
The CP and TUCKER model

Learning objective: The aim of this exercise is to understand how the alter-
nating least squares algorithms (ALS) for the CP and TUCKER model works
as well as to be able to analyze and interpret multi-way data by the models.

Notation: We first introduce some tensor notation:
X(n) The n-mode matricizing: X I1×I2×...×IN →XIn×I1I2···In−1In+1···IN

The inverse operation is denoted un-matricizing, i.e.

XIn×I1I2···In−1In+1···IN → X I1×I2×...×IN

A⊗B The Kronecker product, i.e. A⊗B =

 a1,1B · · · a1,JB
...

. . .
...

aI,1B · · · aI,JB


A�B The Khatri-Rao product A�B = [a1 ⊗ b1 a2 ⊗ b2 . . . aJ ⊗ bJ ]
×n (Q×n P)i1,i2,...,jn,...iN =

∑
in
Qi1,i2,...,in,...iNPjn,in

These operations are given in the Matlab scripts:

• matricizing.m

• unmatricizing.m

• kron.m

• krprod.m

• tmult.m

The following relation will turn useful:
(A�B)>(A�B) = A>A∗B>B where ∗ denotes element-wise multiplication.

Alternating Least Squares (ALS): Alternating Least Squares is a general
framework for optimizing least squares problems where some variables are found
keeping other variables fixed. For instance the general problem, X ≈ AB can
be solved by minimizing ‖X−AB‖2F with respect to A and B. The solution is
found by alternatingly updating A and B according to:

A← XB>(BB>)−1 = XB† = X/B (1)

B← (A>A)−1A>X = A†X = A\X (2)

Where A† = (A>A)−1A> and B† = B>(BB>)−1. This is implemented in the
matlab function pinv.m while the Matlab operators / and \ efficiently solve for
A and B respectively.

1



ALS implementation of the CP model

The CandeComp/PARAFAC (cp) model for a three way array X I×J×K reads

xi,j,k ≈
∑
d

ai,dbj,dck,d,

One of the most common ways to estimate the model is by alternating least
squares. Here the loadings of one mode is estimated keeping the loadings of
all the remaining modes fixed. Iteratively updating all modes in this way the
algorithm is terminated when some convergence criterion is reached, most often
given by a relative change in the sum of squares error less than some specified
tolerance. Using the matricizing operation and Khatri-Rao product the cp
model can be written as

X(1) ≈ A(C �B)>

X(2) ≈ B(C �A)>

X(3) ≈ C(B �A)>

For the least squares objective we thus find

A(1) ←X(1)(C �B)(C>C ∗B>B)−1

B(1) ←X(2)(C �A)(C>C ∗A>A)−1

C(1) ←X(3)(B �A)(B>B ∗A>A)−1

Task 1: Using the script CP.m implement the missing parts of the CP algo-
rithm denoted by ???.

ALS implementation of the TUCKER model

The Tucker model reads for a third order tensor X I×J×K

xi,j,k ≈
∑
lmn

gl,m,nai,lbj,mck,n,

where the so-called core array GL×M×N with elements gl,m,n accounts for all
possible linear interactions between the components of each mode. To indicate
how many vectors pertain to each modality it is customary also to denote the
model a Tucker(L,M,N) model. Using the n-mode tensor product ×n the model
can be written as

X ≈ G ×1 A×2 B ×3 C.

As such, each mode of the array is spanned by given loading matrices for that
mode such that the vectors of each modality interact with the vectors of all
remaining modalities with strengths given by the core tensor G.

2



One of the most common approaches to estimating the Tucker model is also
based on alternating least squares. Using the n-mode matricizing and kronecker
product operation the Tucker model can be written as

X(1) ≈ AG(1)(C ⊗B)>

X(2) ≈ BG(2)(C ⊗A)>

X(3) ≈ CG(3)(B ⊗A)>.

Leading to the following parameter updates by alternating least squares

A ← X(1)(G(1)(C ⊗B)>)†

B ← X(2)(G(2)(C ⊗A)>)†

C ← X(3)(G(3)(B ⊗A)>)†

G ← X ×1 A
† ×2 B

† ×3 C
†.

Without loss of expressive power in the model we can impose orthonormality
on the loadings of each mode. This results in the following alternating updates
for the model parameters using the singular value decomposition (svd)

AS(1)V (1)> = X(1)(C ⊗B),

BS(2)V (2)> = X(2)(C ⊗A),

CS(3)V (3)> = X(3)(B ⊗A).

Upon convergence the core can be estimated according to

G ← X ×1 A
† ×2 B

† ×3 C
†.

while the sum of square error (SSE) due to the orthonormality of the loadings
is given by

SSE = ‖X‖2F − ‖G‖2F (3)

Task 2: Using the script Tucker.m implement the missing parts of the Tucker
algorithm based on imposing orthonormality indicated by ???.

Core Consistency Diagnostic

Since the CP model is a special case of the Tucker model where the core array
G = I, i.e., is diagonal with ones along the diagonal, the Tucker model can
be used to evaluate the cross-talk between components of the CP model. A
measure of this is the core consistency diagnostic (ccd)

ccd = 100 · (1− ‖G − I‖
2
F

‖I‖2F
)

Where G is estimated as

G ← X ×1 A
†
CP ×2 B

†
CP ×3 C

†
CP .

3



where ACP , BCP and CCP are the loadings of the CP solution. The ccd
is often used to estimate the adequate number of components, D, in the CP
model. Too many components will result in a strong degree of cross talk across
the loadings of the modes thus will yield a low value of the ccd. Too few
components will not have any cross-talk at all. Thus, the “correct” number of
components is taken to be just before a major drop-off in the curve of {d,ccd}.
As written in the original paper on core consistency diagnostics:

”As a rule of thumb, a core consistency above 90% can be interpreted
as ’very trilinear’, whereas a core consistency in the neighborhood of
50% would mean a problematic model with signs of both trilinear
variation and variation which is not trilinear. A core consistency
close to zero or even negative implies an invalid model, because the
space covered by the component matrices is then not primarily de-
scribing trilinear variation.” - Bro and Kiers, 2003

Task 3: Using the script CorConDiag.m implement the missing parts of the
Core Consistency Diagnostic.

CP and Tucker analysis of Chemistry data

One common application of the CP and Tucker model is the analysis of fluores-
cence spectra of Chemistry data. The claus.mat data was part of an investiga-
tion conducted by Claus A. Andersson at the Chemometrics Group at KU-life.
Here five samples containing different amounts of tyrosine, tryptophane and
phenylalanine were measured by fluorescence. An approach where the samples
are lit by light of different wavelengths and the corresponding emission wave-
lengths of the sample recorded. (excitation 250-300 nm, emission 250-450 nm,
1 nm intervals). As such, the array to be analyzed is X 5×51×201. The true
concentrations of the three compounds is given in the variable y.
Task 4: Analyze the data by regular matrix decomposition using the singular
value decomposition of the matricized array

XSamples×Emission−Excitation spectra
(1) = X5×51·201

(1) . (4)

Use the function plotSVD.m to visualize the results. Does SVD correctly sepa-
rate the compounds into separate components?
Task 5: Fit your CP algorithm developed in Task 1 to the claus.mat data
and use your CoreConDiag.m script from Task 3 to identify what the optimal
number of components are as well as the spectral profiles and relative concen-
trations of the estimated compounds. Use plotCP.m to visualize and interpret
the components. Have the underlying compounds been correctly separated into
separate components?
Task 6: Fit also the corresponding TUCKER models using the algorithm
created in Task 2 to the data and visualize the results using the script plot-
TUCKER.m. Have the underlying compounds been correctly separated into
separate components? Explain how the CP and TUCKER model differ.

4



(Extra challenge): CP and Tucker for general N
order arrays

For a general N-way array, i.e. X I1×I2×...×IN the cp model is given by

xi1,i2,...,iN ≈
∑
d

N∏
n=1

a
(n)
in,d

,

X(n) ≈ A(n)Z>, where Z = A(N)�A(N−1)�. . .�A(n+1)�A(n−1)�. . .�A(1)

Hence for a general N-way array the update for the nth mode is given by

X(n) ≈ A(n)Z>, where Z = A(N) �A(N−1) � . . .�A(n+1) �A(n−1) � . . .�A(1)

A(n) ←X(n)Z(Z>Z)−1

The TUCKER model for a general N-way array reads

Xi1,i2,...,iN ≈
∑

j1j2...jN

Gj1,j2,...,jNA
(1)
i1,j1

A
(2)
i2,j2
· ... ·A(N)

iN ,jN
,

where G ∈ RJ1×J2×...×JN and A(n) ∈ RIn×Jn . To indicate how many vectors
pertain to each modality it is customary also to denote the model a Tucker(J1, J2, · · · , JN ).

Using the n-mode matricizing and Kronecker product operation the Tucker
model can be written as

X(n) ≈ R(n) = A(n)Z(n) where

Z(n) = G(n)(A
(N) ⊗ ...⊗A(n+1) ⊗A(n−1) ⊗ ...⊗A(1)) = (R×n A(n)†)(n).

Again without loss of expressive power in the model we can impose orthonor-
mality on the loadings of each mode. This results in the following alternating
updates for the model parameters using the singular value decomposition (svd)

A(n)S(n)V (n)> = X(n)(A
(N) ⊗ · · · ⊗An+1 ⊗An−1 · · ·A1),

Upon convergence the core can be estimated according to

G ← X ×1 A
(1)> ×2 A

(2)> · · · ×N A(N)> .

while the sum of square error (SSE) due to the orthonormality of the loadings
again is given by

SSE = ‖X‖2F − ‖G‖2F (5)

Task 7 Open the script TuckerN.m and CPN.m and fill in the missing parts
denoted by ???. The scripts implements the Tucker and CP methods for general
N-way array and makes use of the Matlab cell array structure (type help cell in
matlab to learn more about the cell structure).

5


