
Written Examination, May 28th, 2014 Course no. 02157

The duration of the examination is 4 hours.

Course Name: Functional programming

Allowed aids: All written material

The problem set consists of 3 problems which are weighted approximately as follows:
Problem 1: 30%, Problem 2: 30%, Problem 3: 40%

Marking: 7 step scale.

In Problem 2 you are asked to provide F# declarations for a number of functions. You
may use a function specified in Problem 2 in a solution to a question in Problem 3 even
when you do not provide a declaration for the used function.

02157



DTU CIVILINGENIØREKSAMEN May 28th, 2014 Page 2 of 6 pages

Problem 1 (30%)

Consider the following F# declarations:

let rec f n = function | 0 -> 1
| k when k>0 -> n * (f n (k-1))
| _ -> failwith "illegal argument";;

let rec g p f = function
| [] -> []
| x::xs when p x -> f x :: g p f xs
| _::xs -> g p f xs;;

type T = | A of int
| B of string
| C of T*T;;

let rec h = function
| A n -> string n
| B s -> s
| C(t1,t2) -> h t1 + h t2;;

let sq = Seq.initInfinite (fun i -> 3*i);;

let k j = seq {for i in sq do
yield (i,i-j) };;

let xs = Seq.toList (Seq.take 4 sq);;
let ys = Seq.toList (Seq.take 4 (k 2));;

1. Give an example of an application of each of the functions f, g and h.

2. Give the (most general) types of f, g and h and describe what each of these three func-
tions computes. Your description for each function should focus on what it computes,
rather than on individual computation steps.

3. The function f is not tail recursive.

1. Make a tail-recursive variant of f using an accumulating parameter.

2. Make a continuation-based tail-recursive variant of f.

4. Give types for sq and k. Characterize the value of sq and describe what the function k
computes.

5. Give the values of xs and ys.

02157 ... Continued on next page



DTU CIVILINGENIØREKSAMEN May 28th, 2014 Page 3 of 6 pages

Problem 2 (Approx. 30%)

In the following two questions we are interested in deciding two properties (called ordered
and smallerThanAll) in connection with integer lists:

• ordered xs is true iff xs is a weakly ascending list, that is x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn−1
when xs = [x0;x1;x2; . . . xn−1].

• smallerThanAll x xs is true iff x is smaller than every element of the list xs .

1. Make an F# declaration for the function ordered. What is the (most general) type of
the declared function?

2. Make an F# declaration for the function smallerThanAll. What is the (most general)
type of the declared function?

Consider now the following insertion function on lists:

insertBefore: (’a -> bool) -> ’a -> ’a list -> ’a list

where insertBefore p x xs inserts x in xs just before the first element xk of xs satisfying
p (i.e. p(xk) = true). Let xs = [x0; . . . ;xn−1] in the following more formal definition:

insertBefore p x xs

=


[x0; . . . ;xn−1;x] if p(xi) = false for all i: 0 ≤ i < n
[x0; . . . ;xk−1;x;xk; . . . ;xn−1] if for some k : 0 ≤ k < n, p(xk) = true and

p(xi) = false for all i: 0 ≤ i < k.

3. Give an F# declaration for insertBefore.

4. Consider the following type for the sex of a person:

type Sex = | M // male
| F // female

Declare a function sexToString: Sex -> string, where the string representation of M
is "Male" and the string representation of F is "Female".

5. Declare a function replicate with the type int -> string -> string. The value
of replicaten str is the string obtained by concatenating n copies of str . The func-
tion should raise an exception when the integer argument n is negative. For example,
replicate 3 "abc" = "abcabcabc" and replicate 0 "abc" = "".

02157 ... Continued on next page



DTU CIVILINGENIØREKSAMEN May 28th, 2014 Page 4 of 6 pages

Problem 3 (40%)

We shall now consider family trees, also called trees of descendants, which give an overview
of the descendants of a person, called the ancestor, in the form of a tree. The list of children
of a person form the basis for the trees of descendants of that person. Information about
persons, such as name, sex and year of birth, occurs in the nodes of the trees.

Larry Male 1920

May Female 1945
Fred Male 1970

Joan Female 1975

Joe Male 1950

Stanley Male 1975

Mary Female 1980

Peter Male 2005

Bob Male 2008

Eve Female 2010Jane Female 1985

Paul Male 1955

Figure 1: A Family Tree

A family tree is shown in Figure 1, where the name of the ancestor is Larry, a male person
born in 1920. The children of Larry are May, Joe and Paul. Larry has five grandchildren
— one is Mary and she has three children.

Family trees are represented in F# as follows:

type Name = string;;
type Sex = | M // male

| F // female
type YearOfBirth = int;;

type FamilyTree = P of Name * Sex * YearOfBirth * Children
and Children = FamilyTree list;;

The type for the sex is as in Problem 2. From now on we assume that the name of a person
is unique in a family tree and that two persons in a family tree do not share children.

For F# representations of family trees we shall consider two properties:

1. Every person must be older than his/her children.

2. For every list of children, the siblings occur with decreasing ages so that the eldest
occurs first and the youngest last.

A family tree satisfying these two properties is called well-formed.

02157 ... Continued on next page



DTU CIVILINGENIØREKSAMEN May 28th, 2014 Page 5 of 6 pages

1. Declare a function isWF: FamilyTree -> bool that can check whether a family tree
is well-formed.

In the following questions you can assume that an argument (of type FamilyTree or type
Children) to a function is well-formed. Furthermore, it is expected that the functions
produce well-formed values (when they are of type FamilyTree or type Children).

2. Declare a function makePerson: Name*Sex*YearOfBith -> FamilyTree that can cre-
ate a family tree for a child-less person on the basis of the name, sex and year of birth.

3. Declare two mutually recursive functions:

insertChildOf: Name -> FamilyTree -> FamilyTree -> FamilyTree option
insertChildOfInList: Name -> FamilyTree -> Children -> Children option

The value of insertChildOfn c t = Some t′ when t′ is the family tree obtained from t by
insertion of c as a child of the person with name n. The value is None if such an insertion
is not possible (i.e. would create a tree that is not well-formed). Similarly, the value of
insertChildOfInListn c cs = Some cs ′ when cs ′ is the list of children obtained from
cs by inserting c as a child of a person named n in one of the children in cs . The value
is None if such an insertion is not possible. Note that the person named n may occur
anywhere in the family tree.

4. Declare a function find so that find n t extracts information about the person named
n in the family tree t. This information comprises the sex, year of birth and the names
of all children of that person.

Family trees are sometimes presented using an indentation scheme where each person in
the tree occurs on a separate line and where the next generation is indented a specific
number of positions. For example, the presentation of the family tree in Figure 1 is:

Larry Male 1920
May Female 1945

Fred Male 1970
Joan Female 1975

Joe Male 1950
Stanley Male 1975
Mary Female 1980

Peter Male 2005
Bob Male 2008
Eve Female 2010

Jane Female 1985
Paul Male 1955

02157 ... Continued on next page



DTU CIVILINGENIØREKSAMEN May 28th, 2014 Page 6 of 6 pages

using six blank characters as indentation between generation. The ancestor, that is Larry,
appears at the first line. His eldest child May appears six positions indented at the second
line. Her eldest child appears twelve positions indented at the third line and her second
(and youngest) child appears twelve positions indented at the fourth line, and so on.

5. Declare a function toStringn t that gives a string representation for the family tree t
using n blank characters as indentation between generation. The above example string
is, for example, generated using toString 6 larry, where larry is the F# value for
the family tree in Figure 1.

6. A restricted kind of family trees is occasionally considered where daughters are included
in the tree; but their children are not. Declare a function truncate that produces such
a restricted family tree from a given family tree. Truncating the family tree in Figure 1
should give a family tree with the following string representation:

Larry Male 1920
May Female 1945
Joe Male 1950

Stanley Male 1975
Mary Female 1980
Jane Female 1985

Paul Male 1955

when using toString 6 (truncate larry).

02157


