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Synthesis of Application-Specific Fault-Tolerant
Digital Microfluidic Biochip Architectures

Mirela Alistar, Paul Pop, and Jan Madsen

Abstract—Digital microfluidic biochips (DMBs) are microflu-
idic devices that manipulate droplets on an array of electrodes.
Microfluidic operations, such as transport, mixing, and split, are
performed on the electrode array to perform a biochemical appli-
cation. All previous work assumes that the DMB architecture
is given and most approaches consider a rectangular shape for
the electrode array. However, nonrectangular application-specific
architectures are common in practice. Hence, in this paper, we
propose an approach to the synthesis of application-specific archi-
tectures, such that the cost of the architecture is minimized and
the timing constraints of the biochemical application are satisfied.
DMBs can be affected by permanent faults, which may lead to the
failure of the biochemical application. Our approach introduces
redundant electrodes to synthesize fault-tolerant architectures
aiming at increasing the yield of DMBs. We have used a tabu
search metaheuristic for this architecture synthesis problem. We
have proposed a technique to evaluate the architecture alter-
natives visited during the search, in terms of their impact on
the timing constraints of the application. The proposed archi-
tecture synthesis approach has been evaluated using several
benchmarks.

Index Terms—Architecture synthesis, digital microfluidic
biochips, fault-tolerance.

I. INTRODUCTION

W ITH the introduction at the beginning of 1990s of
microfluidic components such as microvalves and

micropumps, it was possible to realize “micro total analy-
sis systems,” also called “lab-on-a-chip” or “biochips,” for
the automation, miniaturization, and integration of com-
plex biochemical protocols. Microfluidic platforms are used
in many application areas, such as, in vitro diagnostics
(point-of-care, self-testing), drug discovery, biotech, and
ecology [1], [2].

Microfluidic platforms can be classified according to the
liquid propulsion principle used for operation, e.g., capil-
lary, pressure driven, centrifugal, electrokinetic, or acoustic. In
this paper, we are interested in microfluidic platforms which
manipulate the liquids as droplets, using electrokinetics, i.e.,
electrowetting-on-dielectric (EWOD) [3]. We call such plat-
forms digital microfluidic biochips (DMBs). DMBs are able
to perform operations such as dispensing, transport, mixing,
split, dilution, and detection using droplets [1].
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A. Related Work

The architecture of a DMB consists of physical components,
such as electrodes, detectors, heaters, reservoirs for dispensing,
and waste. Previous work assumes that the physical architec-
ture of a DMB is given. Most researchers use general-purpose
architectures, which have a rectangular shape [Fig. 1(a)].
However, in practice, nonregular application-specific architec-
tures (Fig. 5) are more common because they can significantly
reduce the cost by including only the components that are
necessary for the execution of the application. For example,
application-specific architectures have been proposed for dis-
ease screening in newborns [4] and for diagnostics on human
physiological fluids [2]. Application-specific architectures are
designed manually, which is an expensive time-consuming
process. Hence, there is an imperative need for methodologies
to automate the design of application-specific DMBs.

Yield is a big concern for biochips, hence, the focus on
fabrication methodologies to increase the yield of DMBs, e.g.,
from a very low 30% to 90% [5]. Permanent faults (e.g., due to
abnormal layer deposition, short between two adjacent elec-
trodes, see [6], [7] for more details) are usually introduced
during fabrication and may lead to the failure of the bio-
chemical application. After fabrication, the biochips are tested
and if permanent faults are detected, the biochip is discarded
unless the applications can be reconfigured to avoid them [8].
To increase the yield, which is very important for the mar-
ket success of DMBs, the design of DMBs has to consider
possible defects that can be introduced during the fabrication
process.

Researchers have used the term “synthesis” to denote
the tasks that determine the “electrode actuation sequence,”
which controls the movement of droplets on the biochip.
We will call these synthesis tasks compilation, to distinguish
it from the architecture synthesis proposed in this paper.
The following are the main design tasks that have been
addressed [1].

1) First, the biochip architecture is synthesized—process
that is currently done manually.

2) After the architecture is synthesized, the biochip is fab-
ricated [3] and tested to determine the location of the
permanent faults [6].

3) Next, the biochemical application has to be compiled
to determine the electrode actuation sequence needed
to run the biochemical application. In case the com-
pilation is not successful (e.g., the biochip cannot be
reconfigured to run the application), the biochip is
discarded.

In this paper, we address the architecture synthesis problem,
that is deciding on a physical fault-tolerant biochip architecture
of minimum cost. Researchers have so far only considered
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varying the dimensions of purely rectangular general-purpose
architectures or have addressed aspects such as minimizing
the number of pins used to control the electrodes [9], which is
orthogonal to our problem. Also, previous work has addressed
the issue of fault-tolerance only in the context of rectangu-
lar architectures, by proposing post-fabrication compilation
approaches. Su and Chakrabarty [5] proposed a compilation
approach that uses the available electrodes to replace the faulty
electrodes. The approach has been tested for one applica-
tion using biochips architectures with hexagonal electrodes.
A more general compilation is proposed in [8], where the
droplets routes are reconfigured to avoid the faulty electrodes.
In [10], we have proposed a first approach to the architecture
synthesis, which decides the allocation of physical compo-
nents, their placement and interconnection, such that the cost is
minimized and the application satisfies the timing constraints
even in the presence of permanent faults.

Compilation is used inside the architecture synthesis, for
the evaluation of the alternative architectures generated dur-
ing the solution space exploration. The compilation process is
an NP-complete problem for which several approaches have
been proposed. Maftei et al. [11] proposed an integer linear
programming formulation that derived optimal solutions for
small applications. Near-optimal results in terms of application
completion time were obtained by compilation implemen-
tations based on search metaheuristics such as simulated
annealing (SA) [1] and tabu search (TS) [12]. List schedul-
ing (LS)-based compilations were proposed in [13]–[15]. These
compilations are faster, and thus, can be used to quickly evaluate
an alternative architecture during architecture synthesis.

In order to be compiled, biochemical applications are mod-
eled using process graph models, where each node is an
operation, and each edge represents a dependency [1]. Next,
the necessary modules for the execution of the operations are
allocated from a module library. As soon as the binding of
operations to the allocated modules is decided, the scheduling
algorithm determines the duration for each bioassay opera-
tion, subject to resource constraints and precedence constraints
imposed by the application. Several approaches have been pro-
posed for binding and scheduling, which is an NP-complete
problem [13], [14], [16]. Next, the placement [17] of each
module on the microfluidic array and the routing [18], [19] of
droplets have to be determined.

In the context of application-specific architectures, which
have an irregular layout, the placement problem becomes more
challenging. In related literature, several placement strategies
have been proposed for rectangular architectures. In [20],
an SA-based method is used to determine the placement of
the operations on the biochip. A unified compilation and
module placement, based on parallel recombinative SA, was
proposed in [21].

Better results were obtained using a T-Tree algorithm for
placement [17] or using a fast-template placement [22] inte-
grated in a TS-based compilation [12]. A placement approach
that minimizes droplet routing, when deciding the locations of
the modules, is considered in [23]. Placement strategies based
on virtual topology [16] were proposed for fast compilation
approaches.

All mentioned approaches consider placement of rectangu-
lar modules, which do not take advantage of the irregular
area of an application-specific biochip. A placement strategy

for modules of nonrectangular shapes is proposed in [12].
However, Maftei et al. [12] used a black-box approach, i.e.,
the whole module area is occupied during the execution of the
operations, blocking the corresponding electrodes from being
used for other operations. An alternative is the routing-based
approach from [24], which allows the droplets to move freely
on the biochip until the operation is completed. However, in
case of contamination, the routing-based strategy requires a
lot of washing, which slows considerably the execution of the
bioassay and can lead to routing deadlocks.

In [25], we have proposed the first placement algorithm
for application-specific architectures. Our placement strat-
egy starts from an application-specific architecture, given as
input, and determines circular-route modules (CRMs) of any
shape, on which operations execute so that the biochip area is
effectively used.

B. Contributions

Starting from a biochemical application and a library
of physical components, our architecture synthesis (see
Algorithm 3) decides a physical biochip architecture that mini-
mizes the cost and executes the application within its specified
deadline even in the case of k permanent faults. Our proposed
approach starts from an initial architecture solution and uses
a TS metaheuristics to search the solution space and gener-
ate new architectures. Each architecture alternative visited by
TS has to be evaluated in terms of cost, fault-tolerance, and
timing constraints of the application. We propose an LS-based
compilation that determines the completion time of the consid-
ered application when it is executed on the architecture under
evaluation.

Our LS-based compilation considers maximum k permanent
faults and estimates their impact on the application completion
time. The difficulty of obtaining a fault-tolerant architecture
lays in not knowing the exact position of the faults when the
architecture synthesis is performed, that is, before the biochip
fabrication and testing. Alistar et al. [10] determined the worst-
case schedule length in case of maximum k permanent faults,
by considering that each operation in the application suffers
from k faulty electrodes. The approach from [10] is pes-
simistic, and it results in rejecting potentially good architecture
solutions. Instead, we propose an estimation method for the
application execution time, which is less pessimistic than the
worst-case values. Our estimation method is faster and thus
more suitable to be used inside the TS-based architecture
synthesis.

Our solution in [10] to the architecture synthesis problem,
considered rectangular modules with empty insides and vary-
ing border thickness. Although such modules are suitable for
placement on application-specific biochips, their rectangular
shape does not permit an effective use of the area on the
biochip, due to its irregular layout. Hence, in this paper we
use CRMs for operation execution.

In [25], we have proposed an algorithm that builds a library
L of CRMs for a given application-specific architecture A.
Faults are not considered by [25], as the focus is on deter-
mining CRMs that will use effectively the area on A, so that
the application completion time is minimized. Since the algo-
rithm in [25] is an expensive solution to be used inside a
metaheuristic search, we propose in this paper an algorithm to
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(a) (b)

Fig. 1. Biochip architecture model. (a) General purpose biochip. (b) Droplet
movement.

incrementally build a library starting from an existing library
L′ determined for the previously visited architecture A′, and
incrementally updating L′ for the current architecture A.

The biochip architecture and application models are pre-
sented in the next section. The architecture synthesis problem
is presented in Section III using a motivational example.
Our proposed heuristic approach based on TS is presented
in Section VI and in Section IV we discuss the criteria used
to evaluate each architecture solution visited by TS. Section V
presents our proposed placement algorithm for CRMs. We
evaluate the proposed architecture synthesis in Section VII
and in Section VIII we present our conclusions.

II. SYSTEM MODEL

A. Biochip Architecture

In a DMB, a droplet is sandwiched between a top ground-
electrode and a bottom control-electrode as shown in Fig. 1(b).
The droplets are manipulated using the EWOD principle [3].
For example, in Fig. 1(b), if the left control-electrode is acti-
vated by applying voltage, and the other control-electrodes are
turned off, then the droplet will move to the left. Considering
the 8 × 7 biochip in Fig. 1(a), a droplet can only move up,
down, left, or right with EWOD, and cannot move diagonally.
A biochip is typically connected to a computer (or microcon-
troller) and it is controlled based on an electrode actuation
sequence that specifies for each time step which electrodes
have to be turned on and off, in order to run a biochemical
application.

In this paper, we distinguish between the physical compo-
nents of a biochip, such as electrodes, reservoirs, and detectors,
and the virtual devices, such as mixing and diluting mod-
ules, which are placed on the physical array of electrodes
and interconnected using virtual routes. There are two types
of operations: nonreconfigurable (dispensing and detection),
which are bound to a specific component such as a reservoir, a
detector or a sensor and reconfigurable (mixing, split, dilution,
merge, and transport), which can be executed on any electrode
on the biochip. The biochip from Fig. 1(a) has two waste-
reservoirs and three dispensing reservoirs, one for buffer, one
for sample, and one for reagent.

In this paper, we assume that the locations of the reservoirs
are on the boundaries of the array of electrodes. To dispense
a droplet from the reservoir, several electrodes are activated to
form a “finger” droplet, which is afterward split to obtain the
final droplet [26]. Sensors can be used to determine the result
of the bioassay or for error detection [27], [28].

The reconfigurable operations are executed using the elec-
trodes in the architecture array. A mixing operation is executed

Fig. 2. Biochip application model.

when two droplets are moved to the same location and then
transported together according to a specific pattern. A split
operation is executed instantly by keeping the electrode on
which the droplet is resting turned off, while applying con-
currently the same voltage on two opposite neighboring
electrodes. Dilution is a mixing operation followed by a split
operation.

B. Circular-Route Module

In the past, researchers have grouped the electrodes to form
“virtual devices” on which the operations execute [12]. The
straightforward approach used by most researchers is to con-
sider a rectangular area of electrodes, called a “module.” For
example, the droplets from Fig. 1(a) are mixing on a 2 × 3
module. In case two droplets are on neighboring electrodes,
they merge instantly. To avoid accidental merging, researchers
have assumed that each module is surrounded by a “segre-
gation border” of one-electrode thickness [see Fig. 1(a)]. All
the electrodes forming such a rectangular module are consid-
ered occupied during the operation execution, and cannot be
used by other operations. However, an operation can execute
anywhere on the array, and it is not necessarily confined to a
rectangular area, as is the case with the routing-based compi-
lation approach [24], which allows operations to execute on
any route.

Although the approach used for operation execution on vir-
tual devices is orthogonal to our architecture synthesis method-
ology, in this paper we consider a routing-based approach [24]
for the operation execution. The advantage of routing-based
operation execution is that it utilizes better the available
biochip area. The disadvantage of routing-based operation exe-
cution is that it makes it difficult to avoid contamination.
Therefore, Maftei et al. [24] later advocated a routing-based
operation execution constrained to a given area [29].

Similar to [29], we assume that we know the position of
the droplets during the execution, i.e., the operation execution
is “droplet-aware.” We have decided to use the droplet-aware
approach [29] because of its improved reconfigurability in
case of permanent faults: the droplets are instructed to avoid
the faulty electrodes. Hence, our approach is to constrain the
routing-based operation execution to a given “circular route.”
We define a CRM as a route of one-electrode thickness which
starts and ends in the same electrode, and does not intersect
itself. Given a CRM, a droplet will move repeatedly on the



ALISTAR et al.: SYNTHESIS OF APPLICATION-SPECIFIC FAULT-TOLERANT DIGITAL MICROFLUIDIC BIOCHIP ARCHITECTURES 767

(a) (b)

Fig. 3. Example of circular-route modules. (a) Application-specific architec-
ture. (b) Adjusted route to avoid droplet merging.

(a)

(b) (c)

Fig. 4. Module decomposition approach. (a) 2×3 module, t = 6.1 s. (b) 1×4
module, t = 4.6 s. (c) Circluar-route module, t = 2.2 s.

route until the operation has completed. We denote such a
CRM with Mi. Fig. 3(a) shows three examples of CRMs, M1,
M2, and M3.

In a CRM, only the electrode holding the droplet and the
adjacent electrodes are considered occupied (to avoid acci-
dental merging). The rest of the electrodes assigned to such a
CRM are not considered occupied, and can be used for other
operations. As a consequence, the routes for different opera-
tions may overlap over several electrodes. To avoid droplet
merging at the intersection points, we instruct one of the
droplets to take a detour as shown in Fig. 3(b) or to wait
until the other droplet passed by.

We use the module decomposition approach proposed
in [24] to estimate the operation execution time for each
CRM. In [24], the droplet movement during an operation is
decomposed into basic movements and the impact of each
basic movement on the operation execution is calculated. As
seen in Fig. 4(a), on a 2 × 3 mixer a cycle is completed by
four forward movements (0◦) and two turns (90◦). Using an
experimentally determined library that contains information
about the execution times of the operations, the method pro-
posed in [24] estimates, for each movement, the percentage
completion toward operation execution.

Thus, we can determine p0
cycle—the percentage toward oper-

ation execution for a cycle when there are no faults, using the
following equation:

p0
cycle = n1

0◦ × p1
0◦ + n2

0◦ × p2
0◦ + n180◦ × p180◦ + n90◦ × p90◦

(1)

where p1
0◦ , p2

0◦ , p180◦ , and p90◦ are the percentages toward oper-
ation completion for a forward movement for one electrode, a
forward movement for at least two consecutive electrodes, a
backward movement and a turn, respectively, and n1

0◦ , n2
0◦ ,

n180◦ , and n90◦ are the number of forward movements for
one electrode, forward movements for at least two consec-
utive electrodes, backward movements and turns, respectively.
Then we determine ni—the minimum number of times the
droplets have to rotate on a given circular route to achieve at

least 100% operation completion. Fig. 3(a) shows ni for each
of the three CRMs, 31 for M1, 16 for M2, and 8 for M3. The
total execution time is obtained by multiplying ni with the time
needed to complete one rotation. For example, for the route
depicted in Fig. 4(c), the droplets need to cycle ten times in
order to complete the mixing operation, resulting in an execu-
tion time of t = 2.2 s. We have used the following values for
the percentages toward operation completion: p1

0◦ = 0.29%,
p2

0◦ = 0.58%, p180◦ = −0.5%, and p90◦ = 0.1% [24].
In order to determine the application completion time, our

compilation uses a module library L, which provides the shape
of each CRM Mi and the corresponding execution time needed
for each operation. For example, as seen in Table III, which
is the CRM library for the architecture from Fig. 7(b), the
execution time for a mixing operation on M1 is 2.7 s if no
faults are present. Columns 4 and 5 in Table III present the
estimated execution times of the operations for k = 1 and
2 faults, respectively. All past work in compilation of DMBs
considers the library given as input. The only exception is [30],
where additional sensing systems are used to detect online
when an operation has finished executing. In Section V, we
propose an algorithm to determine for a given application-
specific architecture a CRM library that estimates the operation
execution time in case of k permanent faults.

C. Biochemical Application Model

A biochemical application is modeled using a directed
acyclic graph G, where the nodes represent the operations,
and the edges represent the dependencies between them. Let
us consider the application graph from Fig. 2, which has 20
operations. The directed edge between O17 and O19 signifies
that operation O17 has to finish before operation O19 starts
executing. Operation O19 uses the output droplet issued by
operation O17. The input operations dispense the droplets from
the corresponding reservoirs. For instance, operation O1 from
Fig. 2, dispenses a droplet from the S1 reservoir on the biochip
illustrated in Fig. 5.

III. PROBLEM FORMULATION

A. Input Libraries

In order to determine if the application satisfies its timing
constraints even in the case of k faults, we determine a CRM
library (see Section V) that estimates the operation execution
time for maximum k faults. As mentioned, we use the mod-
ule decomposition approach proposed by Maftei et al. [24],
which uses the application-specific parameters p1

0◦ , p2
0◦ , p180◦ ,

and p90◦ , as explained in Section II-B. We consider that
these parameters are given by the designer in a parametric
library P .

The objective of an architecture synthesis is to determine a
minimum cost architecture. Our solution in [10] used a sim-
plified cost model that considered only the cost of the physical
components. In this paper, we propose an improved cost model
that also considers the fluidic cost.

When an application is executed, all dispensing reservoirs
are fully loaded, thus the fluidic cost depends on the num-
ber and the capacity of the dispensing reservoirs. If we use a
larger number of reservoirs, we can increase the parallelism
and thus complete the application faster because the dispens-
ing operations execute slower that mixing/dilution operations
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TABLE I
EXAMPLE OF COMPONENT LIBRARY M [31]

TABLE II
FLUIDIC LIBRARY F [32]

(e.g., for the colorimetric protein assay dispensing executes in
7 s, while mixing executes in 3 s on a 2 × 3 mixer) [33]. The
cost of reagents is generally expensive and can reach up to
70% of the biochip cost [32], [34]. In addition, hard-to-obtain
samples (e.g., from newborn babies, endangered species, and
unique specimens), also have high cost. Hence, it is important
to minimize the use of samples and reagents in order to reduce
the total cost of a biochip architecture.

To determine the cost of an architecture, our model uses
a component library M and a fluidic library F , provided
by the designer. The library M contains a list of the phys-
ical components available to design a biochip. An example
component library is Table I, where, for each physical com-
ponent mentioned in column 1, column 2 presents the costs
expressed in the unit cost of an electrode, column 3 presents
the dimensions and column 4 presents the execution time. The
electrode component (row 1 in Table I) can be reconfigured
to perform various operations, thus the electrode has a “N/A”
execution time. The operations that can be performed on the
electrode components and their execution times are specified
in the module library L (see Table III).

A fluidic library F contains for each input fluid the cost per
μL expressed in the unit cost of an electrode. After the binding
of the operations is decided, we use library M to calculate the
total cost for each input fluid. For example, Table II presents
the fluidic library for the polymerase chain reaction (PCR)
assay. Let us assume that the sample fluid DNA1 with a cost
of 2.47 units/μL (row 1 in Table II) is bound to Reservoir2,
which has a capacity of 10 μL (row 3 in Table I). The total
cost for DNA1 is 24.7 units.

Section IV presents how the libraries M and F are used
by our proposed cost model for a biochip architecture.

B. Problem Formulation

In this paper, we address the following problem. Given as
input a biochemical application G with a deadline DG , the
parametric library P , the component library M, the fluidic
library F , and maximum k permanent faults to be tolerated,
we are interested to synthesize a fault-tolerant physical archi-
tecture A, such that the cost of A is minimized and the
application completion time δk

G is within the deadline DG for
any occurrence of the k faults.

Fig. 5. Application-specific biochip architecture.

C. Motivational Example

Let us consider an application graph G obtained by repeat-
ing three times the graph from Fig. 2. The entire graph G is
not depicted due to space reasons. We are interested to syn-
thesize a physical architecture for this application, considering
k = 1 permanent faults, such that the cost is minimized and a
deadline of DG = 22 s is satisfied.

So far, researchers have considered only general-purpose
biochips of rectangular shape. To complete G within deadline
DG using a rectangular architecture A2, we need an array of
9×16 electrodes and eight reservoirs: two for the reagent, two
for the buffer, three for the sample, and one for the waste. The
rectangular architecture A2 has 168 electrodes. We used the
module library in [10] and obtained an execution time for G
on A2 of 18.78 s, which is satisfying the deadline.

However, the number of electrodes can be reduced if we
use an application-specific architecture A1, such as the one
in Fig. 5, of only 128 electrodes, reducing with 23.8% the
number of electrodes of A2. Since A1 and A2 have the same
number of reservoirs, i.e., both architectures have identical
fluidic cost, we compare A1 and A2 only in terms of number
of electrodes. For architecture A1, we determined manually
the following worst-case completion times in case of k = 1
permanent faults: 2.59 s for a mix operation on M1 and M2,
5.16 s for a dilution operation on M1 and M2, 2.4 s for a mix
operation on M3 and M4, and 4.47 s for a dilution operation on
M3 and M4. The binding of operations is shown in the figure;
we replicate three times the graph in Fig. 2, hence, for every
Oi, we have O′

i and O′′
i . The completion time of G on archi-

tecture A1 is δG = 18.87 s, within the deadline DG = 22 s. In
addition, A1 is also fault-tolerant to k = 1 permanent faults,
i.e., in the worst-case fault scenario, when the fault is placed
such that it leads to the largest delay on δG , the application
completes in δk=1

G = 20.01 s, which satisfies the deadline.
We assume that our architecture synthesis is part of a

methodology, outlined in Fig. 6, which has the following steps.
1) We synthesize an application-specific architecture A for

an application G with a deadline DG , considering a max-
imum number of permanent faults k that have to be
tolerated. Since the architecture synthesis is performed
before the fabrication (step 2) and testing (step 3), the
locations of permanent faults are not known.

2) We fabricate the biochips with application-specific archi-
tecture A, obtained during the previous step.

3) All the biochips are tested to determine if they have
permanent faults using testing techniques such as the
ones proposed in [6]. If there are more than k faults, the
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Fig. 6. Methodology and architecture synthesis overview.

biochip is discarded. The exact locations of permanent
faults are determined during this step.

4) We perform a compilation of application G on A
to obtain the electrode actuation sequence. Since the
locations of permanent faults are known, we can use
any compilation implementation to determine the actual
completion time δk

G . In case δk
G exceeds the deadline DG ,

the biochip is discarded.
In this paper, our architecture synthesis is based on TS,

presented in Section VI. The proposed metaheuristic explores
the solution space using design transformations called moves,
which are applied to the current architecture solution in order
to obtain neighboring architecture alternatives. A new architec-
ture solution is accepted if it improves the current solution. The
metaheuristic continues to apply the moves on the determined
current solution and use the objective function to evaluate
the obtained neighboring architectures. The search terminates
when a stop criterion is satisfied.

IV. ARCHITECTURE EVALUATION

Our TS synthesis, presented in Section VI, evaluates each
architecture in terms of: 1) routability; 2) cost; and 3) timing
constraints. Each of the evaluation criteria is presented in the
next paragraphs.

A. Routability Evaluation

The routability evaluation guarantees that an architecture
cannot become disconnected due to permanent faults, i.e., rout-
ing of droplets to the desired destination is still possible. For
example, the architecture in Fig. 5 becomes disconnected when
the two electrodes marked with a red “x” are affected by faults.
If an architecture can be disconnected by k faults, it should be

discarded and in this case the evaluation of the other criteria
(cost and timing constraints) is no longer meaningful.

We say that an architecture passes the routability test, if, in
any scenario of k permanent faults, there is at least one route
that connects each nonfaulty electrode to the other nonfaulty
electrodes. Our implementation adapts the polynomial time
O(kn3) algorithm from [35], that tests the k-vertex connectiv-
ity of a graph. We model the architecture as a graph, in which
the nodes represent the electrodes and the edges represent the
direct connection between them. An electrode is considered
connected only to its top, bottom, left, and right neighbors,
and not diagonally, since a droplet cannot be moved diago-
nally with EWOD. The algorithm from [35] tests if the graph
remains connected in case of removal of k nodes. For exam-
ple, the architecture in Fig. 5 is still connected for k = 1, but
becomes disconnected for k = 2, e.g., if the two faults happen
as indicated with the red x.

B. Cost Evaluation

We evaluate the cost of an architecture using the following
equation:

CostA =
∑

NMi × CostMi +
∑

NRi × CostRi (2)

where NMi is the number of physical components of type Mi,
CostMi is the cost of Mi, NRi is the number of reservoirs of
type Ri, and CostRi is the cost of the input fluid for Ri.

The first term of (2) calculates the cost of the physical com-
ponents and the second term calculates the cost of the input
fluids. The physical components (e.g., electrodes, reservoirs,
and detectors) and their unit cost are provided by the designer
in a library M (see Table I for an example). The unit cost
of the input fluids, used by the biochemical application, are
specified in a fluidic library F , such as the one in Table II.
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The assumption is that all the reservoirs integrated in the car-
tridge are fully loaded. We ignore the cost of the controller
platform because its cost is amortized over time.

C. Completion Time Evaluation

We evaluate the architecture against its timing constraints
by evaluating the application completion time in case of
faults (δk

G). The value of δk
G is used in the objective func-

tion (4) as explained in Section VI. In this section, we present
in detail how we determine δk

G . The value of δk
G is obtained

through compilation, a task that consists of: 1) placement,
which decides the positions of CRMs on the architecture A;
2) scheduling, which decides the order of the operations;
and 3) routing, which determines the droplet routes. Our
proposed compilation, called fault-aware list scheduling and
routing (FA-LSR) takes as input the architecture under evalu-
ation A, the application G, the CRM library L, and the number
of permanent faults k to be tolerated, and outputs the estimated
completion time δk

G .
The application completion time δk

G depends on the location
of the k permanent faults. At this point in time, we do not know
the position of the k faults (they will be known after fabrication
and testing), so our evaluation has to estimate δk

G . This problem
of finding the worst-case schedule length has been addressed
in the context of transient faults on distributed multiproces-
sor systems, and researchers have used “fault-tolerant process
graphs” to model all possible fault-scenarios [36]. Such a mod-
eling of all possible fault-scenarios is not feasible in our case
because of the interplay between the faulty-electrodes and the
allocation, binding, scheduling, and placement of operations
that can be affected by these faults.

Our solution in [10] determined the worst-case sched-
ule length in a pessimistic, but safe way, by assuming that
each operation is affected by k permanent faults. However,
because [10] assumes the worst-case pattern of faults for
all evaluated architectures, it may also eliminate potentially
good low-cost architectures which, after fabrication, when the
pattern of faults is known, would have proven able to run
the application within its deadline. Instead of considering the
worst-case scenario as in [10], FA-LSR uses an estimate for the
operation execution, calculated as discussed in Section V-A.
The estimation of δk

G is not safe, i.e., it may return smaller
values than the worst-case. As a consequence, our synthesis
may obtain an architecture solution that for a certain pattern
of faults, will not complete the application within its deadline.
The actual application completion time is determined after
fabrication and testing (step 4 in the methodology depicted
in Fig. 6), when the pattern of faults is known. In case the
application is not completed within the deadline, the biochip
is discarded.

With FA-LSR, we also introduce an extension to the place-
ment of operations (Algorithm 2 in Section V) considering
circular route modules, which do not have to be rectangular,
as explained in Section II-B.

Algorithm 1 presents FA-LSR. Every node from G is
assigned a specific priority according to the critical path pri-
ority function (line 1) [37]. List contains all operations that
are ready to run, sorted by priority (line 3). An operation is
ready to be executed when all input droplets have been pro-
duced, i.e., all predecessor operations from graph G finished

Algorithm 1: FA-LSR
Input: architecture A, application graph G, CRM library

L, number of permanent faults k
Output: application completion time δk

G
1 CriticalPathPriority(G);
2 t = 0;
3 List = GetReadyOperations(G);
4 repeat
5 Oi = RemoveOperation(List);
6 Mi = FindCRM(L);
7 Bind(Oi, Mi);
8 routei = CalculateRoute(Oi, Mi,G);
9 t = earliest time when Mi can be placed;

10 S = Schedule(Oi, t, routei, Mi, L);
11 UpdateReadyList(G, t, List);
12 until List = ∅;
13 LCP = CriticalExecutionPath(S);
14 FaultTable = DistributeFaults(LCP, k, S);
15 for Oi in FaultTable do
16 ki = number of faults for Oi;
17 UpdateSchedule(S, Oi, ki, L);
18 end
19 δk

G = the finishing time of last operation in S

executing. The intermediate droplets that have to wait for the
other operations to finish, are stored on the biochip. The algo-
rithm takes each ready operation Oi and iterates through the
library L, to find the CRM Mi that can be placed at the
earliest time and executes the operation the fastest (line 6).
After Oi is bound to Mi (line 7), CalculateRoute (line 8)
determines the route that brings the necessary droplets to
Mi and Oi is scheduled (line 10). Since the droplets can
pass through CRMs when routing (we use a droplet-aware
approach), we need to determine only the routing time and
not the actual routes. For that purpose, CalculateRoute adapts
the Hadlock’s algorithm [38] to determine the route lengths.
List is updated with the operations that have become ready
to execute (line 11). The repeat loop terminates when List is
empty (line 12).

Next, we need to decide on the fault scenarios that will
give us a realistic estimate of the application completion in
case of maximum k faults. As mentioned, when the synthe-
sis is performed, the location of the permanent faults is not
known. Consequently, we do not know which operations are
affected by faults and what is the worst-case fault scenario.
Alistar et al. [10] have proposed a pessimistic approach, by
considering that every operation in the application suffers from
k faults. Because the length of schedule S is given by the
critical path, which is the path in graph G with the longest
execution time, the approach we propose in this paper is to
consider that the faults affect the operations that are on the
critical path—scenario that will impact most the application
completion time.

First, we determine LCP—the list of operations on the
critical path. The k faults are distributed among the opera-
tions in LCP by the DistributeFaults function such that the
impact of the faults is maximized. DistributeFaults uses a
greedy randomized approach [39] that takes each of the
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(a)

(c)

(b)

Fig. 7. Compilation example. (a) Application. (b) Placement of CRMs.
(c) Schedule for k = 1.

k faults and after evaluating each operation in LCP, dis-
tributes the fault to the operation that delays the most the
application completion time. Depending on the criticality of
specific operations, it may be the case that an operation is
affected by more than one fault. Furthermore, if we dis-
tribute a fault to operation Oi ∈ LCP, i.e., Oi executes on
a faulty CRM Mi, then all operations executing on CRMs
that intersect Mi will also be considered affected by a fault.
The faulty operations and their corresponding number of
faults are stored in FaultTable. Finally, for each operation
Oi ∈ FaultTable affected by ki faults, the schedule is updated
(line 17) with the corresponding estimated execution time
stored in the library L, which is determined by the algorithm
presented in Section V-A. The application completion time
δk
G is the finishing time of the last operation in the schedule

table (line 19).
Let us assume that we have to compile the application A

from Fig. 7(a) on the architecture from Fig. 7(b) considering
k = 1 permanent faults. We use the algorithm presented in
Section V to determine for A the CRM library L shown in
Table III, which contains the placement of CRMs, the execu-
tion time for k = 0 (no faults) and the estimated execution time
for k = 1 and k = 2. For simplicity reasons, in this example
we ignore routing and consider that there are no contamination
constraints. In order to avoid congestion, the dispensing oper-
ations are scheduled only when the corresponding dispensed
droplets are needed.

At time t = 2 s mixing operation O10 has the highest pri-
ority among all the ready operations (an operation is ready if
all its input droplets have arrived). For O10, the CRM M3 [see
Fig. 7(b)] is selected from library L (Table III), since it finishes
the mixing operation the fastest. At time t = 4.08 s, operation
O10 finishes executing. However, the successor of O10, opera-
tion O16, is not ready to execute because the other predecessor
operation O09 has not finished executing. At t = 6 s, O09 fin-
ishes executing, and List is updated with operation O16, which
becomes ready to execute.

First, FA-LSR will produce a schedule of 15.16 s (lines 4–12
in Algorithm 1). The schedule of operations is presented as a
Gantt chart, where the start time of an operation is captured by
the left edge of the respective rectangle, and the length of the
rectangle represents the duration. Next, DistributeFaults will
distribute the k = 1 faults to operation O17, since it results in

TABLE III
CRM LIBRARY L FOR THE ARCHITECTURE

FROM FIG. 7(b)

the greatest increase in schedule length. Consequently, oper-
ations O10, O16, and O12, which execute on the same CRM
as O17, suffer from k = 1 permanent faults. The schedule
length is updated with the execution times for the faulty oper-
ations Ck=1

i , taken from library L (column 4 in Table III). As
shown in the schedule from Fig. 7(c), the completion time δ1

G
is 15.6 s.

V. BUILDING LIBRARY OF CIRCULAR-ROUTE MODULES

In this section, we present our approach to determine the
CRM library L, which is used by the FA-LSR compilation
(Algorithm 1 in Section IV-C) to obtain the application com-
pletion time δk

G , and thus, check if the timing constraints are
satisfied. For each determined CRM, its shape and the corre-
sponding placement on the biochip are also stored. Hence, the
placement task does not need to be implemented during the
compilation step. For example, the CRM M3 determined for
the architecture in Fig. 7(b), has the shape of the following
dimensions: 8 × 7 × 6 × 2 × 3 × 6, with the corners placed at
coordinates: (0, 0), (0, 7), (6, 7), (6, 2), (5, 2), and (5, 0).

In [25], we have proposed an algorithm that builds a library
L of CRMs for the application-specific architecture A, which
does not take faults into account. Since the algorithm in [25] is
time consuming and hence cannot be used inside a metaheuris-
tic search, we propose in this paper an incremental library
build (ILB) algorithm that starts from an existing library L′
determined for the previously visited architecture solution A′,
and incrementally updates L′ to obtain L for the current
architecture A. This is possible because during the TS-based
design space exploration, a new architecture A is generated by
applying gradual transformations to the previous solution A′.
Hence, the newly generated architecture A shares a similar
layout with A′. Consequently, the corresponding CRM library
L can be built by incrementally updating L′, that is the library
previously determined for A′.

A CRM is defined as a circular-route of electrodes (see
Section II-B), and we denote a CRM M as a set of distinctive
electrodes {e1, e2, . . . , en}. An electrode en is a neighbor-
electrode to em, if em can be reached directly from en. Note that
a droplet cannot move diagonally. We define a chain of elec-
trodes R as a set of consecutive neighboring electrodes that
are all situated on the same coordinate axis (vertical or hor-
izontal). For example, in the case of the application-specific
biochip depicted in Fig. 8(a), the electrodes marked with x
form a chain, while the ones marked with “y” do not form a
chain. Note that a chain can also consist of a single electrode.

Our proposed ILB (Algorithm 2) is general, i.e., it can be
used for any transformation involving a set of electrodes E ,
which is decomposed in chains of electrodes (line 1). Each chain
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Algorithm 2: ILB

Input: architecture A, library L′, set of electrodes E , k
faults

Output: new CRM library L
1 LC = DecomposeInChains(E , A);
2 for Rj ∈ LC do
3 LM = DetermineCRMs(L′, Ri);
4 for Mi ∈ LM do
5 if Rj is added then
6 Hi = FindNeighborChain(Mi, Rj);
7 AdjustCRM(Mi,Hi);
8 end
9 if Rj is removed then

10 route = DetermineRoute(Mi,A);
11 ReconstructCRM(Mi, route);
12 end
13 EstimateOpExecution(Mi, k);
14 UpdateLibrary(L, Mi);
15 end
16 end

of electrodes Rj ∈ E , can be in one of the two cases: 1) Rj
is added to A′ or 2) Rj is removed from A′. For example,
the transformation applied on architecture A′ [Fig. 10(a)] to
obtain the architecture A [Fig. 10(b)] can be decomposed into
the following: adding the chains of electrodes R1 and R4 and
removing the chains of electrodes R2, R3, and R5.

In both cases, ILB determines the CRMs from L′ on which
Rj has an impact (line 3) and then we adjust those CRMs
(lines 4–12) so that the adjustment improves the operation
execution time. Next, for each newly adjusted CRM, ILB esti-
mates the operation execution time in case of maximum k
permanent faults (line 13) and updates the library (line 14).

Let us present in detail how our proposed algorithm works.
First, ILB decomposes the set of electrodes E in chains of
electrodes which are stored in the list LC. Next, for each
chain of electrodes Rj ∈ E , DetermineCRM (line 3) deter-
mines LM—the list of CRMs on which Rj has an impact.
The strategy used by the DetermineCRM function depends on
whether Rj is added or removed. For the first case, when Rj
is added to A′, DetermineCRMs selects from the library L′,
the CRMs impacted by this move, i.e., the CRMs that include
at least one neighbor-electrode to an electrode in Rj. Those
CRMs are stored in the list LM . In Fig. 8(b), the CRM M1 is
neighboring three electrodes from Rj, and consequently, M1
is added to LM . In case (2), when Rj is removed from A′,
DetermineCRMs (line 3) adds to LM the CRMs that contain
any electrode in R. In Fig. 9(a), the CRM M2 contains elec-
trodes in Rj (the three hashed electrodes), and consequently
M2 is included in LM .

Next, ILB adjusts each Mi ∈ LM so that the operations
will complete faster. Reconfigurable operations (e.g., mixing
and dilution) complete faster when the forward movement
of the droplets is prioritized and the backward movement is
avoided [40]. Hence, for case (1), the newly added electrodes
∈ Rj are used to adjust the CRMs so that forward move-
ments are prioritized. To do that, FindNeighborChain (line
6) inspects all electrodes in Rj to determine Hi—the longest
chain of electrodes that has both ends as neighbor-electrodes

(a) (b) (c) (d)

Fig. 8. Adjusting a CRM in case (1). (a) Previous architecture. (b) Chain of
electrodes Rj. (c) Chain of electrodes Hi. (d) Adjusted CRM.

(a) (b)

Fig. 9. Reconstructing a CRM in case (2). (a) Chain of electrodes Rj.
(b) Reconstructed CRM.

(a) (b)

Fig. 10. Example of complex transformation. (a) Previous architecture A′.
(b) Current architecture A′.

to an electrode in Mj. AdjustCRM includes Hi in Mj only
if the adjustment results in a greater count of forward move-
ments. For the example in Fig. 8(b), we have determined the
chain of electrodes Hi in Fig. 8(c), and the adjusted M1 in
Fig. 8(d).

In case (2), when Rj is removed from A′, the CRMs Mi ∈
LM have to be rerouted to avoid the removed electrodes. After
the removal of the hashed electrodes in Fig. 9(a), the route of
M2 has to be rerouted as shown in Fig. 9(b). Since ILB is used
inside a search metaheuristic, we are more interested in finding
a new route fast, then in finding the shortest route. Hence, in
order to find a new connecting route for Mi, DetermineRoute
(line 10) uses Soukup’s algorithm [38].

In case such a route cannot be found, Mi is removed from
LM , otherwise ReconstructCRM (line 11) includes the route
in Mi. Next, for each CRM ∈ LM , EstimateOpExecution (line
13) determines a parametric estimation of the operation exe-
cution time in case of maximum k permanent faults. The
library is updated (line 14) and it can be used by the FA-LSR
compilation to determine the application completion time.

The next section presents in detail the algorithm used by
EstimateOpExecution.

A. Estimation of Operation Execution Time in Case of Faults

When building the library of CRMs L for the current
application-specific architecture, we need to determine for
each CRM Mi ∈ L the corresponding operation execution time
C f

i , which is the time needed by a reconfigurable operation
(e.g., mix and dilution) to complete on Mi considering f per-
manent faults, f = 1 to k, where k is the maximum number
of permanent faults. The value of C f

i depends on the pattern
of permanent faults.
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(a) (b) (c) (d)

Fig. 11. Estimation of operation execution time in case of k faults.
(a) t = 3.9 s (no faults). (b) t = 5.04 s (k = 1). (c) t = 4.8 s (k = 1).
(d) t = 5.28 s (k = 2).

When our architecture synthesis is run, the location of the
faults is not known so we need a method to estimate C f

i . To
solve this problem, Alistar et al. [25] used exhaustive search
to determine the pattern of permanent faults which maximizes
Ck

i . In this paper, we propose a faster method to determine
an estimate of C f

i , which is less pessimistic than the worst-
case value. Consequently, it might happen that, if a specific
pattern of faults has occurred during fabrication, our estimated
C f

i is less than the actual execution time. We can determine
if that is the case by running a post-fabrication compilation
and discarding the biochip if the timing constraints are not
satisfied.

Hence, the function EstimateOpExecution (line 13) called
by ILB (Algorithm 2), determines for a CRM Mi a para-
metric estimation of the operation execution time C f

i , where
f = 1 to k, assuming Mi is placed over an area with f faulty
electrodes.

Let us denote with p0
cycle the percentage toward operation

completion for a cycle when there are no faults. The value
of p0

cycle is obtained using (1) as explained in Section II-B.

We need to estimate p f
cycle—the percentage toward operation

completion for a cycle when there are f permanent faults.
Once we know p f

cycle, we calculate n f
i —the number of cycles

needed to achieve 100% operation execution. The value of C f
i

is obtained by multiplying n f
i with the time needed for one

cycle p f
cycle.

In case a CRM contains faulty electrodes, the droplets need
to be rerouted in order to avoid the permanent faults. Let
us consider that the CRM in Fig. 11(a) has the faulty elec-
trodes marked with x in Fig. 11(b). In order to avoid the
faults, the droplets are instructed to take a detour, as shown in
Fig. 11(b). Since the position of the faults is not known, we
have used in [10] an exhaustive search to determine the execu-
tion time for the worst-case fault pattern occurring in a CRM.
As an alternative, in this paper we propose a faster estimation
heuristic, which, instead of performing an exhaustive search,
makes some simplifying assumptions about the impact of the
worst-case fault patterns on the operation execution.

One assumption is that the permanent faults form a pattern
which can only be avoided using backward movements (180◦
turns). Backward movements lengthen the operation execution
time Ci, because they induce flow reversibility. In most of
the cases, using a backward movement can lead to a larger
increase in execution time than taking a detour. Since we do
not know the exact location of the faults, and consequently
whether detour-routes are possible, it is our assumption, as
mentioned, that faults are positioned in such locations that
they can be avoided only using backward movements. Hence,
the droplets will be routed back and forth between two of the

f faults, as shown in Fig. 11(d). Consequently, the cycle of
droplets on the CRM is reduced to the distance between two
of the f faults. In case f = 1, the droplets will be routed as
shown in Fig. 11(c).

Another assumption is that, if there are more faults ( f > 1),
they are located such that they lead to the “most damage,” i.e.,
the largest increase in Ci. We assume that this happens when
the faults are located at equal distance on the CRM, as shown
in Fig. 11(d). Our assumption is based on the fact that a route
with a higher frequency of backward movements will need
more time to complete the operation.

Considering the assumptions mentioned above, we estimate
p f

cycle using the following equation:

p f
cycle = p0

cycle/f − 2 × p2
0◦ + p180◦ (3)

where p0
cycle, p180◦ , and p2

0◦ are the percentages toward oper-
ation completion for a cycle with no faults, a backward
movement and a forward movement for at least two consecu-
tive electrodes, respectively. Since we consider that the f faults
are located at equal distance, we obtain in the first term in (3),
a rough estimation of p f

cycle by dividing p0
cycle to f . However,

to be more precise, we take into account that two electrodes
are occupied by faults [second term in (3)] and that a 180◦
turn is needed [third term in (3)]. For the second term in (3),
we assumed we are loosing electrodes which contribute most
toward operation completion (i.e., the completion percentage
is p2

0◦ ).
The values of p0

cycle [determined using (1), see Section II-B],
p2

0◦ and p180◦ depend on the operation type and on the fluids
used the operation. Hence, (3) determines for each CRM a
parametric estimation of the execution time, where the param-
eters are the percentages p1

0◦ , p2
0◦ , p180◦ , and p90◦ . Once the

binding of the operations is decided, i.e., we know which oper-
ations are assigned to each CRM, then we introduce in (3)
the corresponding values for the parameters, which are pro-
vided, as mentioned, in the parametric library P . We assume
that the values for p0

cycle, p2
0◦ , and p180◦ are given by the

designer.
For our example, we use the following values: p1

0◦ = 0.29%,
p2

0◦ = 0.58%, p180◦ = −0.5%, and p90◦ = 0.1% [24].
Considering k = 2 permanent faults for the CRM M1 in
Fig. 11(a), we estimate, using (3), the following execution
times: C1

1 = 4.8 s and C2
1 = 5.28 s [see Fig. 11(c) and (d)].

As presented in Section IV-C, these operation execution values
C f

i are used inside our FA-LSR compilation (Algorithm 1) to
determine the application completion time.

VI. TABU SEARCH-BASED ARCHITECTURE SYNTHESIS

We use a TS [41] metaheuristic for our application-specific
architecture synthesis optimization problem, which is an NP-
complete problem.

TS takes as input the application graph G, the physical com-
ponents library M, the number of permanent faults to be
tolerated k and the CRM library L and produces the archi-
tecture A that minimizes the objective function [see (4)].
TS explores the solution space using design transformations,
called moves, to generate the neighborhood N of the cur-
rent solution. To prevent cycling due to revisiting solutions,
tabu moves are stored in a short-term memory of the search,
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Algorithm 3: Tabu Search-Based Architecture Synthesis
Input: application G, library M, number of permanent

faults k, deadline D Output: architecture Abest

1 Abest - rectangular architecture that minimizes the
Objective function;

2 L0 = BuildCRMLibrary(Abest);
3 t = 0;
4 while t ≤ time limit do
5 N = GenerateNeighborhood(Acurrent, TabuList);
6 Update(TabuList, N );
7 for each Acurrent ∈ N do
8 L = ILB(Acurrent, L0, k);
9 δk

G = FA-LSR(Acurrent, G, L, k);
10 if Objective(Acurrent) < Objective(Abest) then
11 Abest = Acurrent;
12 end
13 L0 = L;
14 end
15 if diversification is needed then
16 Acurrent = ApplyDiversificationMove(Acurrent);
17 Restart(TabuList, Abest , Acurrent );
18 end
19 end

namely the tabu list, which has a fixed dimension, called tabu
tenure. However, it may happen that most of the search is done
locally, exploring only a restricted area of the search space. In
that case, TS uses diversification to direct the search toward
unexplored regions. Thus, a diversification move applied to
the best-known solution, and the search is restarted from that
point.

Algorithm 3 illustrates our TS-based architecture synthesis.
We first determine the rectangular architecture of minimum
cost Abest that can run the application within deadline (line 1).
For that, we use exhaustive search by starting from the rectan-
gular architecture of minimum acceptable size and incremen-
tally increasing the dimensions. Each intermediate architecture
is evaluated in terms of δG . The exhaustive search stops when
we obtain an architecture that can run the application within
the deadline.

We use the algorithm from [25] to build the initial library L0

(line 2) for the initial architecture solution Abest, from which
TS starts exploring the design space. To explore the design
space, GenerateNeighborhood (line 4) generates new neighbor
architecture by applying moves to the current solution Acurrent.
The moves are divided in two classes: 1) moves for electrodes
and 2) moves for devices. In the next paragraph, we define
the moves and we illustrate some of them considering the
current solution Acurrent in Fig. 12(a). Note that we mark the
added electrodes with a darker shade of gray and we hash
the removed electrodes.

1) We define the moves for electrodes as follows.
a) Adding a chain of electrodes at a random position.
b) Removing a chain of electrodes at a random posi-

tion.
c) Adding a chain of electrodes at the sides of the

architecture, namely at the top, bottom, right,
and left.

d) Removing a chain of electrodes at the sides of the
architecture, namely at the top, bottom, right, and
left.

2) We define the following moves for devices.
a) Three moves that add dispensing reservoirs: for

samples, reagents, and buffers, respectively.
b) Three moves that remove dispensing reservoirs: for

samples, reagents, and buffers, respectively.
c) Adding a detector.
d) Removing a detector.
e) Modifying the placement a detector, since it can

impact the application completion time by improv-
ing the routing.

Depending on the biochip fabrication technique, not all the
moves are applicable. If subtractive fabrication is used (e.g.,
etching a printed circuit board), we apply only the moves for
devices. If additive fabrication is used (e.g., inkjet printing),
we are interested in a minimal electrode count, thus we apply
both moves for the electrodes and the moves for the devices.

GenerateNeighborhood applies one by one all the moves
defined above under the limits conditioned by the fabrication
technique and by the execution of the biochemical assay (e.g.,
at least one reservoir for each input fluid). However, applying
some of the moves can lead to revisiting solutions, and, con-
sequently, to cycling between already evaluated architectures.
To avoid this situation, such moves are considered tabu, and
are stored in a tabu list. An example of a tabu move is adding
a dispensing reservoir after having removed the same reser-
voir during the previous iteration. Hence, at each iteration, we
apply only the moves that are not tabu, and we determine the
tabu moves for the next iteration (line 6 in Algorithm 3).

Each of the architectures from the neighborhood N is
evaluated using the following objective function:

Objective(A) = CostA + W × max
(

0, δk
G − DG

)
(4)

where CostA is the cost of the architecture A, calculate as
presented in Section IV, and δk

G is the completion time of
the application G on A obtained with the proposed FA-LSR
(see Algorithm 1). If G is schedulable, i.e., the timing con-
straints are met, the second term is 0, otherwise, we use a
penalty weight W (a large constant) to penalize invalid archi-
tectures that are leading to unschedulable applications. The
new solution Acurrent is obtained by selecting the architec-
ture from N that minimizes the objective function (line 7 in
Algorithm 3). If the currently found solution Acurrent is better
than the best-so-far Abest, then the latter is updated accordingly
(lines 8–10).

In case the search does not find an architecture solution
better than Acurrent for a number of iterations, then TS uses
diversification (line 12). A diversification move, composed of
two or more single-moves is applied on Abest in order to guide
the search toward unexplored regions of the search space. For
example, a diversification move was applied to the architecture
from Fig. 12(a), resulting in the architecture from Fig. 12(e).
The added electrodes are marked in Fig. 12(e) with a darker
shade of gray. Next, the Restart function (line 43) updates, if
necessary, the architecture Abest and the tabu list (deletes the
previous elements and adds the tabu moves due to diversifi-
cation). The search continues until the time limit is reached,
when our TS-based architecture synthesis returns Abest.
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(a) (b) (c) (d) (e)

Fig. 12. Example of neighboring architectures. (a) Acurrent. (b) Add reservoir for buffer. (c) Replace the detector. (d) Add bottom-row of electrodes.
(e) Diversification move.

TABLE IV
COMPONENT LIBRARY

TABLE V
FLUIDIC LIBRARY

VII. EXPERIMENTAL RESULTS

For experiments we used four synthetic benchmarks
(SB1–4) [42] and five real-life applications: 1) the mixing stage
of PCR (7 operations); 2) in vitro diagnostics on human physi-
ological fluids (IVD, 28 operations); 3) the colorimetric protein
assay (CPA, 103 operations); 4) the interpolation dilution of a
protein (IDP, 71 operations); and 5) the sample preparation for
plasmid DNA (PDNA, 19 operations). The application graphs
for PCR, IVD, and CPA can be found in [33], for IDP in [43],
and for PDNA in [14].1 The algorithms were implemented in
Java (JDK 1.6) and run on a MacBook Pro computer with
Intel Core 2 Duo CPU at 2.53 GHz and 4 GB of RAM.

The focus of this paper is to determine if application-specific
architectures are more cost-effective than rectangular architec-
tures. Thus, we have used our TS-based approach to synthesize
architectures for the PCR, PDNA, IDP, and SB1 applications.
Together with the results obtained by TS, we have also deter-
mined, using exhaustive search (which varies the architecture
dimensions and the number of reservoirs and optical detec-
tors), the cheapest general purpose architecture, which can
run the application within the deadline. For a fair comparison,
both exhaustive search and our TS-based architecture synthesis
used the proposed FA-LSR for compilation. The CRM library
L was determined using the algorithm in [25] for exhaustive
search and the proposed ILB (see Section V) for the TS-based
architecture synthesis. We have run the experiments for k = 0,
1 and 2 faults, estimating the operation execution time as pro-
posed in Section V-A. We used the component library M and
fluidic library F in Tables IV and V, respectively, and the
parametric library determined in [24].

The results are presented in Table VI. The deadline DG
for each application is presented in column 2, the size of the
rectangular architectures for k = 0, 1, and 2 are presented in

1We ignored the detection operations for the experiments presented in
Tables VI, VII, and IX.

TABLE VI
APPLICATION-SPECIFIC SYNTHESIS RESULTS OBTAINED BY TS

columns 3, 6, and 9, respectively (the number in parenthe-
ses refer to the numbers of reservoirs for buffer, sample and
reagent) and their cost CR is in columns 4, 7, and 10. The
results of TS for k = 0, 1, and 2 are presented in columns
5, 8, and 11, respectively. As we can see from Table VI, our
TS is able to produce application-specific architectures which
are significantly cheaper than the best general purpose archi-
tecture. For the PDNA application, our proposed synthesis
obtained architectures that reduce the cost with 22.4%, 25.9%,
and 9.2% for k = 0, 1, and 2, respectively. Our proposed
methodology can also support the designer in performing a
tradeoff between the yield and the cost of the architecture, by
introducing redundant electrodes to tolerate permanent faults.
The increase in cost for k = 1 and k = 2 is presented
in columns 8 and 11 for TS. For the PCR application (see
row 1 in Table VI), introducing redundancy for fault-tolerance
resulted in a increase of 12.9% in the architecture cost.

In the second set of experiments, we compared the costs of
the architecture obtained by our proposed TS-based synthe-
sis to the cost of the architecture obtained using the SA-based
synthesis, proposed in [10]. For a fair comparison, we used for
cost calculation the method proposed in [10], which did not
consider the cost of the input fluids. Since in this set of exper-
iments we do not consider the optical detection operations, a
limitation of [10], we have adjusted the deadlines to 10, 15,
and 100 s for PCR, IVD, and CPA, respectively. The results
are presented in Table VII. As we can see, our TS-based archi-
tecture synthesis is able to obtain better results. For example,
for IVD (row 2 in Table VII), a reduction in cost of 28.3% was
obtained using the TS-based synthesis proposed in this paper.

In the third set of experiments we were interested to
determine the quality of the proposed compilation, FA-LSR
(Section IV-C), in terms of the application completion time
δG . We have compared δG to the nearly-optimal δ

opt
G obtained

in [12] using TS for the compilation. Note that δG is deter-
mined for the case when there are no faults, since the
implementation in [12] does not consider faults. The results of
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TABLE VII
COMPARISON OF TS AND SA [10]-BASED SYNTHESES

TABLE VIII
EVALUATION OF THE FA-LSR COMPILATION (NO FAULTS)

TABLE IX
EVALUATION OF THE CRM APPROACH FOR COMPILATION

this comparison are presented in Table VIII. This comparison
was only possible for rectangular architectures, a limitation
of [12]. Also, for a fair comparison, we ignored routing and
we have used the same module library as in [12].

The deadlines for PCR, IVD, and CPA are 10, 15, and 100 s,
respectively. Table VIII shows that our LS-based compilation
is able to obtain good quality results using a much shorter
runtime (milliseconds versus 1 h). The average percentage
deviation from the near-optimal result is 5.5%, hence, it can
successfully be used for design space exploration.

In our final set of experiments we were interested to deter-
mine the efficiency of our proposed placement of operations
(Section V) in terms of the application completion time δCRM

G
obtained after compilation. We compared δCRM

G to the com-
pletion time δR

G , obtained using the routing-based compilation
approach from [24], which is the only available compila-
tion approach that is not limited to rectangular modules and
can take advantage of an application-specific architecture. The
results of this comparison are presented in Table IX. For the
real-life application (IVD), we used the application-specific
architecture (column 2) derived with our architecture synthesis
from [10]. The application-specific architectures for the syn-
thetic benchmarks were obtained manually. In column 2 we
present, for each architecture, the number of electrodes and in
parentheses the numbers of reservoirs for sample, buffer, and
reagent. As we can see from Table IX, our placement results
in a better completion time δCRM

G (column 5) than δR
G (column

4) for all the tested benchmarks. For example, for IVD, we
obtained a completion time δCRM

G = 11.73 s, improving with
36% the completion time δR

G = 18.4 s.

VIII. CONCLUSION

We have proposed a TS-based synthesis approach for
application-specific fault-tolerant DMB architecture, such that

the architecture cost is minimized and the deadlines are sat-
isfied even in case of permanent faults. The architecture
alternatives, visited by TS, are evaluated in terms of their
impact on the timing constraints of the application. We have
proposed an LS-based compilation (FA-LSR) to determine
the application completion time which depends on the given
architecture and on the pattern of permanent faults. We have
also proposed a strategy to incrementally build a library L
of CRMs that take advantage of the characteristics of the
architecture and use effectively the available area. We have
proposed a method to estimate the operation execution in
case of faults. The library L and the estimated operation
execution times are used by FA-LSR to determine the appli-
cation completion time in case of faults. As the experiments
show, our LS-based compilation proves to be fast and provides
good-enough solutions.

The experiments run on five real-life applications and four
synthetic benchmarks show that our synthesis approach is able
to significantly reduce the cost compared to general-purpose
rectangular architectures. Hence, by synthesizing fault-tolerant
architectures, our methodology can help the designer increase
the yield of DMBs. We plan to further extend our architecture
synthesis by considering faults that happen during the exe-
cution of the application. Hence, future work will integrate
methods for detection and recovery from transient faults.
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