=
=
=

>
>
>

02157 Functional Programming
Tagged values and Higher-order list functions

Michael R. Hansen

b
. A
f(x+Ax):Z(l.ATx)f“’(x) 8

a

DTU Informatics
Department of Informatics and Mathematical Modelling

DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012

=]
=
=

Part I: Disjoint Sets — An Example

M

A shape is either a circle, a square, or a triangle

o the union of three disjoint sets

type shape =
Circle of float
| Square of fl oat
| Triangle of float+floatxfloat;;

The tags Ci r cl e, Squar e and Tr i angl e are constructors:

Circle 2.0;;
> val it : shape = Circle 2.0

Triangle(1.0, 2.0, 3.0);;
val it : shape = Triangle(1.0, 2.0, 3.0)

\%

Square 4.0;;
> val it : shape = Square 4.0

2 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012

=]
=
=

Constructors in Patterns

M

A shape-area function is declared

let area = function
| CGrcler -> System Math. Pl % r = r
| Square a ->a+* a
| Triangle(a,b,c) ->
let s =(a+b+¢)/2.0
sqrt(sx(s-a)*(s-b)*(s-c)) ;;
> val area : shape -> real

following the structure of shapes.

e a constructor only matches itself

area (Circle 1.2)
~» (System Math.Pl * r » r, [r—1.2])

~

3 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012

Enumeration types — the months

Months are naturally defined using tagged values::

type nonth = January | February | March |

| May | June | July |
| October | Novenber |
The days-in-a-month function is declared by

| et daysOf Month = function
| February

| April | June | Septenber | Novenber

| _
val daysOfMonth @ nmonth -> int

4 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions

=]
=
=

M

Sept enber

MRH 27/09/2012

=]
=
=

The opt i on type

M

type 'a option = None | Some of 'a

Distinguishes the cases "nothing” and "something”.
predefined

The constructor Sormre and None are polymorphic:

Sone fal se;;
val it : bool option = Sone fal se

Some (1, "a");;

val it : (int * string) option = Sone (1, "a")
None; ;
val it : "a option = None

5 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012

6

Example

Find first position of element in a list:

let rec findPosl p x = function
| y::_ when x=y -> Sone p

| _::ys -> findPosl (p+1l) x ys
| 11 -> None; ;
val findPosl : int ->"a ->"a list

let findPos x ys = findPosl

val findPos : "a -> "a |list
Examples

findPos 4 [2 .. 6];;

val it : int option = Sone 2

findPos 7 [2 .. 6];;
val it : int option

Opt i on. get (fi ndPos
val it : int =2

DTU Informatics, Technical University of Denmark

None

[2 ..

0 x ys;;

->int option when ...

6]):;

Tagged values and Higher-order list functions

=]
=
=

M

-> int option when ...

MRH 27/09/2012

[}
=
=

Part 2:Motivation

M

Higher-order functions are

e everywhere

TP (i), &, {x e A|P(X)},...

) odx?

e powerful

Parameterized modules succinct code . ..

HIGHER-ORDER FUNCTIONS ARE USEFUL

7 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012

[}
=
=

M

now down to earth
e Many recursive declarations follows the same schema.

For example:
let rec f = function
| [] -> :
| x::xs -> ... f(xs)

Succinct declarations achievable using higher-order functions

Contents

o Higher-order list functions (in the library)
e map
e exists, forall, filter, tryFind
o foldBack, fold

Avoid (almost) identical code fragments by
parameterizing functions with functions

DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012

A simple declaration of a list function

A typical declaration following the structure of lists:

let rec posList = function

| [] -> []
| x::xs -> (x > 0)::posList xs;;
val posList : int list -> bool Iist

posList [4; -5; 6];;
val it : bool list = [true; false; true]

Applies the functionfun x -> x > 0to each elementin a list

9 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions

=]
=
=

M

MRH 27/09/2012

Another declaration with the same structure

let rec addEl ens = function

| [] -> [

| (x,y)::zs -> (x+y)::addEl ens zs;;
val addElens : (int = int) list ->int |ist
addEl ems [(1,2) ;(3,4)];;
val it :int list =[3; 7]

Applies the addition function + to each pair of integers in a list

DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions

=]
=
=

M

MRH 27/09/2012

The function: map

Applies a function to each elementin a list

map f [vi;va;...;va] = [f(va);f(v2);...;f(va)]

Declaration Library function
let rec map f = function
| [] -> [
| xi:xs ->f x :: map f xs;;

val mp : ("a->'b) ->"alist ->"'b list

Succinct declarations can be achieved using map, e.g.

let posList = map (fun x -> x > 0);;
val posList : int list -> bool Iist

let addElens = map (fun (x,y) -> xty);;
val addElens : (int = int) list ->int |ist

11 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions

[}
=
=

M

MRH 27/09/2012

[}
=
=

Exercise

M

Declare a function

O [Xe, .. %] =[X2+1,...,x2 +1]

Remember

map f [vi;ve; ... ;vn] = [f(va); F(v2);...;f(vn)]

12 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012

[}
=
=

Higher-order list functions: exi st s

M

Predicate: For some x in xs : p(x).

true if p(x) =true for some x in xs

exi sts pxs= { false otherwise

Declaration Library function
let rec exists p = function
| [1] -> fal se
| X::xs ->p x || exists p xs;;

val exists : ("a -> bool) ->"a list -> bool
Example

exists (fun x -> x>=2) [1; 3; 1; 4];;
val it : bool = true

13 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012

14

Exercise

Declare i sMenber function using exi st s.

let isMenber x ys = exists ?????

val isMenber : "a -> "a list -> bool when "a :

Remember

true if p(x) =true for some x in xs

exists pxs= { false otherwise

=]
=
=

M

equality

DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012

[}
=
=

Higher-order list functions: f or al |

M

Predicate: For every x in xs : p(x).

true if p(x) = true, for all elements x in xs

forall pxs= { false otherwise

Declaration Library function
let rec forall p = function
| 1 -> true
| x::xs ->p x & forall p xs;;
val forall : ("a -> bool) ->"a list -> bool
Example
forall (fun x -> x>=2) [1; 3; 1; 4];;
val it : bool = false

15 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012

=]
=
=

Exercises

M

Declare a function
di sj oi nt xsys

which is true when there are no common elements in the lists xs and
ys, and false otherwise.

Declare a function
subset xsys

which is true when every element in the lists xs is in ys, and false
otherwise.

Remember

true if p(x) = true, for all elements x in xs

forall pxs= { false otherwise

16 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012

=]
=
=

Higher-order list functions: fi | t er

M

Set comprehension: {x € xs : p(x)}
filter pxsisthe list of those elements x of xs where p(x) =t r ue.

Declaration Library function

let rec filter p = function
| [] -> [
| x::xs ->if p x then x :: filter p xs
else filter p xs;;
val filter : ("a -> bool) ->"a list ->"a list

Example

filter System Char.lsLetter ['1";
val it : char list =["p"; "F]

where Syst em Char . | sLetter cis true iff
ce{AN,...,/)Z}u{a,...,'2"}

17 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012

=]
=
=

Exercise

M

Declare a function
inter xsys

which contains the common elements of the lists xs and ys — i.e.
their intersection.

Remember:
filter pxsisthe list of those elements x of xs where p(x) =t r ue.

18 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012

=]
=
=

Higher-order list functions: t r yFi nd

M

trvEind b xs — Sone x for an element x of xs with p(x) = true
y PXS = None if no such element exists

let rec tryFind p = function
| X::xs when p x -> Sonme x
| _::xs ->tryFind p xs

| _ -> None ;;
val tryFind : ("a -> bool) ->"a list ->"a option

tryFind (fun x -> x>3) [1;5;-2;8];;
val it : int option = Sone 5

19 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012

=]
=
=

Folding a function over a list (I)

M

Example: sum of norms of geometric vectors:

let norm(x1l:float,yl:float) = sqrt(xlxx1l+ylxyl);;
val norm: float » float -> float

let rec sunOf Nornms = function
| [] -> 0.0
| vi:ivs -> normv + sunOf Norns vs;;
val sumOfNorns : (float = float) list -> float

let vs [(1.0,2.0); (2.0,21.0); (2.0, 5.5];;
val vs : (float = float) Iist
[(1.0, 2.0); (2.0, 1.0); (2.0, 5.5)]

sumcf Nor ns VS; ;
val it : float = 10.32448591

20 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012

Folding a function over a list (II)

let rec sunOFNorns = function
| 11 -> 0.0
| vi:ivs -> normv + sunOf Norns vs;;

Letf v s abbreviate nor mv + s in the evaluation:

suncf Nor s [Vo; Vi;...; Vn_1]
~» normvg + (sumdf Nor s [Va;...;Vn_1])
= f vo (sunf Nor ns [vi;...;Vn_1])
~» fvg (f vi (sunf Nor ms[vy;...;Vh_1]))

o Vo (Ve (- (f Va1 0.0)---))

This repeated application of f is also called a folding of f.

Many functions follow such recursion and evaluation schemes

21 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions

=]
=
=

M

MRH 27/09/2012

=]
=
=

Higher-order list functions: f ol dBack (1) =
>
Suppose that ® is an infix function. Then
foldBack (®) [ao; ai; ... ; an_2; an_1] €p
= a®@e(...(an20 (a-1®ep))...))
List.foldBack (+) [1; 2; 31 0 = 1+(2+(3+0) = 6
List.foldBack (-) [1; 2; 3] 0 = 1-(2—-(3-0)) = 2
Using the cons operator gives the append function @on lists:
foldBack (fun x rst -> x::rst) [Xo; X1} ..., Xn—1] VYS
=Xo: i (Xi: o .o i (Xpm1iiys) ..l)
=[Xo; X1; ...0 Xn-1]l @Ys
S0 we get:
let (@ xs ys = List.foldBack (fun x rst -> x::rst) xs ys;;
val (@) : "alist ->"alist ->"alist
[1;2] @[3:4] ;;
val it @ int list =[1; 2; 3; 4]

22 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012

=]
=
=

Declaration of f ol dBack

M

let rec foldBack f xlst e =

match xlst with

| x::xs ->f x (foldBack f xs e)

| [] ->e

val foldBack : ("a ->"'b ->'b) ->"alist ->'b ->"b

let sunOfNorms vs = foldBack (fun v s -> normv +s) vs 0.0;;
let length xs = foldBack (fun _ n -> n+l) xs O;;

let map f xs = foldBack (fun x rs ->f x :: rs) xs [];;

23 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012

=]
=
=

Exercise: union of sets

M

Let an insertion function be declared by

let insert x ys = if isMenber x ys then ys else x::ys;;

Declare a union function on sets, where a set is represented by a list
without duplicated elements.

Remember:

f ol dBack (&) [X1iX2;...Xn] b ~» X1 B (X2 @D+ B (Xn © b))

24 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012

=]
=
=

Higher-order list functions: f ol d (1)

M

Suppose that @ is an infix function.

Then the f ol d function has the definitions:

fold (®) ea [bo; b1; ... ; ba—z; bn_a]
= ((..((ea®bo) ®b1)...) B bn_2) B by

i.e. it applies & from left to right.

Examples:
List.fold (-) 0[1; 2; 3] = ((0-1)-2)—-3 = -6
List.foldBack (-) [1; 2; 3 0 = 1-(2—(3-0)) = 2

25 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012

=]
=
=

Higher-order list functions: f ol d (2)

M

let rec fold f e = function

| x::xs ->fold f (f e x) xs

| [1 ->e

val fold: ("a->"b->"a) ->"a->"blist ->"a

Using cons in connection with fold gives the reverse function:
let rev xs = fold (funrs x -> x::rs) [] Xs;;

This function has a linear execution time:

rev [1;2; 3]
~ fold (fun ...)] [1;2;3]
~ fold (fun ...) (1) [2;3]
~ fold (fun ...) [1] [2; 3]
~ fold (fun ...) (2:[1]) [3]
~ fold (fun ...) [2;1] [3]
~ fold (fun ...) (3:[2;1]) []
~ fold (fun ...) [3;2;1] []
~ [3;2;1]

26 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012

Summary

e Many recursive declarations follows the same schema.

For example:

fun f []
| f(x::xs)

f(xs)

Succinct declarations achievable using higher-order functions

Contents

o Higher-order list functions (in the library)
e map
o exists, forall, filter, tryFind
o foldBack, fold

Avoid (almost) identical code fragments by
parameterizing functions with functions

27 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions

[}
=
=

M

MRH 27/09/2012

