Written Examination, December 18th, 2013 Course no. 02157
The duration of the examination is 4 hours.

Course Name: Functional programming

Allowed aids: All written material

The problem set consists of 3 problems which are weighted approximately as follows:
Problem 1: 30%, Problem 2: 30%, Problem 3: 40%

Marking: 7 step scale.

02157

DTU CIVILINGENIGREKSAMEN December 18th, 2013 Page 2 of 6 pages

Problem 1 (Approx. 30%)

A multiset (or bag) is a generalization of a set, where an element e is associated with a
multiplicity, i.e. the number of times e occurs in the multiset. We shall represent a finite
multiset ms by a list of pairs [(e1,n1); .. .; (ex, nx)], where a member (e;, n;) represents that
e; is a member of ms with multiplicity n;, i.e. e; occurs n; times in ms.

For a representation [(e1,n1);. . .; (ex, ng)] of a multiset we require that every multiplicity n;
is positive, and that the elements are distinct, i.e. e; # e;, for i # j. This property is called
the multiset invariant. A consequence of this is that the empty multiset is represented by
the empty list.

We shall use the type Multiset<’a> declared as follows:
type Multiset<’a when ’a : equality> = (’a * int) list;;

For example [("b",3); ("a",5); ("d",1)] has type Multiset<string> and represents
the multiset with 3 occurrences of "b", 5 of "a" and 1 of "d".

1. Declare a function inv: Multiset<’a> -> bool such that inv(ms) is true when ms
satisfies the multiset invariant.

In your solutions to the below questions, you can assume that multisets occurring in argu-
ments satisfy the multiset invariant, and the declared functions must preserve this property,
i.e. results must satisfy this invariant as well.

2. Declare a function insert: ’a -> int -> Multiset<’a> -> Multiset<’a>, where
insert en ms is the multiset obtained by insertion of n occurrences of the element e
in ms. For example: insert "a" 2 [("b",3); ("a",5); ("d",1)] will result in a
multiset having 7 occurrences of "a".

3. Declare a function number0f, where numberQf e ms is the multiplicity (i.e. the number
of occurrences) of e in the multiset ms. State the type of the declared function.

4. Declare a function delete, where deleteems is the multiset obtained from ms by
deletion of one occurrence of the element e.

5. Declare a function union: Multiset<’a> * Multiset<’a> -> Multiset<’a>, for mak-
ing the union of two multisets. This function generalizes the union function on sets in
a natural way taking multiplicities into account, e.g. the result of

uIllOIl ([(Ilbll,s); (Ilall,5); (lldll’l)]’ [(llall’S); (Ilbll,4); (IICII’2):|)

is the multiset containing 8 occurrences of "a", 7 of "b", 2 of "c¢", and 1 of "d".

02157 ... Continued on next page

DTU CIVILINGENIGREKSAMEN December 18th, 2013 Page 3 of 6 pages

We shall now represent multisets by maps from elements to multiplicities:
type MultisetMap<’a when ’a : comparison> = Map<’a,int>;;

This representation of a multiset ms has a simpler invariant: the multiplicity n of each
entry (e,n) of ms satisfies n > 0.

6. Give new declarations for inv, insert and union on the basis of the map representation.

Problem 2 (30%)

Consider the following F# declarations:

let rec £ i = function
[[-> [1

| x::xs > (i,x)::f (i*i) xs;;

type ’a Tree = | Lf
| Br of ’a Tree * ’a *x ’a Tree;;

let rec g p = function

| Lf -> None
| Br(_,a,t) when p a -> Some t
| Br(tl,a,t2) -> match g p t1 with

| None -> g p t2
| res -> res;;

Please remember that the declaration of >a option is
type ’a option = None | Some of ’a;

1. Give the types of f and g and describe what each of these two functions computes.
Your description for each function should focus on what it computes, rather than on
individual computation steps.

2. The function f is not tail recursive.

1. Make a tail-recursive variant of £ using an accumulating parameter.
2. Make a continuation-based tail-recursive variant of f.

3. Give a brief discussion of which tail-recursive version of £ you prefer?

02157 ... Continued on next page

DTU CIVILINGENIOREKSAMEN

Consider now the F# declarations:

let rec h f (n,e) = match n with

let A

let B

let C

let X
let
let Z

]

3. Consider the function h in this question:

| 0 -> e
| _ ->h f (n-1,

Seq.initInfinite id;;

seq { for i in A do
for j in seq {0 ..
yield (i,j)

seq { for i in A do
for j in seq {0 ..
yield (i-j,j)

Seq.toList (Seq.take 4 A);;
Seq.toList (Seq.take 6 B);;
Seq.tolList (Seq.take 10 C);;

December 18th, 2013 Page 4 of 6 pages

fne);;

i} do
+is

i} do

1. What is the valueof h (*) (4,1)7
2. What is the type of h?

3. Describe briefly what h computes.

3. Consider the declarations for A, B, C, X, Y and Z:

1. Give types for A, B and C.
2. Give the values of X, Y and Z?
3. Characterize the values of A, B and C.

02157

... Continued on next page

DTU CIVILINGENIGREKSAMEN December 18th, 2013 Page 5 of 6 pages

Problem 3 (40%)

We shall now consider books that are described by a list of chapters. Each chapter is
described by a title and a list of sections. A section is described by a title and a list of
elements, which can either be paragraphs (characterized by strings) or sub-sections. This
is captured by the following type declarations:

type Title = string;;

type Section = Title * Elem list
and Elem Par of string | Sub of Section;;

type Chapter
type Book

Title * Section list;;
Chapter 1list;;

The mutual recursion between sections and elements allows for arbitrary nesting of sub-
sections. This is illustrated by the following examples:

let secll = ("Background", [Par "bla"; Sub(("Why programming", [Par "Bla."]1))1);;
let secl2 = ("An example", [Par "bla"; Sub(("Special features", [Par "Bla."]1))1);;
let sec2l = ("Fundamental concepts",
[Par "bla"; Sub(("Mathematical background", [Par "Bla."1))1);;
let sec22 = ("Operational semantics",
[Sub(("Basics", [Par "Bla."])); Sub(("Applications", [Par "Bla."1))1);;
let sec23 = ("Further reading", [Par "bla"]);;
let sec31 = ("Overview", [Par "bla"l);;
let sec32 = ("A simple example", [Par "bla"l);;
let sec33 = ("An advanced example", [Par "bla"]l);;
let sec41l = ("Status", [Par "bla"]l);;
let sec42 = ("What’s next?", [Par "bla"l);;
let chl = ("Introduction", [secll;sec12]);;
let ch2 = ("Basic Issues", [sec2l;sec22;sec23]);;
let ch3 ("Advanced Issues", [sec31;sec32;sec33;sec34]);;
let ch4 = ("Conclusion", [sec4l;sec42]);;
let bookl = [chil; ch2; ch3; ch4];;

1. Declare a function maxL to find the largest integer occurring in a list with non-negative
integers. The function must satisfy maxL [] = 0.

2. Declare a function overview to extract the list of titles of chapters from a book. For
example, the overview for book1 is:

overview bookl =
["Introduction'"; "Basic Issues"; "Advanced Issues'"; "Conclusion"]

02157 ... Continued on next page

DTU CIVILINGENIGREKSAMEN December 18th, 2013 Page 6 of 6 pages

Each chapter occurs at depth 1. A top-level section, i.e. a section which is not a sub-section,
occurs a depth 2. A sub-section has a depth which is one larger than the depth of the
section of which it is an immediate part. For example, the depth of the sub-section with
title "Applications" in book1 is 3 and the section with title "Overview" has depth 2.

3. Declare functions:

depthSection: Section -> int

depthElem: Elem -> int
depthChapter: Chapter -> int
depthBook: Book -> int

to extract the maximal depth of sections, elements, chapters and books. For example
the maximal depth of book1 is 3, as book1 has sub-sections, but no sub-sub-section.

We shall now make a table of contents (type Toc below) for a book. In a table of contents
we use lists to number entries (see the types Entry and Numbering below). A numbering
such as [i; j; k;] is the number of the I'th sub-sub-section, of the k’th sub-section of the
7’th section in the 7’th chapter. Notice that such lists have varying lengths. For example,
[2] is the number of Chapter 2, i.e the chapter with title "Basic Issues" in the previous
example, and [2;2;1] is the number of the sub-section with title "Basics" in Chapter 2.

type Numbering = int list;;
type Entry = Numbering * Title;;
type Toc = Entry list;;

The table of contents for the previous example is:

[([1], "Introduction");

([1; 1], "Background");

([1; 1; 1], "Why programming");
([1; 21, "An example");

([1; 2; 1], "Special features");
([2], "Basic Issues");

([2; 1], "Fundamental concepts'");
([2; 1; 1], "Mathematical background");
([2; 2], "Operational semantics");
([2; 2; 11, "Basics");

([2; 2; 2], "Applications");

([2; 3], "Further reading");

([3]1, "Advanced Issues");

([3; 11, "Overvieuw");

([3; 21, "A simple example");

([3; 31, "An advanced example");
([3; 4], "Summary");

([4], "Conclusion");

([4; 1], "Status");

([4; 2], "What’s next?")]

4. Declare a function, tocB: Book — Toc, to compute the table of contents for a book.

02157

