
02157
Functional
Program-

ming

Michael R. Hansen02157 Functional Programming
Lecture 9: Module System – briefly

Michael R. Hansen

1 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Overview

• Supports modular program design including
• encapsulation
• abstraction and
• reuse of software components.

• A module is characterized by:
• a signature – an interface specifications and
• a matching implementation – containing declarations of the

interface specifications.

• Example based (incomplete) presentation to give the flavor.

Sources:

• Chapter 7: Modules. (A fast reading suffices.)

2 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Overview

• Supports modular program design including
• encapsulation
• abstraction and
• reuse of software components.

• A module is characterized by:
• a signature – an interface specifications and
• a matching implementation – containing declarations of the

interface specifications.

• Example based (incomplete) presentation to give the flavor.

Sources:

• Chapter 7: Modules. (A fast reading suffices.)

3 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Overview

• Supports modular program design including
• encapsulation
• abstraction and
• reuse of software components.

• A module is characterized by:
• a signature – an interface specifications and
• a matching implementation – containing declarations of the

interface specifications.

• Example based (incomplete) presentation to give the flavor.

Sources:

• Chapter 7: Modules. (A fast reading suffices.)

4 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Overview

• Supports modular program design including
• encapsulation
• abstraction and
• reuse of software components.

• A module is characterized by:
• a signature – an interface specifications and
• a matching implementation – containing declarations of the

interface specifications.

• Example based (incomplete) presentation to give the flavor.

Sources:

• Chapter 7: Modules. (A fast reading suffices.)

5 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

An example: Search trees

Consider the following implementation of search trees:

type Tree = Lf
| Br of Tree * int * Tree;;

let rec insert i = function
| Lf -> Br(Lf,i,Lf)
| Br(t1,j,t2) as tr ->

match compare i j with
| 0 -> tr
| n when n<0 -> Br(insert i t1 , j, t2)
| _ -> Br(t1,j, insert i t2);;

let rec memberOf i = function
| Lf -> false
| Br(t1,j,t2) -> match compare i j with

| 0 -> true
| n when n<0 -> memberOf i t1
| _ -> memberOf i t2;;

6 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example cont’d

Is this implementation adequate?

No. Search tree property can be violated by a programmer:

toList(insert 2 (Br(Br(Lf,3,Lf), 1, Br(Lf,0,Lf))));;
> val it = [3;1;0;2]: int list

Solution: Hide the internal structure of search trees.

7 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example cont’d

Is this implementation adequate?

No. Search tree property can be violated by a programmer:

toList(insert 2 (Br(Br(Lf,3,Lf), 1, Br(Lf,0,Lf))));;
> val it = [3;1;0;2]: int list

Solution: Hide the internal structure of search trees.

8 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example cont’d

Is this implementation adequate?

No. Search tree property can be violated by a programmer:

toList(insert 2 (Br(Br(Lf,3,Lf), 1, Br(Lf,0,Lf))));;
> val it = [3;1;0;2]: int list

Solution: Hide the internal structure of search trees.

9 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Module

A module is a combination of a

• signature, which is a specification of an interface to the module
(the user’s view), and an

• implementation, which provides declarations for the
specifications in the signature.

10 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Module

A module is a combination of a

• signature, which is a specification of an interface to the module
(the user’s view), and an

• implementation, which provides declarations for the
specifications in the signature.

11 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Geometric vectors: Signature

The signature specifies one type and eight values:

// Vector signature
module Vector
type vector
val (˜-.) : vector -> vector // Vector sign change
val (+.) : vector -> vector -> vector // Vector sum
val (-.) : vector -> vector -> vector // Vector difference
val (* .) : float -> vector -> vector // Product with number
val (&.) : vector -> vector -> float // Dot product
val norm : vector -> float // Length of vector
val make : float * float -> vector // Make vector
val coord : vector -> float * float // Get coordinates

The specification ’vector’ does not reveal the implementation

• Why is make and coord introduced?

12 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Geometric vectors: Signature

The signature specifies one type and eight values:

// Vector signature
module Vector
type vector
val (˜-.) : vector -> vector // Vector sign change
val (+.) : vector -> vector -> vector // Vector sum
val (-.) : vector -> vector -> vector // Vector difference
val (* .) : float -> vector -> vector // Product with number
val (&.) : vector -> vector -> float // Dot product
val norm : vector -> float // Length of vector
val make : float * float -> vector // Make vector
val coord : vector -> float * float // Get coordinates

The specification ’vector’ does not reveal the implementation

• Why is make and coord introduced?

13 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Geometric vectors: Signature

The signature specifies one type and eight values:

// Vector signature
module Vector
type vector
val (˜-.) : vector -> vector // Vector sign change
val (+.) : vector -> vector -> vector // Vector sum
val (-.) : vector -> vector -> vector // Vector difference
val (* .) : float -> vector -> vector // Product with number
val (&.) : vector -> vector -> float // Dot product
val norm : vector -> float // Length of vector
val make : float * float -> vector // Make vector
val coord : vector -> float * float // Get coordinates

The specification ’vector’ does not reveal the implementation

• Why is make and coord introduced?

14 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Geometric vectors (2): Simple implementation

An implementation must declare each specification of the signature:

// Vector implementation
module Vector
type vector = V of float * float
let (˜-.) (V(x,y)) = V(-x,-y)
let (+.) (V(x1,y1)) (V(x2,y2)) = V(x1+x2,y1+y2)
let (-.) v1 v2 = v1 +. -. v2
let (* .) a (V(x1,y1)) = V(a * x1,a * y1)
let (&.) (V(x1,y1)) (V(x2,y2)) = x1 * x2 + y1 * y2
let norm (V(x1,y1)) = sqrt(x1 * x1+y1 * y1)
let make (x,y) = V(x,y)
let coord (V(x,y)) = (x,y)

• Since the representation of ’vector’ is hidden in the signature,
the type must be implemented by either a tagged value or a
record.

15 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Geometric vectors (2): Simple implementation

An implementation must declare each specification of the signature:

// Vector implementation
module Vector
type vector = V of float * float
let (˜-.) (V(x,y)) = V(-x,-y)
let (+.) (V(x1,y1)) (V(x2,y2)) = V(x1+x2,y1+y2)
let (-.) v1 v2 = v1 +. -. v2
let (* .) a (V(x1,y1)) = V(a * x1,a * y1)
let (&.) (V(x1,y1)) (V(x2,y2)) = x1 * x2 + y1 * y2
let norm (V(x1,y1)) = sqrt(x1 * x1+y1 * y1)
let make (x,y) = V(x,y)
let coord (V(x,y)) = (x,y)

• Since the representation of ’vector’ is hidden in the signature,
the type must be implemented by either a tagged value or a
record.

16 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Geometric vectors (3): Compilation

Suppose

• the signature is in a file ’Vector.fsi’

• the implementation is in a file ’Vector.fs’

A library file ’Vector.dll’ is constructed by the following command:

C:\mrh\Kurser\02157-11\Week 10\fsc -a Vector.fsi Vector .fs

The library ’Vector’ can now be used just like other libraries, such as
’Set’ or ’Map’.

17 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Geometric vectors (4): Use of library

A library must be referenced before it can be used.

#r @"c:\mrh\Kurser\02157-11\Week 10\Vector.dll";;
--> Referenced ’c:\ mrh\ Kurser\ 02157-11\ Week 10\ Vector.dll’
open Vector ;;

let a = make(1.0,-2.0);;
val a : vector
let b = make(3.0,4.0);;
val b : vector
let c = 2.0 * . a -. b;;
val c : vector

coord c ;;
val it : float * float = (-1.0, -8.0)

let d = c &. a;;
val d : float = 15.0

let e = norm b;;
val e : float = 5.0

Notice: the implementation of vector is not visible and it cannot be
exploited.

18 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Type augmentation

A type augmentation

• adds declarations to the definition of a tagged type or a record
type

• allows declaration of (overloaded) operators.

In the ’Vector’ module we would like to

• overload +, - and * to also denote vector operations.

• overload * is even overloaded to denote two different
operations on vectors.

19 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Type augmentation

A type augmentation

• adds declarations to the definition of a tagged type or a record
type

• allows declaration of (overloaded) operators.

In the ’Vector’ module we would like to

• overload +, - and * to also denote vector operations.

• overload * is even overloaded to denote two different
operations on vectors.

20 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Type augmentation – signature

module Vector

[<Sealed>]
type vector =

static member (˜-) : vector -> vector
static member (+) : vector * vector -> vector
static member (-) : vector * vector -> vector
static member (*) : float * vector -> vector
static member (*) : vector * vector -> float

val make : float * float -> vector
val coord: vector -> float * float
val norm : vector -> float

• The attribute [<Sealed>] is mandatory when a type
augmentation is used.

• The “member” specification and declaration of an infix operator
(e.g. +) correspond to a type of form type1 * type2 -> type3

• The operators can still be used on numbers.

21 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Type augmentation – signature

module Vector

[<Sealed>]
type vector =

static member (˜-) : vector -> vector
static member (+) : vector * vector -> vector
static member (-) : vector * vector -> vector
static member (*) : float * vector -> vector
static member (*) : vector * vector -> float

val make : float * float -> vector
val coord: vector -> float * float
val norm : vector -> float

• The attribute [<Sealed>] is mandatory when a type
augmentation is used.

• The “member” specification and declaration of an infix operator
(e.g. +) correspond to a type of form type1 * type2 -> type3

• The operators can still be used on numbers.

22 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Type augmentation – signature

module Vector

[<Sealed>]
type vector =

static member (˜-) : vector -> vector
static member (+) : vector * vector -> vector
static member (-) : vector * vector -> vector
static member (*) : float * vector -> vector
static member (*) : vector * vector -> float

val make : float * float -> vector
val coord: vector -> float * float
val norm : vector -> float

• The attribute [<Sealed>] is mandatory when a type
augmentation is used.

• The “member” specification and declaration of an infix operator
(e.g. +) correspond to a type of form type1 * type2 -> type3

• The operators can still be used on numbers.

23 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Type augmentation – signature

module Vector

[<Sealed>]
type vector =

static member (˜-) : vector -> vector
static member (+) : vector * vector -> vector
static member (-) : vector * vector -> vector
static member (*) : float * vector -> vector
static member (*) : vector * vector -> float

val make : float * float -> vector
val coord: vector -> float * float
val norm : vector -> float

• The attribute [<Sealed>] is mandatory when a type
augmentation is used.

• The “member” specification and declaration of an infix operator
(e.g. +) correspond to a type of form type1 * type2 -> type3

• The operators can still be used on numbers.

24 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Type augmentation – implementation and use

module Vector

type vector =
| V of float * float
static member (˜-) (V(x,y)) = V(-x,-y)
static member (+) (V(x1,y1),V(x2,y2)) = V(x1+x2,y1+y2)
static member (-) (V(x1,y1),V(x2,y2)) = V(x1-x2,y1-y2)
static member (*) (a, V(x,y)) = V(a * x,a * y)
static member (*) (V(x1,y1),V(x2,y2)) = x1 * x2 + y1 * y2

let make (x,y) = V(x,y)
let coord (V(x,y)) = (x,y)
let norm (V(x,y)) = sqrt(x * x + y * y)

The operators +, - , * are available on vectors even without opening:

let a = Vector.make(1.0,-2.0);;
val a : Vector.vector

let b = Vector.make(3.0,4.0);;
val b : Vector.vector

let c = 2.0 * a - b;;
val c : Vector.vector

Vector.coord c ;;
25 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Type augmentation – implementation and use

module Vector

type vector =
| V of float * float
static member (˜-) (V(x,y)) = V(-x,-y)
static member (+) (V(x1,y1),V(x2,y2)) = V(x1+x2,y1+y2)
static member (-) (V(x1,y1),V(x2,y2)) = V(x1-x2,y1-y2)
static member (*) (a, V(x,y)) = V(a * x,a * y)
static member (*) (V(x1,y1),V(x2,y2)) = x1 * x2 + y1 * y2

let make (x,y) = V(x,y)
let coord (V(x,y)) = (x,y)
let norm (V(x,y)) = sqrt(x * x + y * y)

The operators +, - , * are available on vectors even without opening:

let a = Vector.make(1.0,-2.0);;
val a : Vector.vector

let b = Vector.make(3.0,4.0);;
val b : Vector.vector

let c = 2.0 * a - b;;
val c : Vector.vector

Vector.coord c ;;
26 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Customizing the string function

module Vector
type vector =

| V of float * float
override v.ToString() =

match v with | V(x,y) -> string(x,y)

let make (x,y) = V(x,y)
...

type vector with
static member (˜-) (V(x,y)) = V(-x,-y)
...

• The default ToString function that do not reveal a meaningful
value is overridden to give a string for the pair of coordinates.

• A type extension is used.

Example:

let a = Vector.make(1.0,2.0);;
val a : Vector.vector = (1, 2)

string(a+a);;
val it : string = "(2, 4)"

27 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Customizing the string function

module Vector
type vector =

| V of float * float
override v.ToString() =

match v with | V(x,y) -> string(x,y)

let make (x,y) = V(x,y)
...

type vector with
static member (˜-) (V(x,y)) = V(-x,-y)
...

• The default ToString function that do not reveal a meaningful
value is overridden to give a string for the pair of coordinates.

• A type extension is used.

Example:

let a = Vector.make(1.0,2.0);;
val a : Vector.vector = (1, 2)

string(a+a);;
val it : string = "(2, 4)"

28 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

02157
Functional
Program-

ming

Michael R. Hansen

Summary

Modular program development

• program libraries using signatures and structures

• type augmentation, overloaded operators, customizing string
(and other) functions

• Encapsulation, abstraction, reuse of components, division of
concerns, ...

• ...

29 DTU Informatics, Technical University of Denmark Lecture 9: Module System – briefly MRH 08/11/2012

