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Abstract Microfluidic-based biochips are replacing the conventional biochemical analyzers,
and are able to integrate all the necessary functions for biochemical analysis. The digital
microfluidic biochips are based on the manipulation of liquids not as a continuous flow,
but as discrete droplets. Researchers have proposed approaches for the synthesis of digital
microfluidic biochips, which, starting from a biochemical application and a given biochip
architecture, determine the allocation, resource binding, scheduling, placement and routing
of the operations in the application. During the execution of a bioassay, operations could
experience transient errors (e.g., erroneous droplet volumes), thus impacting negatively the
correctness of the application. Researchers have proposed fault-tolerance approaches, which
apply predetermined recovery actions at the moment when errors are detected. In this paper,
we propose an online recovery strategy, which decides during the execution of the biochemical
application the introduction of the redundancy required for fault-tolerance. We consider both
time redundancy, i.e., re-executing erroneous operations, and space redundancy, i.e., creating
redundant droplets for fault-tolerance. Error recovery is performed such that the number
of transient errors tolerated is maximized and the timing constraints of the biochemical
application are satisfied. The proposed redundancy optimization approach has been evaluated
using several benchmarks.

Keywords Microfluidic biochips · Electrowetting on dielectric · Droplet-based biochips ·
Computer-aided design · Fault-tolerance · Runtime recovery

1 Introduction

Microfluidics, the study and handling of small volumes of fluids, is a well-established field,
with over 10,000 papers published every year [1]. With the introduction at the beginning of
1990s of microfluidic components such as microvalves and micropumps, it was possible to
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realize “micro total analysis systems” (μTAS), also called “lab-on-a-chip” and “biochips”,
for the automation, miniaturization and integration of complex biochemical protocols [2].
The trend today is towards microfluidic platforms, which according to [2], provide “a set
of fluidic unit operations, which are designed for easy combination within a well-defined
fabrication technology”, and offer a “generic and consistent way for miniaturization, integra-
tion, customization and parallelization of (bio-)chemical processes”. Microfluidic platforms
are used in many application areas, such as, in vitro diagnostics (point-of-care, self-testing),
drug discovery (high-throughput screening, hit characterization), biotech (process monitor-
ing, process development), ecology (agriculture, environment, homeland security) [2–5].

Microfluidic platforms can be classified according to the liquid propulsion principle used
for operation, e.g., capillary, pressure driven, centrifugal, electrokinetic or acoustic. In this
paper, we are interested in microfluidic platforms which manipulate the liquids as droplets,
using electrokinetics, i.e., electrowetting-on-dielectric (EWOD) [6]. We call such platforms
digital microfluidic biochips (DMBs). DMBs are able to perform operations such as dispens-
ing, transport, mixing, split, dilution and detection using droplets (discrete amount of fluid
of nanoliters volume) [7].

To be executed on a DMB, a biochemical application has to be synthesized. There is a
significant amount of work on the synthesis of DMBs [5,8–12], which typically consists of
the following tasks:

– modeling of the biochemical application functionality and biochip architecture;
– allocation, during which the needed modules are selected from a module library;
– binding the selected modules to the biochemical operations in the application;
– placement , during which the positions of the modules on the biochip are decided;
– scheduling, when the order of operations is determined and
– routing the droplets to the needed locations on the biochip.

The output of these synthesis tasks is the “electrode actuation sequence”, applied by a control
software to run the biochemical application. The control software executes on a computer
connected to the biochip, as schematically represented in Fig. 1a.

Errors can occur during the execution of fluidic operations due to permanent faults (e.g.,
dielectric breakdown) or transient faults (e.g., unbalanced split due to unequal actuation
voltages). The types of faults that happen in DMBs are discussed in [13]. Researchers have
addressed permanent faults in the context of DMBs, for example by introducing a regular
pattern of redundant electrodes [13,14].

In this paper we focus on transient faults. While a bioassay is executed on a DMB, the
droplets will experience changes in volume during mixing, dilution and split operations.

(a) (b)

Fig. 1 Biochip architecture model example
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Assuming ideal conditions, when two droplets merge for a mixing operation, the resulting
droplet has a volume equal with the sum of the input droplets volumes. After a split operation,
the resulting droplets have volumes equal to half of the initial droplet volume. However, the
volume of a droplet can also vary erroneously due to transient faults, such as an electrode
coating fault or unequal actuation voltages during split [13]. The erroneous droplet volume
propagates throughout the execution of the bioassay, thus impacting negatively the correctness
of the application. Bioassays have high accuracy requirements, determined by the acceptance
range for the volume and concentration of droplets. Example applications with accuracy
requirements of less than ±10 % are drug discovery applications [15] and plasmid DNA
preparation [16]. Hence, it is imperative to introduce fault-tolerance to transient errors.

1.1 Related work

Past research has addressed the erroneous volume variation due to transient faults. Thus,
in [17], we have focused on the erroneous volume variation after an unbalanced split operation.
If an error is detected during a split operation the resulted droplets are merged back. The
merging operation is instantaneous. Our proposed scheduling algorithm derives offline (i.e., at
design time) the schedules needed to recover from all combinations of faulty split operations.
Online (i.e., during the runtime of the biochemical application), the scheduler will switch to
the backup schedules containing the electrode actuation sequence to tolerate the observed
error occurrences.

The work in [18] addresses the volume variations in all types of operations, not only split
operations. Thus, intermediate droplets of correct volumes are stored at checkpoints. When
an error is detected, the stored droplets are used in the recovery subroutine. The locations of
the checkpoints and the recovery subroutines are determined offline and stored in a micro-
controller memory. If an error is detected during runtime at a checkpoint, the microcontroller
interrupts the bioassay, and transports the intermediate product droplets to the storage units;
then the corresponding recovery subroutine is executed using a statically predetermined allo-
cation and placement, which do not consider the current context. A method to precompute and
store a dictionary that contains recovery solutions for all combinations of errors is proposed
in [19]. When an error is detected, the system looks in the dictionary for the correspond-
ing recovery actuation sequence. Compression algorithms are used to reduce the size of the
dictionary in order to store it on the flash memory of the microcontroller. In all mentioned
approaches, the error recovery actions are determined offline, and are applied online when
an error is detected.

Researchers have also proposed online approaches that determine the necessary recovery
actions during the execution of the biochemical application, at the moment when an error is
detected. Such online recovery approaches, some of which also perform online re-synthesis
to reconfigure the electrode actuation sequence, are possible because the biochemical appli-
cation execution times are much slower compared to the control software execution. The
work in [20] addresses sample preparation and proposes dynamic error recovery to recreate
online the desired target concentrations, using the stored intermediate droplets. A general
approach, that synthesizes a new implementation containing the appropriate error recovery
actions whenever errors are detected, is proposed in [21]. The online synthesis re-computes
the placement of operations and the droplets routes using a List-Scheduling based implemen-
tation. In [22], we have proposed an online error recovery approach, which re-synthesizes at
runtime the application to tolerate transient errors in all types of operations.
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1.2 Contributions

Fault-tolerance is achieved through redundancy. Time redundancy (re-execution of operations
in case an error is detected) uses the available slack in the schedule to recover from failure.
Sometimes, there is no available slack and hence time redundancy can lead to a deadline
miss. Space redundancy (creating redundant droplets) makes use of available biochip area to
execute replicas of operations in order to recover from failure.

Previous work has used a single type of recovery technique (e.g., re-execution [17], check-
pointing [18]) and has not used space redundancy for fault-tolerance. The only exception is
our work in [22] where we have considered a combination of time and space redundancy
techniques. In all the previous work, including [22], the assignment of recovery techniques
(re-execution, checkpointing, space redundancy) to operations has been manually decided
at design time (offline). In this paper, we propose an online recovery strategy, which decides
online and dynamically the optimization of redundancy required for fault-tolerance. As shown
in the experimental results, our proposed strategy is able to obtain better quality results, in
terms of application completion time, compared to the solutions in the literature. The faults
we address in this paper are transient, i.e., they can occur at any time during the execution of
the application. Hence, having a strategy for a fast recovery is beneficial, as more transient
faults can be tolerated within the deadline.

The contributions of this paper are the following:

(1) In Sect. 6, we propose an online redundancy optimization approach, which decides
at runtime, depending on the unpredictable error occurrences, the assignment of the
appropriate redundancy techniques (time or space redundancy) for the operations of the
biochemical application. Our online optimization approach decides between time redun-
dancy (re-execution of operations) and space redundancy (creating redundant droplets)
depending on the current error scenario. In this paper, time redundancy re-executes
the faulty operations to recover after an error is detected. Space redundancy uses the
available biochip area to execute replicas of operations before we know an operation is
erroneous. If enough area is available, space redundancy will not lead to time delays. The
redundancy optimization is performed such that the number of transient faults tolerated
is maximized and the timing constraints of the biochemical application are satisfied.

(2) In Sect. 3.3, we propose a generalized fault-tolerant application model, which captures
the extra operations needed for redundancy. Our proposed application model considers
both space and time redundancy techniques and can tolerate any number of transient
faults.

(3) In Sect. 6.3, we propose an algorithm for generating recovery subgraphs which con-
tain the required redundant operations needed for fault-tolerance. The algorithm takes
advantage of the existing redundant droplets such that the recovery time is minimized.
Example redundant droplets are by-product droplets intended for discarding (e.g., pro-
duced by a dilution operation) or unused droplets that have been speculatively generated
by space redundancy.

This paper is organized in nine sections. Sections 2 and 3 present the architecture and
application models, respectively. In Sect. 3.2, we discuss the redundancy techniques used
for fault-tolerance. We formulate the problem in Sect. 4 and use an example to illustrate it.
We present our approach to online redundancy optimization and recovery for the case when
a sensor is used for detection (Sects. 5 and 6) and when a charged-couple device (CCD)
camera-based detection system is used (Sect. 7). The proposed algorithms are evaluated in
Sect. 8, and Sect. 9 presents our conclusions.
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Table 1 Module Library [32] Operation Area Time (s)

Mix 2 × 5 2

Mix 2 × 4 3

Mix 3 × 3 7

Mix 1 × 3 5

Mix 2 × 2 10

Dilute 2 × 5 4

Dilute 2 × 4 5

Dilute 3 × 3 10

Dilute 1 × 3 7

Dilute 2 × 2 12

Store 1 × 1 N/A

Transport 1 × 1 0.01

2 Biochip architecture model

In a DMB, a droplet is sandwiched between a top ground-electrode and bottom control-
electrodes, see Fig. 1b. The droplet is separated from electrodes by insulating layers and it
can be surrounded by a filler fluid (such as silicone oil) or by air. Two glass plates, a top
and a bottom one, protect the DMB from external factors. The droplets are manipulated
using the electrowetting-on-dielectric (EWOD) principle [6]. For example, in Fig. 1b, if the
control-electrode on which the droplet is resting is turned off, and the left control-electrode
is activated by applying voltage, the droplet will move to the left. A biochip is typically
connected to a computer (or microcontroller) as shown in Fig. 1a and it is controlled based
on an “electrode actuation sequence” that specifies for each time step which electrodes have
to be turned on and off, to run a biochemical application.

A DMB is modeled as a two-dimensional array of identical control-electrodes, see Fig. 1a,
where each electrode can hold a droplet. There are two types of operations: reconfigurable
(mixing, split, dilution, merge, transport), which can be executed on any electrode on the
biochip, and non-reconfigurable (dispensing, detection), which are bound to a specific device
such as a reservoir, a detector or a sensor. A mixing operation is executed when two droplets
are moved to the same location and then transported together according to a specific pattern
(see Fig. 1a). Considering the biochip in Fig. 1a, a droplet can only move up, down, left or
right with EWOD, and cannot move diagonally. A split operation is done by keeping the
electrode on which the droplet is resting turned off, while applying concurrently the same
voltage on two opposite neighboring electrodes. For example, in Fig. 1b, to split the droplet,
we have to turn off the control-electrode in the middle and turn on simultaneously the left and
right control-electrodes. Dilution is a mixing operation followed by a split operation. Each
reconfigurable operation is executed in a determined biochip area, called a “module”. For
example, the two droplets from Fig. 1a are mixing on a 2 × 5 module, by moving according
to the indicated pattern. Based on experiments, researchers characterize a module library L,
such as the one in Table 1, which provides the area and corresponding execution time that
are needed for each operation. As shown in Table 1, the time needed for two droplets to mix
on a 2 × 5 module is 2 s. In case two droplets are on neighboring electrodes, they merge
instantly. To avoid accidental merging, each module is surrounded by a “segregation border
” of one-electrode thickness, see Fig. 1a.
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The biochip contains non-reconfigurable devices such as input (dispensing) and waste
reservoirs, sensors and actuators, on which the non-reconfigurable operations are performed.
For example, the biochip from Fig. 1a has four dispensing reservoirs, one for buffer, one for
sample, one for reagent and one waste reservoir. In this paper we assume that the locations of
the reservoirs are on the boundaries of the array of electrodes. To dispense a droplet from the
reservoir, several electrodes are activated to form a “finger” droplet, which is afterwards split
to obtain the final droplet [23]. Sensors can be used to determine the result of the bioassay or
for error detection. For example, a LED and a photodiode combination is used as detector for
glucose concentration in a droplet [2,24]. The location of these non-reconfigurable devices
is fixed on the biochip array. Fig. 1a shows the location of reservoirs and a sensor, which are
placed on a biochip architecture of 10 × 8 electrodes. Example actuators are heaters [1] and
filters [2].

In this paper we are interested in the use of sensors for error detection. A LED and pho-
todiode sensor can be used for determining the concentration of a specific compound in a
droplet (e.g., glucose [4,24]), whereas a capacitive sensor [23] can be used to determine the
volume of a droplet. The capacitive-sensing circuit used to measure the volume operates at
high frequency (15 KHz [6]), while the LED-photodiode sensor needs 5 seconds to measure
the absorbance of the product droplet in order to determine its concentration. For the pho-
todiode detector, a transparent droplet has to be mixed with a reagent to generate a colored
analyte. In this case, the initial droplet is not suitable for other operations. The capacitive
sensor does not alter the initial droplet, which can be used for subsequent operations.

Erroneous droplet volumes can also be detected by using a CCD camera-based detection
system, which analyzes the images captured during the bioassay execution [25]. The CCD
camera-based detection system adds to the complexity of the system by requiring external
instruments and specialized software, but has the advantage of detecting the errors when they
occur, eliminating the need for specialized detection operations, which have to transport a
droplet to a sensor on the biochip. In this paper we are interested to tolerate transient faults,
which result in erroneous droplet volumes. We consider both capacitive sensors and a CCD
camera-detection system for determining the volume of a droplet, which is then compared
to its expected volume in order to perform error detection.

2.1 Fault models

Many biochemical applications, such as drug development and clinical diagnostics, have high
accuracy requirements. DMBs can be affected by faults, resulting in failure to complete the
application or in an incorrect result of the bioassay. Hence, researchers have addressed faults
by proposing fault models [13], testing and detection methods [26,27] and error recovery
strategies [25,28]. Faults can be classified in two main categories: permanent faults and
transient faults.

Permanent faults Also known as “catastrophic faults”, permanent faults are caused by
defects, such as dielectric breakdown and degradation of the insulator, introduced usually
during the fabrication of the DMBs. Permanent faults prevent the operation from executing.
Detailed information about permanent faults can be found in [27,28]. Researchers have
proposed several methods of testing for permanent faults in DMBs [29,30].

Transient faults Also known as “parametric faults”, transient faults occur unpredictably
during the execution of an operation. Although transient faults do not prevent the operation
from executing, the result of the operation does not correspond to its specified behavior.
For example, the misalignament between the droplet and the control-electrode is the most
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frequent cause of unbalanced split operation. Erroneous variation in droplet volume can
have a significant negative impact on the outcome of the biochemical application. Estimates
show that erroneous variation in droplet volume can count to up 80% of the total error in
a bioassay [31]. As mentioned, DMBs can have integrated sensors that operate at a speed
comparable to the execution time of a fluidic operation. Such sensors facilitate real-time error
detection and recovery from transient errors.

In this paper, we focus on transient faults during operation execution. We consider that an
operation is faulty if the volume of the outputted droplet exceeds the acceptable boundaries
given by the accuracy requirements of the application. We propose a strategy that decides
online the necessary recovery actions to perform error recovery.

3 Biochemical application model

A biochemical application is modeled using an acyclic directed graph [3], where the nodes
represent the operations, and the edges represent the dependencies between them. We have
extended the model proposed in [3] to model error detection and error recovery and to capture
the operations needed for time and space redundancy.

We denote with G0 the biochemical application model without fault-tolerance features.
Fig. 2a presents such an application graph G0 with 11 operations. A node in G0 represents an
operation Oi . In Fig. 2a we have operations O1 to O11. A directed edge ei j between operations
Oi and O j models a dependency: O j can start to execute only when it has received the input
droplet from Oi . An operation is ready to execute only after it has received all its input

(a)

(c) (b)

Fig. 2 Example application model, with error propagation and detection
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droplets. For example, a mixing operation O7 is ready to execute only after operations O6

and O11 have finished executing and the droplets have been transported to the biochip area
where O7 will perform the mixing. If the produced droplet cannot be used immediately (e.g.,
has to wait for another operation to finish), it has to be stored in a storage unit (see Table 1) to
avoid accidental merging. In our model, we do not capture explicitly the routing operations
required to transport the droplets, but we take routing into account during the synthesis. We
use the data from [6], thus we assume that routing a droplet between two adjacent electrodes
takes 0.01 s (see the “Transport ” operation in Table 1). A droplet is dispensed in 2 s [32].
For simplicity reasons, we have ignored routing in all the examples in this paper, but we take
routing into account during synthesis.

Biochemical applications can have strict timing constraints. For example, in the case of
sample preparation, the reagents degenerate fast, affecting the efficiency of the entire bioas-
say [20]. Researchers have so far used a hard deadline dG associated to an application graph G
to capture such constraints. For safety-critical applications, this is a safe conservative assump-
tion. However, other applications may have a soft deadline, since there is still some utility
in continuity to execute the application also after a deadline. Operations can also experience
execution time variability due to the variability of some biochemical processes [33]. In addi-
tion, operations can have local deadlines. For example, once two droplets are mixed, they
should not wait more than a certain time before they are subsequently used (e.g., the reactions
of aryllithium compounds bearing alkoxycarbonyl groups [34]). We can easily model such
local deadlines by introducing dummy nodes in the application graph, and by having a global
application deadline. In this paper we assume a hard deadline dG , but our approach can be
extended to handle soft deadlines, with the aim of maximizing the utility. For example, our
List Scheduling-based online synthesis heuristics can be extended as in [35] to handle both
hard and soft deadlines.

3.1 Fault propagation and error detection

In this paper, we define a fault as an unintended volume variation of a droplet from a nominal
volume. Not all faults are errors. Thus, volume variations (faults) may occur repeatedly and
they may propagate through the execution of the application, but they are not considered
errors. We assume that for every application, according to its specific accuracy requirements,
the designer decides on a specific volume variation boundary ET hr , named error threshold,
which is the maximum permitted variation from the nominal volume. We define an error
as a volume variation that exceeds the error threshold ET hr . In this section we discuss
how we determine where to introduce detection operations in order to detect the errors.
Our proposed fault-tolerance approach will recover from errors by recreating the affected
droplets. We define as failure the situation when the recovery has introduced delays such that
the application deadline is no longer satisfied.

In [18], the authors use fault analysis [36] to derive the fault limit at the output of an
operation from its intrinsic fault limit and the limits of the input operations. Each fluidic
operation has a specific variation range associated with it, called “intrinsic fault limit”, which
captures the worst-case volume variations. For example, if the intrinsic fault limit EMix for
mixing is 10 %, after a mix operation the output droplet can have a volume between 90
and 110 % of the nominal value. We use the following notation: EMix is the intrinsic fault
limit for mixing operation, EDlt for dilution, ET rans for transport, EDs for dispensing,
ESlt for split. Experimentally, the following values were determined for the intrinsic fault
limits: EDs = EDlt = ESlt = 8 %, EMix = 10 %, ET rans = 12 % [18]. The equations
in Fig. 2c [18] calculate the fault limit εMix at the output of a mixing operation, εDs for
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dispensing, εDlt for dilution, εT rans for transporting and εSlt for split operations as a function
of intrinsic fault limits EMix , EDs , EDlt , ET rans and ESlt respectively, and input fault limits
I1 and I2. The fault limit at the output of an operation is propagated and becomes the fault limit
for its successor operation. In Fig. 2b, for the dilution operation O4 we have the intrinsic fault
limit EDlt = 8 % and the input operation fault limits I1 = 11.4 % (for O3) and I2 = 8 % (for
O9). Using Eq.(v) from Fig. 2c, we estimate the fault limit at the output of O4 to be 17.4 %.

We continue to calculate the fault limits for all fluidic operations in the biochemical
application. When the fault limit after an operation Oi , calculated according to the presented
error analysis, exceeds the error threshold ET hr , a detection operation Di is inserted into
G0 to detect at runtime if an error has actually occurred or not. For the graph in Fig. 2a,
the ET hr was set to 12 %; as a result, the detection operations D4 and D7 were inserted
into G0 after O4 and O7, respectively, obtaining G+, as depicted in Fig. 2b. In case Oi is an
operation with two output droplets (e.g. the dilution operation O4 in Fig. 2b), the detection
operation will have two inputs, as in the case with operation D4 in Fig. 2b. However, it is
sufficient to measure the volume of only one droplet in order to determine if an error has
occurred.

We will initially assume that the volume is measured using a capacitive sensor, which
means that the droplet has to be transported to the sensor. This is what we assume will
happen in a detection operation Di . However, in Sect. 7 we will discuss the alternative of
using a CCD camera-based sensor. Such a setup could determine the droplet sizes during a
detection operation Di , or it could track the droplets continuously to determine erroneous
volumes, without the need to insert detection operations as discussed in this section.

Two outcomes are possible after a detection operation. The first one corresponds to a
correct droplet volume, and the second one to an erroneous droplet volume. In case the
measured volume is the expected one, i.e. no error has occurred, the corresponding droplet
is transported from the sensor to the location where the subsequent operations will execute.
Otherwise, if the measured volume is outside the expected boundaries, the available recovery
mechanism is triggered, and the volume of the droplet is brought back to the nominal value.
Thus, after each detection, we reset the fault limit to 0 %, since it is assumed that in case an
error is detected, the necessary actions to recover from the error are taken. The assumption
is that a volume error occurring in an earlier operation can also be detected later, after it has
propagated. For operations where this is not the case, the designer will statically assign a
corresponding detection operation at a pre-determined place in the graph. Researchers have
so far assumed that all the detection operations are statically assigned. However, our online
redundancy optimization and recover strategy will assign dynamically the detection opera-
tions by adjusting at runtime the error threshold ET hr based on the current error occurrences,
see Sect. 6.1.

3.2 Error recovery

If the volume of a droplet is detected as erroneous, we have to create a new similar droplet
with the correct volume (i.e., we recover from the detected error). This can be done in several
ways. The simplest solution is to discard all the operations executed so far and re-execute the
entire application from the beginning. However, this is very time-consuming, especially for
the cases when errors occur at later stages. For most applications, a complete re-execution
results in exceeding the deadline and wasting expensive reagents and hard-to-obtain samples.
For example, in Fig. 2b, if an error is detected in D7, we have to regenerate the droplets needed
for O7. In this case, we do not need to re-execute operations O5 and O8.
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In our approach, we use three strategies to create droplets with the correct volume:

(1) We re-execute the operations needed to re-generate the droplet, after an error has been
detected. We call such an approach time redundancy. The advantage of time redundancy
is that it re-executes operations only when needed (when an error has been detected);
the disadvantage is that it leads to delays in application execution.

(2) We execute operations which will produce a correct droplet before we know if an error
has occurred, in parallel to the application execution. We call this approach space redun-
dancy. The advantage of space redundancy is that, if an error is detected, we can use the
redundant correct droplet directly, without waiting to be re-generated. The goal is to use
the extra biochip area, if available, to speculatively produce correct droplets, without a
negative impact on the application execution. The disadvantage is that if not enough area
is available, space redundancy will introduce delays during the application execution,
since it competes for the same resources with the regular operations.

(3) We use the redundant droplets available as a by-product of the regular application exe-
cution or after using space and time redundancy for other operations. For example, if
we use only one droplet after a dilution operation, we can use the second droplet for
fault-tolerance, if it has the correct volume. Let us assume that we need to re-generate
the droplets for an operation O j . If we predicted an error in a predecessor operation Oi

of O j , and we used space redundancy for Oi but an error has not been detected after
Oi , we may be able to use in O j some of the redundant droplets produced by space
redundancy for Oi .

Our online error recovery strategy will decide at runtime which redundancy technique
to use such that the number of transient faults tolerated is maximized and the application
deadline is satisfied. We also take advantage of any redundant droplets available at runtime
to reduce the recovery times. These aspects are discussed in Sect. 6.3.

In all three strategies outlined earlier, we generate the correct droplets by using redun-
dant operations in the application graph, corresponding to a detection operation Di . These
redundant operations are grouped into a subgraph Ri , which is connected to the graph G+,
i.e., the application graph G0 with the detection operations. These subgraphs are responsible
for producing correctly-sized droplets, and are inserted into G+ such that output droplets
produced by Ri become the input droplets for the successors of operation Di . Fig. 3b shows
the recovery subgraph R11 for detection D11 in the graph in Fig. 3a. A recovery subgraph Ri

can be obtained at design time by performing a breadth-first search on the graph G+, starting
from Oi and going backwards towards the inputs. Note that not all the operations in Ri

will be needed at runtime because redundant droplets may be already available, as discussed
at point 3 earlier. Our online strategy will carefully manage these redundant droplets and
will eliminate from Ri , at runtime, the superfluous operations for which such droplets are
available, see the algorithm in Fig. 4.

3.3 Generalized fault-tolerant application model

Let us now discuss the difference between time and space redundancy in terms of how the
subgraph Ri is connected to the application graph G+ and how it is executed in case of time
and space redundancy. A conditional edge is a dependency between two operations, which is
activated only when the associated condition is true. Conditional edges are used to model the
outcome of a detection operation Di . Let us assume that Di will produce an error condition
Ei , which is true if an error has been detected and false if an error has not been detected.
Thus, Di will have two outgoing conditional edges, labeled with Ei and Ei . We call such
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(a) (c)

(b)

Fig. 3 Example of recovery subgraph

an operation with outgoing conditional edges a disjunction node. An execution guard is a
condition which has to be true in order to activate the operations of a redundant subgraph Ri .

Time redundancy Fig. 5a presents how the subgraph Ri is connected to the graph G+ in
case of time redundancy for an operation Oi followed by a detection Di . The subgraph Ri

is depicted using a rectangular node. Such a node is hierarchical, since it contains all the
operations of Ri . Note that an error can occur also during the execution of the subgraph Ri

used for recovery. We denote with DR
i the detection operation needed to detect such an error,

which occurs during the recovery. We denote with Ei and E R
i the error conditions produced

after the detection operations Di and DR
i , respectively.

With time redundancy, the subgraph Ri is activated if an error is detected by Di or by DR
i ,

i.e., if Ei ∨ E R
i is true. This is depicted in Fig. 5a with an arrow on top of the rectangular

node Ri , labeled with the execution guard Ei ∨ E R
i . Let us denote with OB the successor

operation of Oi (corresponding to the detection Di ). OB will be activated only if no error
is detected by Di or no error is detected by DR

i after the recovery subgraph Ri . This is

captured in our model by connecting OB with the conditional edges Ei and E
R
i to Di and

DR
i , respectively. If an error is detected by Di or DR

i , the corresponding incorrectly sized
droplets will have to be discarded. This is achieved by inserting the operations OA and OC

in the graph and connecting them to Di and DR
i using the conditional edges Ei and E R

i ,
respectively. The operations OA and OC are responsible to transport the incorrect droplets
to the waste reservoirs. In these cases, i.e., Ei or E R

i are true, Ri is activated, as discussed.
Section 6 presents how Ri is synthesized, including how its operations are scheduled, in order
to be executed. We also synthesize the operations OA and OC which transport the incorrect
droplets to the waste.

Because DR
i detects an error during Ri and thus activates it again for execution, our time

redundancy model tolerates several transient faults, constrained only by the deadline dG .
Space redundancy Fig. 5b presents our space redundancy model. We use space redundancy

to tolerate a single transient error detected during a detection operation Di . If a second
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Fig. 4 Algorithm for
determining the recovery
subgraph

(a) (b)

Fig. 5 Recovery using time vs. space redundancy

transient error is detected in the same place, we revert to time redundancy. We denote with
RSpace

i the subgraph Ri used for space redundancy in Fig. 5b and with RT ime
i the one used for

time redundancy. For a detection operations Di , we do not introduce more than one subgraph
for space redundancy because they consume biochip area and, if an error does not occur, too
much space will be wasted.

Similar to time redundancy, we denote with DR
i the operation needed to detect an error

in RSpace
i or RT ime

i , with OB the successor operation of Oi and with OA and OC we denote
waste operations. The main difference to the time redundancy model from Fig. 5a is that
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the subgraph RSpace
i used for space redundancy does not have an execution guard, i.e., it is

executed regardless if an error is detected by Di or not.
Section 6 discusses how our online strategy will synthesize RSpace

i and how it will schedule
and execute it at the same time with the regular operations, on the available extra biochip
area. If no error is detected during Di , our online synthesis will stop the operations in RSpace

i
which have not finished executing, if such operations exist, and will manage the resulted
redundant droplets to be potentially used in future recoveries. This is not captured in our
model from Fig. 5b.

The advantage of space redundancy is that if an error is detected by Di , we do not have
to wait for the re-execution of Ri to get the correct droplets, as it is the case with time
redundancy. Instead, OB is ready to execute using the redundant droplet produced by RSpace

i .

This is captured in the model in Fig. 5b by the conditional edge Ei ∧ E
R
i from DR

i to OB ,
which is activated only if an error has occurred in Di and no error has occurred during the
execution of RSpace

i . That is, we only use the redundant droplet from RSpace
i if it is of correct

volume, condition checked by DR
i , to which RSpace

i is connected, and captured by E
R
i . Note

that OB may have to wait for RSpace
i to finish executing, if not all operations in it have

completed.
Our online recovery decides at runtime to use space redundancy only if enough extra

resources are available, and will attempt to synthesize and schedule RSpace
i such that OB does

not have to wait. In case an error has been detected by Di and RSpace
i has also experienced

an error, which was detected by DR
i , we will use time redundancy (RT ime

i ) to recover from
these two errors. Hence, RT ime

i is only activated if both Ei and E R
i are true. Any errors in

RT ime
i will be handled as discussed for time redundancy. Finally, if there are no errors at

all in Fig. 5b (i.e., Ei ∧ E
R
i ), we are left with redundant droplets produced by RSpace

i . Our
online recovery will decide what to do with these droplets. For example, they can be stored
to be used later during other recoveries. This is depicted in Fig. 5b with the “store” operation

OD , connected with the conditional edge Ei ∧ E
R
i to DR

i .

4 Problem formulation

In this paper we address the following problem. As input we have a biochemical application
modeled as a graph G0 with a deadline dG , which is executed on a DMB modeled as a m × n
array A of cells. A characterized library L, containing the area and execution time for each
operation (similar to Table 1), is also given as input. We are interested to determine online
the necessary recovery actions, so that the number of transient faults tolerated is maximized
and the application deadline dG is satisfied.

In this paper we consider both time redundancy and space redundancy when deciding
what fault-tolerant policy to use for each detection operation. We decide online where to
introduce detection operations and which redundancy technique to use.

4.1 Motivational example

The advantage of using space redundancy is faster recovery time in case of error, at the cost
of extra overhead in completion time, in case of no error. When time redundancy is used, the
recovery actions are executed only after an error is detected, so no extra time overhead is added

123



M. Alistar et al.

in case of no error. However, in case of error, the recovery is slower for time redundancy
than space redundancy. Past research has used time redundancy as error recovery in both
offline [19] and online [21] strategies. We have proposed space redundancy as a recovery
method in [22]; however the corresponding redundancy was assigned manually. Since the
error scenarios are not known in advance, an online redundancy optimization strategy can
better exploit the current configuration, leading to improved results.

Let us illustrate this by using the application graph G0 from Fig. 6a, which has a deadline
dG = 25 s and has to be executed on the 10 × 8 biochip from Fig. 6c. In Fig. 7a we show the
schedule of the application for the case when we do not consider the issue of fault-tolerance
(and there are no errors). The schedule of operations is presented as a Gantt chart, where
the start time of an operation is captured by the left edge of the respective rectangle, and
the length of the rectangle represents the duration. As shown in Fig. 7a, operation O1 starts
executing at t = 0 s and finishes at t = 2 s. The completion time of G0 is δG0 = 18 s. Such
a schedule has a one-to-one correspondence to the electrode actuation sequence, used by the
control software on the computer that runs the biochemical application on the biochip, see
Fig. 1a. As mentioned in the introduction, an implementation consists of allocation, binding,
placement, scheduling and routing. The allocation and binding of operations to devices are
shown in the Gantt chart as labels at the beginning of each row of operations. For example,
the non-reconfigurable operation O1 is bound to the dispensing reservoir Dis S, while the
mixing operation O3 is bound to Mixer1, for which we have allocated a 2 × 5 module. The
placement of modules, for all the examples in this section, is presented in Fig. 6c.

In this example, we are interested to tolerate two transient errors, affecting the volume
of droplet. Two detection operations D6 and D8 are inserted in G0, obtaining the graph G+
from Fig. 6b. For the considered example, we have four possible error scenarios in the case

(a)

(c)

(b)

Fig. 6 Motivational example
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(a)

(b)

(c)

Fig. 7 Schedules for various error scenarios

of maximum two transient faults: (1) when no error is detected, (2) when a single transient
error is detected by D6, (3) when a single transient error is detected by D8 and (4) when
two transient errors are detected by both D6 and D8. These error scenarios are presented in
the rows of Table 2. For this example we assume no errors during recovery. However, our
approach also takes into account errors during the recovery operations.

There are several possible redundancy solutions to tolerate the transient faults in each
scenario. We are interested to decide on an assignment of redundancy to the application,
such that the deadline of 25 s is satisfied in every fault scenario (the application is fault-
tolerant only if it completes within its deadline in all the possible fault scenarios). There are
four possible solutions for our example: (a) using only time redundancy, (b) using only space
redundancy, (c) using time redundancy for tolerating the error detected by D6 and space
redundancy for tolerating the error detected by D8 and (d) using time redundancy for D8

and space redundancy for D6. The time and space redundancy subgraphs are added to G+ in
Fig. 6b as discussed in Sect. 3.2. Columns 3 to 6 in Table 2 present the best results in terms of
the application completion time δG obtained using each redundancy scheme (a)–(d) for each
error scenario (1)–(4). The completion times δG that miss the deadline of 25 s are showed in
parenthesis. In these situations, we consider that the application was not able to tolerate the
transient errors.
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Table 2 Application completion times [for combinations of error scenarios and redundancy scenarios]

Scenario Detected by Fault-tolerance solutions

(a) (b) (c) (d)
Only time Only space Time in D6 Time in D8
redundancy redundancy Space in D8 Space in D6

1 – 18 18 18 18

2 {D6} (36) (26) (30) 22

3 {D8} (28) 24 23 23

4 {D6, D8} (46) (36) (30) 24

As we see from Table 2, the only situation when the application is able to recover in all
error scenarios and complete before the deadline is solution (d) when time redundancy is
used in D8 and space redundancy is used in D6. The schedule length is 25 s, satisfying the
deadline. In Fig. 7c we show the schedule for two errors, one in D6 and one in D8, error
scenario (4), in case (d). If we use only time redundancy, as in case (a), we miss the deadline
in error scenarios (2)–(4). The schedule for the case (a) for error scenario (3) is presented
in Fig. 7b, and has a length of 28 s, which means that the deadline is missed when only
time redundancy is used and the error is detected by D8. The schedule depicts the detection
operations as thick lines labeled with the operation name. For this example we consider that
detections happen in zero time. However, in our implementation, the time needed for the
detection operation is calculated as the routing time to bring the droplet to the sensor plus
the sensing time. We also consider the waiting time in case the sensor is busy with another
detection operation.

If we use only space redundancy, as in case (b), we miss the deadline in error scenarios
(2) and (4). The biochip used in this example has an area of 10 × 8 electrodes. However,
if we use an area of 10 × 11 electrodes, and also add one extra reservoirs for reagent to
the biochip architecture, to parallelize the dispensing, we obtain an application completion
time within the required deadline for all error scenarios by using space redundancy only.
Our online recovery approach takes into account the available resources when optimizing
the redundancy. For a 10 × 8 architecture, using only space redundancy is not a good option.

In solution (c), using time redundancy for D6 and space redundancy for D8 also turned
out to be a bad decision, since we miss the deadline in the error scenarios (2) and (4).

This motivational example shows that (i) using a single fault-tolerance technique is not a
good decision and that (ii) we need to find the right combination of time and space redundancy
to tolerate the faults in all possible error scenarios, and that (iii) the right decisions depend
also on the application and architecture. Our redundancy optimization approach will decide
online the introduction of the right combination of fault-tolerance, such that the number
of transient errors tolerated is maximized and the application deadline is satisfied. In case
our strategy cannot tolerate a specific error scenario, i.e., it cannot complete the application
within deadline, we consider that the application has failed.

5 Online error recovery strategy

Figure 8a presents the general strategy of our online recovery approach for the case when a
sensor-based detection is used. We discuss the case when a CCD camera-based detection is
used in Sect. 7.
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(a)

(b)

Fig. 8 Online error recovery strategy

Our strategy has two components: an offline component consisting of steps 1 and 2,
performed at design time, and an online component, steps 3–5, invoked during the execution
of the biochemical application. The steps presented in light blue rectangles (see Fig. 8a)
are executed on a computer or a microcontroller, whereas the ones in green rectangles are
performed on the biochip. Steps 1 and 2 produce offline a fault-tolerant implementation
without performing redundancy optimizations that are possible once the error scenarios are
known at runtime. Step 1 decides an initial redundancy assignment and the produced fault-
tolerant graph is then synthesized during step 2. The initial offline redundancy assignment
from step 1 can be decided manually by the designer (as we do in [22]) or by any other
method. The same way, step 2 can be implemented using any available synthesis such as the
Tabu-Search [37,38] or Simulated Annealing-based [3] implementations. In the experimental
results we have used our Redundancy Optimization Strategy (ROS), from Sect. 6 considering
a no-faults scenario, to produce the initial redundancy assignment for step 1, and the synthesis
from [22] for step 2.

The offline synthesis results are executed on the biochip until a detection operation finishes,
when the bioassay execution is stopped and the online component (which is the focus of this
paper) is invoked. If an error is detected by the detection operation Di , we use step 3 to
recover. As described in Sect. 3.2, if time redundancy has been previously assigned to Di ,
we run the corresponding subgraph Ri to recover from the error detected by Di . If space
redundancy has been assigned to Di , we use for recovery the redundant droplets produced
by RSpace

i . Next, at step 4, we run our Redundancy Optimization Strategy (ROS), which
optimizes the introduction of detection points and associated redundancy (see Sect. 6).

ROS uses the available information about the current error scenario to optimize the assign-
ment of time and space redundancy for fault-tolerance. Hence, ROS is invoked only when new
information about the occurrences of errors is available, that is, after the detection operations
(see the arrow labeled “Detection feedback” in Fig. 8a). The fault-tolerant graph GR , out-
putted by ROS, is synthesized during step 5, determining a new electrode actuation sequence
to be executed on the biochip. The synthesis implementation for step 5 has to be fast, as it is
run online and will add an overhead to the execution of the bioassay. Hence, for step 5 we
use our List-Scheduling (LS)-based [22] online synthesis as it is able to obtain good quality
results in a short time.
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5.1 Recovery strategy example

Let us consider the application graph G0 from Fig. 9a, which is executed on a biochip of
8×7 electrodes, with one dispensing reservoir for the sample Dis S, and one for the reagent
Dis R, using the module library from Table 1. Detection is performed using a capacitive
sensor. During the offline step 1 (see Fig. 8a), the detection operations D7−13 are inserted in
G0, after operations O7−13, respectively, as depicted in Fig. 9b. To determine the locations
of the detection operations, we use the fault propagation model from [18], as described in
Sect. 3.1, considering an error threshold ET hr = 10 %. For this example, we assume that,
during step 1, time redundancy was assigned for all detection operations. The resulted graph
(not depicted for space reasons) with detection operations and corresponding time-redundant
subgraphs is given as input to the offline synthesis, which derives the results from Fig. 10a.

Let us assume that only one transient error occurs during the execution of the application,
and it affects operation O12. Hence, at time t = 4 s when the detection operation D7 finishes
executing, no error will be detected. We now have the information that D7 has not detected an
error, so we invoke online steps 4 and 5 from our online recovery strategy depicted in Fig. 8a.

(a) (b)

Fig. 9 Example of recovery strategy—offline step 1
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(a)

(b)

Fig. 10 Schedules for execution of application from Fig. 9a

During step 4, we decide when to introduce detection operations and which redundancy
techniques to use. In step 5 we synthesize this new implementation online, updating thus the
“electrode actuation sequence”.

Thus, at time t = 4 s when the detection operation D7 finishes executing, ROS will be
called in step 4 and will decide to reduce the number of detection operations to only three
(D9, D11 and D13 from Fig. 11a), and insert the redundant subgraphs RSpace

9 for D9, RSpace
11

for D11 and RT ime
13 for D13. The details of how ROS works are presented in the next section.

In this example we show that ROS has decided increase the value of the error threshold to
ET hr = 12% and thus remove the detection operation D12 (see Sect. 6.1 for a discussion
on the advantages of such a decision). ROS will output the graph GR with the new detection
operations and redundant subgraphs from Fig. 12.

The synthesis in step 5 takes as input GR and derives a new implementation. For step 5, we
have used our List Scheduling (LS)-based synthesis from [22] to perform binding, placement,
routing and scheduling. Part of the resulted schedule is presented in Fig. 10b, between t = 4
and t = 10 s. In Fig. 10b, which depicts the execution of the application at runtime, the
overhead due to the execution of the online steps is represented as a blue line under the row
labeled “Computer”. The redundant operations, part of the inserted redundant subgraphs, are
marked O R

i in the schedule (e.g., O R
1 ).

The new implementation continues to execute until the next detection operation finishes.
As depicted in Fig. 10b, the online steps 4 and 5 are invoked again at t = 10 s, after detection
D9 finishes executing. Part of the new resulted schedule is depicted in Fig. 10b, between
t = 10 and t = 19 s. As mentioned, we have assumed that a transient error will affect O12.
(Note that the errors are unpredictable.) The error in O12 is detected by D13 (since the error
will propagate) at t = 19. This will trigger the online recovery step 3 of our strategy, followed
by steps 4 and 5. The application completes in 32 s and has tolerated the transient error in
O12.
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6 Redundancy optimization strategy (ROS)

Our Redundancy Optimization Strategy (ROS) is presented in Fig. 13. It takes as input the
detection operation D which triggered it, the graph G′, the biochip architecture A, the esti-
mated number of faults k0, the number k of faults occurred so far and the current time t .
G′ is the currently executing application graph, from which we have removed the opera-
tions which have finished executing, the previously decided detection operations and their
associated recovery subgraphs.

ROS has three components. First, it decides where to insert detection operations, lines
1–3 in Fig. 13 and discussed in Sect. 6.1. Second, for each inserted detection operation, ROS
decides between time and space redundancy, see Sect. 6.2. ROS prefers space redundancy
for important operations as long as there is enough area for the corresponding redundant
subgraph (lines 4–15), and uses time redundancy for the rest (lines 16–19). Third, ROS has
to determine, for each redundancy scheme introduced, the redundant subgraph Ri , see the
discussion in Sect. 3.2. This is done in lines 8 and 17 in Fig. 13, as discussed in Sect. 6.3.

Based on the error information after the detection operation and on the current configura-
tion (redundant droplets available), the goal is to minimize the resources used by redundancy
(slack time and area) such that the number of tolerated transient errors is maximized. ROS
produces a new application graph GR , with updated detection points and fault-tolerance,
which is passed to the online synthesis in step 5, Fig. 8a.

6.1 Deciding the detection operations

The detection operations and the associated redundancy are required for fault-tolerance.
However, redundancy introduces delays in the application execution in case there are no
faults. In case of faults, it is important to detect and recover from them as soon as possible,
so that no time is wasted. Researchers have used the fault analysis from Sect. 3.1, based
on a designer-specified error threshold ET hr . To decide where to introduce the detection
operations, a given ET hr assumes a number of faults k0 that may happen during a given
time (this is similar to the fault rate of VLSI circuits). In order to decide where to insert
the detection operations, ROS first adjusts the value of ET hr according to the actual number
of faults. Then, ROS uses the fault analysis from Sect. 3.1 with the new ET hr to decide
the detections. This is especially important for biochips used in applications that require
monitoring over a long time, such as bioterrorism, environment and water monitoring.

The threshold ET hr is adjusted in the AdjustErrorThreshold function in line 1, Fig. 13.
The function receives the number of faults k0 expected over a given time period, the number
of faults k that have been detected so far, and the time t . The time period is specified as a
multiple of the application deadline (which is also its period, for monitoring applications) and
the time t is relative to the current invocation of the application. The number k0 represents
the number of errors expected until t and it is given by the accuracy requirements of the
application. We assume that the faults are uniformly distributed in time. This assumption is
used only to adjust ET hr and does not affect our ability to provide fault-tolerance. In case k is
less than expected, ET hr is increased proportionally, allowing less detection operations to be
inserted. Otherwise, ET hr is decreased, resulting in more detection operations. Note that our
online strategy performs recovery from any transient error detected within the application
deadline. In that context, we can tolerate more errors than the expected number of errors k0.

Considering the example from Fig. 9a, and that no fault happened so far, at time t = 4 s
we adjust ET hr from 10 to 12 %.
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We then call the function DetermineDetectionOperations using the new ET hr values,
line 2. The function uses the fault analysis from Sect. 3.1 to calculate the fault limits for each
operation in G′. For the example in Fig. 11a, we conclude that operations O9, O11 and O13

exceed the threshold error ET hr = 12 %. It follows that for operations O9, O11 and O13

we will need the detection operations D9, D11 and D13 which are returned as a queue Q.
Finally, the function InsertDetections from line 3 inserts the detection operations from Q
into the graph G′ (see the graph from Fig. 11a).

6.2 Redundancy optimization strategy

For each operation Di in Q, ROS has to decide the associated redundant subgraph Ri , and
insert it into the current graph GR . Section 3.2 has discussed the trade-offs between time and
space redundancy. Our heuristic strategy in ROS is to introduce space redundancy (because
it saves time at the expense of area) only if the extra area used does not lead to greater delays
(because regular operations do not have space to execute on the biochip). For the cases when
ROS decides that space redundancy is not appropriate, it introduces time redundancy instead.

Thus, in the repeat loop (lines 6–15 from Fig. 13), we decide where to introduce space
redundancy. We consider every operation Di in the queue Q. At line 4, we prioritize the order
in which we visit the detections according to a priority function Priori t y(Di ). We want to
prioritize those detection operations (1) for which we predict that an error is more likely to
occur and (2) whose redundant droplets produced by space redundancy can be reused by
operations on the critical path1 of the application graph, in case the predicted error does not
occur. These two cases are captured by the two terms of the following equation, where a and
b are weights given by the designer:

Priori t y(Di ) = a × Ei + b × RFi , (1)

(1) Regarding the first term, we assume that an error is more likely to occur if the fault limit
Ei (first term) of the operation Di is higher.

(2) The second term is calculated in the following way: in case an error does not occur
we would like to reuse the correctly sized redundant droplets produced by the subgraph
RSpace

i . The completion time δG of the current graph GR is determined by the critical path

of GR . To reduce δG , we prefer that the droplets from RSpace
i are reused by operations

on the critical path. This is captured by the reusability factor RFi in the second term.
The reusability factor RFi is given by the cumulative execution time Ti over all the
operations that can use the droplet produced by RSpace

i . For a fair comparison to Ei ,
which is a percentage, we obtain RFi by dividing Ti to the execution time of the critical
path. For example, let us consider the detection operation D9. The droplet produced by
RSpace

9 can be used by operation O9, in case an error is detected by D9. Otherwise (i.e.,

in case D9 does not detect an error, the droplet produced by RSpace
9 can be stored and

used for recovery from an error in operation O12 or in operation O13 (Fig. 11a). Note
that if an error occurs in O13, operation O12 has to be re-executed, and thus it can use
the redundant droplet produced by RSpace

9 . The total execution time T9, calculated for
operations O9, O12 and O13 is of 8 s. The critical path execution time is 12 s, so we
obtain the reusability factor RF9 = 0.66, as shown in Fig. 11b.

Considering a = 0.4 and b = 0.6, we obtained for detections D9, D11 and D13 from
Fig. 11a, the values from Fig. 11b. Detection D13 has the lowest priority.

1 The critical path is defined as the longest path in the graph [39], between the root and the leaf nodes.
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Next, we decide for each detection operation, prioritized as explained previously, whether
we introduce space or time redundancy. We use a List Scheduling (LS)-based online synthesis,
as discussed in Sect. 4.1. LS uses a priority function to select among operations which are
ready for execution (this is different from the priority function we use for the detection
operations, Priori t y(Di )). As discussed, space redundancy may introduce delays in the
application completion because the execution of the redundant operations can take away
area from the other operations. To avoid this situation, our approach with ROS is to use a
lower LS-priority function for the operations O R

i from the space redundant subgraph RSpace
i

compared to regular operations. However, even if executed with lower priority, the redundant
operations O R

i produce intermediate droplets that need to be stored on the biochip for later
use. Storing the intermediate droplets can take away area from the other operations, causing
delays in the application completion time. We can determine exactly these delays by running
an online synthesis, such as the one in [22], which determines if the introduction of space
redundancy delays the application completion time. However, the synthesis takes time and
has to be run for each detection operation.

Instead, our heuristic with ROS is to quickly estimate these delays (i.e., caused by storage
of redundant droplets) without performing a synthesis, as follows. The repeat loop (lines 6–15
in Fig. 13) removes each detection operation Di from the head of the priority-sorted queue
Q. For each such Di , our approach calculates the required area rarea to store the redundant
droplets produced by RSpace

i (line 9). The required area rarea is calculated by traversing

RSpace
i and determining the maximum number of operations that can execute simultaneously

(also known as the maximum width of a tree). Note that the execution of RSpace
i can be

interrupted at any time, since the redundant operations in RSpace
i have lower priority. For that

reason we consider that the maximum number of droplets that need to be stored at a time
is the maximum number of intermediate droplets produced by RSpace

i at the same time. For

example, the rarea for RSpace
9 in Fig. 11c is of 2 × 9 = 18 electrodes, since maximum two

operations can run in parallel and nine electrodes are needed to store each droplet (see the
“Store” operation in Table 1).

Next, our heuristic determines the available area aarea on the biochip and if aarea can
accommodate rarea , then it introduces space redundancy for detection Di . We estimate the
maximum time interval [t start

i , t stop
i ] during which RSpace

i will be executed. The start time

t start
i is given by the earliest time t when RSpace

i can start executing. For example, RSpace
9

in Fig. 11c cannot start executing before t start
9 = 6 s, when the reservoir Dis S is free to

be used. The stop time t stop
i is calculated starting from the time moment when the detection

Di is executed and adding the critical path execution time for RSpace
i . For RSpace

9 (Fig. 11c)

t stop
9 = 18 s, obtained by adding the critical path execution time of RSpace

9 , which is 8 s, to the
time moment t = 10 s, when detection D9 finished. The critical paths are determined offline
for every relevant operation and are adjusted online. We use the AreaFunction to calculate
the available area aarea for the determined time interval [t start

i , t stop
i ] (line 10 in Fig. 13). If

there is enough available area, condition checked in line 11, ROS decides to introduce space
redundancy for Di .

The repeat loop (lines 6–15 in Fig. 13) terminates when there is not enough available
area, or if the priority-sorted queue Q is empty. Next, if Q is not empty, ROS assigns time
redundancy for all the remaining detection operations (lines 16–19). In our example, there is
enough storage area for RSpace

9 and RSpace
11 , so space redundancy is assigned for D9 and D11.

The remaining available area is not large enough to accommodate RSpace
13 , therefore time
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(a) (b)

(c)

Fig. 11 Online redundancy assignment at t = 4 for the application graph from Fig. 9a

redundancy is assigned to D13. The space and time-redundant subgraphs are inserted in the
graph (lines 12 and 18) obtaining, for the graph in Fig. 9a, the graph GR depicted in Fig. 12.

6.3 Generating the recovery subgraph

The algorithm in Fig. 4 determines online the recovery subgraph Ri for a detection operation
Di . The recovery subgraph Ri contains the redundant operations needed to produce the
correct droplets for the operation Oi . The subgraph Ri is inserted in the graph by ROS, either
using space redundancy (line 12 in Fig. 13) or time redundancy (line 18 in Fig. 13). For
example, the recovery subgraph RSpace

9 , for detection operation D9, is illustrated in Fig. 11c.
Starting from the considered detection Di , the algorithm uses the breadth-first search

(BFS) technique to traverse the graph (line 3 in Fig. 4). All explored operations are inserted
in the recovery subgraph Ri . The search stops when no more operations can be inserted, i.e.,
the root nodes (which are dispensing operations in our case) are reached. The subgraph Ri

is updated online by taking into account the redundant droplets stored on the biochip (lines
9–22). These droplets can be by-product droplets intended for discarding (e.g., produced by
a dilution operation) or droplets generated by the redundant operations inserted for recovery.
The list Lstg keeps track of the by-product droplets and of the ones that come from previous
redundant operations. These steps are done offline and the resulted subgraphs are stored for
each operation, to be used by ROS online. The subgraph Ri is traversed using BFS, see
the repeat loop (lines 9–22). For each explored operation Oi , the algorithm checks the list
of redundant droplets Lstg . In case a matching droplet n is found for Oi , the subgraph Ri

is pruned (line 14) and Lstg is updated (line 15). If no matching droplet is found in the
storage units for operation Oi , then all the unexplored predecessors of Oi are enqueued to
be explored. The algorithm stops when there is no operation to be explored.
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Fig. 12 Graph GR produced by ROS at t = 4 for the application graph from Fig. 9a

In the example from Fig. 3a, Lstg consists of the unused droplets produced by dilution
operations O3 and O8. In this case, the algorithm uses the stored droplets and prunes the
recovery subgraph R11. Consequently, the size of R11 is reduced from 11 operations (Fig. 3b)
to 7 operations (Fig. 3c), leading to a shorter recovery time. The structure of the recovery
subgraph depends on the current error scenario, as redundant droplets can result from previous
recovery operations.

7 Error recovery strategy with CCD camera-based detection system

The CCD camera-based detection system is proposed in [25] as an error detection alternative
to capacitive sensors. Using a CCD camera, images of the droplets on the biochip are captured
periodically and analyzed, using pattern matching, in order to locate the position and the
size of the droplets. The main advantage of using a CCD camera-based detection system
over a sensor-based detection, is that, since the detection is performed simultaneously and
continuously, the error is detected immediately when it occurred. When using a sensor, the
detection operations are scheduled at specific times and, therefore, the error can be detected
long after its occurrence. The online recovery steps are taken as soon as the error is detected.
Hence, when using a sensor, the recovery is delayed, resulting in longer completion times.
Moreover, the use of a CCD-camera based detection system eliminates the need for routing the
droplets to a specific location, or to wait in case there are not enough available sensors. ROS
is able to optimize the introduction of redundancy because it makes use of the information
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Fig. 13 Redundancy
optimization strategy (ROS)

about fault occurrences. Both situations are important for ROS: if an error has happened and
if an error has not occurred. With the setup in Fig. 8b, ROS would be called only if faults
are occurring. Our strategy is to introduce in the application graph places where ROS would
be called, so it could take informed decisions about how to allocate redundancy. We use the
same approach we have used to insert the detection operations in lines 3 and 18 in Fig. 13,
see Sect. 6.2, but instead of detection operations we introduce “triggering” operations, which
will invoke ROS at runtime.

The general strategy of our online recovery approach when using a CCD camera-based
detection system is presented in Fig. 8b. Images are captured continuously throughout the
execution of the bioassay. When the image processing module signals an error, the execution
of the bioassay is interrupted and the online steps 3, 4 and 5 are executed. Note that using
a CCD camera-based detection system does not require introduction of detection operations
in the application graph, as is the case with a capacitive sensor. Hence, ROS can be triggered
during any operation in step 4, as soon as an error is detected after the recovery in step 3.

Considering the example discussed in Sect. 5.1, if a CCD camera-based detection system
is used, the application completes in 29 s, which is 9.3 % faster compared to using capacitive
sensors (Fig. 10b). The execution of the application at runtime when using a CCD camera-
based detection is depicted in Fig. 14. The reduction in completion time comes from detecting
the error when it occurred, during O12, at t = 14 s. When a capacitive sensor is used, the
detection is scheduled at t = 19 s (see Fig. 10b), so the error is detected with a delay. For the
situations when the additional equipment for image capturing and processing is available,
and portability is not required, a detection system based on CCD cameras, provides the fastest
results at the moment. However, our proposed ROS does not depend on a specific detection
method and can be integrated with any available technology.

8 Experimental results

For experiments we used three real-life applications: (1) the sample preparation for plasmid
DNA (PDNA, 19 operations); (2) the colorimetric protein assay (CPA, 103 operations) and
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Fig. 14 The execution of the application from Fig. 9a, with CCD camera-based detection system

(3) the interpolation dilution of a protein (IDP, 71 operations). The application graphs and
the descriptions of the bioassays can be found in [21] for PDNA and in [18] for CPA and IDP.
The deadlines for PDNA, CPA and IDP are dP DN A = 60 s, dC P A = 300 s, dI D P = 200 s,
respectively. The algorithms were implemented in Java (JDK 1.6) and run on a computer
with Intel Celeron 560 CPU at 2.13 GHz and 2 GB of RAM. Both the simulation of the
application execution and the online error recovery strategy were executed on the mentioned
hardware. We used the experimentally determined module library from Table 1 [32]. We
have performed three sets of experiments. In the first two sets we have considered only a
capacitive sensor for detection, i.e., not a CCD camera system. In all experiments we have
approximated the routing overhead as the Manhattan distance between the top-left corners
of the modules.

In the first set of experiments we were interested to determine if is is important to use
a combination of redundancy techniques (i.e., time and space redundancy) and if ROS is
able to optimize their allocation. Hence, we have compared (a) our redundancy optimization
approach ROS with two cases where we have used (b) only time redundancy for recovery,
called TIME, and (c) only space redundancy (SPACE). The recovery subgraphs for case
(b) and (c) were assigned statically offline for all the detection operations. For this set of
experiments, we used 3 different biochips (column 1 in Table 3), with sizes of 7 × 7, 8 × 9
and 10 × 10 electrodes. Next to the sizes, we also present in parentheses the numbers of
reservoirs for the three reagents (respectively R1, R2 and R3) used by PDNA, see [21] for
details. The techniques are compared in terms of the application completion time δG obtained
for PDNA. Since a particular error can be favorable to a certain redundancy technique, in the
interest of a fair comparison, we have generated randomly 50 error scenarios, and we used
for comparison the average value of δG obtained over all scenarios.

Related work has considered an occurrence of maximum two faults during the experi-
ments [19]. Hence, in our experiments we also consider a maximum number of faults k = 2
in order have a fair comparison to earlier work. However, in reality more than 2 faults may
occur during the execution of the biochemical application [40]. Such situations occur mostly
because of the randomness in the fabrication process, when the thickness of the insulator
and the hydrophobic layers may vary from one electrode to another. Consequently, the elec-
trowetting forces generated on the surface of two neighboring electrodes may not be exactly
the same—the main cause of an erroneous split operation.

Thus, we have simulated the execution of PDNA on each of the three biochips, and we
have randomly inserted k = 1 and 2 errors in the operations. We show the obtained average
(avg.) δG and the mean deviation (dev.) in Table 3, columns 2, 3 and 5 for the three cases (a)–
(c). The reported δG times take into account the runtime overhead required by re-synthesis
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Table 3 Comparison between recovery techniques for PDNA

Arch. (a) (b) Improvement (%) (c) Improvement (%)
δRO S
G (s) δT I M E

G (s) δS P AC E
G (s)

7 × 7 Avg. 34.08 Avg. 56.28 39.4 Avg. 64.07 46.8

(2, 1, 2) Dev. 2.84 Dev. 8.46 Dev. 14.51

8 × 9 Avg. 32.68 Avg. 55.61 41.2 Avg. 58.72 44.3

(2, 1, 2) Dev. 0.98 Dev. 8.97 Dev. 10.23

10 × 10 Avg. 27.5 Avg. 54.8 49.8 Avg. 57.92 52.5

(2, 1, 2) Dev. 3.13 Dev. 7.84 Dev. 9.55

(for all cases) and the runtime of the redundancy optimization, performed only in the case
of ROS. The mean deviation (dev.) is calculated as the average over the absolute values
of deviations from the average completion time (avg.). In columns 4 and 6, we show the

percentage improvement of ROS over TIME and SPACE, calculated as:
δT I M E
G −δRO S

G
δT I M E
G

× 100

and
δS P AC E
G −δRO S

G
δS P AC E
G

× 100.

From Table 3 we see that ROS, which uses an optimized combination of space and time
redundancy, is able to obtain much better results than using a single form of redundancy,
TIME or SPACE. Compared to TIME, ROS leads to an improvement of 39 % for the 7 × 7
biochip, 41 % for 8 × 9 and 49 % for 10 × 10 (see column 4). The improvement over SPACE
is 46, 44 and 52 %, respectively. Better results were obtained for larger biochip areas, as
ROS uses the available space to optimize the introduction of space redundancy and reduce
the recovery time. All the considered areas are, however, too small to use space redundancy
exclusively. As the biochip area increases, from 7 × 7 to 10 × 10, all techniques benefit of
the extra area and use it to improve δG , hence the decrease in δG as area increases. How-
ever, the percentage improvement between ROS and the others gets larger, as ROS is better
at exploiting the extra area. The 10 × 10 area is still too small to use space redundancy
exclusively, hence SPACE gives worse results than ROS. Regarding the deadline, all solu-
tions obtained with ROS meet the deadline, i.e., δRO S

G ≤ dP DN A, whereas the deadline is
satisfied only in 56 % of cases for TIME and 49.4 % of cases for SPACE. This experiment
shows that by using our proposed ROS, which decides online between the introduction of
time and space redundancy, we obtain better results compared to using a single redundancy
technique.

In the second set of experiments we were interested to compare ROS to the related work.
Thus, we compared the completion time δRO S

G obtained by ROS with the δDI CT
G obtained by

using the previously proposed dictionary-based error recovery (DICT) [19]. DICT determines
offline the recovery needed for an error and the corresponding changes to the electrode
actuation sequence for the operations, then, it stores the results in a dictionary, to be used
online, when an error is detected. Hence, DICT has negligible runtime overhead for applying
the recovery. In contrast, ROS determines both the required recovery and the changes to
the electrode actuation sequence (what we call re-synthesis) online, during the execution
of the biochemical application. We ran experiments for CPA and IDP, using the same error
scenarios and biochip configuration as in [19]. The results are presented in Table 4 for CPA,
and in Table 5 for IDP. The completion time δDI CT

G is presented in column 2, and δRO S
G in

column 3.
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Table 4 Comparison of dictionary-based error recovery [19] and ROS for CPA

Errors (ops.) δDI CT
G (s) δRO S

G (s) CPU time (s) Improvement (%)

Dlt39 228 212.21 0.98 6.92

Dlt12, Dlt31 220 192.19 0.9 12.64

Ds B4, Dlt14 219 192.25 1.12 12.21

Dlt21, Mix5 223 219.26 1.06 1.67

Table 5 Comparison of dictionary-based error recovery [19] and ROS for IDP

Errors (ops.) δDI CT
G (s) δRO S

G (s) CPU time (s) Improvement (%)

Dlt8, Dlt16 208 161 1.7 22.5

Dlt2, Dlt29 212 175.86 1.5 17

Dlt19, Ds B23 207 163.77 0.5 20.8

Dlt16, Dlt18 209 163.65 0.4 21.7

δRO S
G contains the runtime execution overhead of the online steps of our strategy (see

Fig. 8a). This overhead is also reported separately in the tables in column 4. These runtimes are
cumulative, a summation for all invocations of ROS in the given scenario, and are measured
on a typical PC, which is used to control the biochip. As the results in Tables 4 and 5 show,
our approach (ROS) is able to obtain much better results compared to the related work DICT
(more than 20% reduction for a third of the cases). The percentage improvement of ROS
over DICT is shown in the last column in the two tables. The improvement of our proposed
online redundancy approach comes from the optimized use of recovery techniques employed.
For example, for IDP, where a larger biochip area is available for operations, ROS has used
space redundancy for carefully selected operations, which trades off area for time, in order
to improve the results.

As mentioned in the problem formulation, with ROS we are interested to maximize the
number of transient errors tolerated within the application deadline. An application tolerates
the faults if the deadline is satisfied, i.e., δG ≤ dG , in all the fault scenarios. Thus, in the last
set of experiments we were interested to find out if ROS can synthesize online a fault-tolerant
implementation which meets the deadline as the number of faults k increases. We ran the
experiments for all three benchmarks: PDNA, IDP and CPA and we present the results in
Table 6. The biochip sizes used for each application is presented in column two. Next to the
sizes, we also present in parentheses the numbers of reservoirs for the sample, buffer and
reagents. We have generated a large number of error scenarios covering possible combinations
of k faults and operations. We ran the experiments using both detection methods presented in
the paper: the sensor-based detection and the CCD camera-based detection system. The δRO S

G
values reported are the shortest completion time (min), the longest completion time (max),
the average completion time (avg.) and the mean deviation (dev.) over all the simulation
runs. We have generated the error scenarios considering the size of the applications and
the number of errors: between 50 and 100 error scenarios for k = 1, between 500 and
1000 error scenarios for k = 2 and between 1500 and 2000 error scenarios for k = 3. The
results for k = 1, 2 and 3 are presented in columns three, four and five, respectively, for the
case when a capacitive sensor-based detection is used, and in columns six, seven and eight,
for the case when CCD camera-based detection is used. As we see from the table, ROS is
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Table 6 ROS results for k = 1, 2 and 3 faults

App.
ops.

Arch. Capacitive sensor CCD

δRO S
G (s) δRO S

G (s) δRO S
G (s) δRO S

G (s) δRO S
G (s) δRO S

G (s)
k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

PDNA
(19)

7 × 7
(1, 2, 2)

Min 30.24 Min 30.28 Min 32.25 Min 25.14 Min 25.14 Min 25.22
Max 37.25 Max 37.25 Max 37.4 Max 33.64 Max 34.42 Max 37.19

Avg. 32.62 Avg. 33.33 Avg. 34.62 Avg. 29.46 Avg. 30.38 Avg. 31.13

Dev. 2.42 Dev. 2.66 Dev. 2.48 Dev. 1.52 Dev. 1.71 Dev. 1.98

IDP
(71)

9 × 9
(1, 2, 2)

Min 159.66 Min 159.75 Min 160.71 Min 139.61 Min 139.7 Min 141.9
Max 166.63 Max 177.61 Max 182.66 Max 169.11 Max 174.98 Max 178.98

Avg. 161.97 Avg. 166.52 Avg. 168.04 Avg. 157.27 Avg. 159.87 Avg. 160.27

Dev. 2.57 Dev. 2.87 Dev. 3.61 Dev. 6.12 Dev. 7.02 Dev. 6.28

CPA
(103)

11×11
(1, 2, 2)

Min 192.65 Min 192.8 Min 213.38 Min 192.53 Min 192.6 Min 194.06
Max 219.78 Max 219.93 Max 244.95 Max 215.74 Max 218.61 Max 236.79

Avg. 198.69 Avg. 209.71 Avg. 219.61 Avg. 197.72 Avg. 207.03 Avg. 217.68

Dev. 8.65 Dev. 9.03 Dev. 3 Dev. 5.12 Dev. 8.32 Dev. 6.88

able to successfully tolerate an increasing number of faults, producing online fault-tolerant
implementations which meet the deadline in all cases (the maximum value of δRO S

G is less
than the deadlines of the respective benchmarks). The redundancy required for fault-tolerance
and the runtime execution of ROS will introduce an overhead. However, it is important to
notice that δRO S

G increases slowly with k, which means that ROS can successfully tolerate
an increasing number of faults. This is because ROS is able to use the fault occurrence
information at runtime to optimize the introduction of redundancy, such that the delays on
the application completion time δG are minimized. It follows that it is important to use an
online redundancy optimization and re-synthesis approach if we want to have fault-tolerant
biochip implementations.

Finally, in Table 6 we see the difference between the two sensor setups: using a capacitive
sensor, which requires the introduction of detection operations (the columns labeled “sen-
sor”), versus using an imaging CCD camera-sensor which can instantly detect an error, the
columns labeled “CCD”. As expected, using a CCD camera-sensor leads to better results,
because the errors are detected immediately. Our ROS approach can use both setups, and
is able to intelligently introduce the detection operations required by the capacitive sensor
setup, reducing its inherent delays.

9 Conclusions

In this paper we have presented an online redundancy optimization strategy (ROS) for the
synthesis of fault-tolerant biochemical applications. We have addressed digital microfluidic
biochips, where the liquids are manipulated using droplets. We have taken into account
the parametric faults which can result in operation variability, such as volume variations.
The main features of ROS are that it uses a combination of time redundancy (re-executing
operations) and space redundancy (producing redundant correct droplets before we know
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an error will occur), and is able to optimize at runtime their use based on the actual fault
occurrences.

We have also proposed a biochemical application model which captures the sensing oper-
ations needed to detect an error, and the operations that have to be executed for recovery. The
error detection operations are introduced at runtime based on an fault propagation analysis,
our model and the amount of error occurrences. The experiments performed on three real-
life case studies show that our redundancy optimization strategy can be successfully used to
tolerate transient faults in time-sensitive biochemical applications. In the experiments, we
show that our strategy provides faster recovery than the related work. Because our approach
can take advantage of the available resources, such as biochip area and devices, we obtained
reduced application completion times. Hence, our strategy can be used even in the case of
reduced-size systems, such as biochips with reduced area and fewer reservoirs.
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