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A common problem encountered in Modern Massive A common problem encountered in Modern Massive 
Datasets (MMDS)
1)Multiple comparisons
2)What is the true number of independent tests (data highly correlated)
3)Data extremely noisy, i.e. low SNR rendering tests insignificant.

NeuroInformatics BioInformatics ComplexNetworks WebDataMining

Unsupervised Learning attempts to find the Unsupervised Learning attempts to find the 
hidden causes and underlying structure in the data.

(Multivariate exploratory analysis – driving hypotheses)
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Goal of unsupervised Learning 
(Ghahramani & Roweis, 1999)

 Perform dimensionality reduction
 Build topographic maps
 Find the hidden causes or sources of the data
 Model the data density
 Cluster data

Purpose of unsupervised learning p p g
(Hinton and Sejnowski, 1999)

 Extract an efficient internal representation of the p
statistical structure implicit in the inputs
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20082008

Analysis of massive amounts of data will be the main 
d i i  f  f ll i  i  th  f t !!
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driving force of all sciences in the future!!
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Vector: 1-way array/ 1st order tensor, 

Matrix: 2-way array/ 2nd order tensor,

3-way array/3rd order tensor

Multi-way modeling has become an important tool for 

3 way array/3rd order tensor

Multi way modeling has become an important tool for 
Unsupervised Learning and are in frequent use 
today in a variety of fields including

h Psychometrics  (Subject x Task x Time)

 Chemometrics  (Sample x Emission x Absorption)

 NeuroImaging (Channel x Time x Trial) NeuroImaging (Channel x Time x Trial)

 Textmining (User x Query x Webpage  or Webpage x Webpage X Anchor text)

 Signal Processing  (ICA, i.e. diagonalization of Cummulants)
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Tensor DecompositionTensor Decomposition
The two most commonly used tensor decomposition 
models are the CandeComp/PARAFAC (CP) model models are the CandeComp/PARAFAC (CP) model 
and the Tucker model
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Important Question:
What constitutes an adequate number of components? 
i.e. determining J for CP and J1,J2,…,JN for Tucker, is an 
open problem, particularly difficult for the Tucker model as 
the number of components are specified for each modality p p y
separately

Notice:
 CP-model unique

 Tucker model not unique

H  t  t  SVD ith  f th  t  d l   However, contrary to SVD neither of the two models are 
nested, i.e., factors for the smaller models not in general 
contained in larger model!
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S  C diSparse Coding
Nature, 1996Nature, 1996

Bruno A. Olshausen David J. Field

Preserve Information Preserve Sparsity (Simplicity)Preserve Information Preserve Sparsity (Simplicity)
Tradeoff parameter

Open problem to choose tradeoff/regularisation parameter p p / g p
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Sparse Coding relates to how brain process information!p g p
Image patch 1 to N

…

Patch image Vectorize patches



Contrary to compressive sensing Sparse coding 
attempts to both learn dictionary and encoding 
at the same time (This problem is not convex!)
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AgendaAgenda
 To use sparse coding to Simplify the Tucker core forming 

a unique representation as well as enable interpolation 
between the Tucker (full core) and CP (diagonal core) 
model.

 To use sparse coding to turn off excess components in the  To use sparse coding to turn off excess components in the 
CP and Tucker model and thereby select the model order.

 To tune the pruning/regularization strength from data by  To tune the pruning/regularization strength from data by 
Automatic Relevance Determination (ARD) based on 
Bayesian learning.
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Bayesian Learning and the Principle of ParsimonyBayesian Learning and the Principle of Parsimony

The explanation of any phenomenon 
should make as few assumptions as 

possible, eliminating those that make 
no difference in the observable 
predictions of the explanatory 

hypothesis or theory.

To get the posterior probability distribution, 
multiply the prior probability distribution by 
the likelihood function and then normalize

William of Ockham

the likelihood function and then normalize

Thomas Bayes

Bayesian learning embodies Occam’s razor, i.e. 
Complex models are penalized.

David J.C. MacKay
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Many inference paradigms in Bayesian 
LearningLearning
 Maximum a posteriori estimation (MAP)

seeks optimal solution (admit standard optimization) however, the p ( p ) ,
approach does not take parameter uncertainty into account

 Sampling methods
Marcov Chain Monte Carlo (MCMC)Marcov Chain Monte Carlo (MCMC)

 Variational methods (VB) and Belief Propagation (BP)
Approximate likelihood P() by factorized form Q() that is tractablepp ( ) y Q( )
VB: minimize the Kulback Leibler divergence KL(P()|Q())
BP: minimize the Kulback Leibler divergence KL(Q()|P())

(Notice: Bayesian Learning based on MAP admits direct use of all 
your favorite standard optimization tools)
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Automatic Relevance Determination (ARD)

 Automatic Relevance Determination (ARD) is a 
hierarchical Bayesian approach widely used for e a c ca ayes a app oac de y used o
model selection

 In ARD hyper-parameters explicitly represents the yp p p y p
relevance of different features by defining their 
range of variation. 
(i  R  f i ti 0 F t  d)(i.e., Range of variation0  Feature removed)
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A motivating example: A Bayesian formulation of A motivating example: A Bayesian formulation of 
the Lasso /Basis Pursuit Denoising (BPD) problem

Likelihood
Prior

Bayes

+Const.
BPD/LASSO termBPD/LASSO term Normalization termsNormalization terms

Bit50  June 19, 2010 14



Informatics and Mathematical Modelling / Intelligent Signal Processing

ARD i  li    i i i  h  A  ARD in reality a l0-norm optimization scheme. As 
such ARD based on Laplace prior corresponds to 
l norm optimization by re weighted l norml0-norm optimization by re-weighted l1-norm

l0 norm by re-weighted l2 follows by imposing Gaussian prior instead of Laplace

Notice that we are all the time monotonically decreasing

Bit50  June 19, 2010 15



Informatics and Mathematical Modelling / Intelligent Signal Processing

Sparse Tucker decomposition by ARD

Brakes into standard Lasso/BPD sub-problems of the form Update of regularization parameters by ARD
Maximum a posteriori (MAP) estimation

Bit50  June 19, 2010 16



Informatics and Mathematical Modelling / Intelligent Signal Processing

Solving efficiently the Lasso/BPD sub-problems

Notice  in general the alternating sub problems for Tucker estimation have J<I!
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Notice, in general the alternating sub-problems for Tucker estimation have J<I!
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The Tucker ARD AlgorithmThe Tucker ARD Algorithm

CP follows setting G=I
Estimating the number of components comes at the same cost 
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Results on Fluorscence spectroscopy data
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CP models

Tucker(10,10,10) models were fitted to the data, given are below the extracted cores

Synthetic Tucker(3 4 5) Tucker(3 6 4) Tucker(3 3 3) Tucker(? 4 4) Tucker(4 4 4)
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Synthetic Tucker(3,4,5) Tucker(3,6,4) Tucker(3,3,3) Tucker(?,4,4) Tucker(4,4,4)



Informatics and Mathematical Modelling / Intelligent Signal Processing

F  2   l i  l i  f N I i  dFrom 2-way to multi-way analysis of NeuroImaging data

e
S

p
ac
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TimeTime

Bit50  June 19, 2010 21



Informatics and Mathematical Modelling / Intelligent Signal Processing

Bilinear Model:
Multilinear modelling

Bilinear Model:

Assumption: Data instantaneous mixture of temporal signatures.
(PCA/ICA/NMF)

Trilinear Model:

Assumption: Data instantaneous mixture of temporal signatures 
th t  d t  i  d  th  S bj t /t i l  that are expressed to various degree over the Subjects/trials 

(Canoncial Decomposition, Parallel Factor (CP)) 

(weighted averages over the trials)

22
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Unfortunately  Violation of multi-linearity causes degeneracyUnfortunately, Violation of multi linearity causes degeneracy

ac
e

S
p

a

Time

Common Fixes: Impose orthogonality, reguarlization or non-negativey constraints by analyzing 
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Data transformed to a time-frequency domain representation
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Modeling Shape (and delay) Variability

convolutive CP:

*
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(Mørup et al., Nips workshop on New Directions in Statistical Learning for Meaningful and Reproducible fMRI Analysis 2008)
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CP, ShiftCP and ConvCP

ConvCP: Can model arbitrary number of component delays within the 
t i l  d t f  h  i ti  ithi  th  l ti l d l trials and account for shape variation within the convolutional model 
representation. Redundancy between what is coded in C and B resolved 
by imposing sparsity on C. Number of components and sparsity 
regularisation identifed through ARD.
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regularisation identifed through ARD.

(Mørup et al., Nips workshop on New Directions in Statistical Learning for Meaningful and Reproducible fMRI Analysis 2008)
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Convolutive Multi-linear decomposition
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Analysis of fMRI data

Each trial consists of  a visual stimulus delivered as an annular full-field checkerboard reversing at 8 Hz.

’ is l1 sparsity regularization imposed on third mode
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1

(Mørup et al., Nips workshop on New Directions in Statistical Learning for Meaningful and Reproducible fMRI Analysis 2008)
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C l ti  bi li  d l f   L t t Convolutive bi-linear model form a Latent 
Causal Modeling framework Channel Specific 

Input Functions

N iNoise

L t t ST f  F ti Latent SourcesTransfer Functions

We impose sparsity on
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(Mørup et al., Nips workshop on Connectivity Inference in Neuroimaging 2009)
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Bayesian inference admit estimation of model order and degree of 

sparsity through Automatic Relevance Determination

Regularization strength learned from data, i.e. 

Analysis of EEG datay
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Conclusion
 Imposing sparseness on the core p g p

enable to interpolate between 
Tucker and CP model

 ARD from Bayesian learning 
based on MAP estimation form a based on MAP estimation form a 
simple framework to tune the 
pruning in sparse coding models 
giving the model order.

 ARD f k i ll  f l  ARD framework especially useful 
for the Tucker model where the 
order is specified for each mode 
separately which makes 

h ti  l ti  f ll exhaustive evaluation of all 
potential models expensive.

 ARD-estimation based on MAP is 
closely related to l0 norm closely related to l0 norm 
estimation based on reweighted 
l1 and l2 norm. Thus, ARD form a 
principled framework for learning 
the sparsity pattern
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the sparsity pattern.
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Current research

 Non-parametric efficient 
sampling approaches for model sa p g app oac es o ode
order estimation based on 
reversible jump MCMC for the 
described models.
(See also Schmidt and Mørup, Infinite Non-negative Matrix 
Factorization, to appear EUSIPCO 2010)

3128th May 2010
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