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Summary

Microfluidic-based biochips are replacing the conventional biochemical analyzers, by
integrating all the necessary functions for biochemical analysis using microfluidics.
The digital microfluidic biochips (DMBs) manipulate discrete amounts of fluids of
nanoliter volume, named droplets, on an array of electrodes to perform operations such
as dispensing, transport, mixing, split, dilution and detection.

Researchers have proposed compilation approaches, which, starting from a biochemi-
cal application and a biochip architecture, determine the allocation, resource binding,
scheduling, placement and routing of the operations in the application. During the
execution of a bioassay, operations could experience transient faults, thus impacting
negatively the correctness of the application. We have proposed both offline (design
time) and online (runtime) recovery strategies. The online recovery strategy decides
the introduction of the redundancy required for fault-tolerance. We consider both time
redundancy, i.e., re-executing erroneous operations, and space redundancy, i.e., creat-
ing redundant droplets for fault-tolerance. Error recovery is performed such that the
number of transient faults tolerated is maximized and the timing constraints of the bio-
chemical application are satisfied.

Previous work has assumed that the biochip architecture is given, and most approaches
consider a rectangular shape for the electrode array, where operations execute on rect-
angular “modules” formed of electrodes. However, non-regular application-specific
architectures are common in practice. Hence, we have proposed an approach to the
synthesis of application-specific architectures, such that the cost is minimized and the
timing constraints of the application are satisfied.
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We propose an algorithm to build a library of non-regular modules for a given application-
specific architecture, so that the area of a non-regular application-specific biochip can
be used effectively. During fabrication, DMBs can be affected by permanent faults,
which may lead to the failure of the application. Our approach introduces redundant
electrodes to synthesize fault-tolerant architectures aiming at increasing the yield of
DMBs. We also propose a method to estimate, at design time, the application com-
pletion time in case of permanent faults in order to verify if an application can be
successfully run on the architecture.

The proposed approaches were evaluated using several real-life case studies and syn-
thetic benchmarks.



Resumé

Mikrofluidiske biochips erstatter i stigende grad konventionelle biokemiske analyser
ved at integrere alle nødvendige operationer i den biokemiske analyse på en enkelt
biochip. Digitale Mikrofluidiske Biochips (DMBs) manipulerer små diskrete mængder
væske i størrelsesordnen nanoliter, kaldet dråber (eng., droplets), på et array af elek-
troder, for at udføre operationer så som: dosering, transport, blanding, opsplitning,
fortynding og detektering.

Forskere har foreslået en samlet design proces, der startende fra en biokemisk ap-
plikation (bioassay) og en biochip arkitektur, fastsætter allokering, resurse binding,
afviklings rækkefølge, placering og transport, af de i applikationen anvendte opera-
tioner. Under eksekveringen af bioassayet kan operationerne blive udsat for transiente
fejl, hvilket kan påvirke nøjagtigheden af operationer og i værste fald betyde at ap-
plikationen leverer et forkert resultat. Vi har udviklet både offline (dvs. under de-
sign processen) og online (dvs. under eksekvering) fejlkorrektionsmetoder. Online
fejlkorrigering beslutter den nødvendige redundans, der sikre tilstrækkelig fejltoler-
ance. Vi håndterer både tids-redundans, dvs., genberegning af fejlende operationer,
og fysisk-redundans, dvs., dublering af dråber. Fejlrettelse udføres således, at antallet
af transiente fejl, der kan accepteres, maksimeres, samtidig med at tidskrav for den
biokemiske applikation overholdes.

Tidligere arbejder har antaget, at biochip arkitekturen er givet på forhånd, og de fleste
tilgange antager en rektangulær form af elektrodearrayet, hvor operationer afvikles in-
den for et rektangulært set af elektroder, kaldet et “modul” . Dog forekommer ir-
regulære applikationsspecifikke arkitekturer ofte i praksis. Derfor har vi foreslået en
udviklingsmetode til applikationsspecifike arkitekturer, der sikre at prisen minimeres
og tidskravene for applikationen overholdes.
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Vi foreslår en algoritme til at opbygge et bibliotek af ikke-rektangulære moduler til
en given applikationsspecifik arkitektur, således, at arealet af irregulære applikation-
sspecifikke biochip kan udnyttes effektivt. Under fabrikation kan DMBs være udsat
for permanente fejl, hvilket kan lede til at bioassayet fejler. Vi foreslår også en metode
der, i tilfælde af permanente fejl, kan estimere tiden for færdiggørelsen af applika-
tionen, under selve designprocessen. Vi kan således verificere, at applikationen kan
afvikles på den fejlbehæftede arkitektur.

Den udviklingsmetode er blevet evalueret på adskillige virkelige case-studier og syn-
tetiske benchmarks.
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CHAPTER 1

Introduction

Microfluidics, the study and handling of small volumes of fluids, is a well-established
field, with over 10,000 papers published every year [56]. With the introduction at the
beginning of 1990s of microfluidic components such as microvalves and micropumps,
it was possible to realize “micro total analysis systems” (µTAS), also called “lab-on-a-
chip” and “biochips”, for the automation, miniaturization and integration of complex
biochemical protocols [55].

The trend today is towards microfluidic platforms, which according to [55], provide “a
set of fluidic unit operations, which are designed for easy combination within a well-
defined fabrication technology”, and offer a “generic and consistent way for minia-
turization, integration, customization and parallelization of (bio-)chemical processes”.
Microfluidic platforms are used in many application areas, such as, in vitro diagnos-
tics (point-of-care, self-testing), drug discovery (high-throughput screening, hit char-
acterization), biotech (process monitoring, process development), ecology (agriculture,
environment, homeland security) [14, 72].

Microfluidic platforms can be classified according to the liquid propulsion principle
used for operation, e.g., capillary, pressure driven, centrifugal, electrokinetic or acous-
tic. In this thesis, we are interested in microfluidic platforms which manipulate the liq-
uids as droplets, using electrokinetics, i.e., electrowetting-on-dielectric (EWOD) [60].
We call such platforms digital microfluidic biochips (DMBs).



2 Introduction

Figure 1.1: Digital microfluidic
biochip example [82]

Figure 1.2: Example
controller platform [7]

DMBs integrate on-chip all the functions needed to complete biochemical applica-
tions such as bioassays, which measure the concentration of a specific constituent in
a mixture (e.g., measuring the concentration of glucose in plasma, serum, urine and
saliva [72]).

DMBs are typically modeled as an array of electrodes, where each electrode can hold
a droplet, see Fig. 1.1 and 1.3 for example DMBs. Hence, DMBs are able to perform
fluidic operations such as dispensing, transport, mixing, split, dilution and detection
using droplets (discrete amount of fluid of nanoliters volume) [19, 22].

Immediate advantages of DMBs are automation—reducing the likelihood of human
error, and integration—eliminating additional equipment for intermediate steps. More-
over, due to miniaturization, the reagent and sample consumption is lower and the
bioassay time-to-result is shortened. By using smaller volumes of expensive reagents
and hard-to-obtain samples, the costs are significantly reduced thus addressing an im-
portant concern of clinical laboratories. Moreover, faster reaction times are observed
when using volumes at the microliter scale, making DMBs suitable for flash chemistry
applications [89, 44]. The reduced size of DMBs contribute to their portability, mak-
ing digital microfluidic platforms ideal candidates for near-patient and point-of-care
testing [68].

For example, digital microfluidic platforms have been proposed for newborn screening,
a procedure that tests newborns for genetical diseases that can result in irreversible
organ damage if not treated soon after birth. In order to screen for Pompe and Fabry
diseases, a DMB needs a fraction of sample and reagents volumes required by standard
methods [69]. The incubation time was reduced to less than 2 hours, resulting in a
10 times faster time-to-result than when using standard methods. Recently, Advanced
Liquid Logic, Inc., proposed an advanced DMB that is able to screen 40 newborns at
the same time [7].
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Figure 1.3: Setup for running an application on a DMB

In order to run a biochemical application, a DMB is used with a controller platform that
has additional components such as sensing systems, charged-couple device camera-
based detectors, magnetic bars, heaters, etc [68]. The DMB is loaded with the input
fluids (samples, reagents, buffers), then placed in the controller platform, which is
connected to the computer.

The flow of a biochemical application execution is schematically represented in Fig. 1.3.
A control software that compiles the biochemical application is executed on the com-
puter. The output of the control software is the “electrode actuation sequence”, which
controls the movement of droplets in order to run the biochemical application. The con-
troller platform actuates the droplets and activates the additional components according
to the electrode actuation sequence.

Fig. 1.2 shows the controller platform LSD100 developed by Advanced Liquid Logic,
Inc., for Lysosomal Storage Enzyme Analysis [7]. Alternatively, the results of the con-
trol software can be stored on a flash drive which is plugged in the controller platform,
thus increasing the portability of the system.

1.1 Related work

Initially, bottom-up approaches have been used for the design of DMBs. However, due
to the increase in the complexity of DMBs, top-down methodologies are more suitable,
as they can easily scale for new designs [14]. There is a lot of research on methods
for the design of biochips, see [13, 9] for surveys about this area. This section is not
intended to give an overview of the research in this field. Instead, we mention only the
research that is closely related to the methods proposed in the thesis.
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Researchers have used the term “synthesis” to denote the tasks that determine the “elec-
trode actuation sequence”, which controls the movement of droplets to run the bio-
chemical application. We will call these synthesis tasks compilation, to distinguish it
from the architecture synthesis, which determines the biochip architecture for a specific
biochemical application.

Researchers have initially assumed regular rectangular architectures and have focused
on the compilation tasks. The compilation process is a NP-complete problem [14],
which, consists of the following tasks: allocation, resource binding, scheduling, place-
ment and routing, which are explained in the following. Biochemical applications can
be modeled using programming languages such as BioCoder [8, 28]. However, most
researchers have used sequencing graph models, where each node is an operation, and
each edge represents a dependency [14]. Most of previous work has assumed that oper-
ations execute on predetermined areas of electrodes, named “modules”, which are allo-
cated from a given module library. Recently, [46] have proposed the use of additional
equipment (e.g., sensing systems) to eliminate the need for characterizing a module
library. As soon as the binding of operations to the allocated modules is decided, the
scheduling algorithm determines the time duration for each bioassay operation, subject
to resource constraints and precedence constraints imposed by the application. Next,
the placement [90] of operations on the microfluidic array and the routing [15, 38] of
droplets from one module to another have to be determined. In Chapter 3 we present
examples of compilation.

Three of the compilation tasks are NP-complete problems: scheduling [79], place-
ment [77] and routing [91]. Hence, in order to reduce the complexity of the compilation
problem, researchers have initially separated the compilation tasks into “architectural-
level” compilation (i.e., modeling, allocation, binding and scheduling) and “physical-
level” compilation (i.e., placement and routing) [31].

At architectural-level, compilation approaches were proposed using Integer Linear Pro-
graming [73], modified List Scheduling algorithm [73] and metaheuristics such as Ge-
netic Algorithms [73, 63]. At physical-level, [77, 74] proposed placement algorithms
based on Simulated Annealing.

Next, researchers have considered unified approaches for the compilation of DMBs,
which combine the architectural and physical levels. The integer linear programming
formulation proposed in [54] derives optimal solutions for small applications. Near-
optimal results in terms of application completion time were obtained by compilation
implementations based on search metaheuristics such as Tabu Search [50] and Paral-
lel Recombinative Simulated Annealing [14], which combines genetic algorithm and
simulated annealing algorithms. List Scheduling-based compilations were proposed
in [4, 45, 29, 27]. These compilations are faster and thus can be used to take deci-
sions at runtime and to quickly evaluate an alternative architecture during architecture
synthesis.
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In related literature, several placement strategies have been proposed for rectangular
architectures. In [77], a Simulated Annealing-based method is used to determine the
placement of the operations on the biochip. A unified compilation and module place-
ment, based on Parallel Recombinative Simulated Annealing, was proposed in [75].
Better results were obtained by using a T-Tree algorithm for placement [90] or by us-
ing a fast-template placement [10] integrated in a Tabu Search-based compilation [50].
A placement approach that minimizes droplet routing, when deciding the locations of
the modules, is considered in [87]. Placement strategies based on virtual topology [27]
were proposed for fast compilation approaches.

A lot of work has been done concerning the routing problem. [11] proposed a routing
algorithm based on A* search, which finds the optimal-length route, but works only
when routing is possible. Hence, [80] proposed redoing the placement when routing
fails and used modified Lee algorithm for routing. In [15], a “bypassibility” metric is
proposed to assign droplet priorities such that deadlocks are avoided. However, in case
of deadlock, “concession zones” are used to store the droplets and thus eliminate the
deadlock.

A network-flow based routing algorithm was proposed in [91], which has two stages:
(i) global routing, where a set of independent nets is determined and a rough routing
path is generated for each droplet, and (ii) detailed routing, which routes each droplet
using a negotiation-based algorithm. The routing strategy proposed in [36] determines
a global routing track on which droplets prefer to move ordered by an entropy-based
metrics. The routes were compacted in [36] using dynamic programming.

Cross-contamination is a frequent problem for the biochemical assays that use pro-
teins [93]. To avoid cross-contamination, wash droplets are transported over the con-
taminated areas to clean the residues. Researchers have proposed methods to optimize
the washing [92, 93] and routing algorithms to minimize the intersection of operations
with contamination conflicts [37].

Several mixing and dilution techniques have been proposed for sample preparation [62,
65, 33], focusing on obtaining a desired concentration by using the byproduct droplets
of operations already executed and thus reduce the waste. Researchers have also pro-
posed techniques for fabrication [60, 25] and testing of DMBs [88, 81]. However,
these topics (i.e., contamination, mixing/dilution algorithms, fabrication and testing)
are orthogonal to the research work presented in this thesis.

Fault-tolerance to transient faults. During the execution of the bioassay, the volume
of droplets can vary erroneously due to transient faults. The errors propagate through-
out the entire application, affecting eventually the result of the bioassay. Biochemical
applications have high accuracy requirements, determined by the acceptance range for
the concentration of droplets. Example applications with accuracy requirements of less
than ±10% are drug discovery applications [64] and plasmid DNA preparation [41].
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Past research has addressed the erroneous volume variation due to transient faults us-
ing re-execution and checkpointing as recovery techniques [1, 95]. The work in [95]
addresses the volume variations in operations, by duplicating intermediate droplets of
correct volumes and storing them at checkpoints. When an error is detected, the stored
droplets are used in the recovery subroutine. The locations of the checkpoints and the
recovery subroutines are determined offline and stored in a microcontroller memory.
If an error is detected during runtime at a checkpoint, the microcontroller interrupts
the bioassay, and transports the intermediate product droplets to the storage units; then
the corresponding recovery subroutine is executed using a statically predetermined al-
location and placement, which do not consider the current context. Consequently, the
delays introduced by the recovery subroutines can lead to the application missing the
deadline.

Hence, in [44] the authors propose a method to precompute and store a dictionary that
contains recovery solutions for all combinations of errors. When an error is detected,
the system looks in the dictionary for the corresponding recovery actuation sequence.
Since the recovery solutions consider the current context, the delays due to recovery are
minimized. However, taking into account all possible scenarios for any combinations
of errors comes with high storage requirements. Hence, compression algorithms are
needed to reduce the size of the dictionary in order to store it on the flash memory of
the microcontroller.

In all mentioned approaches, the error recovery actions are determined offline, and are
applied online when a fault is detected. Researchers have also proposed online ap-
proaches that determine the necessary recovery actions during the execution of the bio-
chemical application, at the moment when an error is detected. Such online recovery
approaches, some of which also perform online re-compilation to reconfigure the elec-
trode actuation sequence, are possible because the biochemical application execution
times are much slower compared to the control software execution.

The work in [32] addresses sample preparation and proposes dynamic error recovery to
recreate online the desired target concentrations, using the stored intermediate droplets.
A general approach, that compiles a new implementation containing the appropriate
error recovery actions whenever errors are detected, is proposed in [45]. The online
compilation re-computes the placement of operations and the droplets routes using a
List-Scheduling based implementation.

In this thesis we propose both offline (design time) and online (runtime) recovery strate-
gies. The online recovery strategy decides the introduction of the redundancy required
for fault-tolerance. We consider both time redundancy, i.e., re-executing erroneous
operations, and space redundancy, i.e., creating redundant droplets for fault-tolerance.
Error recovery is performed such that the number of transient faults tolerated is maxi-
mized and the timing constraints of the biochemical application are satisfied.
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Figure 1.4: DMB for newborn
screening [69]

Figure 1.5: DMB for sample
preparation [57]

Architecture synthesis. The physical architecture of a DMB consists of physical com-
ponents, such as electrodes, sensors, detectors, heaters, actuators, reservoirs for dis-
pensing and waste. Previous work assumes that the physical architecture of a DMB is
given and focuses on the automation of the application execution.

Moreover, most researchers use general-purpose architectures, which have a rectangu-
lar shape (Fig. 1.3). However, in practice, application-specific architectures which are
non-regular (Fig. 1.1) are more common because they can significantly reduce the costs
by including only the components that are necessary for the execution of the applica-
tion.

Application-specific architectures are designed manually, which is an expensive time-
consuming process. Fig. 1.4 and 1.5 show two examples of application-specific biochips
designed for newborn screening [69] and sample preparation [57]. Most work done so
far, only considered varying the dimensions of purely rectangular general-purpose ar-
chitectures or addressed aspects such as minimizing the number of pins used to control
the electrodes [94]. Researchers have proposed approaches to optimize the biochip
architecture for targeted applications, such as the polymerase chain reaction [43] and
sample preparation [32].

In the context of application-specific architectures, the placement problem becomes
more challenging. All approaches previously mentioned consider placement of rectan-
gular modules, which do not take advantage of the non-regular area of an application-
specific biochip.
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A placement strategy for modules of non-rectangular shapes is proposed in [50]. How-
ever, [50] uses a “black-box” approach, i.e., the whole module area is considered oc-
cupied during the execution of the operations, blocking the corresponding electrodes
from being used for other operations. An alternative is the routing-based approach
from [52], which allows the droplets to move freely on the biochip until the operation
is completed. However, in case of contamination, the routing-based strategy requires a
lot of washing, which slows considerably the execution of the bioassay and can lead to
routing deadlocks.

DMBs can be affected by permanent faults, which may lead to the failure of the bio-
chemical application. In addition, yield is a big concern for biochips—researchers have
proposed fabrication methodologies to increase the yield of DMBs, e.g., from a very
low 30% to 90% [78]. After fabrication, the biochips are tested and if permanent faults
are detected, the biochip is discarded, unless the applications can be reconfigured to
avoid them [51]. In order to increase the yield, which is very important for the market
success of DMBs, the design of DMBs has to take into account possible defects that
can be introduced during the fabrication process. Because of their optimized layout,
application-specific architectures are critically affected by permanent faults.

The issue of fault-tolerance has only been tackled in the context of rectangular archi-
tectures, by introducing a regular pattern of redundant electrodes [51, 78]. Hence, there
is an imperative need for design methodologies for application-specific DMBs that are
fault-tolerant to permanent faults.

In this thesis, we propose an approach to synthesize a fault-tolerant application-specific
architecture, such that the cost is minimized and the timing constraints of the applica-
tion are satisfied. We address the placement problem by proposing an algorithm to
build a library of non-regular modules for a given application-specific architecture, so
that the area of a non-regular application-specific biochip can be used effectively. Our
approach introduces redundant electrodes to synthesize fault-tolerant architectures aim-
ing at increasing the yield of DMBs. We also propose a method to estimate, at design
time, the application completion time in case of permanent faults in order to verify if
an application can be successfully run on the architecture.

1.2 Contributions

First, we have addressed the problem of transient faults during the execution of the bio-
chemical application. The erroneous variation of the droplets volumes due to transient
faults, propagates throughout the execution of the bioassay. Eventually, the errors may
lead to an incorrect results of the biochemical application.
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• Initially, we have focused on the erroneous volume variation after an unbalanced
split operation [1]. In Section 4.1 we present our compilation solution, which
derives offline the schedules needed to recover from all combinations of faulty
split operations. Online, the scheduler will switch to the backup schedules that
tolerate the observed error occurrences.

• In Section 4.2 we have considered errors in all types of operations. Hence, we
have proposed an online recovery strategy, which decides online and dynami-
cally the optimization of redundancy required for fault-tolerance [2]. Our online
optimization approach decides between time redundancy (re-execution of op-
erations) and space redundancy (creating redundant droplets) depending on the
current error scenario.

• As part of our recovery strategy we have proposed a biochemical application
model, which captures the extra operations needed for redundancy (Section 2.4.2),
together with an algorithm for generating the required redundant operations needed
for fault-tolerance (Section 4.2).

Prior work has mainly considered general-purpose architectures for DMBs, such as
the one in Fig. 1.3, which due to their rectangular shape are highly reconfigurable,
making them suitable for multiple applications. In addition, in case of permanent
faults, general-purpose architectures can be easily reconfigured to avoid the faulty
electrodes [53]. However, in practice, there is an increased interest for development
of application-specific biochips, see Fig. 1.4 and 1.5, because of their reduced costs.
Hence, the second contribution of this thesis is an architecture synthesis of application-
specific biochips [5]. We used two different metaheuristics to implement our architec-
ture synthesis: Simulated Annealing [5] and Tabu Search [3].

• A search-optimization metaheuristic explores the solution space by starting from
a given initial solution and generating new alternative solutions. To evaluate ar-
chitecture alternatives, we have proposed in Section 5.3 a List Scheduling-based
compilation that determines the worst-case completion time of an application
running on an architecture that has maximum k permanent faults. In order to re-
duce the risk of eliminating good quality architectures by evaluating them using
a worst-case approach, we have also proposed an estimation method which is
less pessimistic (Section 5.4).

• We consider that the operations execute on circular-route modules (CRMs), which
are routes of one-electrode thickness that start and end in the same electrode, and
do not intersect themselves. Due to their non-regular shape, CRMs are suitable
for a placement strategy that uses effectively the layout of application-specific
biochips. In Section 3.2 we have proposed a method to determine, for a given
application-specific architecture, the corresponding library of CRMs [6].
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1.3 Thesis overview

The remainder of the thesis is organized in seven chapters as follows:

Chapter 2 introduces the biochip architecture and biochemical application models. We
present in details the physical components of a biochip and we evaluate their impact on
the architecture cost. We discuss different alternatives for operation execution and we
introduce a fault-tolerant biochemical application model that captures the operations
needed for error recovery. The existing fault models are presented and several fault-
tolerant techniques are discussed.

Chapter 3 contains an overview of the DMBs design process. We discuss the method-
ology and we show detailed examples of both the application compilation and the ar-
chitecture synthesis. We discuss the online and offline approaches for fault-tolerant
compilation.

In Chapter 4 we address the problem of transient faults during the execution of a
biochemical application. First, in Section 4.1, we propose a fault-tolerant compilation
approach that focuses on errors during split operations. We show that, by taking into
account fault-occurrence information, we can derive better quality implementations,
which leads to shorter application completion times, even in the case of faults.

In Section 4.2, we propose an online recovery strategy for all types of operations. Our
approach decides during the execution of the biochemical application the introduction
of the redundancy required for fault-tolerance. Error recovery is performed such that
the number of tolerated faults is maximized and the timing constraints of the biochemi-
cal application are satisfied. The proposed redundancy optimization approach has been
evaluated using several benchmarks.

The work presented so far in Chapter 4 considered general-purpose architectures, which
have a rectangular shape for the electrode array. However, non-regular application-
specific architectures are common in practice.

In Chapter 5, we address the application-specific architecture synthesis problem. We
propose two solutions, based on metaheuristics, that determine, for a given application,
the minimum cost architecture that can execute the application within the deadline even
in the case of permanent faults.

Our first solution is a Simulated Annealing-based approach (Section 5.3), which uses
rectangular modules for operation execution and exhaustive search to determine the
worst-case execution time in case of faults. Our second solution is based on the Tabu
Search metaheuristics, see Section 5.4. We present our algorithm that builds a library
L of circular-route modules for operation execution and we propose a faster estima-
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tion method for application completion time. We have run a series of experiments to
evaluate and compare the two proposed architecture syntheses.

In Chapter 6 we present our conclusions and we discuss the future directions of this
work.
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CHAPTER 2

System Models

This chapter presents the models used in the thesis. Section 2.1 presents the biochip
architecture model. We address in this thesis both transient and permanent faults. The
fault models and the associated assumptions are also outlined in Section 2.1.1.

We consider that operations are executed on “circular routes” and we present the mod-
els used for the operation execution in Section 2.2. The biochemical application model
is presented in Section 2.3, and we propose in Section 2.4 extensions to this model to
capture the fault-tolerance techniques required for recovery from transient faults.

2.1 Biochip architecture model

In a digital microfluidic biochip (DMB), a droplet is sandwiched between a top ground-
electrode and bottom control-electrodes, see Fig. 2.2. The droplet is separated from
electrodes by insulating layers and it can be surrounded by a filler fluid (such as silicone
oil) or by air. Two glass plates, a top and a bottom one, protect the DMB from external
factors. The electrodes are coated with a dielectric layer.

The droplets are manipulated using the electrowetting-on-dielectric (EWOD) princi-
ple [60]. When voltage is applied at the side of the droplet, an imbalance is created
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in the interfacial forces between the electrode, droplet and the filler fluid. As a result,
the droplet moves towards the side where the voltage was applied. For example, in
Fig. 2.2, if the control-electrode on which the droplet is resting is turned off, and the
left control-electrode is activated by applying voltage, the droplet will move to the left.
In order to be actuated, the droplet has to be large enough to overlap the gap between
the neighboring electrodes. Considering the biochip in Fig. 1.3, represented as an array
of electrodes, a droplet can only move up, down, left or right with EWOD, and cannot
move diagonally. A biochip is typically connected to a computer (or microcontroller)
as shown in Fig. 1.3 and it is controlled based on an “electrode actuation sequence”
that specifies for each time step which electrodes have to be turned on and off, in order
to run a biochemical application.

The biochip contains devices such as input (dispensing) and waste reservoirs, sensors
and actuators, on which the non-reconfigurable operations are performed. Sensors can
be used to determine the result of the bioassay or for error detection. For example,
a Light-Emitting Diode (LED) and a photodiode combination is used as detector for
glucose concentration in a droplet [55, 71]. The location of these devices is fixed on
the biochip array. In this thesis we assume that the locations of the reservoirs are on
the boundaries of the array of electrodes. Fig. 1.3 shows the location of reservoirs and
a sensor, which are placed on a biochip architecture of 10× 8 electrodes. Example
actuators are heaters [56] and filters [55].

An architecture of a DMB, denoted with A is modeled as a two-dimensional array
of identical control-electrodes (see Fig. 1.3 and 2.1), where each electrode can hold a
droplet. We distinguish between two types of architectures: general-purpose architec-
ture and application-specific architecture. Most general-purpose DMBs have architec-
tures of rectangular shapes, such as the one in Fig. 1.3, while an application-specific
DMB has an non-regular layout, see Fig. 2.1.

Figure 2.1: Biochip architecture example Figure 2.2: EWOD example
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2.1.1 Fault models

Many biochemical applications, such as drug development and clinical diagnostics,
have high accuracy requirements. DMBs can be affected by faults, resulting in fail-
ure to complete the application or in an incorrect result of the bioassay. Hence, re-
searchers have addressed faults by proposing fault models [88], testing and detection
methods [82, 81] and error recovery strategies [34, 47]. Faults can be classified in two
main categories: (1) permanent faults and (2) transient faults. In Table 2.1 we present
the most common types of faults.

Permanent faults. Also known as “catastrophic faults”, permanent faults are caused
by defects introduced usually during the fabrication of the DMBs. Permanent faults
prevent the operation from executing. Some of the typical causes leading to permanent
faults are given as follows [34, 81]:

• Dielectric breakdown—is caused when applying high voltage levels. A short
between the droplet and the electrode is created, preventing further actuation of
the droplet, i.e., the droplet is stuck on the electrode. Fig. 2.3 shows a DMB with
dielectric breakdown defect.

• Short between adjacent electrodes—merges the two electrodes into a large one.
In that case, the droplet becomes too small to overlap the adjacent electrodes,
thus it cannot be actuated.

• Degradation of the insulator (see Fig. 2.4)—is caused by aging and repeated use
of the same electrode. This defect is unpredictable and it results in fragmented
droplets because of erroneous variation of surface tension forces.

• Open in the metal connection between the electrode and the control source—
results in failure to charge the electrode, and thus prevents actuation of droplets.

Researchers have proposed several methods of testing for permanent faults in DMBs.
Most of the test methods use test droplets that move on the biochip array according

Figure 2.3: Dielectric breakdown [34] Figure 2.4: Insulator degradation [83]
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Table 2.1: Types of faults in DMBs [31]

Fault name Fault model Cause of fault
Dielectric breakdown Droplet-electrode

short
Excessive actuation voltage
applied to an electrode

Irreversible charge concen-
tration on an electrode Electrode stuck-on Electrode actuation for ex-

cessive duration
Misalignment of parallel
plates Pressure gradient Excessive mechanical force

applied to the DMB
Non-uniform dielectric layer Dielectric islands Coating failure
Metal connection between
two adjacent electrodes Electrode short Abnormal metal layer

deposition and etch
variation during fabrication

Broken wire to control
source Electrode open

Grounding failure Floating droplets
Particle contamination Contamination Adsorption of proteins at

electrode surface

to a testing scheme. For example, a straightforward testing scheme is the parallel-
scan [86], which sends droplets first on the columns and then on the rows of the biochip
array. A capacitive sensor is used to detect the presence of the droplets at the expected
position. In case an electrode on the droplet’s route is affected by permanent faults, the
droplet will get stuck at an intermediate position and not reach the destination electrode.
Researchers have focused on testing schemes that optimize the testing time and the
number of dispensing reservoirs for test droplets [83, 81].

Transient faults. Also known as “parametric faults”, transient faults occur unpre-
dictably during the execution of an operation. Although transient faults do not prevent
the operation from executing, the result of the operation does not correspond to its
specified behavior. Some of the typical causes leading to transient faults are given as
follows [34, 81]:

• Misalignament between the droplet and the control-electrode—is the most fre-
quent cause of unbalanced split operation. Erroneous variation in droplet volume
can have a significant negative impact on the outcome of the biochemical appli-
cation. Estimates show that erroneous variation in droplet volume can count to
up 80% of the total error in a bioassay [24]. An example erroneous split opera-
tion, i.e., resulting in unbalanced droplets, is presented in Fig. 2.5.

• Change in viscosity of droplets and filler fluid—caused by temperature variation
during operation execution induced by an abnormal environment. As a result,
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the concentration of droplets after a mixing operation can be erroneous.

• Particle contamination—occurs when the droplet or the filler fluid gets contam-
inated by a particle, which gets attached to the insulator surface of an electrode.
In case of contamination, the result of the bioassay cannot be trusted.

DMBs can have integrated sensors that operate at a speed comparable to the execu-
tion time of a fluidic operation. Such sensors facilitate real-time error detection and
recovery. A LED and photodiode sensor can be used for determining the concentra-
tion of a specific compound in a droplet (e.g., glucose [72, 71]), whereas a capacitive
sensor [61] can be used to determine the volume of a droplet. The capacitive-detection
circuit used to measure the volume operates at high frequency (15 KHz [60]), while
the LED-photodiode sensor needs 5 seconds to measure the absorbance of the product
droplet in order to determine its concentration. For the photodiode detector, a transpar-
ent droplet has to be mixed with a reagent to generate a colored analyte. In this case,
the initial droplet is not suitable for other operations. The capacitive sensor does not
alter the initial droplet, which can be used for subsequent operations.

Erroneous droplet volumes can also be detected by using a Charged-Coupled Device
(CCD) camera-based detection system (see Section 4.2.5), which analyzes the images
captured during the bioassay execution [44]. The CCD camera-based detection system
adds to the complexity of the system by requiring external instruments and specialized
software, but has the advantage of detecting the errors when they occur, eliminating the
need for specialized detection operations, which have to transport a droplet to a sensor
on the biochip.

In this thesis we consider permanent faults in the context of architecture synthesis (Sec-
tion 5.1). Our solutions to the architecture synthesis problem introduce redundant elec-
trodes in order to determine an application-specific architecture that is fault-tolerant
to permanent faults, i.e., the application can be completed within the deadline even
in the presence of k permanent faults. We assume that our architecture synthesis is
part of a methodology, presented in Chapter 3, and thus, the architecture is tested after
fabrication in order to determine the actual locations of faults.

Figure 2.5: Unbalanced split [20]



18 System Models

We consider transient faults during operation execution. First, we focus on the transient
faults during split operations. We propose an fault-tolerant application that assumes
maximum s faults during split operations (Section 2.4.1). Our proposed fault-tolerant
model is used in an offline compilation approach (Section 4.1) to recover from the
faulty split operation.

Then, we consider faults in all operations, and we propose a fault-tolerant application
model (Section 2.4.2) and an online compilation strategy to decide at runtime the ap-
propriate actions for error recovery (Section 4.2). In this thesis, for transient faults,
which may result in erroneous droplet volumes, we use both capacitive sensors and a
CCD camera-detection system for determining the volume of a droplet, which is then
compared to its expected volume in order to perform error detection.

2.2 Operation execution

There are two types of operations: reconfigurable operations (mixing, split, dilution,
merge, transport), which can be executed on any electrode on the biochip, and non-
reconfigurable operations (dispensing, detection), which are bound to a specific device
such as a reservoir, a detector or a sensor. Based on experiments, researchers char-
acterize a module library L , such as the one in Table 2.2, which provides the area
and corresponding execution time that are needed for each operation. As shown in
Table 2.2, the time needed for two droplets to mix on a 2×5 module is 2 s.

Researchers have used several approaches to group the electrodes in the architecture
array and thus form “virtual devices” on which the operations execute [50]. The
straightforward approach used by most researchers is to consider a rectangular area
of electrodes, called a “module”. Fig. 1.3 shows an example of a 2× 5 module. In
case two droplets are on neighboring electrodes, they merge instantly. Hence, in order
to avoid accidental merging, each module is surrounded by a “segregation border” of
one-electrode thickness, as shown in Fig. 1.3.

A mixing operation is executed when two droplets are moved to the same location and
then transported together according to a specific pattern (see Fig. 1.3). Mixing of two
droplets happens due to diffusion. In order to study the process, a fluorescent droplet
and a non-fluorescent droplet are brought together and left to diffuse over a period of
time, while the levels of gray are measured for the product droplet [17]. However, it has
been observed that mixing can be enhanced if diffusion is helped by movement [58].

When droplets are moved back and forth on a linear mixer, a regression is noticed
during the backward moves, due to flow reversibility. A 2× 2 mixer eliminates the
flow reversibility issue, but does not provide better results (see Table 2.2), because the
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Table 2.2: Example module library L [76]

Operation Area Time (s)
Mix 2×5 2
Mix 2×4 3
Mix 2×3 6
Mix 1×3 5
Mix 2×2 10

Dilute 2×5 4
Dilute 2×4 5
Dilute 3×3 10
Dilute 1×3 7
Dilute 2×2 12
Store 1×1 N/A

Transport 1×1 0.01

droplets are pivoting around a single point. Having more pivoting points, like in a
2× 3 mixer, enhances the mixing. Increasing the movement on one direction is also
beneficial for mixing, so, as seen in Table 2.2, even better results are obtained for a
2×4 mixer (3 s) in comparison to a 2×3 mixer (6 s). The two droplets from Fig. 1.3
are mixing on a 2×5 module, by moving according to the indicated pattern.

A split operation is done by keeping the electrode on which the droplet is resting turned
off, while applying concurrently the same voltage on two opposite neighboring elec-
trodes. For example, in Fig. 2.2, to split the droplet, we have to turn off the control-
electrode in the middle and turn on simultaneously the left and right control-electrodes.
Dilution is a mixing operation followed by a split operation.

To dispense a droplet from the reservoir, several electrodes are activated to form a
“finger” droplet, which is afterwards split to obtain the final droplet [61].

For droplet transportation, we use the data from [60], thus we assume that routing a
droplet between two adjacent electrodes takes 0.01 s (see the “Transport ” operation in
Table 2.2).

2.2.1 Circular-route module

As mentioned, each reconfigurable operation is executed in a determined biochip area,
called a “module”. Similar to the “black-box” approach, all the electrodes forming
such a rectangular module are considered occupied during the operation execution, and
cannot be used by other operations. However, an operation is not necessarily confined



20 System Models

Table 2.3: CRM library L for the architecture in Fig. 2.6a

Operation CRM Time (s)
M1 2.7

Mix M2 2.1
M3 2.08
M1 5

Dilution M2 3.92
M3 3.9

to a rectangular area and it can execute anywhere on the microfluidic array as is the
case with the routing-based compilation [52], which allows operations to execute on
any route.

The advantage of routing-based operation execution is that it utilizes better the avail-
able biochip area. However, some biochemical applications use protein-based com-
pounds that can leave residues behind [93]. The disadvantage of routing-based opera-
tion execution is that it makes it difficult to avoid contamination. Therefore, [52] later
advocated a routing-based operation execution constrained to a given area [53].

We use a similar approach in this thesis, and we constrain the routing-based operation
execution to a given “circular route”. We define a Circular-Route Module (CRM) as a
route of one-electrode thickness which starts and ends in the same electrode, and does
not intersect itself. Given a CRM, a droplet will move repeatedly on the route until the
operation is complete. We denote such a CRM with Mi. Fig. 2.6a shows three examples
of CRMs, M1, M2 and M3.

A “droplet-aware” operation execution is proposed in [53], based on the assumption
that we know the position of the droplets during the execution of the operation. Thus,
only the electrode holding the droplet and the adjacent electrodes are considered occu-
pied (to avoid accidental merging). The rest of the electrodes assigned to the CRM are

Figure 2.6: Example of circular-route modules
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not considered occupied, and can be used for other operations. As a consequence, the
routes for different operations may overlap over several electrodes. In order to avoid
undesired droplet merging for intersecting routes during runtime, we instruct one of the
droplets to take a detour from its predetermined route as shown in Fig. 2.6b or to wait
until the other droplet passed by. In addition, to avoid contamination, we can capture
restrictions for the operations that have specified contamination conflicts.

We use the module decomposition approach proposed in [52] to estimate the operation
completion time for each CRM. In [52], the droplet movement during an operation
is decomposed into basic movements and the impact of each basic movement on the
operation execution is calculated.

As seen in Fig. 2.7a, on a 2× 3 mixer, a cycle is completed by forward movements
(0◦), followed by turns (90◦). On a 1× 4 mixer (see Fig. 2.7b), the droplets complete
one cycle in 3 movements: one backward movement (180◦) followed by two forward
movements (0◦). Using an experimentally determined library, that contains information
about the execution times of the operations, the method proposed in [52] estimates, for
each movement, the percentage completion towards operation execution.

Thus, we can determine p0
cycle—the percentage towards operation completion for a

cycle when there are no faults, using the following equation:

p0
cycle = n1

0◦ × p1
0◦ −n2

0◦ × p2
0◦ +n180◦ × p180◦ +n90◦ × p90◦ , (2.1)

where p1
0◦ , p2

0◦ , p180◦ , p90◦ are the percentages towards operation completion for a
forward movement for one electrode, a forward movement for at least two consecutive
electrodes, a backward movement and a turn, respectively, and n1

0◦ , n2
0◦ , n180◦ , n90◦ are

the number of forward movements for one electrode, forward movements for at least
two consecutive electrodes, backward movements and turns, respectively. Then, we
determine ni—the minimum number of times the droplets have to rotate on a given
circular route to achieve at least 100% operation completion. Fig. 2.6a shows ni for
each of the three CRMs, 31 for M1, 16 for M2 and 8 for M3. The total execution time
is obtained by multiplying ni with the time needed to complete one rotation.

Figure 2.7: Module decomposition approach for operation execution
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For example, for the route depicted in Fig. 2.7c, the droplets need to cycle 10 times
in order to complete the mixing operation, resulting in an execution time of t = 2.2 s.
We have used the following values for the percentages towards operation completion:
p1

0◦ = 0.29%, p2
0◦ = 0.58%, p180◦ =−0.5%, p90◦ = 0.1% [52].

In this thesis, we propose an algorithm (see Section 3.2) that determines, for a given
application-specific architecture, a module library L , which provides the shape of each
CRM Mi and the corresponding execution time needed for each operation. For ex-
ample, for the architecture in Fig. 2.6a, we have determined the CRM library shown
in Table 2.3. The library L is used during compilation to determine the application
completion time.

2.2.2 Worst-case operation execution overhead in case of perma-
nent faults

Permanent faults, which are introduced during fabrication, can affect the execution of
the biochemical application, see Section 2.1.1. We want the biochemical application
to run within its deadline even in the case of maximum k permanent faults. In case a
module contains faulty electrodes, the droplets need to be re-routed in order to avoid
the permanent faults. Let us consider the module from Fig. 2.8b, where the faulty
electrodes are marked with “x”. In order to avoid the faults, the droplets are instructed
to take a detour (i.e., are re-routed), as shown in Fig. 2.8b.

In order to determine if an application G finishes within its deadline even in case of
faults, we run a compilation that determines the application completion time δk

G in case
of k faults. We denote with Ci the operation execution time without fault tolerance
and with Ck

i the operation execution time in case of k faults. The compilation uses the
execution time Ck

i of the operation Oi to determine δk
G . The value of δk

G depends on the
location of the k permanent faults.

In this thesis, we use the compilation in two situations, see the methodology in Chap-
ter 3, as follows.

(i) Once a biochip has been fabricated, we use compilation to determine the electrode
actuation sequence needed to run the application. In this case, the actual locations
of the permanent faults are known, and are used to update the worst-case operation
execution time.

(ii) Before a biochip has been fabricated, inside a design space exploration which
searches for an application-specific biochip architecture. In this case, we do not yet
know the locations of the permanent faults. Next, we present how we estimate Ck

i in
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Figure 2.8: Worst-case operation execution time in case of permanent faults

this case. In this section we present a pessimistic but safe exhaustive approach, and
in Section 2.2.3, we present a fast, but potentially unsafe approach (safe means that
for all the possible patterns of permanent faults, the actual execution time of Oi is not
larger than our determined Ck

i ). The advantages and disadvantages of each approach to
operation execution estimation in case of permanent faults are discussed in Section 5.1.

In the first approach, we consider that each module placed on the biochip suffers from
k faulty electrodes (note that the k faults are for the entire biochip), and we propose a
technique to determine the overhead of the k permanent faults on an operation execu-
tion. Our approach is to determine the worst-case execution time Ck

i , i.e., the largest
operation execution time among all possible combinations of k faults placed on the
electrodes of the module Mi.

Because the modules have a small area, we use at design time an exhaustive search
to determine, for each possible combination of k faults on the module’s electrodes,
the best new route which avoids the faults, and leads to the fastest operation execution.
The largest time among these is Ck

i . Our proposed approach is general and it can handle
both rectangular modules and CRMs.

Let us consider, for example, the module M1 in Fig. 2.8a and determine C2
1 , which is the

worst-case execution time for k = 2 permanent faults. Fig. 2.8b, c present two different
routes that avoid the same combination of k = 2 faulty electrodes, marked with a red
“x”. The best route out of the two is the one shown in Fig. 2.8c, which completes the
operation in 2.3 s.

By evaluating all possible routes the avoid a specific pattern of faulty electrodes, we
can determine an optimal execution time. In our example, for the pattern of faulty
electrodes in Fig. 2.8b, the optimal execution time is 2.3 s. Next, we determine the
optimal execution times for all possible combinations of k = 2 faulty electrodes. The
largest value among these is the worst-case execution time C2

1 , which for our example
is 2.71 s.
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2.2.3 Estimation of operation execution in case of permanent faults

Determining the worst-case execution time through exhaustive search is very time con-
suming and cannot be used inside a search metaheuristic such as the one we propose
for architecture synthesis, see Chapter 5.

Hence, we propose a faster method to determine an estimate of the operation execu-
tion time, which is less pessimistic than the worst-case value. Our estimation method
considers CRMs and determines for a CRM Mi the corresponding operation execution
time C f

i , which is the time needed by a reconfigurable operation (e.g., mix, dilution) to
complete on Mi considering f permanent faults, f = 1 to k, where k is the maximum
number of permanent faults.

Let us denote with p0
cycle the percentage towards operation completion for a cycle when

there are no faults. The value of p0
cycle is obtained using Equation (2.1) as explained in

Section 2.2.1. We need to estimate p f
cycle—the percentage towards operation comple-

tion for a cycle when there are f permanent faults. Once we know p f
cycle, we calculate

n f
i —the number of cycles needed to achieve at least 100% operation execution. The

value of C f
i is obtained by multiplying n f

i with the time needed for one cycle p f
cycle.

In case a CRM contains faulty electrodes, the droplets need to be re-routed in order to
avoid the permanent faults. Let us consider that the CRM in Fig. 2.9a has the faulty
electrodes marked marked with “x” in Fig. 2.9b. In order to avoid the faults, the droplets
are instructed to take a detour, as shown in Fig. 2.9b. Since the position of the faults is
not known, in our previous approach we have used an exhaustive search to determine
the execution time for the worst-case fault pattern occurring in a CRM.

As an alternative, here we propose a faster estimation heuristic, which, instead of per-
forming an exhaustive search, makes some simplifying assumptions about the impact
of the worst-case fault patterns on the operation execution.

Figure 2.9: Estimation of operation execution time in case of permanent faults
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One assumption is that the permanent faults form a pattern which can only be avoided
by using backward movements (180◦ turns). Backward movements lengthen the oper-
ation execution time Ci, because they induce flow reversibility.

Fig. 2.9c and d show the routes taken by the droplets to avoid f = 1 and f = 2 per-
manent faults, respectively. However, if one of the faults is positioned so that it has
non-faulty neighboring electrodes, the fault can be avoided by taking a detour (see
Fig. 2.9b).

Backward movements have a negative impact on the operation execution (i.e., the oper-
ation execution is regressed). Hence, in most of the cases, using a backward movement
can lead to a larger increase in execution time than taking a detour. Since we do not
know the exact location of the faults, and consequently whether such detour-routes are
possible, it is our assumption, as mentioned, that faults are avoided by using backward
movements. Hence, instead of avoiding the faulty electrodes by finding a path around
them, the droplets will be routed back and forth between two of the f faults, as shown
in Fig. 2.9d. Consequently, the cycle of droplets on the CRM is reduced to the distance
between two of the f faults. In case f = 1, the droplets will be routed as shown in
Fig. 2.9c.

Another assumption is that, if there are more faults (f ¿ 1), they are located such that
they lead to the “most damage”, i.e., the largest increase in Ci. We assume that this hap-
pens when the faults are located at equal distance on the CRM, as shown in Fig. 2.9d.
Our assumption is based on the fact that a route with a higher frequency of backward
movements will need more time to complete the operation.

Considering the assumptions mentioned above, we estimate p f
cycle using the following

equation:
p f

cycle = p0
cycle/ f −2× p2

0◦ + p180◦ , (2.2)

where p0
cycle, p180◦ and p2

0◦ are the percentages towards operation completion for a cy-
cle with no faults, a backward movement and a forward movement for at least two
consecutive electrodes, respectively. Since we consider that the f faults are located
at equal distance, we obtain in the first term in Equation (2.2), a rough estimation of
p f

cycle by dividing p0
cycle to f . However, to be more precise, we take into account that 2

electrodes are occupied by faults (second term in Equation (2.2)) and that a 180◦ turn
is needed (third term in Equation (2.2)). For the second term in Equation (2.2), we as-
sumed we are loosing electrodes which contribute most towards operation completion
(i.e., the completion percentage is p2

0◦ ).

The value of p0
cycle (determined using Equation (2.1), see Section 2.2.1), p2

0◦ and p180◦

depend on the operation type and on the fluids used the operation. Hence, Equa-
tion (2.2) determines for each CRM a parametric estimation of the execution time,
where the parameters are the percentages p1

0◦ , p2
0◦ , p180◦ and p90◦ . Once the binding of
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the operations is decided, i.e., we know which operations are assigned to each CRM,
then we introduce in Equation (2.2) the corresponding values for p0

cycle, p2
0◦ and p180◦ .

For our example we use the following values: p2
0◦ = 0.58% and p180◦ = −0.5% [52].

Considering k = 2 permanent faults for the CRM M1 in Fig. 2.9a, we estimate, using
Equation (2.2), the following execution times: C1

1 = 4.8 s and C2
1 = 5.28 s (see Fig. 2.9c,

d). These operation execution values C f
i are used inside the compilation to determine

the application completion time δk
G .

2.3 Biochemical application model

A biochemical application is modeled using a Directed Acyclic Graph (DAG) model [14],
where the nodes represent the operations, and the edges represent the dependencies be-
tween them. We have extended the model proposed in [14] to model error detection
and error recovery and to capture the operations needed for recovery.

We denote with G0 the biochemical application model without fault-tolerance features.
Fig. 2.10 presents such an application graph G0 with 15 operations. A node in G0 rep-
resents an operation Oi. In Fig. 2.10 we have operations O1 to O15. A directed edge ei j
between operations Oi and O j models a dependency: O j can start to execute only when
it has received the input droplet from Oi. An operation is ready to execute only after
it has received all its input droplets. For example, in Fig. 2.10, the mixing operation
O6 is ready to execute only after operations O3 and O4 have finished executing and the
droplets have been transported to the biochip area where O6 will perform the mixing.
If the produced droplet cannot be used immediately (e.g., has to wait for another oper-
ation to finish), it has to be stored in a storage unit (see Table 2.2) to avoid accidental
merging. In our model, we do not capture explicitly the routing operations required to
transport the droplets, but we take routing into account during the compilation.

Biochemical applications can have strict timing constraints. For example, in the case of
sample preparation, the reagents degenerate fast, affecting the efficiency of the entire
bioassay [32]. In addition, operations can have local deadlines. For example, once two
droplets are mixed, they should not wait more than a certain time before they are sub-
sequently used (e.g., the reactions of aryllithium compounds bearing alkoxycarbonyl
groups [89]). We can easily model such local deadlines by introducing dummy nodes
in the application graph, and by having a global application deadline.

In this thesis we assume a hard deadline dG , but our approach can be extended to handle
soft deadlines, with the aim of maximizing the utility. The deadline dG is hard, i.e., the
application is considered faulty if it does not complete within dG , even in the case of
faults. However, many biochemical application can have soft deadlines, where there is
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Figure 2.10: Biochemical application graph G0

still some utility in continuing to execute the application after the deadline. We discuss
this issue in Section 6.2 on future work.

2.4 Transient faults and fault-tolerance models

DMBs can experience permanent and transient faults, as discussed in Section 2.1.1.
In this section we present our transient fault model and we show how the application
model from the previous section can be extended to capture the fault-tolerance required
to recover from the transient faults.

During the execution of the biochemical application, the droplets will naturally undergo
changes in volume during mixing, dilution and split operations. For example, when two
droplets merge for a mixing operation, the resulting droplet has a volume equal with
the sum of the input droplets volumes. After a split operation, the resulting droplets
have volumes equal to half of the initial droplet volume. However, the volume of a
droplet can also vary erroneously due to transient faults, such as an electrode coating
fault or unequal actuation voltages during split [88]. An example of a faulty split oper-
ation is presented in Fig. 2.5. The erroneous droplet volume propagates throughout the
execution of the bioassay, thus impacting negatively the correctness of the application.
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Section 2.4.1 presents an application model that captures the fault-tolerance required
to recover from faulty split operations. This model will be used in Section 4.1 to
compile offline a fault-tolerant implementation. Section 2.4.2 presents a more general
application model, which can capture the fault-tolerance required for transient faults
in all types of operations, not only the split operations. This model will be used in
Section 4.2 to compile online, during the application execution, the required recovery
actions.

2.4.1 Fault-Tolerant Sequencing Graph

Let us now discuss our application model for transient faults in split operations. In this
context, our assumption is that there can be at most s faults in the split operations of an
application.

In order to determine if a split operation is faulty, we bring one of the resulted droplets
to a capacitive sensor which measures the droplets volume. Two outcomes are possible
after a detection operation. The first one corresponds to a correct droplet volume, and
the second one to an erroneous droplet volume. In case the measured volume is the
expected one, i.e. no error has occurred, the corresponding droplet is transported from
the sensor to the location where the subsequent operations will execute. Otherwise,
in case the split operation is erroneous, the resulted droplets are merged back and the
split is re-executed. In the worst-case, a split will have to be performed s + 1 times, to
tolerate the maximum s faults that can happen in the application. The last split does not
have to be followed by a detection operation, since we know it will not experience an
error: all faults have already happened. Note, however, that these s faults can happen
in any of the split operations of the application.

We propose a Fault-Tolerant Sequencing Graph (FTSG) GS to capture all fault sce-
narios considering maximum s faulty split operations. In GS, each split operation is
followed by a detection operation which detects if a fault has occurred. Each split op-
eration Oi is transformed into a structure which models all possible fault occurrence
scenarios. Let us consider the initial application graph G0 in Fig. 2.10 and the corre-
sponding FTSG in Fig. 2.11. O4 is transformed into the structure that starts with node
O4.1 in Fig. 2.11. We use the notation convention Oi.x to denote the xth copy of the
split operation Oi inserted in GS. Each such split operation is followed by a detection
operation. As shown in Fig. 2.11, the detection operation D16 was introduced in GS

after the split operation O4.1. Note that operations O8–O15 from Fig. 2.10 are depicted
in Fig. 2.11 as “...”. During a detection operation, one of the droplets resulted from
the previous split operation is routed to the sensor for error detection. The number nsns
of the sensors and their placement on the biochip are decided during the compilation
phase.
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Figure 2.11: Fault-Tolerant Sequencing Graph

Each detection operation is followed by two conditional edges corresponding to the
faulty and non-faulty split scenarios, respectively. A conditional edge is a dependency
between two operations, which is activated only when the associated condition is true.
Conditional edges are used to model the outcome of a detection operation Di. Let us
assume that Di will produce an error condition Ei, which is true if an error has been
detected and false if an error has not been detected. Thus, Di will have two outgoing
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conditional edges, labeled with Ei and E i. We call such an operation with outgoing
conditional edges a disjunction node.

For example, for the detection operation D16, we insert the following conditional edges:
D16 → O20 under the condition of a fault occurrence E16, and edges D16 → O5.1 and
D16→O6.1, under the condition of no fault occurrence E16, respectively. On the faulty
branch, we have to add a merge operation (O20) and a recovery split operation (O4.2).
For both scenarios, we have to copy from G0 the subgraphs originating from the split
operation. Hence, in case a fault is detected by the detection operation D16, the con-
dition on edge D16→ O20 is satisfied and node O20 is activated. In this case, the two
resulting droplets are merged back into the initial one, and the split operation is re-
peated. However, if the detection operation does not detect a fault, nodes O5.1 and O6.1
are activated instead.

We continue the transformation with the next split operations, including those intro-
duced in GS by the previous transformations. The process continues until all possible
alternative scenarios are built. A scenario represents the fault pattern of maximum s
transient faults that can happen during the split operations from G0.

The graph in Fig. 2.11 assumes a maximum number of 2 faults which can occur on
the split operations O4 and O7. The split operation O4.2 is placed on the faulty branch
originating from the detection operation D16, which means that a fault has already
occurred (in O4.1). Since s = 2, another fault can occur, which means that O4.2 has
to be followed by a detection operation, D21. Our construction procedure keeps track
of the fault occurrence to build the structure of GS. On the faulty branch from O21
we introduce the recovery split operation O4.3. However, O4.3 is not followed by a
detection operation, since we are currently in the scenario when both faults have already
occurred (first in O4.1 and second in O4.2).

There are 6 possible scenarios in this particular case: /0—no faults at all; {O4}—one
fault during O4; {O7}—one fault during O7; {O4, O7}—two faults, one during O4,
and one during O7; {O4, O4}—two faults during O4; {O7, O7}—two faults during O7.
These six alternative scenarios are captured in the FTSG in Fig. 2.11.

2.4.2 Generalized Fault-Tolerant Application model

The previous FTSG model captures transient faults only in the split operations, and
assumes a single recovery technique: merging the incorrect droplets and splitting them
again, which is similar to re-execution, a form of time redundancy. In this section
we propose a Generalized Fault-Tolerant Application (GFTA) model that addresses
transient faults in all operations, and we consider several recovery techniques. In this
context, our transient fault models does not make any assumptions on the number of
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maximum transient faults that can happen, i.e., we can capture any number q of tran-
sient faults.

2.4.2.1 Error propagation and error detection

Errors due to transient faults can propagate from one operation to another operation,
eventually impacting negatively the correctness of the bioassay’s results. In [95], the
authors use error analysis [84] to derive the error limit at the output of an operation
from its intrinsic error limit and the limits of the input operations. The assumption is
that each fluidic operation has a specific error range associated with it, called “intrinsic
error limit”, which captures the worst-case volume variations.

For example, if the intrinsic error limit EMix for mixing is 10%, after a mix operation
the output droplet can have a volume between 90% and 110% of the nominal value. We
use the following notation: EMix is the intrinsic error limit for mixing operation, EDlt
for dilution, ETrans for transport, EDs for dispensing, ESlt for split. Experimentally, the
following values were determined for the intrinsic error limits: EDs = EDlt = ESlt = 8%,
EMix = 10%, ETrans = 12% [95].

The equations in Fig. 2.12c [95] calculate the error limit εMix at the output of a mixing
operation, εDs for dispensing, εDlt for dilution, εTrans for transporting and εSlt for split
operations as a function of intrinsic error limits EMix, EDs, EDlt , ETrans and ESlt respec-
tively, and input error limits I1 and I2. The error limit at the output of an operation is
propagated and becomes the error limit for its successor operation. In Fig. 2.12b, for
the dilution operation O4 we have the intrinsic error EDlt = 8% and the input operation
error limits I1 = 11.4% (for O3) and I2 = 8% (for O9). Using Eq.(v) from Fig. 2.12c,
we estimate the error limit at the output of O4 to be 17.4%.

We continue to calculate the error limits for all fluidic operations in the biochemical
application. For every bioassay, according to its specific accuracy requirements, the
designer decides on a specific volume variation boundary ET hr, named threshold error,
which is the maximum permitted variation from the nominal volume. When the error
after an operation Oi, calculated according to the presented error analysis, exceeds the
error threshold ET hr, a detection operation Di is inserted into G0 to detect at runtime if
an error has actually occurred or not.

For the graph in Fig. 2.12a, the ET hr was set to 12%; as a result, the detection oper-
ations D4 and D7 were inserted into G0 after O4 and O7, respectively, obtaining G+,
as depicted in Fig. 2.12b. In case Oi is an operation with two output droplets (e.g. the
dilution operation O4 in Fig. 2.12b), the detection operation will have two inputs, as
in the case with operation D4 in Fig. 2.12b. However, it is sufficient to measure the
volume of only one droplet in order to determine if an error has occurred.
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Figure 2.12: Example application model, with error propagation and detection

After each detection, we reset the error limit to 0%, since it is assumed that in case
an error is detected, the necessary actions to recover from the error are taken. The as-
sumption is that a volume error occurring in an earlier operation can also be detected
later, after it has propagated. For operations where this is not the case, the designer
will statically assign a corresponding detection operation at a pre-determined place in
the graph. Researchers have so far assumed that all the detection operations are stati-
cally assigned. However, in Section 4.2.4.1, where we propose an online redundancy
optimization and recover strategy, we discuss how to assign dynamically the detection
operations by adjusting at runtime the error threshold ET hr based on the current fault
occurrences.

If the volume of a droplet is detected as erroneous, we have to create a new similar
droplet with the correct volume (i.e., we recover from the detected error). This can be
done in several ways. The simplest solution is to discard all the operations executed
so far and re-execute the entire application from the beginning. However, this is very
time-consuming, especially for the cases when errors occur at later stages. For most
applications, a complete re-execution results in exceeding the deadline and wasting
expensive reagents and hard-to-obtain samples. For example, in Fig. 2.12b, if an error
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is detected in D7, we have to re-generate the droplets needed for O7. In this case, we
do not need to re-execute operations O5 and O8.

In our approach, we use three strategies to create droplets with the correct volume:

1. We re-execute the operations needed to re-generate the droplet, after an error has
been detected. We call such an approach time redundancy. The advantage of time
redundancy is that it re-executes operations only when needed (when an error has been
detected); the disadvantage is that it leads to delays in the application execution.

2. We execute operations which will produce a correct droplet before we know if an
error has occurred, in parallel to the application execution. We call this approach space
redundancy. The advantage of space redundancy is that, if an error is detected, we can
use the redundant correct droplet directly, without waiting to be re-generated. The goal
is to use the extra biochip area, if available, to speculatively produce correct droplets,
without a negative impact on the application execution. The disadvantage is that if not
enough area is available, space redundancy will introduce delays during the application
execution, since it competes for the same resources with the regular operations.

3. We use the redundant droplets available as a by-product of the regular application
execution or after using space and time redundancy for other operations. For example,
if we use only one droplet after a dilution operation, we can use the second droplet for
fault tolerance, if it has the correct volume. Let us assume that we need to re-generate
the droplets for an operation O j. If we predicted a fault in a predecessor operation Oi
of O j, and we used space redundancy for Oi but an error has not been detected after
Oi, we may be able to use in O j some of the redundant droplets produced by space
redundancy for Oi.

2.4.2.2 Redundancy models

In all three strategies outlined earlier, we generate the correct droplets by using redun-
dant operations in the application graph, corresponding to a detection operation Di.
These redundant operations are grouped into a subgraph Ri, which is connected to the
graph G+, i.e., the application graph G0 with the detection operations. These sub-
graphs are responsible for producing correctly-sized droplets, and are inserted into G+

such that output droplets produced by Ri become the input droplets for the successors
of operation Di.

Fig. 2.13b shows the recovery subgraph R11 for detection D11 in the graph in Fig. 2.13a.
A recovery subgraph Ri can be obtained at design time by performing a breadth-first
search on the graph G+, starting from Oi and going backwards towards the inputs.
Note that, as shown in Fig. 2.13c, not all the operations in Ri will be needed at runtime



34 System Models

Figure 2.13: Example of recovery subgraph

because redundant droplets may be already available, as discussed at point 3 earlier.
Our online compilation strategy from Section 4.2.4.1, will carefully manage these re-
dundant droplets and will eliminate from Ri, at runtime, the superfluous operations for
which such droplets are available.

Let us now discuss the difference between time and space redundancy in terms of how
the subgraph Ri is connected to the application graph G+ and how it is executed in
case of time and space redundancy. In the following models, we use the same concept
of conditional edge as introduced in Section 2.4.1. In addition, we define an execu-
tion guard as a condition which has to be true in order to activate the operations of a
redundant subgraph Ri.

Time redundancy. Fig. 2.14a presents how the subgraph Ri is connected to the graph
G+ in case of time redundancy for an operation Oi followed by a detection Di. The
subgraph Ri is depicted using a rectangular node. Such a node is hierarchical, since it
contains all the operations of Ri. Note that an error can occur also during the execution
of the subgraph Ri used for recovery. We denote with DR

i the detection operation needed
to detect such an error, which occurs during the recovery. We denote with Ei and ER

i
the error conditions produced after the detection operations Di and DR

i , respectively.

With time redundancy, the subgraph Ri is activated if an error is detected by Di or by
DR

i , i.e., if Ei ∨ER
i is true. This is depicted in Fig. 2.14a with an arrow on top of the

rectangular node Ri, labeled with the execution guard Ei ∨ER
i . Let us denote with OB

the successor operation of Oi (corresponding to the detection Di). OB will be activated
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Figure 2.14: Recovery using time vs. space redundancy

only if no error is detected by Di or no error is detected by DR
i after the recovery

subgraph Ri. This is captured in our model by connecting OB with the conditional
edges E i and ER

i to Di and DR
i , respectively.

If an error is detected by Di or DR
i , the corresponding incorrectly sized droplets will

have to be discarded. This is achieved by inserting the operations OA and OC in the
graph and connecting them to Di and DR

i using the conditional edges Ei and ER
i , respec-

tively. The operations OA and OC are responsible to transport the incorrect droplets to
the waste reservoirs. In these cases, i.e., Ei or ER

i are true, Ri is activated, as discussed.

Section 4.2.4 presents how Ri is compiled, including how its operations are scheduled,
in order to be executed. We also compile the operations OA and OC which transport the
incorrect droplets to the waste.

Because DR
i detects an error during Ri and thus activates it again for execution, our time

redundancy model tolerates several transient faults, constrained only by the deadline
dG .

Space redundancy. Fig. 2.14b presents our space redundancy model. We use space
redundancy to tolerate a single transient fault detected during a detection operation Di.
If a second transient fault is detected in the same place, we revert to time redundancy.

We denote with RSpace
i the subgraph Ri used for space redundancy in Fig. 2.14b and

with RTime
i the one used for time redundancy. For a detection operations Di, we do not

introduce more than one subgraph for space redundancy because they consume biochip
area and, if a fault does not occur, too much space will be wasted.
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Similar to time redundancy, we denote with DR
i the operation needed to detect a fault in

RSpace
i or RTime

i , with OB the successor operation of Oi and with OA and OC we denote
waste operations. The main difference to the time redundancy model from Fig. 2.14a is
that the subgraph RSpace

i used for space redundancy does not have an execution guard,
i.e., it is executed regardless if an error is detected by Di or not.

The advantage of space redundancy is that if an error is detected by Di, we do not have
to wait for the re-execution of Ri to get the correct droplets, as it is the case with time
redundancy. Instead, OB is ready to execute using the redundant droplet produced by
RSpace

i . This is captured in the model in Fig. 2.14b by the conditional edge Ei ∧ER
i

from DR
i to OB, which is activated only if an error has occurred in Di and no error has

occurred during the execution of RSpace
i . That is, we only use the redundant droplet

from RSpace
i if it is of correct volume, condition checked by DR

i , to which RSpace
i is

connected, and captured by ER
i . Note that OB may have to wait for RSpace

i to finish
executing, if not all operations in it have completed.

In case an error has been detected by Di and RSpace
i has also experienced an error, which

was detected by DR
i , we will use time redundancy (RTime

i ) to recover from these two
errors. Hence, RTime

i is only activated if both Ei and ER
i are true. Any errors in RTime

i
will be handled as discussed for time redundancy. Finally, if there are no errors at all in
Fig. 2.14b (i.e., E i∧ER

i ), we are left with redundant droplets produced by RSpace
i . Our

online compilation for recovery (discussed in Section 4.2, where the models presented
here are used) will decide what to do with these droplets. For example, they can be
stored to be used later during other recoveries. This is depicted in Fig. 2.14b with the
“store” operation OD, connected with the conditional edge E i∧ER

i to DR
i .

Fig. 2.15 presents the GFTA model GR for the graph G0 in Fig. 4.11a. GR was obtained
after deciding to use time redundancy for and D13 and space redundancy for D9 and
D11. As seen in Fig. 2.15, the corresponding recovery graphs RTime

13 , RSpace
9 and RSpace

11
were inserted according to the models presented above and depicted in Fig. 2.14.
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Figure 2.15: Example GFTA model for G0 in Fig. 4.11a
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CHAPTER 3

Design Methodology for DMBs

This chapter presents the typical phases of a methodology for the design of DMBs. The
purpose is to explain how the methods presented in this thesis are used within a design
methodology and to define the main design tasks. Note that the methods proposed in
this thesis can work with any methodology.

Before we can run a biochemical application on a DMB, we need to design its ar-
chitecture and then we have to fabricate it. Once the biochip is available, we need
to compile the biochemical application to produce the “electrode actuation sequence”.
Then, the application is run by actuating the biochip components using this sequence,
see Fig. 1.3. Thus, a design methodology for DMBs consists typically of the following
phases, see Fig. 3.1:

1. Architecture design. During this phase, the architecture of the biochip is decided.
The architecture can be rectangular (i.e., general-purpose) or non-regular (i.e.,
application-specific). In Chapter 5, we have proposed a method for the synthesis
of an application-specific architecture A for a biochemical application G with a
deadline dG , considering a maximum number of permanent faults k that have to
be tolerated. Since the architecture synthesis is performed before the fabrication
(step 2) and testing (step 3), the locations of permanent faults are not known
during the architecture synthesis.
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Figure 3.1: Typical phases of a design methodology for DMBs



3.1 Compilation of biochemical applications 41

2. Fabrication. During the fabrication phase, the biochip is fabricated based on
the architecture design produced in the previous step. A fabrication process
may introduce permanent faults in the biochip. We say that an architecture is
fault-tolerant to k permanent faults if it can still successfully run the biochemical
application within the required deadline.

3. Testing. During this phase, all the fabricated biochips are tested to determine if
they have permanent faults using testing techniques such as the ones proposed
in [88]. We assume that the architecture design phase has synthesized an archi-
tecture which is fault-tolerant to maximum k permanent faults. Hence, if, after
testing, there are more than k faults, the biochip is discarded. The exact locations
of permanent faults, will be known after this phase for each fabricated biochip.
Each biochip may have different permanent fault patterns.

4. Compilation. During this phase, we perform a compilation of the application G
on the architecture A to obtain the electrode actuation sequence. Since the loca-
tions of permanent faults are known, we can use permanent fault-aware com-
pilation method, such as the one proposed by [51], to determine the actual
completion time δk

G [51]. As introduced earlier, δG represents the application
completion time in case no faults are present. We use δk

G to denote the applica-
tion completion time in case k faults are present and may introduce an overhead
on top of δG . In case δk

G exceeds the application deadline dG , the biochip is
discarded.

5. Operation. During the operation phase, the bioassay is run on the biochip. In
Chapter 4 we present methods for the operation phase which are able to tolerate
transient faults during the application execution.

6. Disposal. After the biochip has been used, it is properly discarded or stored (in
case the results have to archived, e.g., as part of drug screening).

3.1 Compilation of biochemical applications

Considering an application G , a biochip architecture A and a module library L , given
as input, the application completion time δG is obtained through compilation. Com-
pilation is an optimization problem that can have multiple objectives. Researchers so
far have typically performed compilation such that the application completion time is
minimized. The compilation task has to determine the following: (i) the allocation O,
which selects the modules to be used from library L ; (ii) the binding B of the selected
modules to the operations in the application G ; (iii) the placement P , which decides
the positions of modules on the architecture A ; (iv) the schedule S of the operations;
and (v) the routing U of the droplets to the needed locations on the biochip.
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Figure 3.2: Example compilation task

Let us illustrate each of these tasks, using the application graph G0 from Fig. 3.2a,
which has a deadline dG = 25 s and has to be executed on the 11× 10 biochip from
Fig. 3.2b.

3.1.1 Allocation

During the allocation step we decide which modules to use for the execution of the op-
erations. To do that, we need a module library L , which provides for each module the
area and the time needed to execute an operation. Most research assumes a given mod-
ule library that has been previously characterized by designers. The characterization
of a module library takes time and it can have a high reagent-cost, since the applica-
tion has to be executed several times to confirm the results. In addition, in the context
of an architecture synthesis, such a characterized module library may not be available
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because of the non-regular layout of the application-specific architecture. Hence, in
Section 3.2 we propose a method to build a module library for a given architecture.

For our example, we use the characterized module library from Table 2.2. During the
allocation phase, the following modules are selected: two 2×5 modules and two 1×3
modules.

3.1.2 Placement of operations

Due to the dynamic reconfiguration feature of the biochip, each of these modules can
be placed anywhere on the chip. Modules can physically overlap on-chip, provided
that they do not overlap in time, i.e., they are used during different time intervals. If
two droplets get too close to each other (e.g., they are situated on adjacent electrodes),
then they tend to merge into a single droplet. That is the reason why, when a module is
placed on the chip, a segregation border is needed.

Fig. 3.2b shows the placement of the four modules M1–4 allocated for our example.

3.1.3 Binding and scheduling

Once the modules have been allocated and placed on the biochip, we have to decide
where to execute the operations (binding) and in which order (scheduling). All the
compilation methods presented in this thesis extend a List Scheduling heuristic [67]
to perform scheduling. List Scheduling has the advantage of producing good quality
results in a very short time, hence it is suitable during online compilation and during
the architecture evaluation, part of the architecture synthesis. Hence, we briefly present
here the main features of List Scheduling, see Fig. 3.3.

ListScheduling takes as input the application graph G , the biochip architecture A and
the module library L and outputs schedule S of operations and the application com-
pletion time δG . Every node from G is assigned a specific priority according to the
critical path priority function (line 1 in Fig. 3.3) [67]. The critical path is defined as the
longest path in the graph [67], between the root and the leaf nodes. Next, we sort the
library (line 2) in ascending order of operation execution time, i.e., the fastest modules
are ordered first in the library. List contains all operations that are ready to run, sorted
by priority (line 4). An operation is ready to be executed when all input droplets have
been produced, i.e. all predecessor operations from the application graph G finished
executing. The intermediate droplets that have to wait for the other operations to finish,
are stored on the biochip.
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ListScheduling(G , A ,L)
1: CriticalPath(G)
2: SortLibrary(L)
3: repeat
4: List = GetReadyOperations(G)
5: Oi = RemoveOperation(List)
6: M j = Place(L , A)
7: Bind(M j, Oi)
8: route = DetermineRoute(Oi, M j, A)
9: tstart

i = Schedule(Oi, S , route)
10: t = the earliest time when an operation finishes
11: UpdateReadyList(G , t, List)
12: until List = /0

13: return δG

Figure 3.3: List Scheduling compilation

The algorithm takes each ready operation Oi (line 5) and performs placement, binding,
routing and scheduling. Hence, the function Place (line 6) returns the first available
module M j ∈ L that can be placed on the biochip A . Since the library is ordered by
operation execution time, we know M j is the available module that can execute Oi the
fastest. Next, Oi is bound to M j (line 7), the routing is determined (line 8) and Oi is
scheduled (line 9). When a scheduled operation finished executing, List is updated with
the operations that have become ready (line 11). The repeat loop terminates when the
List is empty (line 12). The finish time of the last operation in the schedule S is the
application completion time δG .

Considering the graph in Fig. 3.2a, the obtained schedule without fault-tolerance is
presented in Fig. 3.2c. The schedule is depicted as a Gantt chart, where for each mod-
ule, we represent the operations as rectangles with their length corresponding to the
duration of that operation on the module. The allocation and binding of operations to
devices are shown in the Gantt chart as labels at the beginning of each row of opera-
tions. The thick vertical lines in Fig. 3.2c represent the routing times. For example,
operation O3 is bound to module M1 and starts immediately after operation O2 (tstart

3 =
2.09) and takes 2 s, finishing at time t f inish

3 = 4.09.

Depending on the application, dispensing operations can take up to 7 s [76], so it is
important to schedule them intelligently. Our heuristics is the following: A dispensing
operation, such as O1 in Fig. 3.2a, has no predecessor operations, therefore, if the
corresponding reservoir is available, it can be scheduled at time t = 0. However, until
they can be used, the dispensed droplets have to be stored on the biochip, occupying
areas that can be used for other operations. To avoid this situation, we schedule the
dispensing operations only when the dispensed droplets are needed.
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Figure 3.4: Routing example

At time t = 2 s mixing operation O3 has the highest priority among all the ready op-
erations (an operation is ready if all its input droplets have arrived). Module M1 is the
fastest available (i.e., not occupied by other operations) module, hence O3 is bound to
M1. After that, we determine the routes to bring the input droplets of operation O3
to module M1. The routing time is much faster in comparison to the execution times
of the operations, hence we represent it with thick green lines in Fig. 3.2a. The next
subsection presents examples of routing. However, for simplicity reasons, we have ig-
nored routing in all the other examples in this thesis, but we take routing into account
in our algorithms. At time t = 4 s, operation O3 finishes executing, and List is updated
with its successor, operation O4, which becomes ready to execute. The total schedule
length is 18.32 s.

3.1.4 Routing

In order to start executing an operation, we need to route the droplets, i.e., to bring the
input droplets to the location of the operation. As mentioned in the previous section,
we perform routing inside the ListScheduling algorithm. For our example, the droplet
routes determined at t = 2 and t = 4 are shown in Fig. 3.4a, b. For this example, we
consider that the operations start and finish executing on the bottom left electrode of
the module. As shown in Fig. 3.2c, at time t = 2 operation O3 is scheduled to start on
module M1. The input droplets are brought from dispensing reservoirs In R and In S,
as shown in Fig. 3.4a. At t = 4.09, operation O4 is scheduled to execute on module
M2 and thus, the output droplet of O3 and the dispensed droplet from In B are routed
as shown in Fig. 3.4b. As mentioned in Section 2.2, we assume that routing a droplet
between two adjacent electrodes takes 0.01 s [60].
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3.2 Building a library of circular-route modules

As mentioned, the compilation needs to use a module library L to decide what modules
to allocate and bind to the operations. For regular architectures, researchers have char-
acterized and used libraries such as the one in Table 2.2. However, such a library, which
contains rectangular modules, cannot be used for non-regular application-specific ar-
chitectures (see Fig. 2.1 for an example application-specific architecture). For such
architectures, we assume that we first build a library L of Circular-Route Modules
(CRMs) (see Section 2.2.1).

We want to determine CRMs that will use effectively the area on A , so that the ap-
plication completion time is minimized. As discussed in Section 2.2, mixing of two
droplets is achieved faster when the forward movement of the droplets is increased
and the backward movement is avoided [58]. An application-specific architecture can
have an non-regular shape, so we need to find those locations on the biochip where the
operations can be executed faster.

In Fig. 3.5 we present our proposed algorithm BuildLibrary, which returns a library of
CRMs for a given application-specific architecture. BuildLibrary starts by identifying
restricted rectangles (RRs) (line 1), which are areas of rectangular shape bordered by
the margins of the architecture. We use the RRs as guiding areas for obtaining CRMs.
Then, for each RR found, we call DetermineCRM to determine a list of circular route
modules LCRM (line 3), which is stored in the library L .

We use the cutting algorithm from [85], developed for paper cutting problems, where
the material needs to be optimally cut so that it minimizes waste. The list of restricted
rectangles LRR (line 1) is obtained by using “guillotine” cuts, done parallel with the
edges of the architecture. We start the cuts from each corner-electrodes of the archi-
tecture, using horizontal and vertical cuts. A corner-electrode is an electrode that at
least two edges which are not bordered by any other electrode. To obtain RXY we cut
horizontally and vertically, and then, changing the order, we use first vertical and then
horizontal cuts to obtain RY X , like the RRs depicted in Fig. 3.6 obtained for the bottom

BuildLibrary(A ,MinR,MaxR,MinW,MaxW )
1: LRR = DetermineRestrictedRectangles(A)
2: for each RRi in LRR do
3: LCRM = DetermineCRM(A ,RRi,MinR,MaxR,MinW,MaxW )
4: InsertInLibrary(LCRM , L)
5: end for
6: return L

Figure 3.5: Algorithm for building a CRM library
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Figure 3.6: Determining circular-route modules

right corner of the architecture. In some of the cases, RXY is the same rectangle as RY X .
Also, we consider those unused areas containing inactive electrodes and we extend
LRR with restricted rectangles of such inactive electrodes. In this case, the restricted
rectangles will be bordered by active electrodes.

As an input to the DetermineCRM function (presented in Fig. 3.7 and discussed in
Section 3.2.1), we use the control parameters MinR, MaxR, MinW, MaxW, which are
experimentally determined for a given application-specific architecture. The CRMs are
stored in the library L and used during the compilation.

3.2.1 Determining a circular-route module

For each restricted rectangle (RR), we determine a list of CRMs LCRM using Deter-
mineCRM, illustrated in Fig. 3.7. We start from the centroid (geometric center) of the
RR and “graphic fill” the architecture, considering each electrode a pixel (line 2). The
centroid of a rectangle is situated at the intersection of its diagonals. Fig. 3.6 shows
a filled architecture starting from the centroid of the restricted rectangle R1. We use a
greedy approach to find CRMs that fulfill the distance constraints set by control param-
eters MinR, MaxR, MinW, MaxW (line 8). MinR and MaxR bound the Radius, which
sets the distance from the centroid and it is used to determine the start position of the
CRM. MinW and MaxW set the boundaries for the next electrodes of the CRM, which
can be situated at a distance from the center that variates between [Radius − Window,
Radius], where Window can have any value in the range [MinW, MaxW].
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After the architecture is filled, the list of start-electrodes LSP for the CRM is determined
(line 3), by selecting all start-electrodes located at a distance equal with Radius from
the centroid of the considered RR. For example, for the restricted rectangle R1 from
Fig. 3.6, and a Radius= 6, the list of starting start-electrodes LSP contains all electrodes
marked with 6. From each of the start-electrodes we construct a route (line 6–11), by
adding new electrodes until the route completes in a circle, i.e., it reaches the start-
electrodes.

DetermineCRM(A ,RR,MinR,MaxR,MinW,MaxW )
1: LCRM = List of circular route modules
2: FillArch(A , RR)
3: LSP = GetStartPosition(A , RR, Radius)
4: for each StartPos in LSP do
5: for Radius from MinR to MaxR do
6: for Window from MinW to MaxW do
7: InsertInRoute(CRM,StartPos)
8: repeat
9: NextPos = GetBestNeighbor(CRM,Radius,Window)

10: InsertInRoute(CRM,NextPos)
11: until NextPos is StartPos
12: UpdateList(LCRM,CRM)
13: end for
14: end for
15: end for
16: return LCRM

Figure 3.7: Determine CRM algorithm

GetBestNeighbor (line 8) uses a greedy randomized [21] approach to select the next
electrode of the route. Out of the possible next electrodes, which are those that can be
reached from the current position, GetBestNeighbor selects from the neighbors that
are located within the boundaries imposed by control parameters, the one that leads to
the largest operation completion percentage (see Section 2.2.1). In case there are two
equally good candidates for the next position, GetBestNeighbor randomly selects one
of them. Backward moves are also permitted in case there are no other options.

Let us consider the example in Fig. 3.6, where the start-electrode is labeled StartPos
and the current position is labeled Pos. We also consider the given control parameters
Radius = 6, MinW = 1 and MaxW = 3. For such a window of size 3, out of the four
neighboring electrodes that can be reached from Pos, only three (the left, up and down
ones) fulfill the distance requirement, which is to be at a distance between 6 and 3 from
the centroid of R1. In our example, selecting the top or bottom electrode improves the
mixing with 0.1%, while the left electrode with−0.5%, due to flow reversibility. Since
the top and the bottom-electrodes are equally good candidates, we randomly select the
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top electrode to be the next position. The search continues, adding at each step a new
electrode to the CRM, until the start-electrode, labeled StartPos in Fig. 3.6, is reached.
We obtain the CRM marked with a red interrupted line in Fig. 3.6.

It is difficult to predict at the pre-compilation stage which CRM should be selected, to
reduce the completion time of the application, as it depends not only on the architecture,
but also on application’s particularities such as dependencies between operations and
contamination constraints. Hence, each of the determined CRMs is evaluated, and only
three are stored in LCRM (line 12): the one that minimizes the use of area, the one that
minimizes operation completion time; a third CRM, represented by the corresponding
RR is also stored in LCRM . DetermineCRM returns the list of CRMs LCRM (line 16).

Note that, if a general-purpose architecture is given as input instead of an non-regular
architecture, our BuildLibrary algorithm will determine only modules of rectangu-
lar shape. Hence, our algorithm is general and can be used for both general-purpose
architectures and application-specific architectures.
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CHAPTER 4

Compilation for Error
Recovery

In this chapter we are interested in fault-tolerance against transient faults, which occur
during the execution of the application, see Section 2.1.1 for a discussion on transient
faults and how they can be detected. Biochemical applications are executed based on
the electrode actuation sequence, which is produced in the compilation task, see Sec-
tion 3.1. When a transient error is detected during the execution, the original electrode
actuation sequence has to be interrupted, and recovery actions have to be initiated to
remedy the error. These recovery actions are a sequence of operations that have to be
executed, and will have to be compiled also into an electrode actuation sequence.

There are two main approaches for recovery, depending on when the compilation of
the recovery actions is performed: offline, at design time, or online, at runtime. In
the offline approach, all possible fault scenarios are identified, and a compilation is
performed for each corresponding sequence of recovery operations. These will form
alternative schedules, which are stored into a database. During the execution of the
application, when an error is detected, the corresponding schedule is selected from the
database and applied to recover from the error. This approach has the disadvantage of
a state explosion in case there are too many fault scenarios.

Because biochemical application execution is several orders of magnitude slower than
instructions executing on a microprocessor (see Table 4.1 for typical operation exe-
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cution times), we have the opportunity to decide the appropriate recovery actions and
compile them into an electrode actuation sequence at runtime. This has the advantage
of taking into account the actual fault-occurrences detected at runtime, which allows
for a more appropriate response, i.e., minimizing the recovery time and thus potentially
tolerating more transient faults.

Section 4.1 presents an offline approach to tolerating s transient faults that affect split
operations, whereas Section 4.2 presents an online recovery technique which can toler-
ate transient faults in all types of operations. The focus of these two sections is on the
compilation techniques required for producing the recovery actions.

4.1 Offline compilation for error recovery

In this section, we focus on the erroneous volume variation after an unbalanced split
operation. We propose a Fault-Tolerant Compilation (FTC) method that derives all
the backup static schedules needed to recover from all combinations of faulty split
operations.

A split operation is performed by turning on simultaneously the control electrodes to
the right and left of the droplet. However, due to the misalignment between the droplet
and the control electrode or because of the breakdown of electrode dielectric [70], the
resulting droplet volumes after a split operation might be unbalanced, see Fig. 2.5.
Recovery from faulty split operations is done by merging the droplets back and re-
executing the split operation. The error recovery actions are determined offline, and are
applied online when an error is detected. Hence, at runtime, the microcontroller will
switch to the backup schedules corresponding to the observed error occurrences.

Our approach for the proposed FTC is based on the following assumptions:

• The biochemical application is executed on a general-purpose biochip with a
rectangular architecture, such as the one in Fig. 4.1c.

• The operations execute on electrodes grouped in rectangular areas, called “mod-
ules”. We assume that the designers have characterized a module library L ,
which contains the execution time and area needed for an operation to complete,
similar to the one in Table 4.1.

• We consider that a split operation is faulty if it results in droplets with volume
variation from the expected volume, below a given threshold. The threshold is
given by the designer and depends on the application. If an error is detected (the
volume variation is below or above the given threshold), the resulted droplets
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are merged back. They have to be routed to the same place on the chip, and the
merging is instantaneous. The split operation will have to be performed again.

• We model the biochemical application using the proposed Fault-Tolerant Se-
quencing Graph (FTSG), presented in Section 2.4.1.

4.1.1 Problem formulation

In this section we address the following problem. As input we have a biochemical
application modeled as a graph G with a deadline dG and a rectangular biochip archi-
tecture A . The fault model is given by the parameter s which denotes the maximum
number of transient faults that can occur during split operations. The designer provides
a characterized module library L and specifies the maximum number nsns of volume
sensors that can be used. We are interested in compiling a fault-tolerant implementa-
tion Ψ such that the worst-case application completion time δs

G is minimized and the
deadline dG is satisfied. The worst-case application completion time δs

G is defined as
the longest execution time of G over all possible faults scenarios.

Hence, we have to decide on: the allocation O, which determines what modules from
library L are to be used; the binding B of each operation to a module Mi ∈ L ; the
placement P of the modules and of the sensors on the architecture A ; the fault tolerant
schedule S of the application, which contains the start time of each operation on its
corresponding module and the routing U of the droplets to the needed locations on the
biochip.

Let us consider the application graph G from Fig. 4.1a which is performed on an 8×8
biochip with three sample-reservoirs, two buffer-reservoirs and one reagent-reservoir,
using the module library L provided in Table 4.1. The deadline of the application
is dG = 25s. The input operations are already assigned to the corresponding input
reservoirs. During the allocation task, specific modules are selected from L and placed
on the 8× 8 chip, such that the application completion time is minimized. For this
example, the following modules are used: one 1× 3 mixer, two 2× 5 mixers and one
2×4 mixer, see Fig. 4.1c–f. The obtained schedule without fault-tolerance is presented
in Fig. 4.1b. As shown in the schedule, the biochemical application completes in 8 s,
satisfying the timing constraints. Note that we have ignored the dispensing operations
in this example.

However, the presented schedule does not take in account the possibility of fault occur-
rence during a split operation. Let us consider a maximum number s of faults that can
occur during the application execution. The faults are detected using sensors, which
have a fixed placement. For the application in Fig. 4.1a, we use one sensor, placed as
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Figure 4.1: Compilation results (no faults)

in Fig. 4.2a–d, where it occupies 1 cell (3×3 with protection borders) at the top right
corner of the chip.

The straightforward way to adapt the schedule from Fig. 4.1b is to introduce after each
split operation enough slack (idle time) that allows the application to fully recover in
case of faults. The fault-tolerance is achieved through error detection (detection) and
recovery (merging back the droplets, followed again by a split). Considering the worst-
case, in which all s faults happen in the same split operation, the required slack time is
calculated as:

tslack = s× (tdetection + tmerge + tsplit). (4.1)

We assume that merge and split operations are instantaneous and we use a detection
time of 5 s, see Table. 4.1. Thus, for s = 2, the slack required for recovering the
split operation O4 is 2× 5 = 10 s, as depicted in Fig. 4.2e, with a rectangle labeled
“O4 slack”. A similar slack is introduced for O7, thus obtaining the fault-tolerant
schedule from Fig. 4.2e, with a worst-case application completion time of 24 s. We call
such a fault tolerant strategy StraightForward Scheduling (SFS). Although the timing
constraints of the application are satisfied, the schedule obtained by using SFS wastes
a lot of unnecessary time for recovery. For example, for the schedule in Fig. 4.2e,
if both faults happened during the split operation O4, then the maximum number of
faults (s = 2) is reached, and hence there is not need in allocating slack time after split
operation O7.

Our proposed FTC uses an improved fault-tolerant scheduling technique, which can
take into account the actual fault-occurrence pattern during the execution. By taking
into account fault-occurrence information, FTC produces shorter schedules, leading
to a reduced worst-case application completion time δs

G . FTC relies on the FTSG,
proposed in Section 2.4.1, which captures all the possible fault-scenarios. The FTSG
from Fig. 4.6 is build starting from the application graph from Fig. 4.1a and captures
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Figure 4.2: SFS schedule

all alternative scenarios for s = 2. Starting from the FTSG GS our FTC algorithm
generates a table S where, for each operation, we have the activation condition (the
particular combination of faults) and the corresponding start time. For example, the
merge operation O20 will be activated at time t = 7 if a fault has occurred in the split
operation O4.1 (see Fig. 4.3e).

During runtime, depending on the detected fault occurrences, a microcontroller will
activate the corresponding operations. For example, for the fault scenario captured by
the shaded subgraph in Fig. 4.6 (first fault in O4 and the second in O7), the operations
in Fig. 4.3e will be activated at the depicted start times. For the case when two faults
happen in O7 we have the start times depicted in Fig. 4.4e. The worst-case application
completion time is 19 s for FTC, compared to 24 s for SFS. The difference between
FTC and SFS results from the detection operation time: unnecessary detection oper-
ations are avoided by FTC. We have considered that a detection operation takes 5 s.
However, there are capacitance sensor implementations that can detect a droplet vol-
ume in shorter time [59]. In this case, SFS is preferable over FTC due to its simplicity.

Table 4.1: Module library Lfor FTC

Operation Module area Operation time (s)
Mix 2×5 2
Mix 2×4 3
Mix 1×3 5
Mix 3×3 7
Mix 2×2 10

Sensing 1×1 5
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Figure 4.3: FTC schedule for faults in O4 and O7

Figure 4.4: FTC schedule for faults in O7

4.1.2 Fault-tolerant compilation

Our proposed FTC, outlined in Fig. 4.5 and has three steps:

1. In the first step, we use the compilation algorithm from [49], called by DMB-
Compilation function (line 1 in Fig. 4.5), to obtain the allocation O0, binding
B0 and placement P 0 that minimizes the application completion time without
considering faults. We have extended the compilation from [49] to decide the
number of sensors and their placement given the maximum number of sensors
nsns that are available.
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2. In the second step, we build a FTSG GS starting from the application graph G
(line 2 in Fig. 4.5) that captures all fault scenarios for a given s maximum number
of faults. The FTSG graph G is generated by the function GenerateFTSG which
takes as parameters the application graph G and the maximum number of faults
s. For the application graph in Fig. 4.1a, considering s = 2, we obtain the FTSG
from Fig. 4.6.

3. In the third step (line 3 in Fig. 4.5), we obtain a fault-tolerant schedule table S
using the FTScheduling algorithm from Fig. 4.7.

As mentioned, the fault-tolerant schedule table S is obtained by the FTScheduling
algorithm from Fig. 4.7, which takes as input the FTSG graph GS generated in step 2,
the biochip architecture A , the binding B0 and placement P 0 obtained in step 1, and
the module library L . We start by generating all the fault scenarios FaultScenList (line
1 in Fig. 4.7) considering s maximum faults. Let us consider as example the graph G
from Fig. 4.1a, which has two split operations: O4 and O7.

Then, we traverse the FTSG and extract all subgraphs corresponding to each possible
scenario Fi ∈ FaultScenList. We use the Breadth-First Search (BFS) algorithm to tra-
verse G (line 10) and for each split operation encountered we remove the branch that
does not correspond to the current scenario Fi. In Fig. 4.6, the scenario {O4, O7} corre-
sponds to the case when the first fault happens during O4, so when we evaluate the split
operation O4.1, we remove the non-faulty branch, starting with the edges D16 → O5.1
and D16 → O6.1. The process continues until all split operations are evaluated. Even-
tually, for {O4, O7} we obtain the shaded subgraph in Fig. 4.6.

After extracting the scenario subgraphs, we schedule each of them (Fig. 4.7, line
13) by using the List Scheduling(LS) algorithm from Fig. 3.3. We have adapted the
ListScheduling algorithm, explained in detail in Section 3.1.3, to use the binding B0

and the placement P 0 determined at step 1, see Fig. 4.5. For the considered fault sce-
nario O4, O7, ListScheduling outputs the schedule table from Fig. 4.3e.

FTC(G , A , L , s)
1: Ψ0 = DMBCompilation(G , A , L)
2: GS = GenerateFTSG(G , s)
3: S = FTScheduling(G , A , B0, P 0, s)
4: return Ψ = < O0, B0, S , P 0 >

Figure 4.5: Fault-tolerant compilation example
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Figure 4.6: FTSG GS for application in Fig. 4.1a
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FTScheduling(G , A , B, P , L)
1: FaultScenList = GenerateFaultScenarios(G)
2: S = /0

3: for each Fi ∈ F do do
4: G ′ = G
5: Oi = source
6: while Oi 6= /0 do
7: if Oi is split operation then then
8: RemoveBranch(G ′, Oi, Fi)
9: end if

10: Oi = BFS(G ′, Oi)
11: end while
12: Graph = G ′
13: S = ListScheduling(Graph, A , L)
14: end for
15: return S

Figure 4.7: Fault-tolerant scheduling algorithm

4.2 Online compilation for error recovery

We propose and online error recovery approach which uses for error recovery a combi-
nation of time and space redundancy techniques, which are presented in Section 2.4.2.2.
In order to decide for the appropriate recovery technique we propose a redundancy op-
timization strategy (ROS), presented in Section 4.2.2. Our online error recovery ad-
dresses the volume variations in all types of operations, not only split operation, and it
is based on the following assumptions:

• The biochemical application is executed on a general-purpose biochip with a
rectangular architecture, such as the one in Fig. 4.8c.

• The operations execute on electrodes grouped in rectangular areas, called “mod-
ules”. We assume that the designers have characterized a module library L ,
which contains the execution time and area needed for an operation to complete.

• We model the biochemical application using the proposed redundancy recovery
graph, presented in Section 2.4.2.2.

• We consider both capacitive sensors and a Charged-Coupled Device (CCD) camera-
detection system for determining the volume of a droplet, which is then com-
pared to its expected volume in order to perform error detection.
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4.2.1 Problem formulation

In this section we address the following problem. As input we have a biochemical
application modeled as a graph G0 with a deadline dG , which is executed the archi-
tecture A . A characterized library L , containing the area and execution time for each
operation (similar to Table 2.2), is also given as input. We are interested to determine
online the necessary recovery actions, so that the number of transient faults tolerated is
maximized and the application deadline dG is satisfied.

As mentioned, we consider both time redundancy and space redundancy when deciding
what fault-tolerant policy to use for each detection operation. We decide online where
to introduce detection operations and which redundancy technique to use.

The advantage of using space redundancy is faster recovery time in case of error, at the
cost of extra overhead in completion time, in case of no error. When time redundancy
is used, the recovery actions are executed only after an error is detected, so no extra
time overhead is added in case of no error. However, in case of error, the recovery is
slower for time redundancy than space redundancy. Since the error scenarios are not
known in advance, an online redundancy optimization strategy can better exploit the
current configuration, leading to improved results.

Let us illustrate this by using the application graph G0 from Fig. 4.8a, which has a dead-
line dG = 25 s and has to be executed on the 10×8 biochip from Fig. 4.8c. We used for
this example the module library from Table 2.2. In Fig. 4.9a we show the schedule of
the application for the case when we do not consider the issue of fault-tolerance (and
there are no errors). The schedule of operations is presented as a Gantt chart, where the
start time of an operation is captured by the left edge of the respective rectangle, and
the length of the rectangle represents the duration. As shown in Fig. 4.9a, operation
O1 starts executing at t = 0 s and finishes at t = 2 s. The completion time of G0 is
δG0 = 18 s. Such a schedule has a one-to-one correspondence to the electrode actua-
tion sequence, used by the control software on the computer the run the biochemical
application on the biochip. As mentioned in Chapter 3, an implementation consists of
allocation, binding, placement, scheduling and routing. The allocation and binding of
operations to devices are shown in the Gantt chart as labels at the beginning of each
row of operations. For example, the non-reconfigurable operation O1 is bound to the
dispensing reservoir In S, while the mixing operation O3 is bound to Mixer1, for which
we have allocated a 2×5 module. The placement of modules, for all the examples in
this section, is presented in Fig. 4.8c.

In this example, we are interested to tolerate two transient errors, affecting the volume
of droplet. Two detection operations D6 and D8 are inserted in G0, obtaining the graph
G+ from Fig. 4.8b. For the considered example, we have four possible error scenarios
in the case of maximum two transient faults: (1) when no error is detected, (2) when
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Figure 4.8: Motivational example

a single transient error is detected by D6, (3) when a single transient error is detected
by D8 and (4) when two transient errors are detected by both D6 and D8. These error
scenarios are presented in the rows of Table 4.2. For this example we assume no er-
rors during recovery. However, our approach also takes into account errors during the
recovery operations.

There are several possible redundancy solutions to tolerate the transient faults in each
scenario. We are interested to decide on an assignment of redundancy to the applica-
tion, such that the deadline of 25 s is satisfied in every fault scenario (the application is
fault-tolerant only if it completes within its deadline in all the possible fault scenarios).
There are four possible solutions for our example: (a) using only time redundancy,
(b) using only space redundancy, (c) using time redundancy for tolerating the error de-
tected by D6 and space redundancy for tolerating the error detected by D8 and (d) using
time redundancy for D8 and space redundancy for D6.

The time and space redundancy subgraphs are added to G+ in Fig. 4.8b as discussed
in Section 2.4.2.2. Columns 3 to 6 in Table 4.2 present the best results in terms of
the application completion time δG obtained using each redundancy scheme (a)–(d) for
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Table 4.2: Application completion times (for combinations of error scenarios and re-
dundancy scenarios)

Fault-tolerance solutions
Scenario Detected (a) (b) (c) (d)

by Only Time Only Space Time in D6 Time in D8
redundancy redundancy Space in D8 Space in D6

1 — 18 18 18 18
2 {D6} (36) (26) (30) 22
3 {D8} (28) 24 23 23
4 {D6,D8} (46) (36) (30) 25

each error scenario (1)–(4). The completion times δG that miss the deadline of 25 s
are showed in parenthesis. In these situations, we consider that the application was not
able to tolerate the transient faults.

As we see from Table 4.2, the only situation when the application is able to recover in
all error scenarios and complete before the deadline is solution (d) when time redun-
dancy is used in D8 and space redundancy is used in D6. The schedule length is 25 s,
satisfying the deadline. In Fig. 4.9c we show the schedule for two errors, one in D6 and
one in D8, error scenario (4), in case (d). If we use only time redundancy, as in case (a),
we miss the deadline in error scenarios (2)–(4). The schedule for the case (a) for error
scenario (3) is presented in Fig. 4.9b, and has a length of 28 s, which means that the
deadline is missed when only time redundancy is used and the error is detected by D8.
The schedule depicts the detection operations as thick lines labeled with the operation
name. For this example we consider that detections happen in zero time. However,
in our implementation, the time needed for the detection operation is calculated as the
routing time to bring the droplet to the sensor plus the detection time. We also consider
the waiting time in case the sensor is busy with another detection operation.

If we use only space redundancy, as in case (b), we miss the deadline in error scenar-
ios (2) and (4). The biochip used in this example has an area of 10× 8 electrodes.
However, if we use an area of 10× 11 electrodes, and also add one extra reservoirs
for reagent to the biochip architecture, to parallelize the dispensing, we obtain an ap-
plication completion time within the required deadline for all error scenarios by using
space redundancy only. Our online recovery approach takes into account the available
resources when optimizing the redundancy. For a 10×8 architecture, using only space
redundancy is not a good option.

In solution (c), using time redundancy for D6 and space redundancy for D8 also turned
out to be a bad decision, since we miss the deadline in the error scenarios (2) and (4).
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Figure 4.9: Schedules for various error scenarios

This motivational example shows that (i) using a single fault-tolerance technique is
not a good decision and that (ii) we need to find the right combination of time and
space redundancy to tolerate the faults in all possible error scenarios, and that (iii)
the right decisions depend also on the application and architecture. Our redundancy
optimization approach will decide online the introduction of the right combination of
fault-tolerance, such that the number of transient faults tolerated is maximized and the
application deadline is satisfied.

4.2.2 Online error recovery strategy

Fig. 4.10a presents the general strategy of our online recovery approach for the case
when a sensor-based detection is used. We discuss the case when a CCD camera-based
detection is used in Section 4.2.5.
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Figure 4.10: Online error recovery strategy

Our strategy has two components: an offline component consisting of steps 1 and 2,
performed at design time, and an online component, steps 3–5, invoked during the exe-
cution of the biochemical application. The steps presented in light blue rectangles (see
Fig. 4.10a) are executed on a computer or a microcontroller, whereas the ones in green
rectangles are performed on the biochip. Steps 1 and 2 produce offline a fault-tolerant
implementation without performing redundancy optimizations that are possible once
the error scenarios are known at runtime. Step 1 decides an initial redundancy assign-
ment and the produced fault-tolerant graph is then compiled during step 2. The initial
offline redundancy assignment from step 1 can be decided manually by the designer
(as we do in [4]) or by any other method. The same way, step 2 can be implemented
using any available compilation such as the Tabu-Search [50] or Simulated Annealing-
based [14] implementations. In the experimental results we have used our ROS, from
Section 4.2.4 considering a no-faults scenario, to produce the initial redundancy as-
signment for step 1, and the compilation from [4] for step 2.

The offline compilation results are executed on the biochip until a detection operation
finishes, when the bioassay execution is stopped and the online component is invoked.
If an error is detected by the detection operation Di, we use step 3 to recover. As
described in Section 2.4.2.2, if time redundancy has been previously assigned to Di,
we run the corresponding subgraph Ri to recover from the error detected by Di. If
space redundancy has been assigned to Di, we use for recovery the redundant droplets
produced by RSpace

i . Next, at step 4, we run our ROS, which optimizes the introduction
of detection points and associated redundancy (see Section 4.2.4).

ROS uses the available information about the current error scenario to optimize the
assignment of time and space redundancy for fault-tolerance. Hence, ROS is invoked
only when new information about the occurrences of errors is available, that is, after
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the detection operations (see the arrow labeled “Detection feedback” in Fig. 4.10a).
The fault-tolerant graph GR, outputted by ROS, is compiled during step 5, determining
a new electrode actuation sequence to be executed on the biochip. The compilation
implementation for step 5 has to be fast, as it is run online and will add an overhead to
the execution of the bioassay. Hence, for step 5 we use a LS-based online compilation
(see Section 3.1.3) as it is able to obtain good quality results in a short time.

4.2.3 Recovery strategy example

Let us consider the application graph G0 from Fig. 4.11a, which is executed on a
biochip of 8×7 electrodes, with one dispensing reservoir for the sample In S, and one
for the reagent In R, using the module library from Table 2.2. Detection is performed
using a capacitive sensor. During the offline step 1 (see Fig. 4.10a), the detection op-
erations D7−13 are inserted in G0, after operations O7−13, respectively, as depicted in
Fig. 4.11b. To determine the locations of the detection operations, we use the error
propagation model from [95], as described in Section 2.4.2, considering a threshold er-
ror ET hr = 10%. For this example, we assume that, during step 1, time redundancy was
assigned for all detection operations. The resulted graph with detection operations and
corresponding time-redundant subgraphs is given as input to the offline compilation,
which derives the results from Fig. 4.12a.

Let us assume that only one transient fault occurs during the execution of the applica-
tion, and it affects operation O12. Hence, at time t = 4 s when the detection operation
D7 finishes executing, no error will be detected. We now have the information that D7
has not detected an error, so we invoke online steps 4 and 5 from our online recovery
strategy depicted in Fig. 4.10a. During step 4, we decide when to introduce detection
operations and which redundancy techniques to use. In step 5 we compile this new
implementation online, updating thus the “electrode actuation sequence”.

Thus, ROS will be called in step 4 and will decide to reduce the number of detection
operations to only three (D9, D11 and D13 from Fig. 4.14a), and insert the redundant
subgraphs RSpace

9 for D9, RSpace
11 for D11 and RTime

13 for D13. The details of how ROS
works are presented in the next section. In this example we show that ROS has decided
to remove the detection operation D12 (see Section 4.2.4.1 for a discussion on the ad-
vantages of such a decision). When finishes, ROS will output the graph GR with the
new detection operations and redundant subgraphs from Fig. 2.15.

The compilation in step 5 takes as input GR and derives a new implementation. For
step 5, we use a LS-based compilation, see Section 3.1.3, to perform binding, place-
ment, routing and scheduling. Part of the resulted schedule is presented in Fig. 4.12b,
between t = 4 and t = 10 s. In Fig. 4.12b, which depicts the execution of the applica-
tion at runtime, the overhead due to the execution of the online steps is represented as
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Figure 4.11: Initial offline redundancy assignment
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Figure 4.12: Schedules for execution of application from Fig. 4.11a

a blue line under the row labeled ”Computer”. The redundant operations, part of the
inserted redundant subgraphs, are marked OR

i in the schedule (e.g., OR
1 ).

The new implementation continues to execute until the next detection operation fin-
ishes. As depicted in Fig. 4.12b, the online steps 4 and 5 are invoked again at t = 10 s,
after detection D9 finishes executing. Part of the new resulted schedule is depicted in
Fig. 4.12b, between t = 10 and t = 19 s. As mentioned, we have assumed that a tran-
sient error will affect O12. (Note that the errors are unpredictable.) The error in O12 is
detected by D13 (since the error will propagate) at t = 19. This will trigger the online
recovery step 3 of our strategy, followed by steps 4 and 5. The application completes
in 32 s and has tolerated the transient fault in O12.

4.2.4 Assignment of redundancy for error recovery

Our ROS is presented in Fig. 4.13. It takes as input the detection operation D which
triggered it, the graph G ′, the biochip architecture A , the estimated number of faults
q0, the number q of faults occurred so far and the current time t. G ′ is the currently
executing application graph, from which we have removed the operations which have
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ROS(D,G ′,A ,q0,q, t)
1: ET hr = AdjustErrorThreshold(q0,q, t)
2: Q = DetermineDetectionOperations(G ′,ET hr)
3: GR = InsertDetections(G ′,Q)
4: Prioritize(Q)
5: AreaFunction = GetAreaFunction(G ′,A , t)
6: repeat
7: Di = Head(Q)
8: RSpace

i = SpaceRedundantSubgraph(Di,G ′)
9: rarea = RequiredArea(RSpace

i )
10: aarea = AvailableArea(AreaFunction,RSpace

i )
11: if aarea ≥ rarea then
12: Insert(RSpace

i , GR)
13: UpdateArea(AreaFunction, RSpace

i )
14: end if
15: until Q = /0 or aarea < rarea
16: for each remaining Di in Q do
17: RTime

i = TimeRedundantSubgraph(Di,GR)
18: Insert(RTime

i , GR)
19: end for
20: return GR

Figure 4.13: Redundancy Optimization Strategy

finished executing, the previously decided detection operations and their associated
recovery subgraphs.

ROS has three components. First, it decides where to insert detection operations, lines
1–3 in Fig. 4.13 and discussed in Section 4.2.4.1. Second, for each inserted detec-
tion operation, ROS decides between time and space redundancy, see Section 4.2.4.2.
ROS prefers space redundancy for important operations as long as there is enough area
for the corresponding redundant subgraph (lines 4–15), and uses time redundancy for
the rest (lines 16–19). Third, ROS has to determine, for each redundancy scheme in-
troduced, the redundant subgraph Ri. This is done in lines 8 and 17 in Fig. 4.13, as
discussed in Section 4.2.4.3.

Based on the error information after the detection operation and on the current config-
uration (redundant droplets available), the goal is to minimize the resources used by
redundancy (slack time and area) such that the number of tolerated transient faults is
maximized. ROS produces a new application graph GR, with updated detection points
and fault-tolerance, which is passed to the online compilation in step 5, Fig. 4.10a.
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4.2.4.1 Deciding the detection operations

The detection operations and the associated redundancy are required for fault-tolerance.
However, redundancy introduces delays in the application execution in case there are
no faults. In case of faults, it is important to detect and recover from them as soon
as possible, so that no time is wasted. Researchers have used the error analysis from
Section 2.4.2, based on a designer-specified error threshold ET hr. To decide where to
introduce the detection operations, a given ET hr assumes a number of faults q0 that
may happen during a given time (this is similar to the fault rate of VLSI circuits). ROS
decides on the detection operations by adjusting ET hr. Then, it uses the error analysis
from Section 2.4.2 with the new ET hr to decide the detections. This is especially im-
portant for biochips used in applications that require monitoring over a long time, such
as bioterrorism, environment and water monitoring.

The threshold ET hr is adjusted in the AdjustErrorThreshold function in line 1, Fig. 4.13.
The function receives the number of faults q0 expected over a given time period, the
number of faults q that have happened so far, and the time t. The time period is spec-
ified as a multiple of the application deadline (which is also its period, for monitoring
applications) and the time t is relative to the current invocation of the application. We
assume that the faults are uniformly distributed in time. This assumption is used only to
adjust ET hr and does not affect our ability to provide fault-tolerance. In case q is larger
than expected, ET hr is decreased proportionally, allowing more detection operations to
be inserted. Otherwise, ET hr is increased, resulting in less detection operations. Con-
sidering the example from Fig. 4.11a, and that no fault happened so far, at time t = 4 s
we adjust ET hr from 10% to 12%.

We then call the function DetermineDetectionOperations using the new ET hr values,
line 2. The function uses the error analysis from Section 2.4.2 to calculate the error lim-
its for each operation in G ′. For the example in Fig. 4.14a, we conclude that operations
O9, O11 and O13 exceed the threshold error ET hr = 12%. It follows that for operations
O9, O11 and O13 we will need the detection operations D9, D11 and D13 which are
returned as a queue Q. Finally, the function InsertDetections from line 3 inserts the
detection operations from Q into the graph G ′ (see the graph from Fig. 4.14a).

4.2.4.2 Redundancy Optimization Strategy

For each operation Di in Q, ROS has to decide the associated redundant subgraph Ri,
and insert it into the current graph GR. Section 2.4.2.2 has discussed the trade-offs
between time and space redundancy. Our heuristic strategy in ROS is to introduce
space redundancy (because it saves time at the expense of area) only if the extra area
used does not lead to greater delays (because regular operations do not have space to



70 Compilation for Error Recovery

execute on the biochip). For the cases when ROS decides that space redundancy is not
appropriate, it introduces time redundancy instead.

Thus, in the repeat loop (lines 6–15 from Fig. 4.13), we decide where to introduce space
redundancy. We consider every operation Di in the queue Q. At line 4, we prioritize
the order in which we visit the detections according to a priority function Priority(Di).
The critical path is defined as the longest path in the graph [67], between the root and
the leaf nodes. Hence, we want to prioritize those detection operations (1) for which we
predict that an error is more likely to occur and (2) whose redundant droplets produced
by space redundancy can be reused by operations on the critical path of the application
graph, in case the predicted error does not occur. These two cases are captured by the
two terms of the following equation, where a and b are weights given by the designer:

Priority(Di) = a×Ei +b×RFi, (4.2)

(1) Regarding the first term, we assume that an error is more likely to occur if the error
limit Ei (first term) of the operation Di is higher.
(2) The second term is calculated in the following way: in case an error does not
occur we would like to reuse the correctly sized redundant droplets produced by the
subgraph RSpace

i . The completion time δGR of the current graph GR is determined by

the critical path of GR. To reduce δGR , we prefer that the droplets from RSpace
i are

reused by operations on the critical path. This is captured by the reusability factor RFi
in the second term. The reusability factor RFi is given by the cumulative execution
time Ti over all the operations that can use the droplet produced by RSpace

i . For a fair
comparison to Ei, which is a percentage, we obtain RFi by dividing Ti to the execution
time of the critical path. For example, let us consider the detection operation D9. The
droplet produced by RSpace

9 can be reused by operation O9, in case an error is detected
by D9, or by operations O12 and O13, otherwise (Fig. 4.14a). The total execution time
T9, calculated for operations O9, O12 and O13 is of 8 s. The critical path execution time
is 12 s, so we obtain the reusability factor RF9 = 0.66, as shown in Fig. 4.14b.

Considering a = 0.4 and b = 0.6, we obtained for detections D9, D11 and D13 from
Fig. 4.14a, the values from Fig. 4.14b. Detection D13 has the lowest priority.

Next, we decide for each detection operation, prioritized as explained previously, whether
we introduce space or time redundancy. We use a LS-based online compilation, as dis-
cussed in Section 3.1.3. LS uses a priority function to select among operations which
are ready for execution (this is different from the priority function we use for the detec-
tion operations, Priority(Di)). Our approach with ROS is to use a lower LS-priority
function for the operations OR

i from the space redundant subgraph RSpace
i compared to

regular operations. However, even if executed with lower priority, the redundant oper-
ations OR

i produce intermediate droplets that need to be stored on the biochip for later
use. Storing the intermediate droplets can take away area from the other operations,
causing delays in the application completion time. We can determine exactly these de-
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Figure 4.14: Online redundancy assignment at t = 4 for the application in Fig. 4.11a

lays by running an online compilation, such as the one in [4], which determines if the
introduction of space redundancy delays the application completion time. However,
the compilation takes time and has to be run for each detection operation.

Instead, our heuristic with ROS is to quickly estimate these delays without perform-
ing a compilation, as follows. The repeat loop (lines 6–15 in Fig. 4.13) removes each
detection operation Di from the head of the priority-sorted queue Q. For each such
Di, our approach calculates the required area rarea to store the redundant droplets pro-
duced by RSpace

i (line 9). The required area rarea is calculated by traversing RSpace
i and

determining the maximum number of operations that can execute simultaneously (also
known as the maximum width of a tree). For example, the rarea for RSpace

9 in Fig. 4.14c
is of 2×9 = 18 electrodes, since maximum two operations can run in parallel and nine
electrodes are needed to store each droplet (see the “Store ” operation in Table 2.2).

Next, our heuristic determines the available area aarea on the biochip and if aarea can
accommodate rarea, then it introduces space redundancy for detection Di. We estimate
the maximum time interval [tstart

i , tstop
i ] during which RSpace

i will be executed. The start
time tstart

i is given by the earliest time t when RSpace
i can start executing. For example,

RSpace
9 in Fig. 4.14c cannot start executing before tstart

9 = 6 s, when the reservoir In S is
free to be used. The stop time tstop

i is calculated starting from the time moment when
the detection Di is executed and adding the critical path execution time for RSpace

i . For
RSpace

9 (Fig. 4.14c) tstop
9 = 18 s, obtained by adding the critical path execution time

of RSpace
9 , which is 8 s, to the time moment t = 10 s, when detection D9 finished. The
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critical paths are determined offline for every relevant operation and are adjusted online.
We use the AreaFunction to calculate the available area aarea for the determined time
interval [tstart

i , tstop
i ] (line 10 in Fig. 4.13). If there is enough available area, condition

checked in line 11, ROS decides to introduce space redundancy for Di.

The repeat loop (lines 6–15 in Fig. 4.13) terminates when there is not enough avail-
able area, or if the priority-sorted queue Q is empty. Next, if Q is not empty, ROS
assigns time redundancy for all the remaining detection operations (lines 16–19). In
our example, there is enough storage area for RSpace

9 and RSpace
11 , so space redundancy

is assigned for D9 and D11. The remaining available area is not large enough to ac-
commodate RSpace

13 , therefore time redundancy is assigned to D13. The space and time-
redundant subgraphs are inserted in the graph (lines 12 and 18) obtaining, for the graph
in Fig. 4.11a, the graph GR depicted in Fig. 2.15.

4.2.4.3 Generating the recovery subgraph

After we have decided on the type of redundancy used, we have to determine the cor-
responding recovery graphs and then insert them in the graph GR. The algorithm in
Fig. 4.15 determines online the recovery subgraph Ri for a detection operation Di. The
recovery subgraph Ri contains the redundant operations needed to produce the correct
droplets for the operation Oi. The subgraph Ri is inserted in the graph by ROS, either
using space redundancy (line 12 in Fig. 4.13) or time redundancy (line 18 in Fig. 4.13).
For example, the recovery subgraph RSpace

9 , for detection operation D9, is illustrated in
Fig. 4.14c.

Starting from the considered detection Di, the algorithm uses the breadth-first search
(BFS) technique to traverse the graph (line 3 in Fig. 4.15). All explored operations are
inserted in the recovery subgraph Ri. The search stops when no more operations can be
inserted, i.e., the root nodes (which are dispensing operations in our case) are reached.
The subgraph Ri is updated online by taking into account the redundant droplets stored
on the biochip (lines 9–22). These droplets can be by-product droplets intended for dis-
carding (e.g., produced by a dilution operation) or droplets generated by the redundant
operations inserted for recovery. The list Lstg keeps track of the by-product droplets and
of the ones produced by previous redundant operations. These steps are done offline
and the resulted subgraphs are stored for each operation, to be used by ROS online.
The subgraph Ri is traversed using BFS, see the repeat loop (lines 9–22). For each
explored operation Oi, the algorithm checks the list of redundant droplets Lstg. In case
a matching droplet n is found for Oi, the subgraph Ri is pruned (line 14) and Lstg is
updated (line 15). If no matching droplet is found in the storage units for Oi, then all
the unexplored predecessors of Oi are enqueued to be explored. The algorithm stops
when there is no operation to be explored.
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DetermineRecoverySubgraph(Di,G)
1: Lstg - the list of stored droplets
2: Q - the list of recovery operations
3: Ri = BFS(Di,G)
4: for each operation Oi in Ri do
5: if Oi has no successors then
6: Q.push(Oi)
7: end if
8: end for
9: repeat

10: Oi = Q.pop()
11: label Oi as explored
12: n = FindStoredDroplet(Lstg,Oi)
13: if n 6= /0 then
14: PruneGraph(Ri,Oi)
15: Remove(Lstg,n)
16: for each predecessor O j of Oi do
17: if O j is not explored then
18: Q.push(O j)
19: end if
20: end for
21: end if
22: until Q = /0

23: return Ri

Figure 4.15: Determine recovery subgraph algorithm

In the example from Fig. 2.13a, Lstg consists of the unused droplets produced by di-
lution operations O3 and O8. In this case, the algorithm uses the stored droplets and
prunes the recovery subgraph R11. Consequently, the size of R11 is reduced from 11
operations (Fig. 2.13b) to 7 operations (Fig. 2.13c), leading to a shorter recovery time.
The structure of the recovery subgraph depends on the current error scenario, as redun-
dant droplets can result from previous recovery operations.

4.2.5 Error recovery strategy with a CCD detection system

The CCD camera-based detection system is proposed in [47] as an error detection al-
ternative to capacitive sensors. Using a CCD camera, images of the droplets on the
biochip are captured periodically and analyzed, using pattern matching, in order to lo-
cate the position and the size of the droplets. The main advantage of using a CCD
camera-based detection system over a sensor-based detection, is that, since the detec-
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Figure 4.16: The execution of the application from Fig. 4.11a, with CCD detection
system

tion is performed simultaneously and continuously, the error is detected immediately
when it occurred. When using a sensor, the detection operations are scheduled at spe-
cific times and, therefore, the error can be detected long after its occurrence. The online
recovery steps are taken as soon as the error is detected. Hence, when using a sensor,
the recovery is delayed, resulting in longer completion times. Moreover, the use of a
CCD-camera based detection system eliminates the need for routing the droplets to a
specific location, or to wait in case there are not enough available sensors. ROS is able
to optimize the introduction of redundancy because it makes use of the information
about fault occurrences. Both situations are important for ROS: if an error has hap-
pened and if an error has not occurred. With the setup in Fig. 4.10b, ROS would be
called only if faults are occurring. Our strategy is to introduce in the application graph
places where ROS would be called, so it could take informed decisions about how to
allocate redundancy. We use the same approach we have used to insert the detection
operations in line 3 in Fig. 4.13, see Section. 4.2.4.2, but instead of detection operations
we introduce “triggering” operations, which will invoke ROS at runtime.

The general strategy of our online recovery approach when using a CCD camera-based
detection system is presented in Fig. 4.10b. Images are captured continuously through-
out the execution of the bioassay. When the image processing module signals an error,
the execution of the bioassay is interrupted and the online steps 3, 4 and 5 are executed.
Note that using a CCD camera-based detection system does not require introduction of
detection operations in the application graph, as is the case with a capacitive sensor.
Hence, ROS can be triggered during any operation in step 4, as soon as an error is
detected after the recovery in step 3.

Considering the example discussed in Section 4.2.3, if a CCD camera-based detection
system is used, the application completes in 29 s, which is 9.3% faster compared to
using capacitive sensors. The execution of the application at runtime when using a
CCD camera-based detection is depicted in Fig. 4.16. The reduction in completion
time comes from detecting the error when it occurred, during O12, at t = 14 s. When
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a capacitive sensor is used, the detection is scheduled at t = 19 s (see Fig. 4.12b), so
the error is detected with a delay. For the situations when the additional equipment for
image capturing and processing is available, and portability is not required, a detection
system based on CCD cameras, provides the fastest results at the moment. However,
our proposed ROS does not depend on a specific detection method and can be inte-
grated with any available technology.

4.3 Experimental results

For experiments we used seven synthetic benchmarks (SB1–7) [48] and four real-life
applications: (1) in-vitro diagnostics on human physiological fluids (IVD, 28 opera-
tions) [76]; (3) the colorimetric protein assay (CPA, 103 operations) [76]; (4) the inter-
polation dilution of a protein (IDP, 71 operations) [95] and (5) the sample preparation
for plasmid DNA (PDNA, 19 operations) [45]. In the first two sets of experiments, we
ignored the deadline of the applications and the optical detection operations, and the
dilution operations were represented as a mix operation followed by a split operation.
Hence, for the first two sets of experiments, IVD and CPA have 25 and 134 opera-
tions, respectively. The algorithms were implemented in Java (JDK 1.6) and run on a
MacBook Pro computer with Intel Core 2 Duo CPU at 2.53 GHz and 4 GB of RAM.

For the first set of experiments we were interested to evaluate the proposed compilation
approach in terms of worst-case application completion time δs

G , as the number of
faults s increases. For this, we have compared the δs

G obtained by our FTScheduling
with δSFS

G obtained by the Straightforward Scheduling (SFS) approach, considering
the same binding and placement, produced by DMBCompilation in line 1 in Fig. 4.5.
SFS generates a fault-tolerant schedule by inserting slack, as discussed in Section 4.1.1.
Thus, we insert in the application graph G a “slack” operation after each split operation.
The slack execution time is calculated using the formula Equation (4.1). We then apply
the LS algorithm from Fig. 3.3 to obtain the fault-tolerant schedule.

We run the first set of experiments on SB1−7, IVD, and CPA applications. The results
are presented in Table 4.3, where we have, in separate columns, the schedule lengths of
both SFS and FTC approaches for s number of faults varying from 2 to 5. The first three
columns contain the application size given in number of operations, the considered
biochip area and the number of sensors placed on the biochip, respectively. We can
see that the FTC approach results in reduced application completion times compared
to SFS, especially as s increases. For s = 5 we have obtained an average improvement
of 52.4% in the FTC completion time compared to SFS.

Our proposed FTC has three steps: (1) running the adapted implementation from [49]
for the specified times (60–1,800 s), (2) generating the fault-tolerant graph, which takes
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very little time, and (3) obtaining the fault tolerant schedules. The CPU overhead of
the last step increases exponentially with the number of faults s and the number of
split operations. For example, for IVD application, which has 4 split operations [76],
the CPU execution times for 1 to 5 faults are 0.15 s, 0.45 s, 0.82 s, 1.51 s, 2.65 s,
respectively.

For the second set of experiments, we were interested in the impact of reducing costs
(in terms of chip area and number of sensors) on the application completion time. The
results presented in Table 4.4 are obtained for the IVD application, for a fixed number
of faults, s= 4. The application is executed initially on a large biochip area of 18×18 on
which there are placed 4 sensors, for which we obtained an improvement of 12.1% with
FTC over SFS. For the next evaluations, we have reduced the area and the number of
sensors. As expected the schedule length increases with the reduced area and number of
sensors. However, our proposed FTC approach produces significantly better schedules
than SFS, thus allowing us to save costs. For example, in the most constrained case,
a biochip of a 12×12 area and 3 sensors, we have obtained an improvement of 48.3%
compared to SFS.

For the next sets of experiments we considered the following deadlines for the appli-
cations: dPDNA = 60 s, dCPA = 300 s, dIDP = 200 s, respectively. Also, in the next two
sets of experiments we have considered only a capacitive sensor for detection, i.e., not
a CCD camera system.

In the third set of experiments we were interested to determine if is is important to
use a combination of redundancy techniques (i.e., time and space redundancy) and if
ROS is able to optimize their allocation. Hence, we have compared (a) our redun-
dancy optimization approach ROS with two cases where we have used (b) only time
redundancy for recovery, called TIME, and (c) only space redundancy (SPACE). The

Table 4.3: Comparison between SFS and FTC

App. (ops.) Area nsns s = 2 s = 3 s = 4 s = 5
SFS FTC SFS FTC SFS FTC SFS FTC

SB1 (10) 6×6 1 46 41 56 46 66 51 76 53
SB2 (20) 8×8 2 37 29 47 36 57 46 67 56
SB3 (30) 8×12 3 40 36 55 37 70 56 85 76
SB4 (40) 10×8 2 37 33 48 38 58 40 68 45
SB5 (50) 8×12 3 44 38 57 43 73 49 87 51
SB6 (60) 12×10 4 50 45 59 50 65 50 79 52
SB7 (70) 10×12 4 65 60 82 63 102 66 122 74
IVD (25) 10×10 2 36 31 41 36 51 36 61 41

CPA (134) 15×15 6 88 68 114 73 145 76 176 84
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Table 4.4: Results for IVD

Area Sensors Schedule length (s)
SFS FTC

18×18 4 46 41
16×16 4 47 41
14×14 3 46 36
12×12 3 46 31

recovery subgraphs for case (b) and (c) were assigned statically offline for all the detec-
tion operations. For this set of experiments, we used 3 different biochips (column 1 in
Table. 4.5), with sizes of 7×7, 8×9 and 10×10 electrodes. Next to the sizes, we also
present in parentheses the numbers of reservoirs for the three reagents (respectively R1,
R2 and R3) used by PDNA, see [45] for details. The techniques are compared in terms
of the application completion time δG obtained for PDNA. Since a particular error can
be favorable to a certain redundancy technique, in the interest of a fair comparison, we
have generated randomly 50 error scenarios, and we used for comparison the average
value of δG obtained over all scenarios.

Thus, we have simulated the execution of PDNA on each of the three biochips, and we
have randomly inserted q = 1 and 2 errors in the operations. The obtained average δG
for the three cases (a)–(c) are presented in Table 4.5, columns 2, 3 and 5, respectively:
(a) δROS

G , (b) δT IME
G and (c) δSPACE

G . The reported δG times take into account the runtime
overhead required by re-compilation (for all cases) and the runtime of the redundancy
optimization, performed only in the case of ROS.

From Table 4.5 we see that ROS, which uses an optimized combination of space and
time redundancy, is able to obtain much better results than using a single form of re-

Table 4.5: Comparison between recovery techniques for PDNA

Arch. (a) (b) Deviation (%) (c) Deviation (%)
δROS

G (s) δT IME
G (s) δSPACE

G (s)
7×7 34.08 56.28 39.4 64.07 46.8(2, 1, 2)
8×9 32.68 55.61 41.2 58.72 44.3(2, 1, 2)

10×10 27.5 54.8 49.8 57.92 52.5(2, 1, 2)
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dundancy, TIME or SPACE. Compared to TIME, ROS leads to an improvement of
39% (standard deviation) for the 7× 7 biochip, 41% for 8× 9 and 49% for 10× 10
(see column 4). The improvement over SPACE is 46%, 44% and 52%, respectively.
Better results were obtained for larger biochip areas, as ROS uses the available space
to optimize the introduction of space redundancy and reduce the recovery time. All
the considered areas are, however, too small to use space redundancy exclusively. As
the biochip area increases, from 7× 7 to 10× 10, all techniques benefit of the extra
area and use it to improve δG , hence the decrease in δG as area increases. However,
the percentage deviation between ROS and the others gets larger, as ROS is better at
exploiting the extra area. The 10× 10 area is still too small to use space redundancy
exclusively, hence SPACE gives worse results than ROS. Regarding the deadline, all
solutions obtained with ROS meet the deadline, i.e., δROS

G ≤ dPDNA, whereas the dead-
line is satisfied only in 56% of cases for TIME and 49.4% of cases for SPACE. This
experiment shows that by using our proposed ROS, which decides online between the
introduction of time and space redundancy, we obtain better results compared to using
a single redundancy technique.

In the fourth set of experiments we were interested to compare ROS to the related work.
Thus, we compared the completion time δROS

G obtained by ROS with the δDICT
G obtained

by using the previously proposed dictionary-based error recovery (DICT) [44]. DICT
determines offline the recovery needed for an error and the corresponding changes
to the electrode actuation sequence for the operations, then, it stores the results in a
dictionary, to be used online, when an error is detected. Hence, DICT has negligible
runtime overhead for applying the recovery. In contrast, ROS determines both the
required recovery and the changes to the electrode actuation sequence (what we call
re-compilation) online, during the execution of the biochemical application. We ran
experiments for CPA and IDP, using the same error scenarios and biochip configuration
as in [44]. The results are presented in Table 4.6 for CPA, and in Table 4.7 for IDP. The
completion time δDICT

G is presented in column 2, and δROS
G in column 3.

The completion time δROS
G contains the runtime execution overhead of ROS. This over-

head is also reported separately in the tables in column 4. These runtimes are cumula-
tive, a summation for all invocations of ROS in the given scenario, and are measured

Table 4.6: Comparison of dictionary-based error recovery [44] and ROS for CPA

Errors (ops.) δDICT
G (s) Total time (s) CPU time (s) Deviation (%)

Dlt39 228 212.21 0.98 6.92
Dlt12,Dlt31 220 192.19 0.9 12.64
DsB4,Dlt14 219 192.25 1.12 12.21
Dlt21,Mix5 223 219.26 1.06 1.67
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Table 4.7: Comparison of dictionary-based error recovery [44] and ROS for IDP

Errors (ops.) δDICT
G (s) Total time (s) CPU time (s) Deviation (%)

Dlt8,Dlt16 208 161 1.7 22.5
Dlt2,Dlt29 212 175.86 1.5 17

Dlt19,DsB23 207 163.77 0.5 20.8
Dlt16,Dlt18 209 163.65 0.4 21.7

on a typical PC, which is used to control the biochip. As the results in Tables 4.6
and 4.7 show, our approach (ROS) is able to obtain much better results compared to the
related work DICT (more than 20% reduction for a third of the cases). The percentage
improvement of ROS over DICT (standard deviation) is shown in the last column in
the two tables. The improvement of our proposed online redundancy approach comes
from the optimized use of recovery techniques employed. For example, for IDP, where
a larger biochip area is available for operations, ROS has used space redundancy for
carefully selected operations, which trades off area for time, in order to improve the
results.

As mentioned in the problem formulation, with ROS we are interested to maximize
the number of transient faults tolerated within the application deadline. An application
tolerates the faults if the deadline is satisfied, i.e., δG ≤ dG , in all the fault scenarios.
Thus, in the last set of experiments we were interested to find out if ROS can compile
online a fault-tolerant implementation which meets the deadline as the number of faults
q increases.

We ran the last set of experiments for all three benchmarks: PDNA, IDP and CPA. We
ran the experiments using both detection methods presented previously: the sensor-
based detection (Table 4.8) and the CCD camera-based detection system (Table 4.9).
The biochip sizes used for each application is presented in column two. Next to the
sizes, we also present in parentheses the numbers of reservoirs for the sample, buffer
and reagents. We have generated a large number of error scenarios covering possible
combinations of q faults and operations. The δROS

G values reported are the shortest
completion time (min), the longest completion time (max) and the average completion
time (avg.) over all the simulation runs.

The results for q = 1, 2 and 3 are presented in Table 4.8 in columns three, four and
five, respectively, for the case when a capacitive sensor-based detection is used, and
in columns three, four and five in Table 4.9, for the case when CCD camera-based
detection is used. As we see from the table, ROS is able to successfully tolerate an in-
creasing number of faults, producing online fault-tolerant implementations which meet
the deadline in all cases (the maximum value of δROS

G is less than the deadlines of the
respective benchmarks). The redundancy required for fault-tolerance and the runtime
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Table 4.8: ROS results for q = 1, 2 and 3 faults (capacitive sensor)

App. Arch. δROS
G (s) δROS

G (s) δROS
G (s)

(ops.) q = 1 q = 2 q = 3

PDNA 7×7 min 30.24 min 30.28 min 32.25

(19) (1, 2, 2) max 37.25 max 37.25 max 37.4
avg. 32.62 avg. 33.33 avg. 34.62

IDP 9×9 min 159.66 min 159.75 min 160.71

(71) (1, 2, 2) max 166.63 max 177.61 max 182.66
avg. 161.97 avg. 166.52 avg. 168.04

CPA 11×11 min 192.65 min 192.8 min 213.38

(103) (1, 2, 2) max 219.78 max 219.93 max 244.95
avg. 198.69 avg. 209.71 avg. 219.61

Table 4.9: ROS results for q = 1, 2 and 3 faults (CCD detection)

App. Arch. δROS
G (s) δROS

G (s) δROS
G (s)

(ops.) q = 1 q = 2 q = 3

PDNA 7×7 min 25.14 min 25.14 min 25.22

(19) (1, 2, 2) max 33.64 max 34.42 max 37.19
avg. 29.46 avg. 30.38 avg. 31.15

IDP 9×9 min 139.61 min 139.7 min 141.9

(71) (1, 2, 2) max 169.11 max 174.98 max 178.98
avg. 157.27 avg. 159.87 avg. 160.27

CPA 11×11 min 192.53 min 192.6 min 194.06

(103) (1, 2, 2) max 215.74 max 218.61 max 236.79
avg. 197.72 avg. 207.03 avg. 217.68

execution of ROS will introduce an overhead. However, it is important to notice that
δROS

G increases slowly with q, which means that ROS can successfully tolerate an in-
creasing number of faults. This is because ROS is able to use the fault occurrence
information at runtime to optimize the introduction of redundancy, such that the delays
on the application completion time δG are minimized. It follows that it is important to
use an online redundancy optimization and re-compilation approach if we want to have
fault-tolerant biochip implementations.

Finally, by comparing the results from Tables 4.8 and 4.9 we see the difference be-
tween the two sensor setups: using a capacitive sensor, which requires the introduction
of detection operations (the columns labeled “sensor”), versus using an imaging CCD
camera-sensor which can instantly detect an error, the columns labeled “CCD”. As
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expected, using a CCD camera-sensor leads to better results, because the errors are de-
tected immediately. Our ROS approach can use both setups, and is able to intelligently
introduce the detection operations required by the capacitive sensor setup, reducing its
inherent delays.
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CHAPTER 5
Synthesis of

Application-Specific
Architectures

Most of the related research so far has considered general-purpose biochip architec-
tures, due to their high reconfigurability. However, in practice, application-specific
architectures are preferred because of their reduced cost. In this chapter we present
our solutions to the application-specific architecture synthesis problem. Starting from
an initial architecture, our synthesis solutions use metaheuristics that search through
the solution space to find a minimum cost architecture that can satisfy the timing con-
straints of the application and tolerate a given number k of permanent faults.

5.1 Problem formulation

The problem can be formulated as follows. Given as input a biochemical application G ,
modeled as a directed acyclic graph, see Section 2.3, with a deadline dG , a component
library M , a fluidic library F and a maximum k permanent faults to be tolerated, we
are interested to synthesize a fault-tolerant physical architecture A , such that the cost
of A is minimized and the application completion time δk

G is within the deadline dG
for any pattern of the k faults.
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Table 5.1: Example of component library M [7]

Name Unit cost Area (mm2) Time (s)
Electrode 1 1.5×1.5 N/A

Dispensing Reservoir (1 µL) 6.66 5×3 2
Dispensing Reservoir (10 µL) 16.6 7.5×5 2
Dispensing Reservoir (50 µL) 33.3 7.5×10 2
Dispensing Reservoir (100 µL) 52 15×7.5 2

Capacitive Sensor 1 1.5×4.5 0
Optical Detector 9 4.5×4.5 30

Table 5.2: Fluidic library F for PCR [68]

Fluid Name Unit Cost/µL
Sample (DNA1) 2.47
Sample (DNA2) 3.3

Reagents* 0.6
*ChargeSwitch gDNA kit from Invitrogen Corp.

We assume that the designer will provide a component library M and a fluidic library
F . The library M contains a list of the physical components available to design a
biochip. An example component library is Table 5.1, where, for each physical compo-
nent mentioned in column 1, column 2 presents the costs expressed in the unit cost of
an electrode, column 3 presents the dimensions and column 4 presents the execution
time. As seen in Table 5.1, a dispensing reservoir of 1 µL has a cost of 6.66 units,
occupies an area of 15 mm2 and can dispense one droplet in 2 s. The electrode com-
ponent (row 1 in Table 5.1) can be reconfigured to perform various operations, thus
the electrode has a “N/A” execution time. The operations that can be performed on the
electrode components and their execution times are specified in the module library (see
Table 5.3). A fluidic library F , such as the one in Table 5.2, contains for each input
fluid the cost per µL expressed in the same units as the cost of the components in library
M , i.e., the unit cost of an electrode.

We consider that the operations execute on circular-route modules (CRMs), defined in
Section 2.2.1, since CRMs can use better a non-regular architecture than rectangular
modules. In Section 2.2.1 we presented how to determine the operation execution
time on a CRM. We also assume that we know the position of the droplets during
the execution, i.e., the operation execution is “droplet-aware”. The “droplet-aware”
approach [53] has the advantage of improved reconfigurability in case of permanent
faults: the droplets are simply instructed to avoid the faulty electrodes.
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Figure 5.1: Example application graph G for architecture synthesis

Figure 5.2: Application-specific biochip architecture

Let us consider an application graph G obtained by repeating three times the graph from
Fig. 5.1. We are interested to synthesize a physical architecture for this application,
considering k = 1 permanent faults, such that the cost is minimized and a deadline of
dG = 22 s is satisfied.

So far, researchers have considered only general-purpose biochips of rectangular shape.
To complete G within deadline dG using a rectangular architecture, let us denote it with
A2, we need an array of 9×16 electrodes and eight reservoirs: two for the reagent, two
for the buffer, three for the sample and one for the waste. The rectangular architec-
ture A2 has 168 electrodes. We used the module library in Table 5.3 and obtained an
execution time for G on A2 of 18.78 s, which is satisfying the deadline.

However, the number of electrodes can be reduced if we use an application-specific
architecture A1, such as the one in Fig. 5.2, of only 128 electrodes, reducing with
23.8% the number of electrodes of A2. Since A1 and A2 have the same number of
reservoirs, i.e., both architectures have identical fluidic cost, we compare A1 and A2
only in terms of number of electrodes.
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Table 5.3: Library L of rectangular modules

Op. Shape Time (s) Time (s) Time (s)
no faults k = 1 k = 2

Mix 3×6 2.52 2.71 3.77
Mix 5×8 2.05 2.09 2.3
Mix 4×7 2.14 2.39 2.51
Mix 5×5 2.19 2.28 2.71
Mix 8×8 1.97 2 2.09
Mix 5×5×1 2.19 2.73 3.92
Mix 5×5×2 3.98 5.82 7.56

Dilution 3×6 4.4 4.67 4.11
Dilution 5×8 3.75 4.76 6.3
Dilution 4×7 3.88 4.22 4.46
Dilution 5×5 3.98 4.12 4.67
Dilution 8×8 3.63 3.66 3.8

Split 1×1 0 0 0
Storage 1×1 N/A N/A N/A

For architecture A1, we determined manually the following worst-case execution times
in case of k = 1 permanent faults: 2.59 s for a mix operation on M1 and M2, 5.16 s for
a dilution operation on M1 and M2, 2.4 s for a mix operation on M3 and M4 and 4.47 s
for a dilution operation on M3 and M4. The binding of operations in the application
is shown in the figure; we replicate three times the graph in Fig. 5.1, hence for every
Oi, we have O′i and O′′i . The completion time of G on architecture A1 is δG = 18.87 s,
within the deadline dG = 22s. In addition, A1 is also fault-tolerant to k=1 permanent
faults, i.e., in the worst-case fault scenario, when the fault is placed such that it leads
to the largest delay on δG , the application completes in δk=1

G = 20.01 s, which satisfies
the deadline.

We assume that our architecture synthesis is part of a methodology, presented in detail
in Chapter 3 and outlined in Fig. 3.1. We mention again only the steps that regard the
architecture synthesis problem, i.e., we omit steps 5 and 6, as follows.

1. Architecture design. We synthesize an application-specific architecture A for an
application G with a deadline dG , considering a maximum number of permanent
faults k that have to be tolerated. Since the architecture synthesis is performed
before the fabrication (step 2) and testing (step 3), the locations of permanent
faults are not known during the architecture synthesis.
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2. Fabrication. We fabricate the biochips with application-specific architecture A ,
obtained during the previous step.

3. Testing. All the biochips are tested to determine if they have permanent faults
using testing techniques such as the ones proposed in [88]. If there are more than
k faults, the biochip is discarded. The exact locations of permanent faults are
determined during this step.

4. Compilation. We perform a compilation of application G on A to obtain the
electrode actuation sequence. Since the locations of permanent faults are known,
we can use any compilation implementation, such as the one proposed by [51],
to determine the actual completion time δk

G . In case δk
G exceeds the application

deadline dG , the biochip is discarded.

In this chapter we focus on the first step of the methodology: the architecture synthesis
problem, for which we propose two solutions based on metaheuristics, namely Simu-
lated Annealing (SA) and Tabu Search (TS). The flow of our metaheuristic implemen-
tations is outlined in Fig. 5.3. A metaheuristic explores the solution space using design
transformations called moves, which are applied to the current architecture solution in
order to obtain neighboring architecture alternatives.

Next, out of the newly generated architectures, one architecture alternative is selected
to be the current solution. Hence, each architecture alternative is evaluated using an
objective function defined in terms of the architecture cost and the timing constraints
of the application. Generally, a new architecture solution is accepted if it improves
the current solution. However, in some cases, the SA metaheuristic accepts worse
architecture solutions, in order to escape local minima. The metaheuristic continues
to apply the moves on the determined current solution and use the objective function
to evaluate the obtained neighboring architectures. The search terminates when a stop
criterion is satisfied.

Hence, in this thesis, we propose two solutions to the architecture synthesis problem,
as follows.

• Our first architecture synthesis approach uses a SA metaheuristic to search the
solution space and generate new architectures. We propose for the evaluation of
each architecture solution, a List Scheduling (LS)-based compilation (see Sec-
tion 5.3.1), which determine the worst-case schedule length in case of maximum
k permanent faults, by considering that each operation in the application is af-
fected by k faulty electrodes. Instead of using rectangular modules for operation
execution, the SA-based synthesis considers rectangular routes of varying thick-
ness, such as the ones in Fig. 5.4, since they can better exploit the non-regular
layout of an application-specific architecture. However, due to their non-regular
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Figure 5.3: Architecture synthesis

shape, CRMs can take full advantage of an application-specific architecture and
thus, our second architecture synthesis considers CRMs for operations execution.

• Our second architecture synthesis approach is based on a TS metaheuristic and
considers CRMs for operation execution, as CRMs have a non-regular shape, and
thus can better exploit the non-regular layout of an application-specific architec-
ture. As mentioned, the SA-based synthesis determines the worst-case operation
execution time, which is a safe, but pessimistic approach, as it may result in
eliminating potentially good architecture solutions. Instead, we take a different
approach for the TS-based synthesis, that is, we propose an algorithm to deter-
mine the impact of faults on the operation execution times (see Section 2.2.3) by
using a method that is less pessimistic than the worst-case. The latter estima-



5.1 Problem formulation 89

Figure 5.4: Rectangular routes of varying thickness

tion method is faster, and hence more suitable to be used inside a metaheuristic.
According to our proposed methodology (see Fig. 3.1 in Chapter 3), in case dur-
ing fabrication a certain pattern of faults occurs such that the architecture cannot
execute the application within the timing constraints, then the biochip is dis-
carded. For each visited architecture solution, the TS-based synthesis builds a
library of CRMs, by incrementally updating the previously determined library.
This approach, which is faster than building from scratch a library of CRMs,
takes advantage of the similarities between neighboring architecture solutions.
Our proposed method to incrementally build a library of CRMs is presented in
Section 5.4.2).

Next, we present the moves used to generate architecture alternatives and the objec-
tive function used to evaluate each architecture alternative. Both architecture synthesis
methods proposed (SA and TS) use the same moves and the same objective function.

Space exploration moves. The moves used by the metaheuristics are divided in two
classes: (1) adding and removing electrodes and (2) adding, removing and changing
the placement of devices, such as reservoirs for dispensing and detectors. We define a
chain of electrodes R as a set of consecutive neighboring electrodes that are all situated
on the same coordinate axis (vertical or horizontal). For example, in the case of the
application-specific biochip depicted in Fig. 5.11a, the electrodes marked with “x” form
a chain, while the ones marked with “y” do not form a chain. Note that a chain can
also consist of a single electrode. The moves are denoted with capital letters in the
following paragraphs.

(1) We define ten moves that are performed by adding and removing electrodes, as
follows:

• adding a chain of electrodes at a random position (ADDRND);

• removing a chain of electrodes at a random position (RMV RND);
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• adding a chain of electrodes at the sides of the architecture, namely at the top
(ADDTOP), bottom (ADDBT M), right (ADDRGT ) and left (ADDLFT );

• removing a chain of electrodes at the sides of the architecture, namely at the top
(RMV TOP), bottom (RMV BT M), right (RMV RGT ) and left (RMV LFT );

(2) Assuming that the considered application uses m samples, r reagents and b buffers,
we define the following moves for devices:

• adding a reservoir for samples (ADDSi, i = 1 to m), reagents (ADDRi, i = 1 to r)
and buffers (ADDBi, i = 1 to b);

• removing a reservoir for samples (RMV Si, i = 1 to m), reagents (RMV Ri, i = 1
to r) and buffers (RMV Bi, i = 1 to b);

• adding a detector (ADDD);

• removing a detector (RMV D);

• modifying the placement a detector (REPD), since it can impact the completion
time of the bioassay by improving the routing times;

For example, let us consider the architecture from Fig. 5.5a as the current solution
Acurrent. By applying the following moves: add a reservoir for buffer (ADDB), add
bottom-row of electrodes (ADDBT M) and re-place detector (REPD), we obtain the
neighboring architectures from Fig. 5.5b, c and d, respectively. After applying on
Acurrent from Fig. 5.5a both the moves on the non-reconfigurable devices, i.e., of type
(1), and the moves on reconfigurable components. i.e., of type (2), we obtain a neigh-
borhood N of 19 architecture solutions.

Objective function. As mentioned, our proposed architecture syntheses use the moves
described above to generate architecture alternatives. Each architecture alternative is
evaluated using the following objective function:

Ob jective(A) =CostA +W ×max(0,δk
G −dG ), (5.1)

where CostA is the cost of the architecture A currently evaluated and δk
G is the com-

pletion time in case of k faults of G on A obtained with our LS-based compilation. If
G is schedulable, the second term is 0, otherwise, we use a penalty weight W (a large
constant) to penalize invalid architectures (leading to unschedulable applications). The
SA-based architecture synthesis uses Equation (5.3) for CostA and the LS-based com-
pilation presented in Section 5.3.1. The TS-based architecture synthesis uses Equa-
tion (5.2) for CostA and the LS-based compilation presented in Section 5.4.1.
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Figure 5.5: Example of neighboring architectures

5.2 Architecture evaluation

As mentioned, to solve the architecture synthesis problem, we propose two solutions
based on metaheuristic approaches, which generate architecture alternatives that have
to be evaluated in terms of (1) routability, (2) cost and (3) timing constraints. Each of
the evaluation criteria is presented in the next paragraphs.

(1) Due to permanent faults, an architecture can become disconnected, i.e., routing
of droplets to the desired destination is no longer possible. This is the case for the
biochip in Fig. 5.2, considering the two faulty electrodes marked with a red “x”. If a
biochip architecture can be disconnected by k faults, it should be discarded and in this
case the evaluation of the application completion time is no longer meaningful. We
want to guarantee that the architecture solution can run the application regardless of
the location of k permanent faults. Therefore, we introduce a routability check, which
is applied before the completion time evaluation and which verifies if the architecture
under evaluation can be disconnected by k faults.

We say that an architecture passes the fault-tolerant routability test, if, in any scenario
of k permanent faults, there is at least one route that connects each non-faulty electrode
to the other non-faulty electrodes. We used the polynomial time O(kn3) algorithm
from [18] that tests the k-vertex connectivity of a graph, to check the fault-tolerant
routability of an architecture. For this purpose we model the architecture as a graph, in
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which the nodes represent the electrodes and the edges represent the direct connection
between them. Note that an electrode is considered connected only to its top, bottom,
left and right neighbors, and not diagonally, since a droplet cannot be moved diagonally
with EWOD. The algorithm from [18] tests if the graph remains connected in case of
removal of k nodes. For example, the architecture in Fig. 5.2 is still connected for
k = 1, but becomes disconnected for k = 2, e.g., if the 2 faults happen as indicated with
the red “x”.

(2) The goal of the architecture synthesis is to obtain application-specific biochips of
minimum cost. We define the cost of an application-specific architecture using the
following equation:

CostA = ∑NMi ×CostMi + ∑NRi ×CostRi , (5.2)

where NMi is the number of physical components of type Mi, CostMi is the cost of Mi,
NRi is the number of reservoirs of type Ri and CostRi is the cost of the input fluid for Ri.

The first term of Equation (5.2) calculates the cost of the physical components and
the second term calculates the cost of the input fluids. The physical components (e.g.,
electrodes, reservoirs and detectors) and their unit cost are provided by the designer
in a library M (see Table 5.1 for an example). The unit cost of the input fluids, used
by the biochemical application, are specified in a fluidic library F , such as the one in
Table 5.2. The assumption is that all the reservoirs integrated in the cartridge are fully
loaded. We ignore the cost of the controller platform because, regardless of its cost, the
controller platform is acquired only once, thus having its cost amortized over time.

(3) We want our synthesis to determine architecture solutions that can tolerate k perma-
nent faults. The application completion time δk

G depends on the location of the k perma-
nent faults. This problem of finding the worst-case schedule length has been addressed
in the context of transient faults on distributed multiprocessor systems, and researchers
have used “fault-tolerant process graphs” to model all possible fault-scenarios [40].
Such a modeling of all possible fault-scenarios is not feasible in our case because of
the interplay between the faulty-electrodes and the allocation, binding, scheduling and
placement of operations that can be affected by these faults.

Our first architecture synthesis solution, based on SA, determines the worst-case sched-
ule length in a pessimistic, but safe way, by assuming that each operation in the applica-
tion is affected by k permanent faults. The LS-based compilation used by the SA-based
synthesis is presented in Section 5.3.1. However, since the SA-based synthesis assumes
the worst-case pattern of faults for all evaluated architectures, it may also eliminate po-
tentially good low-cost architectures which, after fabrication, when the pattern of faults
is known, would have proven able to run the application within its deadline.

Hence, for our second architecture synthesis solution, based on TS, we propose, in
Section 5.4.1, a method to determine an estimation of δk

G , which is less pessimistic
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than considering k faults in each operation. The estimation of δk
G is not safe, i.e., it may

sometimes return smaller values than the worst-case ones. As a consequence, the TS-
based synthesis may sometimes obtain an architecture solution that for a certain pattern
of faults, will not complete the application within the required deadline. However, the
actual application completion time is determined through the compilation (see step 4 in
the methodology depicted in Fig. 3.1), which is performed after fabrication and testing,
when the pattern of faults is known. In case the architecture obtained by the TS-based
synthesis fails to complete the application within the deadline, the biochip is discarded.

5.3 SA-based architecture synthesis

As mentioned, to solve the architecture synthesis problem, which is the first step in
the methodology (see Fig. 3.1), we initially propose a SA-based approach. SA [12]
takes as input the application graph G , the component library M , the number of per-
manent faults to be tolerated k and the module library L and produces a fault-tolerant
application-specific architecture A of minimum cost. For the evaluation of each archi-
tecture alternative, the SA-based synthesis uses a simplified cost function which does
not consider the cost of the input fluids. The cost function used by SA is defined as
follows:

CostA = ∑NMi ×CostMi , (5.3)

where NMi is the number of components of type Mi and CostMi is the cost of the physical
component Mi from the library M .

In the context of application-specific architectures, using rectangular modules for op-
eration execution cannot take full advantage of the biochip area, because of its non-
regular layout (see the application-specific architecture example in Fig. 5.2). For that
reason we propose CRMs for operation execution on application-specific architectures.
CRMs, presented in Section 2.2.1, are circular-routes of non-regular shape, and thus are
able to make better use of the non-regular area of an application-specific architecture.

However, the SA-based synthesis proposes a simplification for operation execution by
using Rectangular Routes of varying Thickness (RRTs), see Fig. 5.4. RRTs are not as
flexible as CRMs, but still can better exploit an application-specific architecture than
rectangular modules. Note that rectangular modules are a subset of RRTs, hence SA-
based synthesis does not exclude the use of rectangular modules.

For example, two RRTs are shown in Fig. 5.4a and b: module M1, of one-electrode
thickness border and module M2 of two-electrode thickness border. If the thickness
of the border is not mentioned, then we consider that the module occupies the whole
rectangular area, as it is the case with module M3 in Fig. 5.4c.
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Our SA-based synthesis generates new alternative architectures by performing moves
on the current solution, see Section 5.1 for a detailed presentation of the moves. Each
new solution is tested for routability and timing constraints, as presented in Section 5.2.
An architecture solution is accepted if it improved the current solution, i.e., it minimizes
the objective function in Equation (5.1). However, SA also accepts worse solutions,
with a probability that depends on the objective function and the control parameter
called temperature. We allow SA to explore invalid solutions, in the hope to escape
local minima and guide the search towards valid architectures. For each biochemical
application, we calibrated the cooling schedule, defined by initial temperature TI, tem-
perature length TL and cooling ratio ε. The algorithm stops when the temperature is
cooled down to 1.

The next subsection presents the LS-based compilation used by SA to determine the
worst-case completion time of the application G when it is executed on the application-
specific architecture A with maximum k permanent faults.

5.3.1 Worst-case application completion time analysis

We perform a compilation of the biochemical application G on the architecture under
evaluation A to determine the worst-case completion time δk

G in case of k permanent
faults. We use a LS-based heuristic to perform the binding and scheduling of the oper-
ations in G . During scheduling, we also perform placement and routing.

Our LS-based heuristic, called LSPR (List Scheduling, Placement and Routing) takes
as input the application graph G , the biochip architecture A , the module library L , and
the number of permanent faults k to be tolerated, and outputs the worst-case completion
time δk

G . The library L contains for each module Mi, the worst-case operation execu-
tion times Ck

i considering k permanent faults. The value of Ck
i has to be determined

only once, when the module library L is characterized. In Section 2.2.2, we propose
a method to determine Ck

i , for modules of rectangular shape with varying electrode-
thickness border (see examples of such modules in Fig. 5.4). An example library L is
Table 5.3. Columns 4 and 5 in Table 5.3 present the values of Ck

i for k=1 and 2, respec-
tively. We have also added to L in Table 5.3 (rows 6, 7) modules with borders of 1 and
2 electrode-thickness, and empty inside. LSPR extends the LS algorithm presented in
Section 3.1.3 by using for operation execution the worst-case values from library L ,
obtained as discussed in Section 2.2.2.

For the placement of operations we have adapted the Fast Template Placement (FTP)
algorithm from [10], which uses: (i) free-space partitioning manager that divides the
free space in maximal empty rectangles (MERs) and (ii) a search engine that selects
the best-fit rectangle for each module. FTP takes as input the module M that needs
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to be placed on the biochip architecture A and the list of MERs Lrect . The search
engine evaluates all MERs from Lrect that can accommodate M, and selects the one
which is the nearest to the bottom-left corner of the biochip. We have adapted FTP for
application-specific architectures such that we can place modules of rectangular shape
with border of varying electrode-thickness such as the ones in Fig. 5.4.

We also need to determine the routes of the droplets between the modules. In case of
the black-box approach (see Section 2.2), the droplets have to avoid the modules, thus
the route of a droplet can be obstructed by a module.

However, by using the “droplet-aware” approach, we can allow the droplets to pass
through the modules. Hence, in our evaluation of δk

G we are not interested in the actual
routes, only in their length. For that purpose, we have adapted the “filling phase”
of Hadlock’s algorithm [66] to determine the route lengths, considering the missing
electrodes in the array (gaps) as the obstacles to be avoided, and including the worst-
case overhead for the detours needed to avoid k faults. As mentioned in Section 2.2,
we consider that routing a droplet from one electrode to another takes 0.01 s [60].

5.4 TS-based architecture synthesis

Our second solution to the architecture synthesis problem uses the TS [23] metaheuris-
tic. The features that differentiate the TS-based synthesis from the SA-based synthesis
are: (i) a more realistic cost function, (ii) an estimation of the application completion
time which is less than the worst-case values and (iii) an algorithm to incrementally
update the library of CRMs for operation execution.

(i) As part of the architecture cost, we also consider the fluidic cost, specified in a flu-
idic library F (Table 5.2). The cost of reagents is generally expensive and can reach
up to 70% of the biochip cost [68, 35]. Hard-to-obtain samples (e.g., from newborn
babies, endangered species, unique specimens), also have high cost. When an appli-
cation is executed, all dispensing reservoirs are fully loaded, thus fluidic cost depends
on the number and volumetric capacity of the dispensing reservoirs. Our architecture
synthesis varies the number of reservoirs when generating new architecture solutions,
in order to increase the parallelism and thus complete the application faster. This is
possible because the dispensing operation executes slower that mixing/dilution opera-
tions (e.g., for the colorimetric protein assay dispensing executes in 7 s, while mixing
executes in 3 s on a 2×3 mixer) [76]. Hence it is important to minimize the use of sam-
ples and reagents in order to reduce the total cost of a biochip architecture. Section 5.2
presents in detail the cost function used by the TS-based synthesis when evaluating an
architecture.
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(ii) The SA-based synthesis used LSPR, see Section 5.3.1, which determined the worst-
case schedule length by considering that each operation in the application is affected
by k permanent faults. The approach used by LSPR is pessimistic, and it results in
rejecting potentially good architecture solutions. Instead, we propose an estimation
method for the application execution time, which is less pessimistic than the worst-
case values. Our estimation method is faster and thus more suitable to be used inside
the TS-based architecture synthesis.

(iii) The SA-based synthesis considered rectangular modules with varying border thick-
ness. Although such modules are suitable for placement on application-specific biochips,
their rectangular shape does not permit an effective use of the area on the biochip, due
to its non-regular layout. Hence, TS uses circular-route modules (CRMs) for opera-
tion execution. In addition we have proposed an algorithm that starts from an existing
library L ′ determined for the previously visited architecture A ′, and incrementally up-
dates L ′ for the current architecture A .

The TS-based architecture synthesis takes as input the application graph G , the physical
components library M , the number of permanent faults to be tolerated k and the CRM
library L and produces the architecture A that minimizes the objective function (see
Equation (5.1)). TS explores the solution space using design transformations, called
moves, to generate the neighborhood N of the current solution. To prevent cycling
due to revisiting solutions, tabu moves are stored in a short-term memory of the search,
namely the tabu list, which has a fixed dimension, called tabu tenure.

However, it may happen that most of the search is done locally, exploring only a re-
stricted area of the search space. In that case, TS uses diversification to direct the search
towards unexplored regions. Thus, a diversification move is applied to the current so-
lution, and the search is restarted from that point.

Fig. 5.6 illustrates our TS-based architecture synthesis. We start the search from the
rectangular architecture of minimum cost A rect that can run the application within dead-
line (line 1). The initial solution A rect is obtained using exhaustive search by starting
from the rectangular architecture of minimum acceptable size and incrementally in-
creasing the dimensions until we obtain an architecture that can run the application
within the deadline. To explore the design space, GenerateNeighborhood (line 5)
generates new neighbor architectures by applying moves to the current solution Acurrent.
We use the moves presented in Section 5.1.

GenerateNeighborhood applies one by one all the moves under the limits conditioned
by the execution of the biochemical assay (e.g., at least one reservoir for each input
fluid).

However, applying some of the moves can lead to re-visiting solutions, and, conse-
quently, to cycling between already evaluated architectures. To avoid this situation,
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TS(G , M , k, dG )
1: A rect - rectangular architecture that minimizes the Objective function
2: Abest = Acurrent = A rect

3: t = 0
4: while t ≤ time limit do
5: N = GenerateNeighborhood(Acurrent, TabuList)
6: Update(TabuList, N )
7: Acurrent - solution from N that minimizes Objective function
8: if Objective(Acurrent) < Objective(Abest) then
9: Abest = Acurrent

10: else
11: if diversification is needed then
12: Acurrent = ApplyDiversificationMove(Abest)
13: Restart(TabuList, Abest , Acurrent )
14: end if
15: end if
16: end while
17: return Abest

Figure 5.6: Tabu Search-based architecture synthesis

such moves are considered tabu, and are stored in a tabu list. An example of a tabu
move is adding a dispensing reservoir after having removed the same reservoir during
the previous iteration. Hence, at each iteration, we apply only the moves that are not
tabu, and we determine the tabu moves for the next iteration (line 6 in Fig. 5.6).

Each of the architectures from the neighborhood N is evaluated using the objective
function from Equation 5.1, where δk

G is the completion time of the application G on
A obtained with the proposed FA-LSR presented in Section 5.4.1. The new solution
Acurrent is obtained by selecting the architecture from N that minimizes the Objective
function (line 7 in Fig. 5.6). If the currently found solution Acurrent is better than the
best-so-far Abest, then the latter is updated accordingly (lines 8–10).

In case the search does not find an architecture solution better than Abest for a number
of iterations, then TS uses diversification (line 12). A diversification move, composed
of two or more non-tabu moves, is applied on Abest in order to guide the search towards
unexplored regions of the search space.

For example, a diversification move composed of the following moves, enumerated in
the order of application: REPD, ADDB, ADDBT M, ADDRND (9 times), RMV RND (6
times) was applied to the architecture from Fig. 5.5a, resulting in the architecture from
Fig. 5.5e. The added electrodes are marked in Fig. 5.5e with a darker shade of gray.
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Next, the search is restarted from Acurrent obtained by applying the diversification move
on Abest. The Restart function (line 13) updates, if necessary, the architecture Abest

and the tabu list (deletes the previous elements and adds the tabu moves due to diver-
sification). The search continues until the time limit is reached, when our TS-bases
architecture synthesis returns Abest.

5.4.1 Application completion time estimation

To estimate the application completion time, we propose a LS-based compilation called
FA-LSR (Fault-Aware List Scheduling and Routing), which takes as input the architec-
ture under evaluation A , the application G , the library L and the number of permanent
faults k to be tolerated, and outputs the estimated completion time δk

G .

FA-LSR distinguishes itself from the LS-based compilation LSPR (see Section 5.3.1),
as follows. The main difference is concerned with considering the k permanent faults.
As mentioned, we do not know the position of the k faults during the architecture
synthesis (they will be known after fabrication and testing), so our evaluation has to
estimate δk

G . Instead of considering the worst-case scenario as LSPR, FA-LSR uses an
estimate for the operation execution, calculated as discussed in Section 2.2.3. The sec-
ond difference is an extension to the placement of operations, considering CRMs. As
explained in Section 2.2.1, the modules on which operations execute consist of circular
routes, which do not have to be rectangular. Hence, for the placement of operations we
use the algorithm presented in Fig 5.10, Section 5.4.2, which determines the library L
for the currently evaluated architecture A .

Fig. 5.7 presents FA-LSR. Every node from G is assigned a specific priority according
to the critical path priority function (line 1) [67]. List contains all operations that are
ready to run, sorted by priority (line 3). An operation is ready to be executed when
all input droplets have been produced, i.e. all predecessor operations from graph G
finished executing. The algorithm takes each ready operation Oi and iterates through
the library L , to find the CRM Mi that can be placed at the earliest time and executes the
operation the fastest (line 6). After Oi is bound to Mi (line 7), CalculateRoute (line 8)
determines the route that brings the necessary droplets to Mi and Oi is scheduled (line
10). Since the droplets can pass through CRMs when routing (we use a droplet-aware
approach), we need to determine only the routing time and not the actual routes. For
that purpose, CalculateRoute adapts the Hadlock’s algorithm [66] to determine the
route lenghts. List is updated with the operations that have become ready to execute
(line 11). The repeat loop terminates when List is empty (line 12).

Next, in order to obtain an estimate of the application completion in case of maximum k
faults, we use the operation execution times determined for each CRM Mi, through the
method we propose in Section 2.2.3. As mentioned, when the synthesis is performed,
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FA-LSR(G , A , L , k)
1: CriticalPathPriority(G)
2: t = 0
3: List = GetReadyOperations(G)
4: repeat
5: Oi = RemoveOperation(List)
6: Mi = FindCRM(L)
7: Bind(Oi,Mi)
8: routei = CalculateRoute(Oi,Mi,G)
9: t = earliest time when Mi can be placed

10: S = Schedule(Oi, t, routei, Mi, L)
11: UpdateReadyList(G , t, List)
12: until List = /0

13: LCP = CriticalExecutionPath(S )
14: FaultTable = DistributeFaults(LCP, k, S )
15: for Oi in FaultTable do
16: ki = number of faults for Oi
17: UpdateSchedule(S , Oi, ki, L)
18: end for
19: return δk

G

Figure 5.7: Fault-Aware List Scheduling and Routing

the location of the permanent faults is not known. Consequently, we do not know which
operations are affected by faults and what is the worst-case fault scenario. LSPR used
a pessimistic approach, by considering that every operation in the application suffers
from k faults. Because the length of schedule S is given by the critical path, which
is the path in graph G with the longest execution time, the approach we propose is to
consider that the faults affect the operations that are on the critical path—scenario that
will impact most the application completion time. The k faults are distributed among
the operations on critical path by the DistributeFaults function such that the impact of
the faults is maximized.

DistributeFaults takes as input the list LCP, which contains the operations on the crit-
ical path, the number of faults k and the schedule S . DistributeFaults uses a greedy
randomized approach [21] that takes each of the k faults and after evaluating each op-
eration in LCP, distributes the fault to the operation that delays the most the application
completion time. Depending on the criticality of specific operations, it may be the
case that an operation is affected by more than one fault. Furthermore, if an opera-
tion Oi ∈ LCP is assumed to have a fault, i.e., Oi executes on a faulty CRM Mi, then
all operations executing on CRMs that intersect Mi will also be considered affected
by a fault. The faulty operations and their corresponding number of faults are stored
in FaultTable. Finally, for each operation Oi ∈ FaultTable affected by ki faults, the
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Figure 5.8: Compilation example

schedule is updated (line 17) with the corresponding estimated execution time, de-
termined as explained in Section 2.2.2, and stored in the library L . The application
completion time δk

G is the finishing time of the last operation in the schedule table (line
19).

Let us assume that we have to compile the application A from Fig. 5.8a on the ar-
chitecture from Fig. 5.8b considering k = 1 permanent faults. We use the algorithm
presented in Section 5.4.2 to determine for A the CRM library L shown in Table 5.4,
which contains the placement of CRMs, the execution time for k = 0 (no faults) and
the estimated execution time for k = 1 and k = 2. For simplicity reasons, in this ex-
ample we ignore routing and consider that there are no contamination constraints. In
order to avoid congestion, the dispensing operations are scheduled only when the cor-
responding dispensed droplets are needed. At time t = 2 s mixing operation O10 has
the highest priority among all the ready operations (an operation is ready if all its input
droplets have arrived). For O10, the CRM M3 (see Fig. 5.8b) is selected from library L
(Table 5.4), since it finishes the mixing operation the fastest. At time t = 4.08 s, opera-
tion O10 finishes executing. However, the successor of O10, operation O16, is not ready
to execute because the other predecessor operation O09 has not finished executing. At
t = 6 s, O09 finishes executing, and List is updated with operation O16, which becomes
ready to execute.

First, FA-LSR will produce a schedule of 15.16 s (lines 4–12 in Fig. 3.3). Next, Dis-
tributeFaults will distribute the k = 1 faults to operation O17, since it results in the
greatest increase in schedule length. Consequently, operations O10, O16 and O12, which
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Table 5.4: Fault-tolerant CRM library L for the architecture in Fig. 5.8b

Operation CRM Time (s) Time (s) Time (s)
k=0 k=1 k=2

M1 2.7 4 15.81
Mix M2 2.1 2.4 3

M3 2.08 2.3 2.64
M1 5 6.8 16.68

Dilution M2 3.92 4.44 5.25
M3 3.9 4.14 4.4

execute on the same CRM as O17, suffer from k = 1 permanent faults. The schedule
length is updated with the execution times for the faulty operations Ck=1

i , taken from
library L (column 4 in Table 5.4). As shown in the schedule from Fig. 5.8c, the com-
pletion time δk=1

G is 15.6 s.

5.4.2 Incremental build of a CRM library

For our application-specific synthesis we use a TS-based metaheuristic (see Section 5.4),
which searches through various architecture solutions in order to find the minimum-
cost architecture that satisfies the timing constraints even in the presence of maximum
k permanent faults. Each architecture solution is evaluated in terms of routability, cost
and timing constraints, as explained in Section 5.2. In order to determine the applica-
tion completion time δk

G , and thus check if the timing constraints are satisfied, we need
to determine the CRM library L which is used during the compilation as presented in
Section 5.4.1. For each CRM determined during this process, its shape and the corre-
sponding placement on the biochip are also recorded. Hence, the placement task does
not need to be implemented during the compilation step. For example, the CRM M3
determined for the architecture in Fig. 5.8b, has the shape of the following dimensions:
8× 7× 6× 2× 3× 6, with the corners placed at coordinates: (0,0), (0,7), (6,7), (6,2),
(5,2) and (5,0).

In Section 3.2 we have proposed an algorithm, BuildLibrary, that builds a library L
of CRMs for the application-specific architecture A , which does not take faults into ac-
count. BuildLibrary is only used to build the initial library L0 for the initial architec-
ture solution A0, from which TS starts exploring the design space. BuildLibrary does
not consider faults, hence we use the method presented in Section 2.2.3, to determine
for each CRM∈L0, the operation execution time in case of faults. Since BuildLibrary
is time consuming and hence cannot be used inside a metaheuristic search, we propose
an Incremental Library Build (ILB) algorithm that starts from an existing library L ′ de-
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Figure 5.9: Example diversification move

termined for the previously visited architecture solution A ′, and incrementally updates
it for the current architecture A . This is possible because during the TS-based design
space exploration, a new architecture A is generated by applying gradual design trans-
formations to the previous solution A ′. Hence, the newly generated architecture A
shares a similar layout with A ′. Consequently, the corresponding CRM library L can
be built by incrementally updating L ′, that is the library previously determined for A ′.

Fig. 5.10 presents the proposed ILB algorithm, which takes as input the architecture
under evaluation A , the previously determined library L ′, the set of electrodes E in-
cluded in the transformation and the maximum number of faults k. ILB outputs the
newly determined library L .

A CRM is defined as a circular-route of electrodes (see Section 2.2.1), and we denote a
CRM M as a set of distinctive electrodes {e1,e2, ...,en}. An electrode en is a neighbor-
electrode to em, if em can be reached directly from en. Note that a droplet cannot move
diagonally.

Our proposed ILB is general, i.e., it can be used for any transformation involving
a set of electrodes E , which is decomposed in chains of electrodes (line 1). Let us
consider as example the application-specific architecture A ′ in Fig. 5.9a. We obtained
the architecture A in Fig. 5.9b after applying a “diversification” move composed of
several moves, to A ′. In Fig. 5.9b, the added electrodes are marked with a darker shade
of gray, while the removed electrodes are hashed. The set of electrodes used by the
transformation can be decomposed into the following: adding the chains of electrodes
R1 and R4 and removing the chains of electrodes R2, R3 and R5.

Each chain of electrodes R j ∈ E , can be in one of the two cases: (1) R j is added to A ′
or (2) R j is removed from A ′. In both cases we first determine the CRMs from L ′ on
which R j has an impact (line 3) and then we adjust those CRMs (lines 4–12) so that the
adjustment will improve the operation completion time. Next, for each newly adjusted
CRM, ILB estimates the operation execution time in case of maximum k permanent
faults (line 13) and updates the library accordingly (line 14).
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ILB(A , L ′, E , k)
1: LC = DecomposeInChains(E , A)
2: for R j ∈ LC do
3: LM = DetermineCRMList(L ′, Ri)
4: for Mi ∈ LM do
5: if R j is added then
6: Hi = FindNeighborChain(Mi, R j)
7: AdjustCRM(Mi,Hi)
8: end if
9: if R j is removed then

10: route = DetermineRoute(Mi,A)
11: ReconstructCRM(Mi, route)
12: end if
13: EstimateOpExecution(Mi,k)
14: UpdateLibrary(L , Mi)
15: end for
16: end for
17: return L

Figure 5.10: Incremental Library Build algorithm

Let us present in detail how our proposed algorithm works. First, ILB decomposes the
set of electrodes E in chains of electrodes which are stored in the list LC. Next, for
each chain of electrodes R j ∈E , DetermineCRMList (line 3) determines LM—the list
of CRMs on which R j has an impact. The strategy used by the DetermineCRMList
function depends on whether R j is added or removed.

For the first case, when R j is added to A ′, DetermineCRMList selects from the library
L ′, the CRMs impacted by this move, i.e., the CRMs that include at least one neighbor-
electrode to an electrode in R j. Those CRMs are stored in the list LM . Let us consider
the example from Fig. 5.11b, where R j is the chain of the electrodes colored with a
darker shade of gray. The CRM labeled with M1 is neighboring three electrodes from

Figure 5.11: Adjusting a CRM in case (1)
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Figure 5.12: Reconstructing a CRM in case (2)

R j, and consequently M1 is added to LM . In case (2), when R j is removed from A ′,
DetermineCRMList (line 3) adds to LM the CRMs that contain any electrode in R .
Let us consider the application-specific biochip from Fig. 5.12a, where the chain of
electrodes to be removed R j is hashed. The CRM labeled with M2 contains electrodes
in R j, and consequently M2 is included in LM .

Next, ILB tries to adjust each Mi ∈ LM so that the operations will complete faster.
Reconfigurable operations (e.g., mixing, dilution) complete faster when the forward
movement of the droplets is prioritized and the backward movement is avoided [58].
Hence, for case (1), the newly added electrodes ∈ R j are used to adjust the CRMs so
that forward movements are prioritized. In order to do that, FindNeighborChain (line
6) inspects all electrodes in R j to determine Hi—the longest chain of electrodes that has
both ends as neighbor-electrodes to an electrode in M j. AdjustCRM (line 7) includes
Hi in M j only if the adjustment results in a greater count of forward movements. For
the example in Fig. 5.11b, we have determined the chain of electrodes Hi in Fig. 5.11c,
and the adjusted M1 in Fig. 5.11d.

In case (2), when R j is removed from A ′, the CRMs Mi ∈ LM have to be re-routed to
avoid the removed electrodes. After the removal of the hashed electrodes in Fig. 5.12a,
the route of the CRM labeled M2 has to be re-routed as shown in Fig. 5.12b. Since
ILB is used inside a search metaheuristic, we are more interested in finding a new
route fast, then in finding the shortest route. Hence, in order to find a new connecting
route for Mi, DetermineRoute (line 10) uses Soukup’s algorithm [66]. In Soukup’s
algorithm a line segment is drawn starting from the source and moving towards the
target. The direction is not changed unless the line segment cannot be further extended.
The electrodes neighboring the end of the line segment are searched to find an electrode
in the direction of the target. Another line segment is extended from that electrode. The
search for a route continues in this manner until the target electrode is reached.

In case such a route cannot be found, Mi is removed from LM , otherwise Recon-
structCRM (line 11) includes the route in Mi. For the considered example, Fig. 5.12b
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shows the reconstructed CRM, which, due to an increased number of turns, requires a
longer time to complete the operation compared to the initial CRM M2 (see Fig. 5.12a).

Next, for each Mi ∈ LM , EstimateOpExecution (line 13) determines a parametric es-
timation of the operation execution time in case of maximum k permanent faults. The
algorithm used by EstimateOpExecution is presented in Section 2.2.3. Finally, the
library is updated (line 14) and it can be used by the FA-LSR compilation to determine
the application completion time.

5.5 Experimental results

To evaluate our strategies we have used five synthetic benchmarks (SB1–4) [48] and
five real-life applications: (1) the mixing stage of polymerase chain reaction (PCR, 7
operations) [76]; (2) in-vitro diagnostics on human physiological fluids (IVD, 28 op-
erations) [76]; (3) the colorimetric protein assay (CPA, 103 operations) [76]; (4) the
interpolation dilution of a protein (IDP, 71 operations) [95] and (5) the sample prepara-
tion for plasmid DNA (PDNA, 19 operations) [45]. The algorithms were implemented
in Java (JDK 1.6) and run on a MacBook Pro computer with Intel Core 2 Duo CPU at
2.53 GHz and 4 GB of RAM.

The focus of this chapter is to determine if application-specific architectures are more
cost-effective than rectangular architectures. Thus, we have used our SA optimization
approach to synthesize architectures for PCR, IVD and CPA applications with dead-
lines 10 s, 15 s and 100 s, respectively (we ignored the detection operations for this
set of experiments). We used the component library from Table 5.5. The results are
presented in Table 5.7. Together with the results obtained by SA, we have also deter-
mined, using exhaustive search (which varies the m×n dimensions and the number of
reservoirs), the cheapest general purpose architecture (column 3), which can run the
application within the deadline. The size of the architectures for k = 0, 1 and 2 are
presented in columns 2, 5 and 8, respectively (the number in parentheses refer to the
numbers of reservoirs for buffer, sample and reagent) and their cost is in columns 4,
7 and 10. Both exhaustive search and our SA-based architecture synthesis used the
proposed LSPR (see Section 5.3.1) for compilation.

Table 5.5: Component library

Name Cost Area (mm2) Time (s)
Electrode 1 1.5×1.5 N/A

Dispensing reservoir 3 2.5×2.5 2
Optical Detector 9 4.5×4.5 30

Table 5.6: Fluidic library

Fluid Name Cost
Sample 1
Buffer 4

Reagent 10
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We have run our SA-based synthesis for an hour for each experiment. The results of
SA for k = 0, 1 and 2 are presented in column 4, 7 and 10, respectively, where CSA is
the cost of the architecture. For the cooling schedule we used T I = 40, T L = 100 and
ε = 0.97. As we can see from Table 5.7, our SA is able to produce application-specific
architectures which are significantly cheaper than the best general purpose architecture.

In the second set of experiments, we used our TS optimization approach to synthesize
architectures for the PCR, PDNA, IDP and SB1 applications. We have compared the
architectures outputted by TS with the minimum cost rectangular architecture obtained
with exhaustive search. Both exhaustive search and our TS-based architecture synthe-
sis used the proposed FA-LSR Section 5.4.1) for compilation. The CRM library L was
determined using the BuildLibrary algorithm, presented in Section 3.2, for exhaustive
search and the proposed ILB (see Section 5.4.2) for the TS-based architecture synthe-
sis. We have run the experiments for k = 0, 1 and 2 faults, estimating the operation
execution time as proposed in Section 2.2.3. We used the component library M and
fluidic library F from Table 5.5 and 5.6, respectively.

The results are presented in Table 5.8. The deadline dG for each application is presented
in column 2, the size of the minimum cost rectangular architectures for k = 0, 1 and 2
are presented in columns 3, 6 and 9, respectively (the number in parentheses refer to
the numbers of reservoirs for buffer, sample and reagent) and their cost is in columns 4,
7 and 10. Note that the deadlines are different than in the previous set of experiments,
where we ignored the detection operations.

We have run our TS-based synthesis for an hour for each experiment. The results of
TS for k = 0,1 and 2 are presented in columns 5, 8 and 11, respectively. As we can
see from Table 5.8, our TS is able to produce application-specific architectures which
are significantly cheaper than the best general purpose architecture. For the PDNA
application, our proposed synthesis obtained architectures that reduce the cost with
22.4%, 25.9% and 9.2% for k = 0, 1 and 2, respectively. Our proposed methodology

Table 5.7: Application-specific synthesis results obtained by SA

k = 0 k = 1 k = 2
App. Arch CRECT CSA Arch CRECT CSA Arch CRECT CSA
PCR 7×10 79 60 7×10 79 65 9×11 108 98

(1,1,1) (1,1,1) (1,1,1)
IVD 7×10 88 62 7×10 88 70 10×8 98 85

(2,2,2) (2,2,2) (2,2,2)
CPA 7×8 71 59 7×8 71 66 11×12 147 127

(2,1,2) (2,1,2) (2,1,2)
*We ignored the detection operations for this set of experiments
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Table 5.8: Application-specific synthesis results obtained by TS

k = 0 k = 1 k = 2
App. dG Arch CRECT CT S Arch CRECT CT S Arch CRECT CT S
PCR 10 5×5 53 47 7×6 66 54 8×6 72 61

(2,1,1,0) (1,1,1,0) (1,1,1,0)
PDNA 60 5×5 49 38 6×5 54 40 6×5 54 49

(1,1,1,0) (1,1,1,0) (1,1,1,0)
IDP 200 5×5 85 74 5×5 90 84 5×5 90 84

(1,1,1,4) (1,1,1,4) (1,1,1,4)
SB1 100 5×5 76 83 5×5 85 76 5×5 85 84

(1,1,1,3) (1,1,1,4) (1,1,1,4)

Table 5.9: Comparison between TS-based synthesis and SA-based synthesis

k = 0 k = 1 k = 2
App. CSA CT S CSA CT S CSA CT S
PCR 60 43 65 46 98 78
IVD 62 56 70 62 85 78
CPA 59 49 66 63 127 123

*We ignored the detection operations

can also support the designer in performing a trade-off between the yield and the cost
of the architecture, by introducing redundant electrodes to tolerate permanent faults.
The increase in cost for k = 1 and k = 2 compared to the cost of the non-fault-tolerant
architecture, is presented in columns 8 and 11 for TS. For the PCR application (see
row 1 in Table 5.8), introducing redundancy for fault-tolerance resulted in a increase of
12.9% in the architecture cost.

In the third set of experiments, we compared the costs of the architecture obtained
by the TS-based synthesis to the cost of the architecture obtained using the SA-based
synthesis. For a fair comparison, we used Equation 5.3 cost calculation, which did not
consider the cost of the input fluids. Since in this set of experiments we do not consider
the optical detection operations, we have adjusted the deadlines to 10 s, 15 s and 100 s
for PCR, IVD and CPA, respectively. The results are presented in Table 5.9. As we can
see, our TS-based architecture synthesis is able to obtain better results. For example,
for IVD (row 2 in Table 5.9), a reduction in cost of 28.3% was obtained for k = 0 using
our TS-based synthesis.

In the fourth set of experiments we were interested to determine the quality of the pro-
posed LS-based compilations, namely LSPR and FA-LSR (Sections 5.3.1 and 5.4.1),
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Table 5.10: Evaluation of the LSPR/FA-LSR compilations (no faults and rectangular
architectures)

App. Arch. δ0
G (s) CPU time δ

opt
G (s) CPU time Deviation (%)

PCR 9×9 11 25 ms 10 60 min 9
IVD 9×10 77 91 ms 73 60 min 5.4
CPA 11×12 219 498 ms 214 60 min 2.3

*We ignored the detection operations for this set of experiments

Table 5.11: Increase in application completion time (k = 0,1,2)

App. Cost δ0
G (s) δ1

G (s) Deviation (%) δ2
G (s) Deviation (%)

PCR 98 8.42 8.81 4.6 9.43 11.9
IVD 85 12.62 13.11 3.8 14.81 17.3
CPA 129 153.9 169.3 10 190.11 23.5

*We ignored the detection operations for this set of experiments

in terms of the application completion time δG . We have compared δG to the nearly-
optimal δ

opt
G obtained in [50] using TS for the compilation. Note that δG is determined

for the case when there are no faults, since the implementation in [50] does not con-
sider faults. This comparison was only possible for rectangular architectures, a limita-
tion of [50]. Under these simplifications (no faults and rectangular architectures), both
LSPR and FA-LSR have the same implementation. Also, for a fair comparison, we
ignored routing and we have used the same module library as in [50].

The results of this comparison are presented in Table 5.10. The deadlines for PCR,
IVD and CPA are 10 s, 15 s and 100 s, respectively. Table 5.10 shows that our LS-
based compilation is able to obtain good quality results using a much shorter runtime
(milliseconds vs 1 hour). The average percentage deviation from the near-optimal result
is 5.5%, hence, it can successfully be used for design space exploration.

Next, we wanted to determine the increase in δG computed by FA-LSR as the number
of permanent faults k increases. Table 5.11 shows the comparison between δk

G for
k = 0, 1 and 2. As an input to LSPR we have used an application-specific architecture,
synthesized using our SA approach such that it minimizes the cost for each particular
case-study and is tolerant to 2 faults. The cost of this architecture is presented in
column 2 of Table 5.11, and the δk

G results are in columns 3, 4 and 6, for k=0, 1 and 2,
respectively. As we can see from Table 5.11, the increase in δG is on average 11.8%
for each increase in k.
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Table 5.12: Evaluation of the CRM approach for compilation

App. (ops.*) Arch. δR
G (s) δCRM

G (s) Deviation (%)
IVD (23) 45 [18.4 11.73 36

(2,2,2)
SB2 (50) 96 29.39 23.9 18.6

(1,2,1)
SB3 (70) 103 31.03 20.15 35

(2,2,2)
SB4 (90) 125 42.51 27.87 34

(2,2,2)

In our final set of experiments we were interested to determine the efficiency of our
proposed placement of operations (Section 5.4.2) in terms of the application completion
time δCRM

G obtained after compilation.We compared δCRM
G to the completion time δR

G ,
obtained by using the routing-based compilation approach from [52], which is the only
available synthesis approach that is not limited to rectangular modules and can take
advantage of an application-specific architecture.

The results of this comparison are presented in Table 5.12. For the real-life application
(IVD), we used the application-specific architecture (column 2) derived with our SA-
based architecture synthesis. The application-specific architectures for the synthetic
benchmarks were obtained manually. In column 2 we present, for each architecture, the
number of electrodes and in parentheses the numbers of reservoirs for sample, buffer
and reagent. As we can see from Table 5.12, our placement results in a better com-
pletion time δCRM

G (column 4) than δR
G (column 3) for all the tested benchmarks. For

example, for IVD, we obtained a completion time δCRM
G = 11.73 s, improving with

36% the completion time δR
G = 18.4 s.
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CHAPTER 6

Conclusions and Future work

The conclusions are presented in Section 6.1 and the future work in Section 6.2.

6.1 Conclusions

In this thesis we have proposed compilation methods to address transient faults during
the application execution and synthesis methods for the design of application-specific
architectures, aiming at fault-tolerance against permanent faults.

The first proposed compilation approach has considered only faults during split opera-
tions, which are erroneous if the resulted droplet volumes, detected using sensors, are
outside of a given threshold. Recovery from faults is done by merging the droplets back
and re-executing the split operation. We have used the compilation strategy from [49]
to generate a binding and placement of operation (ignoring faults) and we have focused
on generating good quality fault-tolerant schedules.

Hence, we have proposed a fault-tolerant sequencing graph that can capture all the fault
scenarios in the application, considering that faults can happen only during split oper-
ations. Then, we have devised a scheduling technique, based on the List Scheduling
(LS) algorithm, to derive the fault-tolerant schedule table, which contains the schedule
for each fault scenario.
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During the execution of the application, a detection operation is performed after each
split operation. The current fault scenario is updated according to the results of the
detection operation and the schedule corresponding to the updated fault scenario is
selected from the fault-tolerant schedule table.

We have used two real-life applications and seven synthetic benchmarks to evaluate
our proposed fault-tolerant compilation. As the experimental results show, by taking
into account fault-occurrence information we can derive better quality schedules, which
leads to shorter application completion times even in the worst-case fault scenario. This
has the potential to reduce costs, because smaller area biochips and less sensors can be
used to implement the application.

Next, we have extended our work to address faults in all types of operations. We have
taken into account the parametric faults which can result in operation variability, such
as volume variations. We have proposed a fault-tolerant compilation which uses an
online Redundancy Optimization Strategy (ROS) for error recovery. The main features
of ROS are that it uses a combination of time redundancy (re-executing operations) and
space redundancy (producing redundant correct droplets before we know an error will
occur), and is able to optimize at runtime their use based on the actual fault occurrences.

We have also proposed a biochemical application model which captures the detection
operations needed to detect an error, and the operations that have to be executed for
recovery. The error detection operations are introduced at runtime based on an error
propagation analysis and the previous fault occurrences. We have developed a LS-
based fast online compilation, which is able to exploit the biochip configuration at the
moment when faults occur, such that the application completion times, even in case
of errors, are minimized. The experiments performed on three real-life case studies
show that our ROS can be successfully used to tolerate transient faults in time-sensitive
biochemical applications.

In this thesis, we have also addressed the problem of synthesizing an application-
specific biochip architecture that is fault-tolerant to permanent faults. Initially, we have
proposed a solution based on Simulated Annealing (SA) metaheuristic. Every architec-
ture visited by SA is evaluated in terms of application completion time by using a List
Scheduling Placement and Routing (LSPR) heuristics, which performs a compilation
of the application on the architecture. LSPR takes into account the worst-case overhead
due to permanent faults and performs binding, scheduling, placement and routing eval-
uation. Our SA-based synthesis outputs the minimum cost architecture that can satisfy
the deadline of the application even in the case of permanent faults.

The experimental results show that our synthesis approach is able to significantly re-
duce the costs compared to general-purpose rectangular architectures. In addition, by
synthesizing fault-tolerant architectures, our methodology can help the designer in-
crease the yield of DMBs.
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Next, we have proposed an improved solution to the architecture synthesis problem,
based on Tabu Search (TS) metaheuristics. In order to evaluate the architecture alterna-
tives visited by TS in terms of their impact on the timing constraints of the application,
we have proposed a Fault-Aware List Scheduling and Routing (FA-LSR) compilation
to determine the application completion time which depends on the given architecture
and on the pattern of permanent faults. FA-LSR uses an estimation method that tries
to reduce the pessimism of the worst-case completion time evaluation determined by
LSPR. Our previous SA-based architecture synthesis used the worst-case values for op-
eration execution, which is too pessimistic, i.e., the architecture solution search avoided
visiting potentially good low-cost architectures. By using an estimate that is less pes-
simistic than worst-case, we have extended the exploration of the solution space to
architectures of lower cost. As the experiments show, FA-LSR proves to be fast and
provides good quality solutions.

In in the context of the architecture synthesis problem we have investigated for an
operation placement strategy that would make a better use of the irregular layout of
an application specific biochip. Hence, we have proposed a placement strategy using
circular-route modules that take advantage of the characteristics of the architecture and
use effectively the available area. Our algorithm starts from an application-specific ar-
chitecture, given as input, and builds a library of circular-route modules. The library
provides multiple choices, that can be further exploited by the compilation implemen-
tation to minimize the application completion time. We have evaluated our proposed
placement strategy, by comparing the compilation results with previous work, on sev-
eral benchmarks. As the experimental results show, our placement strategy is able to
significantly reduce the completion time of the applications.

We have integrated the proposed placement strategy into our TS-based architecture
synthesis, i.e., we use the algorithm for building a library for the initial architecture
solution generated by TS. For the solutions visited by TS during the search, we have
proposed a faster method that incrementally updates the library previously determined.
The library and the estimated operation execution times are used by FA-LSR to de-
termine the application completion time in case of faults. Experiments show that our
TS-based synthesis is able to find application-specific architectures with significantly
lower-cost than the minimum-cost rectangular architectures.

6.2 Future work

In this section we present some of the directions in which our work can be extended
to address other problems regarding the compilation of biochemical applications on
digital microfluidic biochips.
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Figure 6.1: Example application G Figure 6.2: Placement of modules

All compilation strategies proposed so far in related research (the only exception is [46])
consider a given module library L , which contains for each operation the worst-case
execution time (wcet). However, an operation can finish before the wcet, due to vari-
ability and randomness in biochemical reactions [39, 42]. Such situations, when the
actual execution time of the operation is less than wcet, result in time slacks in the
schedule of operations. These time slacks can be used for executing other operations
in the application and thus, reduce the completion time. The shorter the completion
time, the more faults can be tolerated, since we can use the gained time to recover
from transient faults. In this subsection, we are investigating alternative solutions for
exploiting the slack time resulted due to uncertainties in operation execution, such that
the application completion time is minimized.

The main assumption is that we can determine if and when an operation finishes before
its wcet. For example, we can use during the execution of the bioassay a “sensing
system” [30, 26], such as the CCD camera-based one, presented in Section 4.2.5, to
determine the actual execution times of the operations.

Let us consider as example the application G in Fig. 6.1 with a deadline dG = 13 s
and the wcet values from Table 6.1 for operations execution. As Fig. 6.3a shows, the
application G is scheduled to finish executing in 13 s. In Fig. 6.3b, we assume that the
operations O2, O9, O11 and O14 will finish in less than their respective wcet. The slack
time for each of these operations is marked with gray hashed rectangles in Fig. 6.3b.
As we can see from Fig. 6.3b, although the mentioned operations finished earlier, by
using the same schedules as in Fig. 6.3b, we are not able to exploit the resulted slack.
We are interested in a method which can produce a schedule such as the one in Fig. 6.6,
which uses the actual execution time values for the operations. The challenge is that we
do not know in advance, at design time, which operations will finish earlier and their
execution times. These are only known at runtime, as detected the available sensing
system.

As mentioned, the only work that addresses the uncertainties in operation execution
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Figure 6.3: Schedule using wcet values for operation execution

Table 6.1: Module library L with wcet values

Operation Module area wcet (s)
In N/A 2.5

Mix 3×6 3.47
Mix 4×6 3.1
Mix 4×2 4.3
Mix 4×3 2.5

Dilution 3×6 4
Dilution 4×6 3.1

Detection 1×1 5

problem is [46], where an Operation-Interdependency-Aware (OIA) compilation is pro-
posed to derive an offline schedule that is scaled at runtime in case operations do not
finish at expected time, i.e., wcet. As an alternative to OIA we propose two other ap-
proaches: (i) an online compilation method (Section 6.2.2) which is used to update
the schedule at runtime when we detect that an operation finishes before its wcet, and
(ii) an offline compilation method (Section 6.2.3), based on a “quasi-static scheduling”
approach which derives offline a set of schedules, considering varying execution times,
and switches online to the most appropriate schedule corresponding to the observed
execution times.

The strategies employed in each of these approaches are depicted in Fig. 6.4a, b and c,
respectively. We discuss in detail these strategies in the following three subsections.

In order to illustrate each of the strategies we will use as example the application graph
G from Fig. 6.1, which has to execute on the 8× 8 biochip A in Fig. 6.2. The dead-
line for G is dG = 13 s. We consider that the operations are executing on rectangular
modules which have their area and wcet specified in the library L from Table 6.1. The
placement of the modules is presented in Fig. 6.2. In this example, we assume a black-
box approach for the operation execution, hence we use a one-thickness segregation
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Figure 6.4: Solutions to the problem of uncertainties in operation execution

border between modules in order to avoid accidental merging (see the placement of
modules in Fig. 6.2, where the hashed electrodes represent the segregation border). As
in the previous examples in this thesis, we ignore routing for simplicity reasons.

We formulate the problem as follows. Given an application G to be executed on a
rectangular biochip architecture A within a deadline dG , we want a schedule S of op-
erations which minimizes δG in case of uncertainties.

6.2.1 OIA strategy

A solution to this problem is the OIA strategy proposed in [46] and schematically pre-
sented in Fig. 6.4a. As seen in Fig. 6.4a, OIA compilation is used offline to determine
the schedule of operations. At runtime, a sensing system is used to signal when an
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operation has finished executing. The schedule is scaled accordingly to adjust to the
actual execution times of the operations. Note that OIA does not use a module library
as input, but instead relies on the sensing system to notify when an operation finished
executing. Hence, the schedule decided offline by OIA contains only the order of op-
erations and does not contain the execution times of the operations.

The OIA compilation in [46] has four steps:

(1) First, the application graph G is partitioned into multiple directed trees by deter-
mining the operations in G with more than one successor and removing all the edges
that start from those operations. For the graph in Fig. 6.1, the only operation in G that
has more than one successor is O13. After removing all edges that have O13 as source,
we obtain the three trees TL, TC and TR, depicted in Fig. 6.5a.

(2) Next, the OIA compilation is applied to each of the trees obtained at step 1. OIA
compilation schedules the operations in phases, namely the transport (T) phase for
routing and dispensing operations and the dilution/mixing (D/M) phase for dilution
and mixing operations. Each phase executes until all the operations that are part of it
are completed. The two phases, T and D/M, alternate with only one being active at
a time. One of the advantages of this scheduling approach, is that, in case a biochip
with multiple clock frequency is used, then the clock frequency during the T phase can
be increased and thus reduce the application completion time with no side-effects (the
electrodes deteriorate faster with the number of frequency switches, but in the T phase
there is a constant number of switches regardless of the frequency). The schedules
obtained using OIA for the three trees TL, TC and TR are presented in Fig. 6.5c–e. As
mentioned, OIA determines only the order of the operations and not their duration, i.e.,
the start and finish times. Hence, in order to depict the schedule of the operations in
Fig. 6.5d–f, for clarity reasons, we used the actual execution times of the operations, as
if they were determined at runtime.

(3) The directed trees are sorted so that they do not present scheduling and placement
conflicts. Using the sorting algorithm proposed in [46], we obtained for our example
the sorted order in Fig. 6.5b.

(4) Finally, the compilation results for the trees are merged according to the sorted
order obtained during the previous step. For our example, we have obtained the final
schedule from Fig. 6.5f, where the execution of the application starts with a T phase,
containing operations O5 and O6. When both operations finish executing, the next
phase, containing operation O10 starts. Each phase waits for all operations scheduled
in the previous phase to finish executing. The order of the operations is fixed, i.e., it is
not influenced by any variability in operation execution.

Hence, OIA compilation provides a schedule that is scalable at runtime and does not
depend on a module library or an online compilation. Although OIA is able to handle
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operation execution variability, its aim is not to reduce the schedule length, but to han-
dle situations when a module library is not available and there is no information about
the wcet of operations. As seen in Fig. 6.5f, the application does not meet the required
deadline dG = 13 s.

Figure 6.5: OIA compilation example
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6.2.2 Online compilation under execution time uncertainty

In Section 4.2.2 we have proposed an online compilation strategy to tolerate transient
faults at runtime. Here we discuss how that strategy can be adapted for handling op-
eration execution time variability. Here we do not, though, address the issue of faults,
which is orthogonal to our problem.

A second solution to the problem is an online approach, which, whenever an operation
finishes at a different time than expected, uses an online compilation to determine a
new schedule for the current scenario. The online approach, outlined in Fig. 6.4b, is
similar to out proposed online error recovery strategy, presented in Section 4.2.2. As
seen in Fig. 6.4b, we use an offline compilation to determine an initial schedule. We
consider that we have given a module library containing the wcet of operations. Next,
the application is executed according to the offline schedule. A sensing system notifies
the computer whenever an operation finishes earlier than its wcet. Then, an online re-
compilation is run to determine a new corresponding schedule. Fig. 6.3a shows the
schedule of operations determined offline using wcet.

As shown in Fig. 6.3, operation O2 is scheduled to finish at 2.5 s. However, when
executed on the biochip, operation O2 finishes earlier than expected, at t = 2.2 s. Con-
sequently, at t = 2.2 s, the computer executes an online re-compilation to determine
the new schedule of operations. In Fig. 6.6, the thick vertical lines on the row labeled
“Computer”, mark the re-compilation time, which is negligible in comparison to the
operation execution times. When using the online strategy, the application in our ex-
ample completes in 12.7 s, which is faster than using the wcet values (see the schedule
in Fig. 6.6).

Figure 6.6: Execution of operations using the online strategy



120 Conclusions and Future work

6.2.3 Quasi-static scheduling

As observed, an online strategy is able to handle uncertainties in operation execution
and complete the application within deadline at the expense of a runtime overhead
due to online compilation. However, an offline strategy, such as OIA compilation, is
preferred when an online strategy cannot be used, e.g., the microcontroller is too slow,
the DMB does not have an integrated sensing system, etc.

In this subsection, we present the third strategy, based on quasi-static scheduling, which
determines an offline a set of of schedule tables from which a particular schedule will
be chosen at runtime, corresponding to the current operation execution scenario. The
quasi-static scheduling techniques have been previously proposed for real-time sys-
tems [16], in the context of scheduling tasks with soft deadlines on multiprocessors.

Let us explain the quasi-static scheduling technique using as example the application
G1 in Fig. 6.7a with a deadline dG1 = 40s. The quasi-static scheduling technique derives
the tree of schedules in which the nodes are alternative schedules of operations and
the edges are conditioned by the current execution scenario. We used for operation
execution the wcet values from the library in Table 6.2 and determined for our example
the schedule in Fig. 6.7b. The binding of operations is depicted at the right side of the
scheduling in Fig. 6.7b. For example, operations O2, O5 and O8 execute on module
M1, which has a size of 3×3 electrodes.

The tree of schedules derived for the application G1 is depicted in Fig. 6.7c, where
the condensed notation for the schedule alternatives represents the order of operations
on modules M1, M2 and detector, respectively. For example, the root of the tree of
schedules in Fig. 6.7c is the schedule alternative from Fig. 6.7b, where operations O2,
O5 and O8 execute on module M1, operations O1, O3, O4, O7 and O6 execute on M2
and operations O9, O10 and O11 execute on the detector.

We denote with S = {O2O5O8;O1O3O4O7O6;O9O10O11}—the schedule that is the
root of the tree of schedules. Thus operations O1 and O2 start executing at the same
time as t = 0 on modules M1 and M2, respectively. The module library L provides the

Table 6.2: Module library L for quasi-static scheduling

Operation Module area bcet (s) wcet (s)
Mix 3×3 4 7
Mix 1×3 1 5

Dilution 3×3 5 10
Dilution 1×3 3 7

Detection 1×1 5 5
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Figure 6.7: Quasi-static scheduling example

bcet and wcet for each type of operation. It follows that the completion time intervals
for O1 and O2 are [4, 7] and [1, 5], respectively. Hence, we consider two cases: (a)
O1 finishes before O2 and (b) O1 finishes after O2. The completion time intervals for
O2 are (7, 10] in case (a) and [5, 7] in case (b). In the tree of schedules the execution
scenarios are represented as conditions on the edges, and the alternative scenarios are
nodes. As seen in the tree of schedules (Fig. 6.7c), in case (a), corresponding to the
edge labeled “O2:(7,10]”, the schedule S ′ = {O2O5O8;O1O3O4O7O6;O9O10O11} is
derived. In case (b), corresponding to the edge labeled “O2:[5,7]”, the schedule S ′′ =
{O2O5O8;O1O3O4O6O7;O10O9O11} is obtained.

Such a tree of schedules, derived statically, captures a number of schedules and switch-
ing points. At runtime, the current execution scenario activates a specific path in the
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tree of schedules. The corresponding schedule alternative is loaded. Hence, the quasi-
static scheduling technique has the advantage of deriving schedules that satisfy the tim-
ing constraints of the application without the runtime overhead of an online compila-
tion. We consider for future work implementing the online strategy and the quasi-static
scheduling technique in order to draw a comparison between them.
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