=
=
=

>
>
>

02157 Functional Programming
Collections: Sets and Maps

Michael R. Hansen

b
. A
f(x+Ax):2(l.ATx)f“’(x) 8

a

DTU Informatics
Department of Informatics and Mathematical Modelling

DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

Overview

Sets and Maps as abstract data types
o Useful in the modelling and solution of many problems
o Many similarities with the list library
Recommendation: Use these libraries whenever it is appropriate.

2 DTU Informatics, Technical University of Denmark Collections: Sets and Maps

=]
=
=

M

MRH 12/10/2012

=]
=
=

The set concept (1)

M

A set (in mathematics) is a collection of element like

{Bob, Bill, Ben}, {1,3,5,7,9},N,and R

e the sequence in which elements are enumerated is of no
concern, and

e repetitions among members of a set is of no concern either

It is possible to decide whether a given value is in the set.

Alice ¢ {Bob, Bill, Ben} and 7€{1,3,5,7,9}

The empty set containing no element is written {} or 0.

3 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

4

The sets concept (2)
A set A is a subset of a set B, written A C B, if all the elements of A

are also elements of B, for example

{Ben, Bob} C {Bob, Bill, Ben} and {1,3,5,7,9} CN

Two sets A and B are equal, if they are both subsets of each other:
A=B if and only if ACBandB CA

i.e. two sets are equal if they contain exactly the same elements.

The subset of a set A which consists of those elements satisfying a
predicate p can be expressed using a set-comprehension:

{xeA[p(x)}

For example:

{1,3,5,7,9} = {x € N| odd(x) and x < 11}

DTU Informatics, Technical University of Denmark Collections: Sets and Maps

=]
=
=

M

MRH 12/10/2012

5

=
=
=

The set concept (3)

M

Some standard operations on sets:

AUB = {x|xeAorxeB} union
ANB = {x|xeAandx eB} intersection
A\B = {xe€A|x¢B} difference

(2) AUB (b)ANB ©)A\B

Figure: Venn diagrams for (a) union, (b) intersection and (c) difference

For example

{Bob, Bill, Ben} U {Alice, Bill, Ann} {Alice, Ann, Bob, Bill, Ben}
{Bob, Bill, Ben} N {Alice, Bill, Ann} {Bill}

{Bob, Bill, Ben} \ {Alice, Bill, Ann} = {Bob,Ben}

DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

=]
=
=

Abstract Data Types

M

An abstract Data Type: A type together with a collection of
operations, where

o the representation of values is hidden.

An abstract data type for sets must have:
e Operations to generate sets from the elements. Why?
e Operations to extract the elements of a set. Why?
e Standard operations on sets.

6 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

=]
=
=

Sets in F#

>
=
The Set library of F# supports finite sets. An efficient
implementation is based on a balanced binary tree.
Examples:
set ["Bob"; "Bill"; "Ben"];;
val it : Set<string> = set ["Ben"; "Bill"; "Bob"]
set [3; 1, 9; 5 7; 9; 1];;
val it : Set<int> =set [1; 3; 5; 7; 9]
Equality of two sets is tested in the usual manner:
set["Bob";"Bill";"Ben"] = set["Bill";"Ben";"Bill";"Bob"];
val it : bool = true
Sets are order on the basis of a lexicographical ordering:
conpare (set ["Ann";"Jane"]) (set ["Bill";"Ben";"Bob"]);

val it : int = -1

7 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

=]
=
=

Selected operations (1)

M

e of List: "a list -> Set< a>,

where of Li st [ao;...;an—1] = {@0;...;an—1}
e toList: Set<"a> -> "a |list,
where t oLi st {@o,...,an—1} =[a0;...;an-1]

e add: 'a -> Set<’a> -> Set<’ a>,
whereadd a A= {a} UA

erenove: 'a -> Set< a> -> Set< a>,
whererenmove a A=A\ {a}

e contains: 'a -> Set<’a> -> bool,
wherecontainsaA=acA

e minElenent: Set< a> ->’a)
where m nEl enent {ag,a1,...,an—2,an—1} = aswhenn >0

Notice that minElement is well-defined due to the ordering:

Set. m nEl enent (Set.ofList ["Bob"; "Bill"; "Ben"]);;
val it : string = "Ben"

8 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

=]
=
=

Selected operations (2)

M

e Uunion: Set<' a> -> Set<' a> -> Set< a>,
where unionAB=AUB
e intersect: Set<' a> -> Set<’a> -> Set< a>,
whereintersect AB=ANB
e difference: Set<’a> -> Set< a> -> Set<' a>,
wheredi fference AB=A\B
e exists: ("a -> bool) -> Set<’ a> -> bool,
where exi sts p A= 3x € A.p(x)
e forall: ("a -> bool) -> Set<’ a> -> bool,
whereforall pA=Vx € Ap(x)
efold: ("a->"b->"a) ->"a -> Set<'b> ->"a,
where
foldfa {bo,bl, .. .,bnfz,bnfl}
:f(f(f("'f(f(a,bo),bl),...),bn_z),bn_l)

These work similar to their List siblings, e.qg.
Set.fold (-) O (set [1; 2; 3]) =((0-1)-2)—3=-6

where the ordering is exploited.

DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

=]
=
=

Example: Map Coloring (1)

M

Maps and colors are modelled in a more natural way using sets:

type country = string;;

type nmap Set <country*country>; ;
type col or Set <country>;;

type col oring = Set<col or>;;

WHY?
Two countries ¢, C; are neighborsin a map m,
if either (cy,c2) € mor (cz,c1) € m:
let areNb cl c2 m=
Set.contains (cl,c2) m|| Set.contains (c2,cl) m;

Color col and be extended by a country ¢ given map m,
if for every country ¢’ in col: ¢ and ¢’ are not neighbours in m

| et canBeExtBy mcol c¢ =
Set.forall (fun ¢’ -> not (areNb ¢’ ¢ nm)) col;;

10 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

=]
=
=

Example: Map Coloring (2)

M

The function
ext Coloring: map -> coloring -> country -> coloring
is declared as a recursive function over the coloring:

WHY not use a fold function?

let rec extColoring mcols ¢ =

if Set.isEnpty cols

then Set.singleton (Set.singleton c)

else let col = Set.ninEl enment cols
let cols’ = Set.renpbve col cols
if canBeExtBy mcol c¢
then Set.add (Set.add c col) cols’
el se Set.add col (extColoring mcols' c);;

Notice similarity to a list recursion:
e base case [] corresponds to the empty set

o for a recursive case x::xs, the head x corresponds to the minimal
element col and the tail xs corresponds to the "rests” set cols’

The list-based version is more efficient (why?) and more readable.

11 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

=]
=
=

Example: Map Coloring (3)

>
>
>
A set of countries is obtained from a map by the function:
countries: map -> Set<country>
that is based on repeated insertion of the countries into a set:
let countries m=
Set.fold
(fun set (cl,c2) -> Set.add cl (Set.add c2 set))
Set . enpty
m:;

The function
colCntrs: map -> Set<country> -> col oring

is based on repeated insertion of countries in colorings using the
ext Col ori ng function:

let colCntrs mcs = Set.fold (extColoring n) Set.enpty cs;;

12 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

=]
=
=

Example: Map Coloring (4)

M

The function that creates a coloring from a map is declared using
functional composition:

let col Map m= colCntrs m(countries nm;;
let exMap = Set.ofList [("a","b"); ("c","d"); ("d","a")];;
col Map exMap; ;

val it : Set<Set<string>>
= set [set ["a"; "c"]; set ["b"; "d"]]

13 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

The map concept

A map from a set A to a set B is a finite subset A’ of A together with a
function m definedon A’ m: A’ — B.
The set A’ is called the domain of m: domm = A,

A map m can be described in a tabular form:

ao
ap

an—1

bo

by

bn—l

e An element a; in the set A’ is called a key
e A pair (aj, b;) is called an entry, and
e b; is called the value for the key a;.

We denote the sets of entries of a map as follows:
entriesOf(m) = {(ao, bo), ..., (@n—1,bn-1)}

14 DTU Informatics, Technical University of Denmark

Collections: Sets and Maps

=]
=
=

M

MRH 12/10/2012

=]
=
=

Selected map operations in F#

M

e of List: ("a*'b) list -> Map<’a,’ b>
of Li st [(ao,bo);...;(@n—1,bn_1)]=m
eadd: 'a->"'b -> Map<'a,’'b> -> Map<’ a,’ b>
add ab m = m’, where m’ is obtained m by overriding m with
the entry (a,b)
e find: "a -> Map<'a,'b>->"b
findam=m(a), ifa e domm;
otherwise an exception is raised
etryFind: "a -> Map<’a,'b> -> 'b option
tryFi ndam = Sonme (m(a)), if a € dom m; None otherwise

fol dBack: (’'a->"b->"c->c) -> Map<’a,’b> ->"'c ->"c
foldBack fmc=faghbo(faib: (f...(fan_1bn_1c)---))

15 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

=]
=
=

A few examples

M

let regl = Map.ofList [("al", ("cheese", 25));
("a2",("herring",4));
("a3",("soft drink",5))];;
val regl : Mp<string, (string = int)> =
map [("al", ("cheese", 25)); ("a2", ("herring", 4));
("a3", ("soft drink", 5))]

An entry can be added to a map using add and the value for a key in
a map is retrieved using either fi nd or t r yFi nd:
let reg2 = Map. add "a4" ("bread", 6) regl;;
val reg2 : Mp<string, (string = int)> =
map [("al", ("cheese", 25)); ("a2", ("herring", 4));
("a3", ("soft drink", 5)); ("a4", ("bread", 6))]

Map. find "a2" regl;;
val it : string = int = ("herring", 4)

Map.tryFind "a2" regl;;
val it : (string = int) option = Sone ("herring", 4)

16 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

=]
=
=

An example using Map.foldBack

M

We can extract the list of article codes and prices for a given register
using the fold functions for maps:

let regl = Map.ofList [("al", ("cheese", 25));

("a2",("herring",4));
("a3",("soft drink",5))];;

Map. fol dBack (fun ac (_,p) cps -> (ac,p)::cps) regl [];;
val it : (string = int) list =
[("al", 25); ("a2", 4); ("a3", 5)]

This and other higher-order functions are similar to their List and Set
siblings.

17 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

Example: Cash register (1)

type articl eCode
type articl eNane
t ype noPi eces
type price

type info
type infoseq
type bill

string;;
string;;
int;;
int;;

noPi eces *
info list;;

articleNane * price;;

infoseq * price;;

The natural model of a register is using a map:

type register

Map<articl eCode, articl eNane*pri

since an article code is a unique identification of an article.

First version:

type item
type purchase

DTU Informatics, Technical University of Denmark

noPi eces *
itemlist;;

articl eCode; ;

Collections: Sets and Maps

=]
=
=

M

ce>;

MRH 12/10/2012

=]
=
=

Example: Cash register (1) - a recursive program

M

exception FindArticle;;

(* makebill: register -> purchase -> bill x)
let rec makeBill reg = function
| [] -> ([1.0)

| (np,ac)::pur ->
match Map.tryFind ac reg with

| None -> raise FindArticle
| Some(anane, aprice) ->
let tprice = np*aprice

let (infos,sunbill) = makeBill reg pur
((np, anane, tprice)::infos, tprice+sunbill);;

let pur =[(3,"a2"); (1,"al")];;

makeBi | | regl pur;;

val it : (int * string » int) list » int =
([(3, "herring", 12); (1, "cheese", 25)], 37)

o the lookup in the register is managed by a Map. t r yFi nd

19 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

=]
=
=

Example: Cash register (2) - using List.foldBack

M

let makeBill’' reg pur =
let f (np,ac) (infos,billprice)
= let (anane, aprice) = Map.find ac reg
let tprice = np*aprice
((np, anane, tprice)::infos, tprice+billprice)
Li st.foldBack f pur ([],0);;

makeBi | |’ regl pur;;
val it : (int * string » int) list » int =
([(3, "herring", 12); (1, "cheese", 25)], 37)

¢ the recursion is handled by List.foldBack
¢ the exception is handled by Map. fi nd

20 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

=]
=
=

Example: Cash register (2) - using maps for purchases

M

The purchase: 3 herrings, one piece of cheese, and 2 herrings, is the
same as a purchase of one piece of cheese and 5 herrings.

A purchase associated number of pieces with article codes:
type purchase = Map<articl eCode, noPi eces>; ;
A bill is produced by folding a function over a map-purchase:

let makeBill’’ reg pur =
let f ac np (infos,billprice)
= let (anane, aprice) = Map.find ac reg
let tprice = np*aprice
((np, anane, tprice)::infos, tprice+billprice)
Map. fol dBack f pur ([],0);;

l et purMap = Map.ofList [("a2",3); ("al",1)];;
val purMap : Map<string,int> = map [("al", 1); ("a2", 3)]

makeBi | |’ regl purMap;;
val it = ([(1, "cheese", 25); (3, "herring", 12)], 37)

DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

=]
=
=

Summary

M

e The concepts of sets and maps.
e Fundamental operations on sets and maps.
¢ Applications of sets and maps.

22 DTU Informatics, Technical University of Denmark Collections: Sets and Maps MRH 12/10/2012

