
Real-Time Java 

Martin Schöberl 



Real Time Java 2 

Overview 

  What are real-time systems 
  Real-time specification for Java 
  RTSJ issues, subset 
  Real-time profile 
  Open question - GC 



Real Time Java 3 

History of (Real-Time) Java 

1996 Nilsen: First Paper on Real-Time Java 
1997 picoJava, PersonalJava 

1992 Oak for *7 
1995 Java for the Internet 

1998 EmbeddedJava, RTSJ Start 

2003 JTime 

2000 J2EE: Server Applications 

2002 RTSJ Final Release 
2000 J2ME: Java for Mobile Phones 

Java for Desktop Applications Embedded Systems? 

2000 JOP executes first instructions 



Real Time Java 4 

Real-Time Systems 

  A definition by John A. Stankovic: 

In real-time computing the 
correctness of the system depends 
not only on the logical result of the 
computation but also on the time at 

which the result is produced. 



Real Time Java 5 

Real-Time Threads 

  In real-time systems there are: 
  Periodic threads 
  Event threads/handler 

  No continuous running threads 
  Fixed Priority driven scheduler 
  Threads can starve! 



Real Time Java 6 

Priority 

  Kind of importance 
  Scheduling theory: 

  Shorter periods – higher priorities 
  RMA: Rate Monotonic Analysis 
  Assignment is optimal 

  In (hard) RT forbidden 
  sleep() 
  wait(), notify() 



Real Time Java 7 

Real-Time Specification for Java 

  RTSJ for short 
  First JSR request 
  Still in flux 
  Implementations 

  Timesys RI 
  Purdue OVM 
  Aicas JamaicaVM 
  Sun Mackinac 
  IBM J9 



Real Time Java 8 

RTSJ Guiding Principles 

  Backward compatibility to standard Java 
  Write Once, Run Anywhere 
  Current real-time practice 
  Predictable execution 
  No Syntactic extension 
  Allow implementation flexibility 



Real Time Java 9 

RTSJ Overview 

  Clear definition of scheduler 
  Priority inheritance protocol 
  NoHeapRealtimeThread 
  Scoped memory to avoid GC 
  Low-level access through raw memory 
  High resolution time and timer 



Real Time Java 10 

RTSJ: Scheduling 

  Standard Java offers no guarantee 
  Even non preemptive JVM possible 

  Fixed priority 
  FIFO within priorities 
  Minimum of 28 unique priority levels 
  GC priority level not defined 



Real Time Java 11 

RTSJ: Memory Areas 

  GC collected Heap 
  Immortal memory 
  Scoped memory 

  LTMemory 
  VTMemory 

  Physical memory 
  Different time properties 
  Access to HW devices! 



Real Time Java 12 

RTSJ: Thread Types 

  Extensions of java.lang.Thread 
  RealTimeThread 

  NoHeapRealTimeThread 

  AsyncEventHandler 

  Scoped and immortal memory for 
NHRTT 
  Strict assignment rules 
  Not easy to use 



Real Time Java 13 

RTSJ: Synchronization 

  Use synchronized 
  Priority inversion possible in standard 

Java 
  Priority inheritance protocol 
  Priority ceiling emulation protocol 



Real Time Java 14 

RTSJ: Scoped Memory 

  Cumbersome 
programming style 

  New class for each 
code part 

class UseMem implements Runnable { 

    public void run() { 

        // inside scoped memory 
        Integer[] = new Integer[100]; 

        ... 

    } 

} 

// outside of scoped memory 

// in immortal? at initialization? 

LTMemory mem = new LTMemory(1024, 
1024); 

UseMem um = new UseMem(); 

// usage 

computation() { 

 mem.enter(um); 

} 



Real Time Java 15 

Asynchronous Event Handler 

  Difference between bound an unbound 
  Implementation hint at application level 
  No functional difference for the application 

  Better: only one type 
  Specify a minimum latency at creation 
  Runtime system decides about 

implementation 



Real Time Java 16 

RTSJ Issues 

  J2SE library: 
  Heap usage not documented 
  OS functions can cause blocking 

  On small systems: 
  Large and complex specification 
  Expensive longs (64 bit) for time values 



Real Time Java 17 

RTSJ Subset 

  Ravenscar Java 
  Name from Ravenscar Ada 
  Based in Puschner & Wellings paper 

  Profile for high integrity applications 
  RTSJ compatible 
  No dynamic thread creation 
  Only NHRTT 
  Simplified scoped memory 
  Implementation? 



Real Time Java 18 

Real-Time Profile 

  Hard real-time profile 
  See Puschner paper 

  Easy to implement 
  Low runtime overhead 
  No RTSJ compatibility 



Real Time Java 19 

Real-Time Profile 

  Schedulable objects: 
  Periodic activities 
  Asynchronous sporadic activities 

  Hardware interrupt or software event 
  Bound to a thread 

  Application: 
  Initialization 
  Mission 



Real Time Java 20 

Application Structure 

  Initialization phase 
  Fixed number of threads 
  Thread creation 
  Shared objects in immortal memory 

  Mission 
  Runs forever 
  Communication via shared objects 
  Scoped memory for temporary data 



Real Time Java 21 

Schedulable Objects 

  Three types: 
  RtThread, HwEvent and 

SwEvent 

  Fixed priority 
  Period or minimum 

interarrival time 
  Scoped memory per 

thread 
  Dispatched after 

mission start 

public class RtThread { 

    public RtThread(int priority, int period) 

    ... 

    public RtThread(int priority, int period, 

                    int offset) 

    public void run() 

    public boolean waitForNextPeriod() 

    public static void startMission() 

} 

public class HwEvent extends RtThread { 

    public HwEvent(int priority, int minTime, 

                   int number) 

    public void handle() 

} 

public class SwEvent extends RtThread { 

    public SwEvent(int priority, int minTime) 

    public final void fire() 

    public void handle() 

} 



Real Time Java 22 

Scheduling 

  Fixed priority with strict monotonic 
order 

  Priority ceiling emulation protocol 
  Top priority for unassigned objects 

  Interrupts under scheduler control 
  Priority for device drivers 
  No additional blocking time 
  Integration in schedulability analysis 



Real Time Java 23 

Memory 

  No GC: Heap becomes immortal 
memory 

  Scoped memory 
  Bound to one thread at creation 
  Constant allocation time 

  Cleared on creation and on exit 

  Simple enter/exit syntax 



Real Time Java 24 

Restrictions of Java 

  Only WCET analyzable language constructs 
  Static class initializers invoked at JVM start 
  No finalization 

  Objects in immortal memory live forever 
  Finalization complicates WCET analysis of exit 

from scoped memory 

  No dynamic class loading 



Real Time Java 25 

RtThread Example 
public class Worker extends RtThread { 

    private SwEvent event; 

    public Worker(int p, int t, 
                    SwEvent ev) { 

        super(p, t); 
        event = ev; 
        init(); 
    } 

    private void init() { 
        // all initialzation stuff 
        // has to be placed here 
    } 

 public void run() { 

        for (;;) { 
            work();       // do work 
            event.fire(); // and fire 
                          // an event 

            // wait for next period 
            if (!waitForNextPeriod()) { 
                missedDeadline(); 
            } 
        } 
        // should never reach 
        // this point 
    } 
} 



Real Time Java 26 

Application Start 
    // create an Event 
    Handler h = new Handler(3, 1000); 

    // create two worker threads with 
    // priorities according to their periods 
    FastWorker fw = new FastWorker(2, 2000); 
    Worker w = new Worker(1, 10000, h); 

    // change to mission phase for all 
    // periodic threads and event handler 
    RtThread.startMission(); 

    // do some non real-time work 
    // and invoke sleep() or yield() 
    for (;;) { 
        watchdogBlink(); 
        Thread.sleep(500); 
    } 



Real Time Java 27 

Garbage Collection? 

  An essential part of Java 
  Without GC it is a different computing 

model 
  RTSJ does not believe in real-time GC 
  Real-time collectors evolve 
  Active research area 

  More on Wednesday 



Real Time Java 28 

Summary 

  Real-time Java is emerging 
  RTSJ defined by Sun 
  Subsets: RJ, JOP-RT 
  Real-time GC missing 



Project Work 

  Meet on Tu 14:00 
  Wiki Entry 
  2nd Example 
  First Results 

Real Time Java 29 


