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Overview 

  What are real-time systems 
  Real-time specification for Java 
  RTSJ issues, subset 
  Real-time profile 
  Open question - GC 
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History of (Real-Time) Java 

1996 Nilsen: First Paper on Real-Time Java 
1997 picoJava, PersonalJava 

1992 Oak for *7 
1995 Java for the Internet 

1998 EmbeddedJava, RTSJ Start 

2003 JTime 

2000 J2EE: Server Applications 

2002 RTSJ Final Release 
2000 J2ME: Java for Mobile Phones 

Java for Desktop Applications Embedded Systems? 

2000 JOP executes first instructions 
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Real-Time Systems 

  A definition by John A. Stankovic: 

In real-time computing the 
correctness of the system depends 
not only on the logical result of the 
computation but also on the time at 

which the result is produced. 
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Real-Time Threads 

  In real-time systems there are: 
  Periodic threads 
  Event threads/handler 

  No continuous running threads 
  Fixed Priority driven scheduler 
  Threads can starve! 
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Priority 

  Kind of importance 
  Scheduling theory: 

  Shorter periods – higher priorities 
  RMA: Rate Monotonic Analysis 
  Assignment is optimal 

  In (hard) RT forbidden 
  sleep() 
  wait(), notify() 
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Real-Time Specification for Java 

  RTSJ for short 
  First JSR request 
  Still in flux 
  Implementations 

  Timesys RI 
  Purdue OVM 
  Aicas JamaicaVM 
  Sun Mackinac 
  IBM J9 
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RTSJ Guiding Principles 

  Backward compatibility to standard Java 
  Write Once, Run Anywhere 
  Current real-time practice 
  Predictable execution 
  No Syntactic extension 
  Allow implementation flexibility 
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RTSJ Overview 

  Clear definition of scheduler 
  Priority inheritance protocol 
  NoHeapRealtimeThread 
  Scoped memory to avoid GC 
  Low-level access through raw memory 
  High resolution time and timer 
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RTSJ: Scheduling 

  Standard Java offers no guarantee 
  Even non preemptive JVM possible 

  Fixed priority 
  FIFO within priorities 
  Minimum of 28 unique priority levels 
  GC priority level not defined 
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RTSJ: Memory Areas 

  GC collected Heap 
  Immortal memory 
  Scoped memory 

  LTMemory 
  VTMemory 

  Physical memory 
  Different time properties 
  Access to HW devices! 
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RTSJ: Thread Types 

  Extensions of java.lang.Thread 
  RealTimeThread 

  NoHeapRealTimeThread 

  AsyncEventHandler 

  Scoped and immortal memory for 
NHRTT 
  Strict assignment rules 
  Not easy to use 
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RTSJ: Synchronization 

  Use synchronized 
  Priority inversion possible in standard 

Java 
  Priority inheritance protocol 
  Priority ceiling emulation protocol 
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RTSJ: Scoped Memory 

  Cumbersome 
programming style 

  New class for each 
code part 

class UseMem implements Runnable { 

    public void run() { 

        // inside scoped memory 
        Integer[] = new Integer[100]; 

        ... 

    } 

} 

// outside of scoped memory 

// in immortal? at initialization? 

LTMemory mem = new LTMemory(1024, 
1024); 

UseMem um = new UseMem(); 

// usage 

computation() { 

 mem.enter(um); 

} 
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Asynchronous Event Handler 

  Difference between bound an unbound 
  Implementation hint at application level 
  No functional difference for the application 

  Better: only one type 
  Specify a minimum latency at creation 
  Runtime system decides about 

implementation 
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RTSJ Issues 

  J2SE library: 
  Heap usage not documented 
  OS functions can cause blocking 

  On small systems: 
  Large and complex specification 
  Expensive longs (64 bit) for time values 
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RTSJ Subset 

  Ravenscar Java 
  Name from Ravenscar Ada 
  Based in Puschner & Wellings paper 

  Profile for high integrity applications 
  RTSJ compatible 
  No dynamic thread creation 
  Only NHRTT 
  Simplified scoped memory 
  Implementation? 
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Real-Time Profile 

  Hard real-time profile 
  See Puschner paper 

  Easy to implement 
  Low runtime overhead 
  No RTSJ compatibility 
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Real-Time Profile 

  Schedulable objects: 
  Periodic activities 
  Asynchronous sporadic activities 

  Hardware interrupt or software event 
  Bound to a thread 

  Application: 
  Initialization 
  Mission 
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Application Structure 

  Initialization phase 
  Fixed number of threads 
  Thread creation 
  Shared objects in immortal memory 

  Mission 
  Runs forever 
  Communication via shared objects 
  Scoped memory for temporary data 
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Schedulable Objects 

  Three types: 
  RtThread, HwEvent and 

SwEvent 

  Fixed priority 
  Period or minimum 

interarrival time 
  Scoped memory per 

thread 
  Dispatched after 

mission start 

public class RtThread { 

    public RtThread(int priority, int period) 

    ... 

    public RtThread(int priority, int period, 

                    int offset) 

    public void run() 

    public boolean waitForNextPeriod() 

    public static void startMission() 

} 

public class HwEvent extends RtThread { 

    public HwEvent(int priority, int minTime, 

                   int number) 

    public void handle() 

} 

public class SwEvent extends RtThread { 

    public SwEvent(int priority, int minTime) 

    public final void fire() 

    public void handle() 

} 
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Scheduling 

  Fixed priority with strict monotonic 
order 

  Priority ceiling emulation protocol 
  Top priority for unassigned objects 

  Interrupts under scheduler control 
  Priority for device drivers 
  No additional blocking time 
  Integration in schedulability analysis 
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Memory 

  No GC: Heap becomes immortal 
memory 

  Scoped memory 
  Bound to one thread at creation 
  Constant allocation time 

  Cleared on creation and on exit 

  Simple enter/exit syntax 
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Restrictions of Java 

  Only WCET analyzable language constructs 
  Static class initializers invoked at JVM start 
  No finalization 

  Objects in immortal memory live forever 
  Finalization complicates WCET analysis of exit 

from scoped memory 

  No dynamic class loading 
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RtThread Example 
public class Worker extends RtThread { 

    private SwEvent event; 

    public Worker(int p, int t, 
                    SwEvent ev) { 

        super(p, t); 
        event = ev; 
        init(); 
    } 

    private void init() { 
        // all initialzation stuff 
        // has to be placed here 
    } 

 public void run() { 

        for (;;) { 
            work();       // do work 
            event.fire(); // and fire 
                          // an event 

            // wait for next period 
            if (!waitForNextPeriod()) { 
                missedDeadline(); 
            } 
        } 
        // should never reach 
        // this point 
    } 
} 
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Application Start 
    // create an Event 
    Handler h = new Handler(3, 1000); 

    // create two worker threads with 
    // priorities according to their periods 
    FastWorker fw = new FastWorker(2, 2000); 
    Worker w = new Worker(1, 10000, h); 

    // change to mission phase for all 
    // periodic threads and event handler 
    RtThread.startMission(); 

    // do some non real-time work 
    // and invoke sleep() or yield() 
    for (;;) { 
        watchdogBlink(); 
        Thread.sleep(500); 
    } 
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Garbage Collection? 

  An essential part of Java 
  Without GC it is a different computing 

model 
  RTSJ does not believe in real-time GC 
  Real-time collectors evolve 
  Active research area 

  More on Wednesday 
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Summary 

  Real-time Java is emerging 
  RTSJ defined by Sun 
  Subsets: RJ, JOP-RT 
  Real-time GC missing 



Project Work 

  Meet on Tu 14:00 
  Wiki Entry 
  2nd Example 
  First Results 
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