
02157
Functional
Program-

ming

Michael R. Hansen02157 Functional Programming
Sequences

Michael R. Hansen

1 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Sequences (or Lazy Lists)

• lazy evaluation or delayed evaluation is the technique of delaying
a computation until the result of the computation is needed.

Default in lazy languages like Haskell

It is occasionally efficient to be lazy.

A special form of this is Sequences, where the elements are not
evaluated until their values are required by the rest of the program.

• a sequence may be infinite
just a finite part of a it is used in computations

Example:

• Consider the sequence of all prime numbers:
2,3, 5, 7, 11,13,17,19,23, . . .

• the first 5 are 2,3, 5, 7,11
Sieve of Eratosthenes

2 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Sequences (or Lazy Lists)

• lazy evaluation or delayed evaluation is the technique of delaying
a computation until the result of the computation is needed.

Default in lazy languages like Haskell

It is occasionally efficient to be lazy.

A special form of this is Sequences, where the elements are not
evaluated until their values are required by the rest of the program.

• a sequence may be infinite
just a finite part of a it is used in computations

Example:

• Consider the sequence of all prime numbers:
2,3, 5, 7, 11,13,17,19,23, . . .

• the first 5 are 2,3, 5, 7,11
Sieve of Eratosthenes

3 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Sequences (or Lazy Lists)

• lazy evaluation or delayed evaluation is the technique of delaying
a computation until the result of the computation is needed.

Default in lazy languages like Haskell

It is occasionally efficient to be lazy.

A special form of this is Sequences, where the elements are not
evaluated until their values are required by the rest of the program.

• a sequence may be infinite
just a finite part of a it is used in computations

Example:

• Consider the sequence of all prime numbers:
2,3, 5, 7, 11,13,17,19,23, . . .

• the first 5 are 2,3, 5, 7,11
Sieve of Eratosthenes

4 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Sequences (or Lazy Lists)

• lazy evaluation or delayed evaluation is the technique of delaying
a computation until the result of the computation is needed.

Default in lazy languages like Haskell

It is occasionally efficient to be lazy.

A special form of this is Sequences, where the elements are not
evaluated until their values are required by the rest of the program.

• a sequence may be infinite
just a finite part of a it is used in computations

Example:

• Consider the sequence of all prime numbers:
2,3, 5, 7, 11,13,17,19,23, . . .

• the first 5 are 2,3, 5, 7,11
Sieve of Eratosthenes

5 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Delayed computations

The computation of the value of e can be delayed by ”packing” it into
a function (a closure):

fun () -> e

Example:

fun () -> 3+4;;
val it : unit -> int = <fun:clo@10-2>

it();;
val it : int = 7

The addition is deferred until the closure is applied.

6 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Delayed computations

The computation of the value of e can be delayed by ”packing” it into
a function (a closure):

fun () -> e

Example:

fun () -> 3+4;;
val it : unit -> int = <fun:clo@10-2>

it();;
val it : int = 7

The addition is deferred until the closure is applied.

7 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Example continued

One can make it visible when computations are performed by use of
side effects:

let idWithPrint i = let _ = printfn "%d" i
i;;

val idWithPrint : int -> int

idWithPrint 3;;
3
val it : int = 3

The value is printed before it is returned.

fun () -> (idWithPrint 3) + (idWithPrint 4);;
val it : unit -> int = <fun:clo@14-3>

Nothing is printed yet.

it();;
3
4
val it : int = 7

8 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Example continued

One can make it visible when computations are performed by use of
side effects:

let idWithPrint i = let _ = printfn "%d" i
i;;

val idWithPrint : int -> int

idWithPrint 3;;
3
val it : int = 3

The value is printed before it is returned.

fun () -> (idWithPrint 3) + (idWithPrint 4);;
val it : unit -> int = <fun:clo@14-3>

Nothing is printed yet.

it();;
3
4
val it : int = 7

9 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Example continued

One can make it visible when computations are performed by use of
side effects:

let idWithPrint i = let _ = printfn "%d" i
i;;

val idWithPrint : int -> int

idWithPrint 3;;
3
val it : int = 3

The value is printed before it is returned.

fun () -> (idWithPrint 3) + (idWithPrint 4);;
val it : unit -> int = <fun:clo@14-3>

Nothing is printed yet.

it();;
3
4
val it : int = 7

10 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Sequences in F#

A lazy list or sequence in F# is a possibly infinite, ordered collection
of elements, where the elements are computed by demand only.

A natural number sequence 0, 1, 2, . . . is created as follows:

let nat = Seq.initInfinite (fun i -> i);;
val nat : seq<int>

A nat element is computed by demand only:

let nat = Seq.initInfinite idWithPrint;;
val nat : seq<int>

Seq.nth 4 nat;;
4
val it : int = 4

11 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Sequences in F#

A lazy list or sequence in F# is a possibly infinite, ordered collection
of elements, where the elements are computed by demand only.

A natural number sequence 0, 1, 2, . . . is created as follows:

let nat = Seq.initInfinite (fun i -> i);;
val nat : seq<int>

A nat element is computed by demand only:

let nat = Seq.initInfinite idWithPrint;;
val nat : seq<int>

Seq.nth 4 nat;;
4
val it : int = 4

12 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Sequences in F#

A lazy list or sequence in F# is a possibly infinite, ordered collection
of elements, where the elements are computed by demand only.

A natural number sequence 0, 1, 2, . . . is created as follows:

let nat = Seq.initInfinite (fun i -> i);;
val nat : seq<int>

A nat element is computed by demand only:

let nat = Seq.initInfinite idWithPrint;;
val nat : seq<int>

Seq.nth 4 nat;;
4
val it : int = 4

13 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Further examples

A sequence of even natural numbers is easily obtained:

let even = Seq.filter (fun n -> n%2=0) nat;;
val even : seq<int>

Seq.toList(Seq.take 4 even);;
0
1
2
3
4
5
6
val it : int list = [0; 2; 4; 6]

Demanding the first 4 even numbers demands a computation of the
first 7 natural numbers.

14 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Further examples

A sequence of even natural numbers is easily obtained:

let even = Seq.filter (fun n -> n%2=0) nat;;
val even : seq<int>

Seq.toList(Seq.take 4 even);;
0
1
2
3
4
5
6
val it : int list = [0; 2; 4; 6]

Demanding the first 4 even numbers demands a computation of the
first 7 natural numbers.

15 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Further examples

A sequence of even natural numbers is easily obtained:

let even = Seq.filter (fun n -> n%2=0) nat;;
val even : seq<int>

Seq.toList(Seq.take 4 even);;
0
1
2
3
4
5
6
val it : int list = [0; 2; 4; 6]

Demanding the first 4 even numbers demands a computation of the
first 7 natural numbers.

16 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Sieve of Eratosthenes

Greek mathematician (194 – 176 BC)

Computation of prime numbers

• start with the sequence 2, 3,4, 5, 6, ...
select head (2), and remove multiples of 2 from the sequence

2

• next sequence 3, 5, 7,9, 11, ...
select head (3), and remove multiples of 3 from the sequence

2, 3

• next sequence 5, 7, 11,13,17, ...
select head (5), and remove multiples of 5 from the sequence

2,3, 5

•
...

17 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Sieve of Eratosthenes

Greek mathematician (194 – 176 BC)

Computation of prime numbers

• start with the sequence 2, 3,4, 5, 6, ...
select head (2), and remove multiples of 2 from the sequence

2

• next sequence 3, 5, 7,9, 11, ...
select head (3), and remove multiples of 3 from the sequence

2, 3

• next sequence 5, 7, 11,13,17, ...
select head (5), and remove multiples of 5 from the sequence

2,3, 5

•
...

18 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Sieve of Eratosthenes

Greek mathematician (194 – 176 BC)

Computation of prime numbers

• start with the sequence 2, 3,4, 5, 6, ...
select head (2), and remove multiples of 2 from the sequence

2

• next sequence 3, 5, 7,9, 11, ...
select head (3), and remove multiples of 3 from the sequence

2, 3

• next sequence 5, 7, 11,13,17, ...
select head (5), and remove multiples of 5 from the sequence

2,3, 5

•
...

19 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Sieve of Eratosthenes in F# (I)

Remove multiples of a from sequence sq:

let sift a sq = Seq.filter (fun n -> n % a <> 0) sq;;
val sift : int -> seq<int> -> seq<int>

Select head and remove multiples of head from the tail – recursively:

let rec sieve sq =
Seq.delay (fun () ->

let p = Seq.nth 0 sq
Seq.append

(Seq.singleton p)
(sieve(sift p (Seq.skip 1 sq))));;

val sieve : seq<int> -> seq<int>

• Delay is needed to avoid infinite recursion

• Seq.append is the sequence sibling to @

• Seq.nth 0 sq gives the head of sq

• Seq.skip 1 sq gives the tail of sq

20 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Sieve of Eratosthenes in F# (I)

Remove multiples of a from sequence sq:

let sift a sq = Seq.filter (fun n -> n % a <> 0) sq;;
val sift : int -> seq<int> -> seq<int>

Select head and remove multiples of head from the tail – recursively:

let rec sieve sq =
Seq.delay (fun () ->

let p = Seq.nth 0 sq
Seq.append

(Seq.singleton p)
(sieve(sift p (Seq.skip 1 sq))));;

val sieve : seq<int> -> seq<int>

• Delay is needed to avoid infinite recursion

• Seq.append is the sequence sibling to @

• Seq.nth 0 sq gives the head of sq

• Seq.skip 1 sq gives the tail of sq

21 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Examples

The sequence of prime numbers and the n’th prime number:

let primes = sieve(Seq.initInfinite (fun n -> n+2));;
val primes : seq<int>

let nthPrime n = Seq.nth n primes;;
val nthPrime : int -> int

nthPrime 100;;
val it : int = 547

Re-computation can be avoided by using cached sequences:

let primesCached = Seq.cache primes;;

let nthPrime’ n = Seq.nth n primesCached;;
val nthPrime’ : int -> int

Computing the 700’th prime number takes about 8s; a subsequent
computation of the 705’th is fast since that computation starts from
the 700 prime number

22 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Examples

The sequence of prime numbers and the n’th prime number:

let primes = sieve(Seq.initInfinite (fun n -> n+2));;
val primes : seq<int>

let nthPrime n = Seq.nth n primes;;
val nthPrime : int -> int

nthPrime 100;;
val it : int = 547

Re-computation can be avoided by using cached sequences:

let primesCached = Seq.cache primes;;

let nthPrime’ n = Seq.nth n primesCached;;
val nthPrime’ : int -> int

Computing the 700’th prime number takes about 8s; a subsequent
computation of the 705’th is fast since that computation starts from
the 700 prime number

23 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Sieve of Eratosthenes using Sequence Expressions

Sequence expressions can be used for defining step-by-step
generation of sequences.

The sieve of Erastothenes:

let rec sieve sq =
seq { let p = Seq.nth 0 sq

yield p
yield! sieve(sift p (Seq.skip 1 sq)) };;

val sieve : seq<int> -> seq<int>

• By construction lazy – no explicit Seq.delay is needed

• yield x adds the element x to the generated sequence

• yield! sq adds the sequence sq to the generated sequence

•
seqexp1
seqexp2

appends the sequence of seqexp1 to that of seqexp2

24 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Sieve of Eratosthenes using Sequence Expressions

Sequence expressions can be used for defining step-by-step
generation of sequences.

The sieve of Erastothenes:

let rec sieve sq =
seq { let p = Seq.nth 0 sq

yield p
yield! sieve(sift p (Seq.skip 1 sq)) };;

val sieve : seq<int> -> seq<int>

• By construction lazy – no explicit Seq.delay is needed

• yield x adds the element x to the generated sequence

• yield! sq adds the sequence sq to the generated sequence

•
seqexp1
seqexp2

appends the sequence of seqexp1 to that of seqexp2

25 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Sieve of Eratosthenes using Sequence Expressions

Sequence expressions can be used for defining step-by-step
generation of sequences.

The sieve of Erastothenes:

let rec sieve sq =
seq { let p = Seq.nth 0 sq

yield p
yield! sieve(sift p (Seq.skip 1 sq)) };;

val sieve : seq<int> -> seq<int>

• By construction lazy – no explicit Seq.delay is needed

• yield x adds the element x to the generated sequence

• yield! sq adds the sequence sq to the generated sequence

•
seqexp1
seqexp2

appends the sequence of seqexp1 to that of seqexp2

26 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Sieve of Eratosthenes using Sequence Expressions

Sequence expressions can be used for defining step-by-step
generation of sequences.

The sieve of Erastothenes:

let rec sieve sq =
seq { let p = Seq.nth 0 sq

yield p
yield! sieve(sift p (Seq.skip 1 sq)) };;

val sieve : seq<int> -> seq<int>

• By construction lazy – no explicit Seq.delay is needed

• yield x adds the element x to the generated sequence

• yield! sq adds the sequence sq to the generated sequence

•
seqexp1
seqexp2

appends the sequence of seqexp1 to that of seqexp2

27 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Sieve of Eratosthenes using Sequence Expressions

Sequence expressions can be used for defining step-by-step
generation of sequences.

The sieve of Erastothenes:

let rec sieve sq =
seq { let p = Seq.nth 0 sq

yield p
yield! sieve(sift p (Seq.skip 1 sq)) };;

val sieve : seq<int> -> seq<int>

• By construction lazy – no explicit Seq.delay is needed

• yield x adds the element x to the generated sequence

• yield! sq adds the sequence sq to the generated sequence

•
seqexp1
seqexp2

appends the sequence of seqexp1 to that of seqexp2

28 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Sieve of Eratosthenes using Sequence Expressions

Sequence expressions can be used for defining step-by-step
generation of sequences.

The sieve of Erastothenes:

let rec sieve sq =
seq { let p = Seq.nth 0 sq

yield p
yield! sieve(sift p (Seq.skip 1 sq)) };;

val sieve : seq<int> -> seq<int>

• By construction lazy – no explicit Seq.delay is needed

• yield x adds the element x to the generated sequence

• yield! sq adds the sequence sq to the generated sequence

•
seqexp1
seqexp2

appends the sequence of seqexp1 to that of seqexp2

29 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Example: Catalogue search (I)

Extract (recursively) the sequence of all files in a directory:

open System.IO ;;

let rec allFiles dir =
seq {yield! Directory.GetFiles dir

yield! Seq.collect allFiles (Directory.GetDirectories d ir) };;
val allFiles : string -> seq<string>

where
Seq.collect: (’a -> seq<’c>) -> seq<’a> -> seq<’c>
combines a ’map’ and ’concatenate’ functionality.

Directory.SetCurrentDirectory @"C:\mrh\Forskning\Cam bridge\";;
let files = allFiles ".";;
val files : seq<string>

Seq.nth 100 files;;
val it : string = ".\ BOOK\ Satisfiability.fs"

Nothing is computed beyond element 100.

30 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Example: Catalogue search (I)

Extract (recursively) the sequence of all files in a directory:

open System.IO ;;

let rec allFiles dir =
seq {yield! Directory.GetFiles dir

yield! Seq.collect allFiles (Directory.GetDirectories d ir) };;
val allFiles : string -> seq<string>

where
Seq.collect: (’a -> seq<’c>) -> seq<’a> -> seq<’c>
combines a ’map’ and ’concatenate’ functionality.

Directory.SetCurrentDirectory @"C:\mrh\Forskning\Cam bridge\";;
let files = allFiles ".";;
val files : seq<string>

Seq.nth 100 files;;
val it : string = ".\ BOOK\ Satisfiability.fs"

Nothing is computed beyond element 100.

31 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Example: Catalogue search (II)

We want to search for files with certain extensions, e.g. as follows:

let funFiles=Seq.cache ( searchFiles (allFiles ".") ["fs";"fsi"]);;
val funFiles : seq<string * string * string>

Seq.nth 0 funFiles;;
val it: string * string * string= (".\ ", "CatalogueSearch", "fs")

Seq.nth 6 funFiles;;
val it : string * string * string = (".\ BOOK\ ", "Curve", "fsi")

Seq.nth 11 funFiles;;
val it : string * string * string

= (".\ BOOK\ ", "Satisfiability", "fs")

• a sequence in chosen so that the search is terminated when the
wanted file is found

• a cached sequence in chosen to avoid re-computation

32 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Example: Catalogue search (II)

We want to search for files with certain extensions, e.g. as follows:

let funFiles=Seq.cache ( searchFiles (allFiles ".") ["fs";"fsi"]);;
val funFiles : seq<string * string * string>

Seq.nth 0 funFiles;;
val it: string * string * string= (".\ ", "CatalogueSearch", "fs")

Seq.nth 6 funFiles;;
val it : string * string * string = (".\ BOOK\ ", "Curve", "fsi")

Seq.nth 11 funFiles;;
val it : string * string * string

= (".\ BOOK\ ", "Satisfiability", "fs")

• a sequence in chosen so that the search is terminated when the
wanted file is found

• a cached sequence in chosen to avoid re-computation

33 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Example: Catalogue search (III)

The search function ca be declared using regular expressions:

open System.Text.RegularExpressions ;;

let rec searchFiles files exts =
let reExts = List.foldBack (fun ext re -> ext+"|"+re) exts ""
let re = Regex (@"\G( \S * \\ )( [ˆ\\]+ )\.(" + reExts + ")$")
seq {for fn in files do

let m = re.Match fn
if m.Success
then let path = captureSingle m 1

let name = captureSingle m 2
let ext = captureSingle m 3
yield (path, name, ext) };;

val searchFiles : seq<string> -> string list
-> seq<string * string * string>

• reExts is a regular expression matching the extensions

• The path matches the regular expression \S * \\

• The file name matches the regular expression [ˆ\\]+

• The function captureSingle can extract captured strings

34 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Example: Catalogue search (III)

The search function ca be declared using regular expressions:

open System.Text.RegularExpressions ;;

let rec searchFiles files exts =
let reExts = List.foldBack (fun ext re -> ext+"|"+re) exts ""
let re = Regex (@"\G( \S * \\ )( [ˆ\\]+ )\.(" + reExts + ")$")
seq {for fn in files do

let m = re.Match fn
if m.Success
then let path = captureSingle m 1

let name = captureSingle m 2
let ext = captureSingle m 3
yield (path, name, ext) };;

val searchFiles : seq<string> -> string list
-> seq<string * string * string>

• reExts is a regular expression matching the extensions

• The path matches the regular expression \S * \\

• The file name matches the regular expression [ˆ\\]+

• The function captureSingle can extract captured strings

35 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Summary

• Anonymous functions fun () -> e can be used to delay the
computation of e.

• Possibly infinite sequences provide natural and useful
abstractions

• The computation by demand only is convenient in many
applications

It is occasionally efficient to be lazy.

The type seq<’a> is a synonym for the .NET type
IEnumerable<’a> .

Any .NET type that implements this interface can be used as a
sequence.

• Lists, arrays and databases, for example.

36 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Summary

• Anonymous functions fun () -> e can be used to delay the
computation of e.

• Possibly infinite sequences provide natural and useful
abstractions

• The computation by demand only is convenient in many
applications

It is occasionally efficient to be lazy.

The type seq<’a> is a synonym for the .NET type
IEnumerable<’a> .

Any .NET type that implements this interface can be used as a
sequence.

• Lists, arrays and databases, for example.

37 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Summary

• Anonymous functions fun () -> e can be used to delay the
computation of e.

• Possibly infinite sequences provide natural and useful
abstractions

• The computation by demand only is convenient in many
applications

It is occasionally efficient to be lazy.

The type seq<’a> is a synonym for the .NET type
IEnumerable<’a> .

Any .NET type that implements this interface can be used as a
sequence.

• Lists, arrays and databases, for example.

38 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Summary

• Anonymous functions fun () -> e can be used to delay the
computation of e.

• Possibly infinite sequences provide natural and useful
abstractions

• The computation by demand only is convenient in many
applications

It is occasionally efficient to be lazy.

The type seq<’a> is a synonym for the .NET type
IEnumerable<’a> .

Any .NET type that implements this interface can be used as a
sequence.

• Lists, arrays and databases, for example.

39 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012



02157
Functional
Program-

ming

Michael R. Hansen

Summary

• Anonymous functions fun () -> e can be used to delay the
computation of e.

• Possibly infinite sequences provide natural and useful
abstractions

• The computation by demand only is convenient in many
applications

It is occasionally efficient to be lazy.

The type seq<’a> is a synonym for the .NET type
IEnumerable<’a> .

Any .NET type that implements this interface can be used as a
sequence.

• Lists, arrays and databases, for example.

40 DTU Informatics, Technical University of Denmark Sequences MRH 15/11/2012


