=
=
=

>
>
>

02157 Functional Programming
Lecture 9: Module System — briefly

Michael R. Hansen

b
A
Sxsan)=3 G 5@y N E

a

DTU Informatics
Department of Informatics and Mathematical Modelling

DTU Informatics, Technical University of Denmark Lecture 9: Module System — briefly MRH 08/11/2012

Overview

e Supports modular program design including

e encapsulation
e abstraction and
e reuse of software components.

e A module is characterized by:

e a signature — an interface specifications and
e a matching implementation — containing declarations of the
interface specifications.

e Example based (incomplete) presentation to give the flavor.

Sources:
e Chapter 7: Modules. (A fast reading suffices.)

2 DTU Informatics, Technical University of Denmark Lecture 9: Module System — briefly

=]
=
=

M

MRH 08/11/2012

3

An example: Search trees

Consider the following implementation of search trees:

type Tree = Lf
| Br of Tree =int *Tree;;

let rec insert i = function
| Lf -> Br(Lf,i,Lf)
| Br(t1,j,t2) as tr ->
match compare i j with
| O ->tr
| n when n<O0 -> Br(insert i t1 , j, t2)
| _ -> Br(tl,j, insert i t2);;

let rec memberOf i = function
| Lf -> false
| Br(t1,,t2) -> match compare i j with
| 0 -> true

| n when n<O -> memberOf i t1
| _ -> memberOf i t2;;

DTU Informatics, Technical University of Denmark

Lecture 9: Module System — briefly

=]
=
=

M

MRH 08/11/2012

=]
=
=

Example cont'd

M

Is this implementation adequate?

No. Search tree property can be violated by a programmer:
toList(insert 2 (Br(Br(Lf,3,Lf), 1, Br(Lf,0,Lf))));;
> val it = [3;1;0;2]: int list

Solution: Hide the internal structure of search trees.

4 DTU Informatics, Technical University of Denmark Lecture 9: Module System — briefly MRH 08/11/2012

(=)
|
=

Module

M

A module is a combination of a

e signature, which is a specification of an interface to the module
(the user’s view), and an

e implementation, which provides declarations for the
specifications in the signature.

5 DTU Informatics, Technical University of Denmark Lecture 9: Module System — briefly MRH 08/11/2012

[}
=
=

Geometric vectors: Signature

M

The signature specifies one type and eight values:

/I Vector signature

module Vector

type vector

val (~-.) : vector -> vector /I Vector sign change
val (+.) : vector -> vector -> vector // Vector sum

val (-.) : vector -> vector -> vector // Vector difference

val (*.) : float -> vector -> vector // Product with number
val (&) : vector -> vector -> float /I Dot product

val norm . vector -> float /I Length of vector
val make . float + float -> vector /I Make vector
val coord . vector -> float + float /I Get coordinates

The specification 'vector’ does not reveal the implementation

¢ Why is make and coord introduced?

6 DTU Informatics, Technical University of Denmark Lecture 9: Module System — briefly MRH 08/11/2012

=]
=
=

Geometric vectors (2): Simple implementation =
>
An implementation must declare each specification of the signature:
/I Vector implementation
module Vector
type vector = V of float =+ float
let (") (V(x.y)) = V(-x,-y)
let (+.) (V(x1,y1)) (V(x2,y2)) = V(x1+x2,y1l+y2)
let (-) v1 v2 = vl + - Vv2
let (*.) a (V(x1,y1)) = V(a *x1l,a *yl)
let (&) (V(x1,y1)) (V(x2,y2)) = x1 *X2 + ylxy2
let norm (V(x1,y1)) = sgrt(x1 *X1+yl *y1)
let make (x.y) = V(Xy)
let coord (V(x,y)) = (Xy)
¢ Since the representation of 'vector’ is hidden in the signature,
the type must be implemented by either a tagged value or a
record.
Lecture 9: Module System — briefly MRH 08/11/2012

7 DTU Informatics, Technical University of Denmark

=]
=
=

Geometric vectors (3): Compilation

M

Suppose
o the signature is in a file 'Vector.fsi’
¢ the implementation is in a file "Vector.fs’

A library file "Vector.dIl' is constructed by the following command:

C:\mrh\Kurser\02157-11\Week 10\fsc -a Vector.fsi Vector fs

The library "Vector’ can now be used just like other libraries, such as
'Set’ or 'Map’.

DTU Informatics, Technical University of Denmark Lecture 9: Module System — briefly MRH 08/11/2012

Geometric vectors (4): Use of library

A library must be referenced before it can be used.
#r @"c:\mrh\Kurser\02157-11\Week 10\Vector.dll";;

--> Referenced ’c:\nrh\Kurser\02157-11\ Week 10\ Vector.dl |’

open Vector ;;

let a = make(1.0,-2.0);;
val a : vector

let b = make(3.0,4.0);;
val b : vector

let c = 2.0 *.a - by
val ¢ : vector

coord ¢ ;;
val it : float » float = (-1.0, -8.0)

letd = ¢c & a;
val d : float = 15.0

let e = norm b;;
val e : float = 5.0

Notice: the implementation of vector is not visible and it cannot be

exploited.

9 DTU Informatics, Technical University of Denmark Lecture 9: Module System — briefly

=]
=
=

M

MRH 08/11/2012

=]
=
=

Type augmentation

M

A type augmentation
¢ adds declarations to the definition of a tagged type or a record
type
¢ allows declaration of (overloaded) operators.

In the "Vector’ module we would like to
e overload +, - and * to also denote vector operations.

e overload * is even overloaded to denote two different
operations on vectors.

10 DTU Informatics, Technical University of Denmark Lecture 9: Module System — briefly MRH 08/11/2012

Type augmentation — signature

module Vector

[<Sealed>]
type vector =

static
static
static
static
static

member
member
member
member
member

val make : float
val coord: vector
. vector -> float

val norm

e The attribute [<Sealed>]

(™) : vector -> vector
(+) : vector *
(-) : vector *
(*) : float *
(*) vector *

* float -> vector
-> float * float

augmentation is used.

¢ The “member” specification and declaration of an infix operator
(e.g. +) correspond to a type of form type; * type, -> types

¢ The operators can still be used on numbers.

11 DTU Informatics, Technical University of Denmark

vector -> vector
vector -> vector
vector -> vector
vector -> float

is mandatory when a type

Lecture 9: Module System — briefly

=]
=
=

M

MRH 08/11/2012

=]
=
=

Type augmentation — implementation and use

M

module Vector

type vector =
| V of float * float
static member (™) (V(x,y)) = V(-x,-y)
static member (+) (V(x1,y1),V(x2,y2)) = V(x1+x2,yl+y2)
static member (-) (V(x1,y1),V(x2,y2)) = V(x1-x2,y1l-y2)

static member (*) (a, V(X)) = V(a *X,a *Yy)
static member (*) (V(x1,y1),V(x2,y2)) = x1 *X2 + yl*xy2
let make (x,y) = V(x,y)
let coord (V(x,y)) = (Xy)
let norm (V(x,y)) = sqrt(x *X + y*y)

The operators +, - , * are available on vectors even without opening:

let a = Vector.make(1.0,-2.0);;
val a : Vector.vector

let b = Vector.make(3.0,4.0);;
val b : Vector.vector

let c = 2.0 * a - by
val ¢ : Vector.vector

12 DTU Informatics, Technical University of Denmark Lecture 9: Module System — briefly MRH 08/11/2012

Customizing the string function

module Vector
type vector =
| V of float * float
override v.ToString() =
match v with | V(X,y) -> string(x,y)

let make (x.y) = V(xy)
typemvector with

static member (*-) (V(x,y)) = V(-X,-y)

e The default ToString function that do not reveal a meaningful
value is overridden to give a string for the pair of coordinates.
o A type extension is used.

Example:

let a = Vector.make(1.0,2.0);;
val a : Vector.vector = (1, 2)

string(a+a);;
val it : string = "(2, 4)"

13 DTU Informatics, Technical University of Denmark Lecture 9: Module System — briefly

=]
=
=

M

MRH 08/11/2012

=]
=
=

Summary

M

Modular program development

program libraries using signatures and structures

type augmentation, overloaded operators, customizing string
(and other) functions

Encapsulation, abstraction, reuse of components, division of
concerns, ...

14 DTU Informatics, Technical University of Denmark Lecture 9: Module System — briefly MRH 08/11/2012

