A Time Predictable Instruction

! Cache for a Java Processor

Martin Schoeberl

i Overview

= Motivation

= Cache Performance

= Java Properties

= Method Cache

= WCET Analysis

= Results

= Conclusion, Future Work

JOP Method Cache

i Motivation

= CPU speed — memory access

= Caches are mandatory

= Caches improve average execution time
= Hard to predict WCET values

= Cache design for WCET analysis

JOP Method Cache

i Execution Time

texe = (CPUy + MEM) Xty

CPUy = IC x CPI,,
MEM_, = Misses x MP_,
= IC x Misses / Instruction x MP_,

toe = IC X CPI X Ly,
CPI = CPI,, # CPIL,, + CPlpy,

H&P: CA:AQA

JOP Method Cache 4

Misses per Instruction Is too

i simple

= Architecture dependent (RISC vs. JVM)
= Different instruction length
=« Different load/store frequencies

= Block size dependent
= Lower for larger blocks

= Memory access time

= Latency
= Bandwidth

JOP Method Cache

iTwo Cache Properties

= MBIB and MTIB

MBIB = Memory bytes read / Instruction byte
MTIB = Memory transactions / Instruction byte

= Reflects main memory properties

IM_. / IB = MTIB x Latency + MBIB / Bandwidth
CPI,, = IM_, / IB x Instruction length

JOP Method Cache

i JVM Properties

= Short methods

= Maximum method size is restricted

= No branches out of or into a method
= Only relative branches

JOP Method Cache

i Method Sizes (rt.jar)

9000
8000
7000
6000
5000
4000
3000
2000
1000

0

WHTTHH H [IFTTTIT T

mmmmmmmmmmmmmmmm
rrrrrrrrrrr

JOP Method Cache

i Bytecodes for a Getter Method

private int val;

public int getval() {
return val;
¥

public 1nt getval();

Code:

O: aload O

1: getfield #2; //Field val:I
4: 1return

JOP Method Cache

i Method Sizes (rt.jar)

9000
8000
7000
6000
5000
4000
3000
2000
1000

0

TTT T T TT T T I T I T T T T T T T I T T T T T T I T T T T T T I T T T T T T I T T T I T T T T T T I T T T T T T T T IT T
= ©O© v~ O - © - ©O© - © T © T © T © T © T O

JOP Method Cache

10

i Method Sizes cont.

= Runtime library rt.jar (1.4):
= /1419 methods
= Largest: 16706 Bytes
= 99% <= 512 Bytes
= Larger methods are class initializer

= Application - javac: 98% <= 512 Bytes

JOP Method Cache

11

i Proposed Cache Solution

= Full method cached

= Cache fill on call and return
= Cache misses only at these bytecodes

= Relative addressing
= No address translation necessary

= No fast tag memory

JOP Method Cache

12

iSingIe Method Cache

= Very simple WCET

analysis
= High overhead:

= Partially executed
method

= Fill on every call and

return

foo() {
a();
b();

J Block 1 Cache
foo() foo oad
a() a 0ad
return foo 0acC
b() b 0ad
return foo 0acC

JOP Method Cache

13

iTwo Block Cache

Block 1 Block 2 Cache

One method per foo() {
block a();
Simple WCET b();
analysis }

LRU replacement foo() oo

2 word tag memory a0 foo
return foo
b() foo

return foo

JOP Method Cache

o T oo 9 !

load
load
hit
load
hit

14

i Variable Block Cache

Whole method loaded

Cache is divided in blocks
Method can span several blocks
Continuous blocks for a method

Replacement

= LRU not useful

= Free running next block counter
= Stack oriented next block

Tag memory: One entry per block

JOP Method Cache

foo

(| |

15

i WCET Analysis

= Single method
= Trivial — every call, return is a miss
= Simplification: combine call and return load

= TWO blocks:

» Hit on call: Only if the same method as the
ast called — loop

= Hit on return: Only when the method is a
eave in the call tree — always a hit

JOP Method Cache 16

i WCET Analysis Var. Blocks

s Part of the call tree

= Method length determines cache
content

= Still simpler than direct-mapped
= Call tree instead of instruction address
= Analysis only at call and return
= Independent of link addresses

JOP Method Cache

17

i Caches Compared

= Embedded application benchmark
= Cyclic loop style
« Simulation of external events
« Simulation of a Java processor (JOP)

= Different memory systems:

= SRAM:
= SDRAM:
= DDR:

_ =1 cycle, B = 2 Bytes/cycle
_ = 5 cycle, B =4 Bytes/cycle

. = 4.5 cycle, B = 8 Bytes/cycle

JOP Method Cache 18

i Direct-Mapped Cache

Plainest WCET target, size: 2KB

LN MBIB MTIB | SRAM SDR DDR
SlZze

8) 017 p 0.022 0.15 0.12
16 0.25 || 0.015 | 0.14

2 Yoa1 Vo013 | 022 017 oil

MBIB = Memory bytes read / Instruction byte

MTIB = Memory transactions / Instruction byte

Memory read in clock cycles / Instruction byte

JOP Method Cache

19

i Fixed Block Cache

Cache size: 1, 2 and 4KB
Type MBIB MTIB | SRAM SDR DDR

Single 2.31 0.021 1.18 0.69 0.39

Two 1.21 0.013 0.62 0.37 0.21
| T

Four 0.90 0.010 0.46 0.27 0.16

MBIB = Memory bytes read / Instruction byte Memory read in clock cycles / Instruction byte

MTIB = Memory transactions / Instruction byte

JOP Method Cache

iVariabIe Block Cache

Cache size: 2KB

Block vsis MTIB | SRaM SDR DDR

count

8 073 _ 0008 | 037 022 013

16 037 || 0004 | 0.19 011 0.06
| e

32 % 0.24 \/0.003 0.12 0.08 0.04

64 0.12 0.001 | 0.06 0.04 0.02

JOP Method Cache

21

i Caches Compared

Cache size: 2KB

Type MBIB MTIB | SRAM SDR DDR
VB 16 0.37 0.004 0.19

VB 32 0.24 0.003 0.12

DM 8 0.17 0.022 0.15 0.12
DM 16 0.25 0.015 0.14 0.14 0.10

JOP Method Cache

22

i Summary

= Two cache properties: MBIB & MTIB
= JVM: short methods, relative branches
= Single Method cache

= Misses only on call and return

= Caches compared
= Embedded application
= Different memory systems

JOP Method Cache

23

i Future Work

= WCET analysis framework

= Compare WCET values with a traditional
cache

= Different replacement policies
= Don't keep short methods in the cache

JOP Method Cache 24

i Further Information

= Reading
= JOP Thesis: p 103-119

= Martin Schoeberl. A Time Predictable Instruction
Cache for a Java Processor. In Workshop on Java

Technologies for Real-Time and Embedded
Systems (JTRES 2004), 2004.

= Simulation
« ../com/jopdesign/tools

= Hardware
= ../vhdl/core/cache.vhd
« ../hd1l/memory/mem_sc.vhd

JOP Method Cache 25

