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Overview

e Supports modular program design including

e encapsulation
e abstraction and
e reuse of software components.

e A module is characterized by:

e a signature — an interface specifications and
e a matching implementation — containing declarations of the
interface specifications.

e Example based (incomplete) presentation to give the flavor.

Sources:
e Chapter 7: Modules. (A fast reading suffices.)
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An example: Search trees

Consider the following implementation of search trees:

type Tree = Lf
| Br of Tree =int *Tree;;

let rec insert i = function
| Lf ->  Br(Lf,i,Lf)
| Br(t1,j,t2) as tr ->
match compare i j with
| O ->tr
| n when n<O0 -> Br(insert i t1 , j, t2)
| _ -> Br(tl,j, insert i t2);;

let rec memberOf i = function
| Lf -> false
| Br(t1,,t2) -> match compare i j with
| 0 -> true

| n when n<O -> memberOf i t1
| _ -> memberOf i t2;;
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Example cont'd

M

Is this implementation adequate?

No. Search tree property can be violated by a programmer:
toList(insert 2 (Br(Br(Lf,3,Lf), 1, Br(Lf,0,Lf))));;
> val it = [3;1;0;2]: int list

Solution: Hide the internal structure of search trees.
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Module

M

A module is a combination of a

e signature, which is a specification of an interface to the module
(the user’s view), and an

e implementation, which provides declarations for the
specifications in the signature.
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Geometric vectors: Signature

M

The signature specifies one type and eight values:

/I Vector signature

module Vector

type vector

val ( ~-. ) : vector -> vector /I Vector sign change
val ( +. ) : vector -> vector -> vector // Vector sum

val ( -. ) : vector -> vector -> vector // Vector difference

val ( *. ) : float -> vector -> vector // Product with number
val ( & ) : vector -> vector -> float /I Dot product

val norm . vector -> float /I Length of vector
val make . float + float -> vector /I Make vector
val coord . vector -> float + float /I Get coordinates

The specification 'vector’ does not reveal the implementation

¢ Why is make and coord introduced?
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Geometric vectors (2): Simple implementation =
>
An implementation must declare each specification of the signature:
/I Vector implementation
module Vector
type vector = V of float =+ float
let (") (V(x.y)) = V(-x,-y)
let (+.) (V(x1,y1)) (V(x2,y2)) = V(x1+x2,y1l+y2)
let (-) v1 v2 = vl + - Vv2
let ( *.) a (V(x1,y1)) = V(a *x1l,a *yl)
let (&) (V(x1,y1)) (V(x2,y2)) = x1 *X2 + ylxy2
let norm  (V(x1,y1)) = sgrt(x1 *X1+yl *y1)
let make (x.y) = V(Xy)
let coord (V(x,y)) = (Xy)
¢ Since the representation of 'vector’ is hidden in the signature,
the type must be implemented by either a tagged value or a
record.
Lecture 9: Module System — briefly MRH 08/11/2012
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Geometric vectors (3): Compilation

M

Suppose
o the signature is in a file 'Vector.fsi’
¢ the implementation is in a file "Vector.fs’

A library file "Vector.dIl' is constructed by the following command:

C:\mrh\Kurser\02157-11\Week 10\fsc -a Vector.fsi Vector fs

The library "Vector’ can now be used just like other libraries, such as
'Set’ or 'Map’.
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Geometric vectors (4): Use of library

A library must be referenced before it can be used.
#r @"c:\mrh\Kurser\02157-11\Week 10\Vector.dll";;

--> Referenced ’c:\nrh\Kurser\02157-11\ Week 10\ Vector.dl |’

open Vector ;;

let a = make(1.0,-2.0);;
val a : vector

let b = make(3.0,4.0);;
val b : vector

let c = 2.0 *.a - by
val ¢ : vector

coord ¢ ;;
val it : float » float = (-1.0, -8.0)

letd = ¢c & a;
val d : float = 15.0

let e = norm b;;
val e : float = 5.0

Notice: the implementation of vector is not visible and it cannot be

exploited.
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Type augmentation

M

A type augmentation
¢ adds declarations to the definition of a tagged type or a record
type
¢ allows declaration of (overloaded) operators.

In the "Vector’ module we would like to
e overload +, - and * to also denote vector operations.

e overload * is even overloaded to denote two different
operations on vectors.
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Type augmentation — signature

module Vector

[<Sealed>]
type vector =

static
static
static
static
static

member
member
member
member
member

val make : float
val coord: vector
. vector -> float

val norm

e The attribute [<Sealed>]

(™) : vector -> vector
(+) : vector *
(-) : vector *
( * ) : float *
( * ) vector *

* float -> vector
-> float * float

augmentation is used.

¢ The “member” specification and declaration of an infix operator
(e.g. +) correspond to a type of form type; * type, -> types

¢ The operators can still be used on numbers.

11 DTU Informatics, Technical University of Denmark

vector -> vector
vector -> vector
vector -> vector
vector -> float

is mandatory when a type
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Type augmentation — implementation and use

M

module Vector

type vector =
| V of float * float
static member (™) (V(x,y)) = V(-x,-y)
static member (+) (V(x1,y1),V(x2,y2)) = V(x1+x2,yl+y2)
static member (-) (V(x1,y1),V(x2,y2)) = V(x1-x2,y1l-y2)

static member ( *) (a, V(X)) = V(a *X,a *Yy)
static member (  *) (V(x1,y1),V(x2,y2)) = x1 *X2 + yl*xy2
let make (x,y) = V(x,y)
let coord (V(x,y)) = (Xy)
let norm (V(x,y)) = sqrt(x *X + y*y)

The operators +, - , * are available on vectors even without opening:

let a = Vector.make(1.0,-2.0);;
val a : Vector.vector

let b = Vector.make(3.0,4.0);;
val b : Vector.vector

let c = 2.0 * a - by
val ¢ : Vector.vector
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Customizing the string function

module Vector
type vector =
| V of float * float
override v.ToString() =
match v with | V(X,y) -> string(x,y)

let make (x.y) = V(xy)
typemvector with

static member (*-) (V(x,y)) = V(-X,-y)

e The default ToString function that do not reveal a meaningful
value is overridden to give a string for the pair of coordinates.
o A type extension is used.

Example:

let a = Vector.make(1.0,2.0);;
val a : Vector.vector = (1, 2)

string(a+a);;
val it : string = "(2, 4)"
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Summary

M

Modular program development

program libraries using signatures and structures

type augmentation, overloaded operators, customizing string
(and other) functions

Encapsulation, abstraction, reuse of components, division of
concerns, ...
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