discussion of how to generate FS−

is presented in Section IV-A. By virtue of this, we are not

guaranteed to create an architecture, which is fault-tolerant to

all fault scenarios. However, our argument is that, by using a

subset FS− during synthesis, we can produce an architecture

that can tolerate most of the fault scenarios. If after testing, we

determine that a fault, which cannot be tolerated is present, we

will discard the chip, which may reduce the yield. We evaluate

the impact of the subset FS− on the yield in section V.

In this paper, we use the following design transformations:

(1) Add redundant component: In order to make an architecture

fault-tolerant, another redundant component of that type is

added to the architecture; (2) Convert regular component

to the fault-tolerant version: By virtue of the component

library L given in Table I, a component can be changed to

its fault-tolerant version, if one exists; (3) Add redundant

channel: A redundant channel is added, to compensate for

a failing channel between the two components; (4) Remove

redundant component: A redundant component is removed

from the architecture; (5) Convert fault-tolerant component

to the regular version: This move is the reverse of move 2;

and (6) Remove redundant channel: A redundant channel is

removed from the architecture.

A. Generation of Fault Scenarios

The fault scenarios, FS−, are generated from the fault

model Z = (VF , CF , vmax, cmax). A fault scenario f ∈ FS−

is a set of faults, containing a subset of valve faults from VF

and a subset of channel faults from CF , in the fault model.

The fault scenarios are generated such that they are unique,

i.e. f ∈ FS− will occur once and only once. The generation of

fault scenarios is divided into two phases: (1) The first phase

consists of generating all the possible combinations from the

set of valve faults, VF , and the set of channel faults, CF . Recall

that vmax is the maximum number of valve faults happening in

the architecture, and likewise cmax is the maximum number

of channel faults. Therefore, all combinations of the set of

valve faults needs to be generated, where the cardinality of

each subset is 0 ≤ k ≤ vmax; and Similarly, for the subsets of

channel faults, the cardinality of each subset is 0 ≤ j ≤ cmax.

(2) In the second phase, we iterate through the list created

in the first phase, and eliminate each fault scenario that is

already contained by another fault scenario in the list. Then,

we iteratively pick a given Number of fault scenarios (see the

input box in Figure 6), such that the number of components

and channels in the biochip A affected by the fault scenarios

is maximized and the overlap with the already picked fault

scenarios, in terms of affected components and channels, is

minimized.

B. Binding and Scheduling

An architecture is fault-tolerant if it can run the application

within its deadline. To determine the finishing time δ of

the application, on a given architecture that is affected by a

fault scenario, we use List Scheduling (LS) [12]. Mapping the

application onto the architecture involves binding of operations

onto the allocated components, scheduling the operations and

performing the required fluidic routing. LS is a heuristic

approach to solve the problem of application mapping in a

computationally efficient manner. Together with the operation

binding and scheduling, the heuristic approach also considers

the fluidic routing and channel contention. The input to LS

is the application G, the library L, and the netlist A+, which

is not yet placed and routed, i.e. the physical placement of

components is not known yet. We only know the exact routing

latencies if we know the routes. However, the routing latencies

should not be completely ignored when determining a schedule

using LS. Therefore, we assume that the designer gives an

average latency, which we use when determining a schedule.

This may mean that the application is actually not schedulable

as we could be using routing latencies, which are smaller

than those resulted after the physical synthesis. However, it

is still a reasonable estimation of the application completion

time. In case the application is actually not schedulable, this

will be known after the testing, when we have the physical

architecture. If the application turns out not to be schedulable,

the chip is discarded.

V. EXPERIMENTAL EVALUATION

Our FTAS optimization strategy has been implemented in

Python 3.4 and all experiments run on an Intel Xeon X5550

processor running at 2.66 GHz, with 24GB of RAM. In

the first set of experiments, we were interested to determine

the ability of our FTAS approach to obtain fault-tolerant

architectures at a minimum cost. We have used a synthetic

test case SB1, and two real-life test cases, IVD (In-Vitro-

Diagnostics) [12] and PCR (the mixing stage of the Polymerase

Chain Reaction) [12]. For each test case, we have used the

tools from [12] to generate a netlist A (which is not fault-

tolerant). Features of A are presented in Table III, where |N |

is the number of components, |D| is the number of channels,

and Cost(A) is the cost of A. For each test case, we have

Table III
EXPERIMENTAL RESULTS

Name A |FS| |FS−| A+

SFS
A+

GRASP

|N | |D| Cost(A) |N | |D| Cost(A+

SFS
) |N | |D| Cost(A+

GRASP
)

SB1 15 17 84 121 100 20 27 133 15 20 102

PCR 14 16 88 77 50 18 25 135 14 17 92

IVD 52 78 274 841 100 57 92 379 52 78 279

specified a fault model Z, based on the kinds of faults that

may occur in the architecture A. The total number of fault

scenarios possible |FS| considering Z, is listed in the table. For

e.g., for IVD, 841 fault scenarios are possible. If we attempt

to synthesize a fault tolerant architecture A+, without optimiz-

ing the introduction of redundancy using the straightforward

solution (SFS) presented in Section IV, we obtain the results

from columns 7−9 labeled as A+
SFS

. All the architectures are

fault-tolerant, and we list their Cost(A+
SFS

) and number of

components |N | and channels |D|. Using our FTAS optimiza-

tion heuristic, we obtain the results from columns 10 − 12 in

Table III (labeled A+
FTAS

). As we can see from the results,

our optimization is able to significantly reduce the architecture

cost Cost(A+
FTAS

), compared to SFS, while at the same time

synthesizing fault-tolerant implementations. As a terminating

condition for FTAS, we have used a time limit of 1 hour. To

evaluate the quality of GRASP implementation, we have also

implemented a Simulated Annealing (SA) based metaheuristic.

We have started SA from three initial solutions: SFS, GRASP

and the architecture A without fault-tolerance. We have used

a very aggressive cooling schedule for SA, which resulted in

a runtime of more than 24 hours. SA was not able to improve

the results of our GRASP-based FTAS implementation.

The number of fault scenarios |FS−| generated in FTAS, out

of the total number |FS| possible, is also presented in the table.

The question we had in our second set of experiments was : if

a reduced number of fault scenarios are used to evaluate the

fault tolerance of A+, will that reduce the yield significantly?

Recall from Section III that, if after testing a biochip, we find

that it has faults which are not tolerable (because they are not

in Z or because our FTAS heuristic was unable to produce

a solution A+ that covers all fault scenarios FS), we need

to discard the biochip, which reduces the yield. Thus, for the

test case SB1, using FTAS, we have generated several fault-

tolerant architectures, as shown in Table IV. It is interesting to

note that: (1) A+
121, which uses all 121 possible fault scenarios

(which is infeasible for complex architectures) and (2) A+
25,

which uses a subset FS− containing 25 fault scenarios. A+
121,

by its design, is able to tolerate any fault combination in FS.

However, although during synthesis, A+
25 uses only ≈ 20% of

the fault scenarios in FS, it is able to tolerate 86.78% of the

fault scenarios in FS. This shows that our approach is able to

produce fault-tolerant solutions in most cases, even if it uses

only a fraction of the possible fault scenarios to evaluate an

architecture A+, during the design space exploration.

Table IV
YIELD EVALUATION ON SB1 BENCHMARK

|FS| AGRASP |FT | FT% =
|FS|
|FT |

∗ 100

|N | |D|
25 16 20 105 105

121
≈ 86.8

50 15 19 117 117

121
≈ 96.7

85 16 21 121 121

121
= 100

121 15 19 121 121

121
= 100

VI. CONCLUSIONS

We have proposed an algorithm for fault tolerant synthesis

of flow-based biochips. Evaluation has shown that our FTAS

approach is able to successfully synthesize low-cost fault-

tolerant architectures. Since evaluating the architecture under

all possible fault scenarios is computationally expensive, only

a fraction of them are generated and evaluated during syn-

thesis. The yield evaluation proved that evaluation for even a

small fraction of the possible fault scenarios, can lead to fault-

tolerance on a large fraction of the possible fault scenarios.

REFERENCES

[1] J. Melin and S. Quake, “Microfluidic large-scale integration: The evo-
lution of design rules for biological automation,” Annual Reviews in

Biophysics and Biomolecular Structure, vol. 36, pp. 213–231, 2007.
[2] D. Mark et al, “Microfluidic lab-on-a-chip platforms: requirements,

characteristics and applications,” CSR, vol. 39, pp. 1153–1182, 2010.
[3] I. E. Araci et al, “mVLSI with integrated micromechanical valves,” in

Lab on Chip, vol. 12, pp. 1463–1475, 2012.
[4] J. W. Hong et al, “Integrated nanoliter systems,” Nature Biotechnology,

vol. 21, pp. 1179–1183, 2003.
[5] J. M. Perkel, “Microfluidics - bringing new things to life science,”

Science, November 2008.
[6] P. Pop et al, “Continuous-flow biochips: Technology, physical design

methods and testing,” in IEEE Design and Test of Computers, 2015.
[7] K. Hu et al, “Testing of flow-based microfluidic biochips: Fault model-

ing, test generation, and experimental demonstration,” in IEEE TCAD,

Vol. 33, No. 10, October 2014, pp. 1463–1475, 2014.
[8] W. H. Grover et al, ”Monolithic Membrane Valves and Pumps” chapter

in Lab-on-Chip Technology. Caister Academic Press, 2009.
[9] F. Su et al, “Yield enhancement of reconfigurable microfluidics-based

biochips using interstitial redundancy,” ACM JETC, pp. 104–128, 2006.
[10] T. Thorsen et al, “Microfluidic large-scale integration,” Science, vol. 298,

no. 5593, pp. 580–584, 2002.
[11] I. Araci et al, “Microfluidic very large-scale integration for biochips:

Technology, testing and fault-tolerant design,” in Test Symposium (ETS),

2015 20th IEEE European, pp. 1–8, May 2015.
[12] W. H. Minhass, System-Level Modeling and Synthesis Techniques for

Flow-Based mVLSI Biochips. PhD thesis, DTU Compute, 2012.
[13] W. H. Minhass et al, “Architectural synthesis of flow-based microfluidic

large-scale integration biochips,” in CASES, pp. 181–190, 2012.
[14] M. H. Minhass et al, “System-level modeling and synthesis of flow-

based microfluidic biochips,” in CASES, 2011.
[15] L. Wang et al, Electronic Design Automation: Synthesis, Verification,

and Test. Systems on Silicon, Elsevier Science, 1st ed., 2009.
[16] T. F. Gonzalez, Handbook of Approximation Algorithms and Metaheuris-

tics. Chapman & Hall/CRC, 2007.

