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Datasets (MMDS)

1)Multiple comparisons
2)What is the true number of independent tests (data highly correlated)

3)Data extremely noisy, i.e. low SNR rendering tests insignificant.
XGene seq. X Samples XWebpagesXWebpages XTermXDocument

XSpace XTime

Neurolnformatics Biolnformatics ComplexNetworks WebDataMining
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/Goal of unsupervised Learning
(Ghahramani & Roweis, 1999)

B Perform dimensionality reduction

B Build topographic maps

B Find the hidden causes or sources of the data
B Model the data density

B Cluster data

Purpose of unsupervised learning
(Hinton and Sejnowski, 1999)

B Extract an efficient internal representation of the
statistical structure implicit in the inputs

o
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SCIENCE : DISCOVERIES [l

The End of Theory: The Data Deluge Makes the
Scientific Method Obsolete

Ev Chriz Anderson [ obzz.08

jon: Marign Banties

n n
THE PETABYTE AGE: All models are wrong, but some are useful.

Sensors everywhere. Infinite storage. ] o
Clouds of processors. Cur ability to So proclaimed statistician George Box 30 vears ago,

capture, warehouse, and understand and he was right. But what choice did we have? Onl

! ' : g 1 | Unly

massive amounts of data is changing models, from cosmological equations to theories of

science, medicine, business, and human behavior, seemed to be able to consistently,

;??E;i’fei' g‘i‘ﬂi‘i};r ;;i‘ilcltfc'i':; of facts if imperfectly, explain the world around us. Until

DppDrtunit‘_ﬂ; to fin d answiers to now, Today companies like Google, which hava
R - orowh Up in an era of massively abundant data, den't

AnaIyS|s of massive amounts of data will be the main
driving force of all sciences in the future!!

Bit50 June 19, 2010




Informatics and Mathematical Modelling / Intelligent Signal Processing

/Vector: 1-way array/ 1st order tensor,

Matrix: 2-way array/ 2nd order tensor, HH¥ R THEE

3-way array/3rd order tensor

Multi-way modeling has become an important tool for
Unsupervised Learning and are in frequent use

today In a variety of fields including
B Psychometrics (Subject x Task x Time)

B Chemometrics (Sample x Emission x Absorption)
B Neurolmaging (Channel x Time x Trial)

L] Textmining (User x Query x Webpage or Webpage x Webpage X Anchor text)
{Signal Processing (IcA, i.e. diagonalization of Cummulants)
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The two most commonly used tensor decomposition
models are the CandeComp/PARAFAC (CP) model
and the Tucker model

Tucker(J1, Jo, ... In) 1 Xiy g 02 Jngm oM. @ . g

LA PRREIL 5 ') IﬂN 11,71 9,2 *°° 'i-N.?N
¥ () )

. . ~
21 ,23,.-. E -1.1 j 32 _jr = 'zN ]

The Tucker Model Canoncical Decomposmon/PARAFAC (CP)

Tucker(3,3,3) Tucker(2,4,3)

Tuckerr X =G x1 AWM x5 A@ x5 ... xy AW
CP: X=Tx1 AM x5 A@) x5 .. xy AW

where  (Q Xn P)iyig,jin,in = Do, Dirsingesing.in
\ SVD: X =USV' =S x, U x, V
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What constitutes an adeguate number of components?

I.e. determining J for CP and J,,J,,...,Jd for Tucker, is an
open problem, particularly difficult for the Tucker model as

the number of components are specified for each modality
separately

Notice:

B CP-model unique
X~ (Dx1QxaRx38)x1(AQ ) x2(BR 1) x3(CS 1) =Dx; AxaBx3C.

B Tucker model not unique
X =~ (g XlQ ><2R><3S) X1 (AQ_l) XQ(BR_l) X3(CS_1) = Q/X]_A/XQE Xgé.
However, contrary to SVD neither of the two models are

nested, i.e., factors for the smaller models not in general

@ntained INn larger model!
DT

oD
o
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ol :
/ Sparse Coding

ohin Sl Nature, 1996

Emergence of simple-cell
receptive field properties
by learning a sparse
code for natural images

Bruno A. Olshausen* & David J. Field

Department of Psychology, Uris Hall, Cornell University, Ithaca,
New York 14853, USA

Bruno A. Olshausen David J. 'Fiéllld

argmin 4 g + A

/¢

Tradeoff parameter

Open problem to choose tradeoff/regularisation parameter A

Q(i&a S) _ %primels)(patch,es . lapz‘::cels><fea,t.Sfecmﬁ.><pc:uici'ws||?7 1+ )\‘S|1
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~~  Sparse Coding relates to how brain process information! ™S\
Image patch 1 to N

l _—

n-ﬁ*“ﬁn:g #‘1
‘-‘F‘ ﬁﬂ&:ﬂ"'ﬁh A
T e \"‘4#?“

llsm-_‘

E===

Patch image Vectorize patches

_ _||Xpi9:els><patches o Apimelsxfeat.sfeat.XpatchesH%‘ 4 A|S|1

Contrary to compressi'\')'e sensing Sparse coding
@mpts to both learn dictionary and encoding

at the same time (This problem is not convex!)

= R N
aaEl A

-
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/ /—\gcl ida _ _ \\
B To use sparse coding to Simplify the Tucker core forming

a unique representation as well as enable interpolation
between the Tucker (full core) and CP (diagonal core)

model.

B To use sparse coding to turn off excess components in the
CP and Tucker model and thereby select the model order.

B To tune the pruning/regularization strength from data by

Automatic Relevance Determination (ARD) based on
Bayesian learning.
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The explanation of any phenomenon
should make as few assumptions as
possible, eliminating those that make
no difference in the observable
predictions of the explanatory
hypothesis or theory.

To get the posterior probability distribution,
multiply the prior probability distribution by
the likelihood function and then normalize

Thomas Bayes

Bayesian learning embodies Occam’s razor, i.e.
Complex models are penalized.

Evidence

P{D{H,)
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/I\/Iany Inference paradigms in Bayesian
Learning

B Maximum a posteriori estimation (MAP)
seeks optimal solution (admit standard optimization) however, the
approach does not take parameter uncertainty into account

B Sampling methods
Marcov Chain Monte Carlo (MCMC)

B Variational methods (VB) and Belief Propagation (BP)
Approximate likelihood P(0) by factorized form Q(0) that is tractable
VB: minimize the Kulback Leibler divergence KL(P(0)]|Q(6))

BP: minimize the Kulback Leibler divergence KL(Q(6)|P(6))

(Notice: Bayesian Learning based on MAP admits direct use of all
{ur favorite standard optimization tools)

Bit50 June 19, 2010 12
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Automatic Relevance Determination (ARD)

B Automatic Relevance Determination (ARD) is a
hierarchical Bayesian approach widely used for
model selection

B In ARD hyper-parameters explicitly represents the
relevance of different features by defining their
range of variation.

(i.e., Range of variation—-0 = Feature removed)

o
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the Lasso /Basis Pursuit Denmsmg (BPD) problem

1
LASSO/BPD: arg min 2—2”:{ — AP 1% 4+ AJs|s
8 o

2
1 l|2x—As||

P(XlA& Ss 5 52) - T e 2
Vv 2mo?

AR ,)i\ I —Alsl, I
IJ‘LEMJ (EJ"E e ad 8 Prlor

P(x|A,s,0?)P(s|)A)
P(x)
—log P(s|A,x,0%,)) = —logP(x|A,s,o?) —log P(s|\) + log P(x)

Ix — As||? I A
B || 53 F + Als|1 +| logZﬂ'cr —Jlﬂg2+Const

P(s|A,x, 0'2, VES

BPD/LAéSO term Normallza'tlon terms

dlog P(s|A,x,0%,\) B J
\ ax =0= A= =R
)]
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ARD In reality a ¢,-norm optimization scheme. As

such ARD based on Laplace prior corresponds to
{,-norm optimization by re-weighted ¢,-norm

In particular if we define A for each entry in s, i.e.

.
TXJT T2 S
Soalx —As 17+ > Ajlssl
J
Corresponding to the Laplace prior P(s|A) = [[; %ﬂ ~Ailsil optimizing for \;
1 h that

(V;TTQC‘ O — [a)
61Vb0 /\,7 - |S| ouuvll vliiQvu
J

1
202

I ATs 24 30 15
~ [s;]

{, norm by re-weighted ¢, follows by imposing Gaussian prior instead of Laplace

Notice that we are all the time monotonically decreasing
—log P(s|A,x,0% )\)

s\

1]
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—
/ Sparse Tucker decomposition by ARD

2
Iyl Iy IIX-RIE

P(X|R,0%) = (2m0?) T e 207

Pl = (%) (—a?19l,

I

Pl = TT(%7) e

Jn

L = PG,AY ..., AM\x 6% a% al, . .. a™)
x P(X|R,0?)P(G|a?)P(AV]|aM)... P(AN]|a™).

Thus the negative log likelihood based on Laplace priors is proportional to

]' n L
—log L ex ¢ + F"A’ ~R|% + ZZagnHag.n)h + a%|Gl;

o jn

+%1112 - Iylogo? 3" ILlogad™ — JiJp - J, loga®.

L

Maximum a posteriori (MAP) estimation

Brakes into standard Lasso/BPD sub-problems of the form  Update of regularization parameters by ARD
1 JiJo N (n) JIn

arg min — || X () — Al ZmylF + E Ajla; 1| &9 G| Qg ")

- ! [Aqg

A 202

J
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/Solving efficiently the Lasso/BPD sub-problems

Algorithm 1 Gradient Based Sparse Coding (GBSC): A — GBsc(X, Z,A), solves
argming 3||X — AZ|E + 3, Ajlajh

1: repeat
Take gradient step according to LS-objective

Amew Aold _H(AZ_X)ZT
Take gradient step according to [; -regularization
if [a?5"| < pA; then

ai5e =0
else
azs = a5 — i, sign(a7s"

end if
10  Estimate p by line-search
11: until Convergence

2:
3:
4:
5:
6:
7:
8:
9:

100 x 256 256 x 256 1000 x 256 2500 x 256

SIGNSEARCH 0.0750 = 0.0339 0.1984 +£0.1342 0.3734 = 0.1759 1.6969 = 0.6441

CONJUGATE GRADIENT 0.4172 + 0.0651 1.1219 £ 0.2560 9.0297 = 1.8055  45.6297 = 12.0142
LARS 0.0453 +0.0226 | 0.1313 £ 0.0787  0.4313 +0.1477 1.9813 +0.6342

NNQP 0.5703 = 0.0696 0.9313 = 0.0748 2.8719 = 0.1389 15.5047 = 0.7882

GBSC 0.0125 + 0.0066 | 0.3172 +0.2121 2.0688 +=1.0760  22.8828 + 12.2846

Notice, in general the alternating sub-problems for Tucker estimation have J<I!

1]
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Algorithm 2 Sparse Tucker estimation based on Automatic Relevance Determination
(ARD)

1: set Jy,Jo,...,J, large enough to encompass all potential models, o2 =
| X2 /(I 1y - - - I,(14+105N*/19)) set g = 0, a™) = 0 and initialize by random
A™ forn=1,2,....N

2: repeat

32 Q=AY AP ®...9 A™) vec(G) «+ ghsc(vec(X), Q, 0%ag),

4  ag = min{ —|—|—J1JE;,' 'I'JN €
55 R=Gx1 AW x5 AP x3.. . xy AW
6
7

for n=1:N do .
Zimy = (R xn A™) 0, A™  gbse(X (n), Z(n),0%a™), af? =
I P §
RSl (n)
L 1 1 n
$ Ko =LthenJ,=J,—1, A™ =A" G=0.,

9: a™ = aﬁ’}i end
10: R(n) = A(H}Z(n}
11: end for

12: until convergence

CP follows setting G=r

Estimating the number of components comes at the same cost
as fitting one conventional model!

min{

1]

: <<
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Results on Fluorscence spectroscopy data

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

LT, “ration Mig e - ox AHION Mg “ration My .. e ation Mg “tation
ss'°n E‘LG\V‘“' sslo,, ‘:'y.cﬂa“ s%,, ExG“at Ss; on E wcitaty ssfo,, t xcitat

SVD(SampIe x Emmission-Excitation spectra) C P[Sample x Emmission spectra x Excitation spectra) True Concentrations

Sumple Concentiation
16 + 10" Sample Concentration Emmission Spectra Excitation Spectra
3

VANE =i

a 1}
4 5 300 380 400 450 240 260 280

#10° True Sample Concentration

5]

£
H
£
5
Y
S
o

Compnent 1
Compohnent 1

o

Sample Concentration o 1g* Sample Concentration Emmission Spectra Excitation Spectra « 0% True Sample Concentration

o o

Component 2
=S
Cumponent 2
Component 2

[URT )

1} Q
1 2 3 4 5 30 350 400 450 260 280 1 2 3 4

Sample Concentration « 10" Sample Concentration Emmisslon Spectra Exchailon Spectra %10 True Sample Concentration
a3

A |
o\

280

Component 3
Cumpujnent 3
Comppnent3
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CP models

Amino Acid Fluorescence
CorConDiag DIFFIT NumCeonvHull  ,BIC «1rPAIC Sparse ARD Ridge ARD
1

800 1
5
4 .
4 05-
2 “ -2
0

0 0 0 C 1] 1}
12345676510 12345E789 1234567849 12345678910 12345678910 1234567 EXD T23456789M]

Sugar Process
CerConDiag DIFFIT NumCenyHull | ,#BIC « 10"AIC Sparse ARD  Ridge ARD
1

r - 04
4

1c R 0.z

o C a o o
1234E67 890 123456789 123456789 1234567890 1234567E910 T 23456785 1234567890

DORRIT

CorConDiag DIFFIT NumConyHull , ,,BIC w 1AIC Sparse ARD Ridge ARD
1 4 4 1

E

80 08
2

&0 R 3 05 0.4
1
o

0.z

2
0
20

o o o o o o
12345678910 123456789 123456789 12345678910 1234567890 12345678910 12346678910

Tucker(10,10,10) models were fitted to the data, given are below the extracted cores
Tucker(3,4,5) Tucker(3,4,2) Tucker(3,3,3) Tucker(1,4,4) Tucker(8,4,6)

Synthetic Tucker(3,4,5) Tucker(3,6,4) Tucker(3,3,3) Tucker(?,4,4)
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/" Multilinear modelling

XVoxelelme ~ E :azl/oa:elbg’lme
d _

Bilinear Model:

d Ko

Assumption: Data instantaneous mixture of temporal signatures.
(PCA/ICA/NMF)

XVoxeleimexTrial ~ S ‘aVoxeleimecT’rial
/ ,9d d d

A "hﬁdhﬂmf\\ Ay o eal B
Iilllillll
1-’|

Assumption: Data instantaneous mixture of temporal signatures
that are expressed to various degree over the Subjects/trials
(Canoncial Decomposition, Parallel Factor (CP))

(weighted averages over the trials)

1]
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Common Fixes: Impose orthogonality, reguarlization or non-negativey constraints by analyzing
Data transformed to a time-frequency domain representation

Bit50 June 19, 2010
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Modeling Shape (and delay)y Variability A

convolutive CP: I@',k;(t) ~ Z az’,dbd(t — T)Ck,d("")

(Mgrup et al., Nips workshop on New Directions in Statistical Learning for Meaningful and Reproducible fMRI Analysis 2008) I]TU

Bit50 June 19, 2010 24
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CP, ShiftCP and ConvCP

X k=2dai,abj,dCl,d Xijk=2ddi a2t DirdCkdr  Xijk=2did2r Dj-r dCid,c

Component filter ~ Filtered component Component filter
coefficients time series coefficients

S

A

k=3 \-—-—f\/\/\j\d
k=4 mﬁfv\/\/\/\/\-
k=5 M-—M\JW
k=6 WA\ MM\

2 bjr.dCidr

ConvCP: Can model arbitrary number of component delays within the

trials and account for shape variation within the convolutional model

representation. Redundancy between what is coded in C and B resolved

by imposing sparsity on C. Number of components and sparsity
egularisation identifed through ARD.

(Mgrup et al., Nips workshop on New Directions in Statistical Learning for Meaningful and Reproducible fMRI Analysis 2008) I]TU
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Analysis of fMRI data

Each trial consists of a visual stimulus delivered as an annular full-field checkerboard reversing at 8 Hz.

A’ is ¢, sparsity regularization imposed on third mode

(Mgrup et al., Nips workshop on New Directions in Statistical Learning for Meaningful and Reproducible fMRI Analysis 2008) I]TU
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Convolutive bi-linear model form a Latent
Causal Modeling framework |y

Input Functions

/
ZT—_ol ZJ—1 hij(T)e;(t — ) i
TSy, P2 Noise |

SIS s a(T)sa(t — 7) + £4(2).

Transfer Functions Latent Sources

x(t) =3, A(M)s(t—7) =3, A(T)QQ 's(t — 7) = (T)g(t — ) We impose sparsity on A(7)

(Mgrup et al., Nips workshop on Connectivity Inference in Neuroimaging 2009)

Bit50 June 19, 2010 28




Informatics and Mathematical Modelling / Intelligent Signal Processing .H

e BN

/Bayesian Inference admit estimation of model order and degree of\

sparsity through Automatic Relevance Determination
SLCM:  ,(t) = Y0 S aia(r)salt —7) + (1),

~  Normal(0,0?) o
’ ~2 2 T () — X, A(r)s(t — )3
~  Gamma(l, k|| X||7) | 11T 108(0~2) — [ X |30
~  Laplace(0, B4) log P(X, A, 8,07% Bls,0) = +3,1TlogBa— fala+ X! X7 laza(r)])

~ (Yammrnall ~) +const.
samima 1, @) ot Y, sa(t)? =1

sa(t)  ~ 6(1 =32, sa(t)?) I

Regularization strength learned from data, i.e. Ba" = T T
g 9 a+ Do, laia(r)]

Analysis of EEG data
IIX(t' Estimated A(t) Estimated s(t)

OOV OOG

-~ 4 Al S R RN S gL e g W e -.|II|_‘ o o ™
GO0 QPP OPOOOQ  Vwpmmrwmmenlll i, My,

OO0 HOBEOHODOO

QOO0 OO
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/ Conclusion

B Imposing sparseness on the core
enable to interpolate between
Tucker and CP model

ARD from Bayesian learning

based on MAP estimation form a

simple framework to tune the

pruning in sparse coding models

giving the model order. TuckerG5)

ARD framework especially useful
for the Tucker model where the
order is specified for each mode
separately which makes
exhaustive evaluation of all

Sparse Tucker

Tucker(3,4,2) Tucker(3.3,3) Tucker(1,4,4) Tucker(8,4,6)

potential models expensive.
ARD-estimation based on MAP is
closely related to £, norm

A = X such that
|95

¢, and ¢, norm. Thus, ARD form a
principled framework for learning

- . - i i = A g=Nilssl o imizing for ives
eStImatIOn based on rewei hted Corresponding to the Laplace prior P(s|A) = HJ. Se Aglss] pt for A g

1
2_‘3”){ - A1 ‘*‘Z'\-jfsj!
J

2%” I AIxJ J’”z +Z|SJ[
a

the sparsity pattern.
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Current research

B Non-parametric efficient
sampling approaches for model
order estimation based on
reversible jump MCMC for the
described models.

(See also Schmidt and Mgrup, Infinite Non-negative Matrix
Factorization, to appear EUSIPCO 2010)

28th May 2010
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