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6M and univariate statistical analysis \

Problems:
1)Multiple comparisons, i.e. many voxels
tested.

2)What is the true number of
iIndependent tests, i.e. voxels are highly
correlated

3)Data extremely noisy, i.e. low SNR
rendering tests insignificant.

Design matrix

Need for advanced multivariate methods
that can efficiently extract the underlying
(independent) sources in the data (beyond

GLM) /
o
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ﬁhis problem is no different than the \

problems encountered in general in
Modern Massive Datasets (MMDS)
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Unsupervised Learning attempts to find the
h&dden causes and underlying structure in the data.

(Multivariate exploratory analysis — driving hypotheses)
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@al of unsupervised Learning

(Ghahramani & Roweis, 1999)

B Perform dimensionality reduction
B Build topographic maps

B Find the hidden causes or sources of the data
B Model the data density

B Cluster data

Purpose of unsupervised learning | ? Q

(Hinton and Sejnowski, 1999) | 7 BN

B Extract an efficient internal representation of the
statistical structure implicit in the inputs

N -

8th October 2009 4




Informatics and Mathematical Modelling / Cognitive Systems

~ =

WIRED MAGAZINE: 16.07

The End of Theorv: The Data Deluge Makes the
Sc 1H11T1t1< I\Iw’rhud Obsolete

Hinstration: Marian Banties

"All models are wrong, but some are useful.”

d 5 n
right. But what

ndant data, don't

AnaIyS|s of massive amounts of data will be the main

driving force of all sciences in the future!!
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Spearman ~1900

ﬁctor Analysis

Subjects

Tests

Xtests x subjects Atests x int.Sint. X subjects

o

u

Tests

Int.

Int.

Subjects

s

he Cocktail Party problem (Blind source separation)

X microphones x time ~ A microphones x peopleGpeople x time

~
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Illustration of Factor Analysis on\
frequency transformed EEG
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fMRI in matrix fom

data matrix (X) of spacextime

time
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The fMRI Party problem \

XVoxelXTlme ~ E :azlfoa:eldelme
d

Assumption: Data instantaneous mixture of
temporal signatures. (PCA/ICA/NMF)

d r

waw: X~AS=(AQ1)(QS)=AS — Representation not uniquy

.Dll.]
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@ngular Value Decomposition (SVD) \

Y =UAV'

A diagonal

Equivalent to PCA

Convex optimization problem
(one global solution - easy to find)

Spatial/temporal versions are equivalent

T T
U'U=1I V'Vv=I
Unique (up to permutation of components)

Sort components according to singular values
Truncate to obtain approximate model

K The orthogonality constraint is often not appropriate /
DTU
o
o
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~

“In a factor problem one is concerned about how to
account for the observed correlations among all the

variables in terms of the smallest number of factors
and with the smallest possible residual error."

4 Thurstone, 1947
Louis L. Thurstone
(1887-1955)

Varimax, Quartimax, Orthomax

Goal of rotation criteria: A large loading in one factor be opposite small loadings of
the remaining factors = histogram of loadings should have high peak around zero and
@ tails (forming sparse distribution)

g]!
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Independent Component Analysis

(A modern approach to the classic rotation problem)
INnfOMAX/ML: Optimize distribution of sources assumed
iIndependent and non-gaussian (Bell & Sejnowski, 1995)

log L = Zlog f(Qs;) +log| det(Q)|. E
J .

Optimize deviation from normality: For instance as measured
by kurtosis (Comon, 1994, Girolami 1996, Pearlmutter 1996,

Hy I 1997
yvarinen 1997) 4 rt(S) = B[S4] — 3E[S2?

Jointly diagonalize some higher order moments, cumulants,
autocorrelations (Comon, 1994, Molgedey & Schuster 1994)

X ~ S
Cilipa & § A aA G aA L aALCY g g
d

infoMAX/ML based on sparse priors and maximization of kurt(S)
equivalent to the former rotation criteria.
DTU
oD
o
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8

ICA on fMRI

(Example of single subject analysis)

Stimuli full-checkerboard (8Hz), each trial
consist of 10 seconds pause 10 seconds stimuli
and 10 seconds pause. Data acquired at 3 Hz.

th October 2009
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Two other important factor analytic type approaches

S[_)arse_ Coding Non-negative Matrix Factorization
I Then | M Nature, 1996 ‘

Emergence of simple-cell
receptive field properties

Nature
1999

non-nedative_ matrix factorization

Sebastian Seung-t

by learning a sparse
code for natural images

Bruno A. Oishausen* & David J. Field

Daniel D. Lee

Department of Psychology, Uris Hall, Cornell University, Ithaca,
New York 14853, USA

M Seung

X~AS, X=20, A>O S=20

Bruno A. Olshausen David J. Field

argmin 4 g + A
b
Tradeoff parameter - Non-negative Matrix Factorization:
Sparse coding: gives Part based representation, i.e. the
A corresponds to Gabor whole described by its constituting
like features resembling parts
simple cell behavior in
V1 of the brain! Original

NMF

A pixelsX feat.a feat.Xpatches||12 | y|Ql
- D F A1

lllli’li
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Important challenge in Unsupervised Learning:
How many components adequately model the data

Py
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4 \

B The L-curve approach
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B Bayesian Learning and Automatic Relevance Determination
(Bayesian PCA)
W e T ‘»:;‘34

The explanation of any phenomenon
should make as few assumptions as
possible, eliminating those that make
no difference in the observable
predictions of the explanatory
hypothesis or theory.

To get the posterior probability distribution,
multiply the prior probability distribution by
the likelihood function and then normalize

omas Bayes

Bayesian learning embodies Occam’s razor, i.e.
Complex models are penalized. The horizontal
axis represents the space of possible data sets D.
Bayes rule rewards models in proportion to how
much they predicted the data that occurred.
These predictions are quantified by a normalized
probability distribution on D.

David J.C. MacKay

P(D|Ha)

E
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B Cross-validation

12411251
D,

REV

Cross-validation of component models: A critical look
at current methods

R, Bro « K. Kjeldahl « A, K, Smilde « H, A, L. Kiers

O : Missing in 1st segment

O : Missing in 2nd segment

Fig. 2 Eastment-Krzanowski (EK) cross-v
two submodels is obtained by leaving
column of X is left out, whereby X'/,
obtained

Fig. 1 The pattern of missing values used in Wold cross-validation
for K=7

Split data into X %" and X '®**, learn model parameters on X /"
and use these parameters to predict XteSt

Problem facing unsupervised learning: Xtra/m and XteSt
hardly ever independent sets (i.e. noise correlated,
endering missing values not truly missing in the training set)

8th October 2009
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Other approaches

B Laplace approximation to the model evidence

B Bayesian Information Criterion (BIC) / Minimum
Description Lenght (MDL)

B Akaike’s Information Criterion (AIC)
B Final Prediction Error (FPE)

For all the above approaches a penalty term for model complexity is
introduced based on some kind of asymptotic theory

L(X M)+ C(M)

~

/
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> ICA
> NMF

>Sparse Coding

WiIIam of Ockham
(1288-1347)

Principle of parsimony

ohoins o

1} 11|1:1&I;|:

Great starting point for exploratory analysis
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/ From 2-way to multi-way analysis

Time
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Multi-subject analysis

B At least four possibilities:
Pre-average data
Separate analysis
Data concatenation
Tensor models

-
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Pre-averaging \

B Simply average data over subjects prior to analysis
Common spatial profiles

Common time profiles

Model must generalise in both space and time over
subjects

N -
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Separate analysis

B Run analysis separately for each subject
Separate spatial maps for each subject
Separate time series for each subject

Cluster components after analysis to establish
correspondence

Many parameters

-

~
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Qlcatenation of multi-way data to 2-way \

(identical time series varying spatial maps)

time

(identical spatial map, varying time series)
time

\% , : .\ ..... M
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Multilinear modelling
Bilinear Model: X VoxelxTime ZaVoweldeime

Assumption: Data instantaneous mixture of temporal signatures.
(PCA/ICA/NMF)

XVoxelXTlmeXTmal E :aVO:Belelme Trial

Ca

\ WMMV\/"’WW taailaling

Assumption: Data instantaneous mixture of temporal signatures
that are expressed to various degree over the trials
(Canoncial Decomposition, Parallel Factor (CP))
(weighted averages over the trials)

"A surprising fact is that the nonrotatability characteristic can hold even
when the number of factors extracted is greater than every dimension of the
three-way array.” - Kruskal 1976

DTU

oo
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Examples of Multiway analysis of fMRI and EE

Neurolmage
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Structure-seeking multilinear methods for the analysis of fMRI data
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Neurolmage

Extracts consisten activation alloving for e
subject/trial/condition dependent weights
Parallel Factor Analysis as an exploratory tool for wavelet

(l .e. "C I ever ave rag i n g ”) transformed event-related EEG

Ak - F " . - b
Morten Morup,™ Lars Kai Hansen,” Christoph S. Herrmann,
Josef Parnas,® and Sidse M. Arnfred®
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ﬂ)nfortunately, multi-linear \
models are often to restrictive

Trilinear model can encompass:
B Variability in strength over repeats

However, other common causes of
variation are:

m Delay Variability |

{Shape Variability :Mww /
DTU
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Violation of multi-linearity causes degeneracy \
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Modelling Delay Variability \

Shifted CP:

8th October 2009 30
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(_‘.P._and shiftEP Raw ERP Shifted ERP

Time
l}l[-v‘u JIRVLTLY

xik(t) =~ g ai.aba(t — Th.d)Ck.d
d

(Mgrup et al.,
NeuroImage 2008)
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Delay modelling of fMRI data from
retinotopic mapping paradigm

360° rotation in 30 s
8 Hz reversal rate

8th October 2009
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Modeling Delay and Shape Variability \

convolutive CP:

zik(t) & Y aiaba(t — 7)ck a(T)

d,r
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CP, ShiftCP and ConvCP

Xij k=24 dDj dCx 4

ConvCP: Can model arbitrary number of component delays within the
trials and account for shape variation within the convolutional model

representation

Component filter

coefficients

k=1l
k=2
k=3 1
k=4 |

Xij k= 2dai 42 Djr dCk .0

Filtered component
time series

K=T v

K=2 e rorerginrcmnsrne
K=3 mmeemmemrmnmmnc Ay
VR |
TN | W
K= oo v
2 birdCrdr

Xi j k=24 ¢ Dj-1.dCi dx

Component filter

coefficients

k=t
k2|
k=3
k=s _M_
k=5 |
k=6 U_TLJ

Ck,d,t

8th October 2009
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Convolutive Multi-linear decomposition

Average ERP
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Analysis of fMRI data

seconds

Each trial consists of a visual stimulus delivered as an annular full-field checkerboard reversing at 8 Hz.

o1y
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Shape and delay modelling also relevant for bi-linear
decomposition:
Convolutive Bilinear decomposition

Y

(B~ Y a
\"/ /4

Estimated A(t) Estimated s(t)

" 8th October 2000 37 =
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Summary of the “tour de models”

Bi-linear modelling Multi-linear modelling
(ICA/SVD/PCA/NMF) (CandeComp/PARAFAC (CP))

Extensions to model delay and shape changes

Convolutive Bi-linear modelling Convolutive multi-linear modelling

(convICA/convNMF) (shiftCP/convCP)
g hiftC

k=6
2 by(t-1)ei ()

mExtract an efficient internal representation of the statistical structure implicit
in the data

mDrive novel hypothesis for formal testing on validation data sets

8th October 2009 38
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-

Conclusion

B Unsupervised learning is an important
framework for multivariate analysis of
neuroimaging data such as fMRI

B Bi-linear analysis ambiguous requiring
additional assumption such as independence
or sparsity (forming ICA and Sparse coding)

-

8th October 2009 39
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Gonclusion

B Multi-linear modeling offers the ability to extract the
consistent activity of neuroimaging data over
repeats/subjects/conditions etc.

B However, violation of multi-linearity due to variability
causes degeneracy

B Common causes of variability in neuroimaging data
are delay and shape variation

B Advancing the CP model to ShiftCP and ConvCP
enables to address these types of variability.

B Modelling delay and shape changes is also relevant
for bi-linear modelling and open doorways to address

\Ia ent causal relations.

8th October 2009 40
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