
Written Examination, Deember 19th, 2012 Course no. 02157The duration of the examination is 4 hours.Course Name: Funtional programmingAllowed aids: All written materialThe problem set onsists of 4 problems whih are weighted approximately as follows:Problem 1: 25%, Problem 2: 35%, Problem 3: 20%, Problem 4: 20%Marking: 7 step sale.

02157

DTU CIVILINGENIØREKSAMEN Deember 19th, 2012 Page 2 of 6 pagesProblem 1 (Approx. 25%)In this problem we will onsider simple ompetitions, where persons, identi�ed by theirnames, ahieve sores. A result is a pair (n, sc) onsisting of a name n (given by a string)and a sore sc (given by an integer). This leads to the following delarations:type Name = string;;type Sore = int;;type Result = Name * Sore;;A sore is alled legal if it is greater than or equal to 0 and smaller than or equal to 100.1. Delare a funtion legalResults: Result list -> bool that heks whether allsores in a list of results are legal.2. Delare a funtion maxSore that extrats the best sore (the largest one) in a non-empty list of results. If the list is empty, then we do not are about the result of thefuntion.3. Delare a funtion best: Result list -> Result that extrats the best result froma non-empty list of results. An arbitrary result with the best sore an be hosen ifthere are more than one. If the list is empty, then we do not are about the result ofthe funtion.4. Delare a funtion average: Result list -> float that �nds the average sorefor a non-empty list of results. If the list is empty, then we do not are about theresult of the funtion.5. Delare a funtion delete: Result -> Result list -> Result list. The valueof delete r rs is the result list obtained from rs by deletion of the �rst ourreneof r, if suh an ourrene exists. If r does not our in rs , then delete r rs = rs .6. Delare a funtion bestN: Result list -> int -> Result list, where the valueof bestN rs n, for n ≥ 0, is a list onsisting of the n best results from rs . Thefuntion should raise an exeption if rs has fewer than n elements.

02157 ... Continued on next page

DTU CIVILINGENIØREKSAMEN Deember 19th, 2012 Page 3 of 6 pagesProblem 2 (Approx. 35%)In this problem we onsider simple type heking in onnetion with a simple imperativelanguage. We onsider types given by the following delaration of a type Typ.type Typ = | Integer| Boolean| Ft of Typ list * Typ;;Hene, we have an integer type (onstrutor Integer), a Boolean type (onstrut Boolean)and funtion types onstruted using the onstrutor Ft, where Ft([t1; t2; . . . ; tn], t), is thetype for a funtion having n arguments with types t1, . . . , tn and the value of the funtionhas type t. The addition funtion has the type Ft([Integer;Integer℄,Integer) and thegreater than funtion has the type Ft([Integer;Integer℄,Boolean), for example.A delaration is a pair (x, t) of type Del, whih assoiates the type t with a variable x:type Del = string * Typ;;For a list of delarations [(x0, t0); . . . ; (xn, tn)] we shall require that the variables are alldi�erent, that is, xi 6= xj , when i 6= j.
1. Delare a funtion distintVars: Del list -> bool, where distintVars declsreturns true if all variables in decls are di�erent.You an from now on assume that the variables in a delaration list are di�erent.A symbol table assoiates types with the variables and funtions in programs. We modelsymbol tables by values of the following Map type, where an entry assoiate a type with astring:type SymbolTable = Map<string,Typ>;;
2. Delare a funtion toSymbolTable: Del list -> SymbolTable that transforms a listof delarations into a symbol table.
3. Delare a funtion extendST: SymbolTable -> Del list -> SymbolTable, wherethe value of extendST sym decls is the symbol table obtained from sym by addingentries (x, t), for every delaration (x, t) in decls. An existing entry in sym having x askey will be overridden by this operation.
02157 ... Continued on next page

DTU CIVILINGENIØREKSAMEN Deember 19th, 2012 Page 4 of 6 pagesWe onsider expressions generated from variables (onstrutor V) using funtion appliation(onstrutor A), where, e.g., A(">",[V "x";V "y"℄) represents the omparison x > y:type Exp = | V of string| A of string * Exp list;;Suppose that a symbol table sym assoiates the type Integer with "x" and "y", and thetype Ft([Integer;Integer℄,Boolean) with ">". All symbols (variables and funtions)in the expression A(">",[V "x";V "y"℄) are therefore de�ned in sym. Furthermore, theexpression is well-typed sine the types of the arguments to > math the argument types inFt([Integer;Integer℄,Boolean), and the type of A(">",[V "x";V "y"℄) is Boolean.
4. Delare a funtion symbolsDefined: SymbolTable -> Exp -> bool, where the valueof the expression symbolsDefined sym e is true if there is an entry in sym for everysymbol (variable or funtion) ourring in e.
5. Delare a funtion typOf: SymbolTable -> Exp -> Typ, so that typOf sym e givesthe type of e for the symbol table sym. The funtion should raise an exeption if e isnot well-typed. You may assume that all symbols in e are de�ned in sym.We onsider statements generated from assignments using sequential omposition, if-then-else statements, while statements and blok statements:type Stm = | Ass of string * Exp // assignment| Seq of Stm * Stm // sequential omposition| Ite of Exp * Stm * Stm // if-then-else| While of Exp * Stm // while| Blok of Del list * Stm;; // blokThe well-typedness of a statement for a given symbol table sym is given by:

• An assignment Ass(x, e) is well-typed if x and the symbols of e are de�ned in symand x and e have the same type.
• A sequential omposition Seq(stm1, stm2) is well-typed if stm1 and stm2 are.
• An if-then-else statement Ite(e, stm1, stm2) is well-typed if the symbols in e arede�ned in sym, e has type Boolean, and stm1 and stm2 are well-typed.
• A while statement While(e, stm) is well-typed if the symbols in e are de�ned in sym,
e has type Boolean, and stm is well-typed.

• A blok statement Blok(decls, stm) is well-typed if the variables in decls are alldi�erent, and stm is well-typed in the symbol table obtained by extending sym withthe delarations of decls .
6. Delare a funtion wellTyped: SymbolTable -> Stm -> Bool that heks that a state-ment is well-typed for a given symbol table, and if so returns true.02157 ... Continued on next page

DTU CIVILINGENIØREKSAMEN Deember 19th, 2012 Page 5 of 6 pagesProblem 3 (20%)Consider the following F# delarations:let re h a b =math a with| [℄ -> b| ::d -> ::(h d b);;type T<'a,'b> = | A of 'a | B of 'b | C of T<'a,'b> * T<'a,'b>;;let re f1 = funtion| C(t1,t2) -> 1 + max (f1 t1) (f1 t2)| _ -> 1;;let re f2 = funtion| A e | B e -> [e℄| C(t1,t2) -> f2 t1 � f2 t2;;let re f3 e b t =math t with| C(t1,t2) when b -> C(f3 e b t1, t2)| C(t1,t2) -> C(t1, f3 e b t2)| _ when b -> C(A e, t)| _ -> C(t, B e);;1. Give the type of h and desribe what h omputes. Your desription should fous onwhat it omputes, rather than on individual omputation steps.2. Write a value of type T<int,bool> using all three onstrutors A, B and C.3. Write a value of type T<'a list,'b option> using all three onstrutors A, B andC.4. Give the types of f1, f2 and f3, and desribe what eah of these three funtionsompute.

02157 ... Continued on next page

DTU CIVILINGENIØREKSAMEN Deember 19th, 2012 Page 6 of 6 pagesProblem 4 (Approx. 20%)Consider the following F# delarations:type 'a tree = | Lf| Br of 'a * 'a tree * 'a tree;;let re sumTree = funtion| Lf -> 0 (* sT1 *)| Br(x, t1, t2) -> x + sumTree t1 + sumTree t2;; (* sT2 *)let re toList = funtion| Lf -> [℄ (* tL1 *)| Br(x, t1, t2) -> x::(toList t1 � toList t2);; (* tL2 *)let re sumList = funtion| [℄ -> 0 (* sL1 *)| x::xs -> x + sumList xs;; (* sL2 *)let re sumListA n = funtion| [℄ -> n (* sLA1 *)| x::xs -> sumListA (n+x) xs;; (* sLA2 *)
1. Prove that sumTree t = sumList(toList t)holds for all trees t of type int tree.In the proof you an assume thatsumList((toList t1) � (toList t2))

= sumList(toList t1) + sumList(toList t2)holds for all trees t1 and t2 of type int tree.
2. Prove that sumListA n xs = n+ sumList(xs)holds for all integers n and all lists xs of type int list.
02157

