JOP: A Java Optimized Processor

! for Embedded Real-Time Systems

Martin Schoeberl




iJOP Research Targets

= Java processor

= [ime-predictable architecture
= Small design

= Working solution (FPGA)

JOP Overview



i Overview

= Motivation

= Research objectives

= Java and the JVM

= Related work

= JOP architecture

= Results

= Conclusions, future work

JOP Overview



i Current Praxis

= C and assembler

= Embedded systems are RT systems
= Different RTOS

= JIT is not possible

= JVM interpreter are slow

= => Java processor

JOP Overview



i Why Java?

= Safe OO language
= No pointers
= [ype-safety
= Garbage collection

= Built in model for concurrency
= Platform independent
= Very rich standard library

JOP Overview



i Research Objectives

= Primary objectives:
« Time-predictable Java platform
= Small design
= A working processor

= Secondary objectives:
= Acceptable performance

= A flexible architecture
= Real-time profile for Java

JOP Overview



iJava and the JVM

= Java language definition
= Class library

= The Java virtual machine (JVM)

= An instruction set — the bytecodes
= A binary format — the class file
= An algorithm to verify the class file

JOP Overview



iThe JVM instruction set

= 32 (64) bit stack machine

= Variable length instruction set

= Simple to very complex instructions
= Symbolic references

= Only relative branches

JOP Overview



i Memory Areas for the JVM

s Stack
= Most often accessed
= On-chip memory as cache

s Code

= Novel instruction cache
= Class description and constant pool

= Heap

JOP Overview



i Implementations of the JVM

= Interpreter

= Just-in-time compilation

= Batch compilation

= Hardware implementation

JOP Overview

10



i Related Work

= picoJava
= SUN, never released

= alile JEMCore
= Available, RTS], two versions

= Komodo
= Multithreaded Java processor

= FemtolJava
= Application specific processor

JOP Overview

11



i Research Objectives

picoJava alJile Komodo Femtolava JOP

Predictability - - . - , + +
Size - - - + - T+
Performance + + + - - - +
JVM conf. + + + . - -

Flexibility - - - - + + + + +

JOP Overview



i JOP Architecture

= Overview

= Microcode

= Processor pipeline

= An efficient stack machine
= Instruction cache

JOP Overview

13



iJOP Block Diagram

JOP Core R A— Memory Interface
BC Address
Bytecode «2C Dt Bytecode
Fetch —N Cache
A
Data i Control
Fetch |
------ control 1L Extension
Data
<
B
) Multiplier
Decode A
Y
WData Control
A4
Stack
_— /O Interface
R, Interrupt ]

JOP Overview



i JVM Bytecode Issue

= Simple and complex instruction mix
= No bytecodes for native functions

= Common solution (e.g. in picoJava):
=« Implement a subset of the bytecodes
= SW trap on complex instructions
= Overhead for the trap — 16 to 926 cycles
= Additional instructions (115!)

JOP Overview 15



i JOP Solution

= Translation to microcode in hardware
= Additional pipeline stage

= No overhead for complex bytecodes

= 1 to 1 mapping results in single cycle
execution

= Microcode sequence for more complex
bytecodes

= Bytecodes can be implemented in Java

JOP Overview

16



Microcode

Stack-oriented
Compact
Constant length
Single cycle

Low-level HW
access

= An example

dup: dup nxt // 1 to 1 mapping

// a and b are scratch variables
// for the JVM code.

dup_x1: stm a // save TOS
stm b // and TOS-1
Tdm a // duplicate TOS
Tdm b // restore TOS-1

1dm a nxt // restore TOS
// and fetch next bytecode

JOP Overview 17



iProcessor Pipeline

bytecode branch condition

l next bytecode

microcode branch condition

'

Microcode

Decode ‘ Execute

Bytecode Microcode Microcode
Fetch, translate ‘ Fetch and
and branch branch
T branch
bytecode branch
Stack
Address
generation

spill,
fill

=

Stack

RAM

JOP Overview

18



i Interrupts

= Interrupt logic at bytecode translation
= Special bytecode
= Transparent to the core pipeline
= Interrupts under scheduler control
= Priority for device drivers
= No additional blocking time
= Integration in schedulability analysis
« Jitter free timer events
=« Bound to a thread

JOP Overview

19



iAn Efficient Stack Machine

= JVM stack is a logical stack
« Frame for return information
» Local variable area
» Operand stack
= Argument-passing regulates the layout

= Operand stack and local variables need
caching

JOP Overview

20



i Stack access

= Stack operation
= Read TOS and TOS-1
= Execute
= Write back TOS

= Variable load

=« Read from deeper stack location
= Write into TOS

= Variable store
= Read TOS
= Write into deeper stack location

JOP Overview

21



iTwo-LeveI Stack Cache

ALU

\ 4

Read L A
Addr._ | Stack

RAM

>

>W

Dual read only from TOS and &« Instruction fetch

TOS-1 = Instruction decode

Two register (A/B) = Execute, load or store
Dual-port memory

Simpler Pipeline
No forwarding logic

'

e
Addr.

— >
Write B
Data >

\A /

JOP Overview 22



i JVM Properties

= Short methods

= Maximum method size is restricted

= No branches out of or into a method
= Only relative branches

JOP Overview

23



i Proposed Cache Solution

= Full method cached

= Cache fill on call and return
= Cache misses only at these bytecodes

= Relative addressing
= No address translation necessary

= No fast tag memory
= Simpler WCET analysis

JOP Overview

24



i Architecture Summary

= Microcode

= 143 stage pipeline

= Two-level stack cache
= Method cache

The JVM is a CISC stack architecture,
whereas JOP is a RISC stack architecture.

JOP Overview

25



= Compared to soft-core processors

= General performance
= Application benchmark (KFL & UDP/IP)
= Various Java systems

= Real-time performance
= 100MHz JOP — 266MHz Pentium MMX
= Simple RT profile — RTSJ/RT-Linux

JOP Overview

26



i Size of FPGA processors

Processor Resources Memory foax
[LC] [KB] [MHZ]
JOP min. 1077 3.25 08
JOP typ. 1831 3.25 101
Lightfoot 3400 1 40
Komodo 2600 ? 33/4
FemtoJava 2000 ? 4
NIOS 2923 5.5 119

SPEAR 1700 8 80

JOP Overview



*Application Benchmark

100000
10000
1000
100

10

Performance (iterationsls)

JOP Overview

28



iBenchmark Scaled

10000
(7]
-
S

£ 1000
£
(&)
S

z 100
O
o
o

2 4o
>
©
&

0.1

O

\Q>

JOP Overview

29



i Periodic Thread Jitter

Period JOP RTS]/Linux
Min. Max. Min. Max.
50 us 35 us 63 us - -
/0 us /0 us /0 us - -
100 us 100 us 100 us - -
5ms 5ms 5ms 0.017ms 19.9ms
10 ms 10 ms 100ms 0.019ms 19.9ms
30 ms 30 ms 30ms 29.7ms 30.3ms
35 ms 35 ms 35ms 29.8ms 40.3 ms

JOP Overview



i Context Switch

= Low priority thread records current time

= High priority periodic/event thread measures
elapsed time after unblocking

= Time in cycles

JOP RTSJ]/Linux
Min. Max. Min. Max.
Thread 2676 2709 11529 21090
SW Event 2773 2935 63060 101292

JOP Overview

31



iAppIications

= Kippfahrleitung
= Distributed motor control

= OBB
= Vereinfachtes Zugleitsystem
= GPS, GPRS, supervision

= TeleAlarm
= Remote tele-control
= Data logging
= Automation

JOP Overview




JOP in Research

= University of Lund, SE

= Application specific hardware (Java->VHDL)
=« Hardware garbage collector

= Technical University Graz, AT
=« HW accelerator for encryption

= University of York, GB
= Javamen — HW for real-time systems

= Institute of Informatics at CBS, DK
=« RT GC, Embedded RT Machine Learning

= University of California, Irvine, USA
= WCET Analysis

JOP Overview

33



iJOP for Teaching

= Easy access — open-source
=« Computer architecture
= Embedded systems
= UT Vienna
= JVM in hardware course
= Digital signal processing lab

= CBS
= Distributed data mining (WS 2005)
=« Very small information systems (5SS 2006)

a Wikiversity

JOP Overview

34



i Contributions

= Real-time Java processor
= Exactly known execution time of the BCs
= No mutual dependency between BCs
= Time-predictable method cache
= Resource-constrained processor
= RISC stack architecture
= Efficient stack cache
= Flexible architecture

JOP Overview

35



i Future Work

= HW for real-time garbage collector
= Instruction cache WC analysis

= Multiprocessor JVM

= Java computer

JOP Overview

36



iMore Information

= JOP Thesis and source
» http://www.jopdesign.com/thesis/index.jsp
» http://www.jopdesign.com/download.jsp

= \Various papers
» http://www.jopdesign.com/docu.jsp

JOP Overview 37



