
02157
Functional
Program-

ming

Michael R. Hansen02157 Functional Programming
Collections: Sets and Maps

Michael R. Hansen

1 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Overview

Sets and Maps as abstract data types

• Useful in the modelling and solution of many problems

• Many similarities with the list library

Recommendation: Use these libraries whenever it is appropriate.

2 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

The set concept (1)

A set (in mathematics) is a collection of element like

{Bob,Bill, Ben}, {1, 3, 5,7, 9},N, and R

• the sequence in which elements are enumerated is of no
concern, and

• repetitions among members of a set is of no concern either

It is possible to decide whether a given value is in the set.

Alice 6∈ {Bob,Bill,Ben} and 7 ∈ {1, 3, 5, 7,9}

The empty set containing no element is written {} or ∅.

3 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

The sets concept (2)

A set A is a subset of a set B, written A ⊆ B, if all the elements of A
are also elements of B, for example

{Ben, Bob} ⊆ {Bob,Bill,Ben} and {1, 3, 5, 7,9} ⊆ N

Two sets A and B are equal, if they are both subsets of each other:

A = B if and only if A ⊆ B and B ⊆ A

i.e. two sets are equal if they contain exactly the same elements.

The subset of a set A which consists of those elements satisfying a
predicate p can be expressed using a set-comprehension:

{x ∈ A | p(x)}

For example:

{1, 3, 5, 7,9} = {x ∈ N | odd(x) and x < 11}

4 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

The set concept (3)

Some standard operations on sets:

A ∪ B = {x | x ∈ A or x ∈ B} union
A ∩ B = {x | x ∈ A and x ∈ B} intersection
A \ B = {x ∈ A | x 6∈ B} difference

A B A B A B

(a) A ∪ B (b) A ∩ B (c) A \ B

Figure: Venn diagrams for (a) union, (b) intersection and (c) difference

For example

{Bob, Bill, Ben} ∪ {Alice,Bill,Ann} = {Alice,Ann,Bob,Bill,Ben}

{Bob, Bill, Ben} ∩ {Alice,Bill,Ann} = {Bill}

{Bob,Bill,Ben} \ {Alice,Bill,Ann} = {Bob,Ben}

5 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Abstract Data Types

An abstract Data Type: A type together with a collection of
operations, where

• the representation of values is hidden.

An abstract data type for sets must have:

• Operations to generate sets from the elements. Why?

• Operations to extract the elements of a set. Why?

• Standard operations on sets.

6 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Sets in F#

The Set library of F# supports finite sets. An efficient
implementation is based on a balanced binary tree.

Examples:

set ["Bob"; "Bill"; "Ben"];;
val it : Set<string> = set ["Ben"; "Bill"; "Bob"]

set [3; 1; 9; 5; 7; 9; 1];;
val it : Set<int> = set [1; 3; 5; 7; 9]

Equality of two sets is tested in the usual manner:

set["Bob";"Bill";"Ben"] = set["Bill";"Ben";"Bill";"Bob"];;
val it : bool = true

Sets are order on the basis of a lexicographical ordering:

compare (set ["Ann";"Jane"]) (set ["Bill";"Ben";"Bob"]);;
val it : int = -1

7 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Selected operations (1)

• ofList: ’a list -> Set<’a>,
where ofList [a0; . . . ; an−1] = {a0; . . . ; an−1}

• toList: Set<’a> -> ’a list,
where toList {a0, . . . , an−1} = [a0; . . . ; an−1]

• add: ’a -> Set<’a> -> Set<’a>,
where add a A = {a} ∪ A

• remove: ’a -> Set<’a> -> Set<’a>,
where remove a A = A \ {a}

• contains: ’a -> Set<’a> -> bool,
where contains a A = a ∈ A

• minElement: Set<’a> -> ’a)
where minElement {a0, a1, . . . , an−2, an−1} = a0 when n > 0

Notice that minElement is well-defined due to the ordering:

Set.minElement (Set.ofList ["Bob"; "Bill"; "Ben"]);;
val it : string = "Ben"

8 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Selected operations (2)

• union: Set<’a> -> Set<’a> -> Set<’a>,
where union A B = A ∪ B

• intersect: Set<’a> -> Set<’a> -> Set<’a>,
where intersect A B = A ∩ B

• difference: Set<’a> -> Set<’a> -> Set<’a>,
where difference A B = A \ B

• exists: (’a -> bool) -> Set<’a> -> bool,
where exists p A = ∃x ∈ A.p(x)

• forall: (’a -> bool) -> Set<’a> -> bool,
where forall p A = ∀x ∈ A.p(x)

• fold: (’a -> ’b -> ’a) -> ’a -> Set<’b> -> ’a,
where

fold f a {b0, b1, . . . , bn−2, bn−1}
= f (f (f (· · · f (f (a, b0), b1), . . .), bn−2), bn−1)

These work similar to their List siblings, e.g.

Set.fold (-) 0 (set [1; 2; 3]) = ((0 − 1)− 2)− 3 = −6

where the ordering is exploited.
9 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Map Coloring (1)

Maps and colors are modelled in a more natural way using sets:

type country = string;;
type map = Set<country*country>;;
type color = Set<country>;;
type coloring = Set<color>;;

WHY?

Two countries c1, c2 are neighbors in a map m,
if either (c1, c2) ∈ m or (c2, c1) ∈ m:

let areNb c1 c2 m =
Set.contains (c1,c2) m || Set.contains (c2,c1) m;;

Color col and be extended by a country c given map m,
if for every country c′ in col : c and c′ are not neighbours in m

let canBeExtBy m col c =
Set.forall (fun c’ -> not (areNb c’ c m)) col;;

10 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Map Coloring (2)

The function

extColoring: map -> coloring -> country -> coloring

is declared as a recursive function over the coloring:

WHY not use a fold function?

let rec extColoring m cols c =
if Set.isEmpty cols
then Set.singleton (Set.singleton c)
else let col = Set.minElement cols

let cols’ = Set.remove col cols
if canBeExtBy m col c
then Set.add (Set.add c col) cols’
else Set.add col (extColoring m cols’ c);;

Notice similarity to a list recursion:
• base case [] corresponds to the empty set
• for a recursive case x::xs, the head x corresponds to the minimal

element col and the tail xs corresponds to the ”rests” set cols’

The list-based version is more efficient (why?) and more readable.
11 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Map Coloring (3)

A set of countries is obtained from a map by the function:

countries: map -> Set<country>

that is based on repeated insertion of the countries into a set:

let countries m =
Set.fold

(fun set (c1,c2) -> Set.add c1 (Set.add c2 set))
Set.empty
m;;

The function

colCntrs: map -> Set<country> -> coloring

is based on repeated insertion of countries in colorings using the
extColoring function:

let colCntrs m cs = Set.fold (extColoring m) Set.empty cs;;

12 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Map Coloring (4)

The function that creates a coloring from a map is declared using
functional composition:

let colMap m = colCntrs m (countries m);;

let exMap = Set.ofList [("a","b"); ("c","d"); ("d","a")];;

colMap exMap;;
val it : Set<Set<string>>

= set [set ["a"; "c"]; set ["b"; "d"]]

13 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

The map concept

A map from a set A to a set B is a finite subset A′ of A together with a
function m defined on A′: m : A′ → B.
The set A′ is called the domain of m: dom m = A′.

A map m can be described in a tabular form:

a0 b0

a1 b1

...

an−1 bn−1

• An element ai in the set A′ is called a key
• A pair (ai , bi) is called an entry, and
• bi is called the value for the key ai .

We denote the sets of entries of a map as follows:

entriesOf(m) = {(a0, b0), . . . , (an−1, bn−1)}

14 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Selected map operations in F#

• ofList: (’a*’b) list -> Map<’a,’b>
ofList [(a0, b0); . . . ; (an−1, bn−1)] = m

• add: ’a -> ’b -> Map<’a,’b> -> Map<’a,’b>
add a b m = m′, where m′ is obtained m by overriding m with
the entry (a,b)

• find: ’a -> Map<’a,’b> -> ’b
find a m = m(a), if a ∈ dom m;
otherwise an exception is raised

• tryFind: ’a -> Map<’a,’b> -> ’b option
tryFind a m = Some (m(a)), if a ∈ dom m; None otherwise

•

foldBack: (’a->’b->’c->’c) -> Map<’a,’b> -> ’c -> ’c
foldBack f m c = f a0 b0 (f a1 b1 (f . . . (f an−1 bn−1 c) · · ·))

15 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

A few examples

let reg1 = Map.ofList [("a1",("cheese",25));
("a2",("herring",4));
("a3",("soft drink",5))];;

val reg1 : Map<string,(string * int)> =
map [("a1", ("cheese", 25)); ("a2", ("herring", 4));

("a3", ("soft drink", 5))]

An entry can be added to a map using add and the value for a key in
a map is retrieved using either find or tryFind:

let reg2 = Map.add "a4" ("bread", 6) reg1;;
val reg2 : Map<string,(string * int)> =
map [("a1", ("cheese", 25)); ("a2", ("herring", 4));

("a3", ("soft drink", 5)); ("a4", ("bread", 6))]

Map.find "a2" reg1;;
val it : string * int = ("herring", 4)

Map.tryFind "a2" reg1;;
val it : (string * int) option = Some ("herring", 4)

16 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

An example using Map.foldBack

We can extract the list of article codes and prices for a given register
using the fold functions for maps:

let reg1 = Map.ofList [("a1",("cheese",25));
("a2",("herring",4));
("a3",("soft drink",5))];;

Map.foldBack (fun ac (_,p) cps -> (ac,p)::cps) reg1 [];;
val it : (string * int) list =

[("a1", 25); ("a2", 4); ("a3", 5)]

This and other higher-order functions are similar to their List and Set
siblings.

17 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Cash register (1)

type articleCode = string;;
type articleName = string;;
type noPieces = int;;
type price = int;;

type info = noPieces * articleName * price;;
type infoseq = info list;;
type bill = infoseq * price;;

The natural model of a register is using a map:

type register = Map<articleCode, articleName*price>;;

since an article code is a unique identification of an article.

First version:

type item = noPieces * articleCode;;
type purchase = item list;;

18 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Cash register (1) - a recursive program

exception FindArticle;;

(* makebill: register -> purchase -> bill *)
let rec makeBill reg = function

| [] -> ([],0)
| (np,ac)::pur ->

match Map.tryFind ac reg with
| None -> raise FindArticle
| Some(aname,aprice) ->

let tprice = np*aprice
let (infos,sumbill) = makeBill reg pur
((np,aname,tprice)::infos, tprice+sumbill);;

let pur = [(3,"a2"); (1,"a1")];;
makeBill reg1 pur;;
val it : (int * string * int) list * int =
([(3, "herring", 12); (1, "cheese", 25)], 37)

• the lookup in the register is managed by a Map.tryFind

19 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Cash register (2) - using List.foldBack

let makeBill’ reg pur =
let f (np,ac) (infos,billprice)

= let (aname, aprice) = Map.find ac reg
let tprice = np*aprice
((np,aname,tprice)::infos, tprice+billprice)

List.foldBack f pur ([],0);;

makeBill’ reg1 pur;;
val it : (int * string * int) list * int =
([(3, "herring", 12); (1, "cheese", 25)], 37)

• the recursion is handled by List.foldBack

• the exception is handled by Map.find

20 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Example: Cash register (2) - using maps for purchases

The purchase: 3 herrings, one piece of cheese, and 2 herrings, is the
same as a purchase of one piece of cheese and 5 herrings.

A purchase associated number of pieces with article codes:

type purchase = Map<articleCode,noPieces>;;

A bill is produced by folding a function over a map-purchase:

let makeBill’’ reg pur =
let f ac np (infos,billprice)

= let (aname, aprice) = Map.find ac reg
let tprice = np*aprice
((np,aname,tprice)::infos, tprice+billprice)

Map.foldBack f pur ([],0);;

let purMap = Map.ofList [("a2",3); ("a1",1)];;
val purMap : Map<string,int> = map [("a1", 1); ("a2", 3)]

makeBill’’ reg1 purMap;;
val it = ([(1, "cheese", 25); (3, "herring", 12)], 37)

21 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Summary

• The concepts of sets and maps.

• Fundamental operations on sets and maps.

• Applications of sets and maps.

22 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

