
IMM

DEPARTMENT OF MATHEMATICAL MODELLING

Technical University of Denmark
DK-2800 Lyngby – Denmark

J. No. 1996-x5-94
August 15, 1996
OS

FADBAD, a flexible C++ package
for automatic differentiation

using the forward and
backward methods

Claus Bendtsen
Ole Stauning

TECHNICAL REPORT

IMM-REP-1996-17

IMM

Copyright 1996 by Claus Bendtsen and Ole Stauning.
All rights reserved.
The FADBAD code is provided ”as is”, without any warranty of any kind,

either expressed or implied, including but not limited to, any implied warranty
of merchantibility or fitness for any purpose. In no event will any party who
distributed the code be liable for damages or for any claim(s) by any other party,
including but not limited to, any lost profits, lost monies, lost data or data ren-
dered inaccurate, losses sustained by third parties, or any other special, incidental
or consequential damages arising out of the use or inability to use the program,
even if the possibility of such damages has been advised against. The entire
risk as to the quality, the performance, and the fitness of the program for any
particular purpose lies with the party using the code.

The FADBAD code, and any derivative of the code, may not be used in a
commercial package without the prior explicit written permission of the authors.
Verbatim copies of the code may be made and distributed in any medium, pro-
vided that this copyright notice is not removed or altered in any way. No fees
may be charged for distribution of the codes, other than a fee to cover the cost of
the media and a reasonable handling fee.

CONTENTS i

Contents
1 Introduction 1

2 The Theory of Automatic Differentiation 3

3 Computational Graphs 5

4 Implementation 11

5 User’s Guide 13
5.1 Installation . 13
5.2 Using the Extended Library . 14
5.3 Using the (Basic) Library . 16

6 Building a Newton solver based on FADBAD 21

A Overview of the Class Hierarchy 26
A.1 Basic Macros and Defines – macros.h 26
A.2 The Forward Class – fadiff.cc 26
A.3 The Backward Classes – badiff.cc 26
A.4 The Extended Functions – fadiffxt.cc and badiffxt.cc . . . 28
A.5 Storage of the Derivatives – adiff tools.cc 28

B Interval Example 30

ii CONTENTS

1

1 Introduction

The importance of differentiation as a mathematical tool is obvious. One of the
first things we learn in elementary school is how to manually differentiate ex-
pressions using a few elementary formulas. Unfortunately the use of derivatives
in scientific computing has been quite limited due to the misunderstanding that
derivatives are hard to obtain. Many people still think that the only alternative to
the symbolic way of obtaining derivatives is to use divided differences in which
the difficulties in finding an expression for the derivatives are avoided. But by
using divided differences, truncation errors are introduced and this usually has
a negative effect on further computations – in fact it can lead to very inaccurate
results.

The use of a symbolic differentiation package such as Maple or Mathematica
can solve the problem of obtaining expressions for the derivatives. This method
obviously avoids truncation errors but usually these packages have problems in
handling large expressions and the time/space usage for computing derivatives
can be enormous. In worst case it can even cause a program to crash. Further-
more, common subexpressions are usually not identified in the expressions and
this leads to unnecessary computations during the evaluation of the derivatives.

Automatic differentiation is an alternative to the above methods. Here deriva-
tives are computed by using the very well known “chain rule” for composite
functions, in a clever way. In automatic differentiation the evaluation of a func-
tion and its derivatives are calculated simultaneously, using the same code and
common temporary values. If the code for the evaluation is optimized, then the
computation of the derivatives will automatically be optimized. The resulting
differentiation is free from truncation errors, and if we calculate the derivatives
using interval analysis we will obtain enclosures of the true derivatives. Auto-
matic differentiation is “easy” to implement in languages with operator over-
loading such as C++, Ada and PASCAL-XSC, see e.g. [Jue91] for a survey of
available tools.

FADBAD is a C++ program package which combines the two basic ways of
applying the chain rule, namely forward- and backward automatic differentia-
tion. Both the forward- and the backward differentiation methods use operator
overloading to redefine the arithmetic operations, so that the program is capable
of calculating first order derivatives. The only thing a user has to provide is the
C++ program that performs the evaluation of the function. Since the computation
of the derivatives is itself a C++ program we can obtain higher order derivatives

2 Introduction

by building the forward- and the backward automatic differentiation classes on
top of each other. Using this approach we can obtain derivatives of order p in
2p different ways – hereby giving the possibility to minimize time/space usage
of the computations by choosing the optimal combination of the algorithms. De-
pending, of course, on the function which we want to differentiate.

3

2 The Theory of Automatic Differentiation
As mentioned above the key idea behind automatic differentiation is the “chain
rule” which is used on a program or part of it in order to obtain partial derivatives
of all output variables with respect to all input variables.

As will be explained in Sec. 3 any program can be considered as a sequence
of n elementary functions,

�
fi � i � 1 � � � ��� n, where fi is a function only of the variables

τ1 ���	�	�
� τi � 1 and τi � fi τ1 ���	�	�
� τi � 1 � . Using a vector representation we write,
τ ���� τ � , where τ � �

τi � i � 1 � � � ��� n. A matrix, Df containing derivatives of � with
respect to τ and a matrix, Dτ containing partial derivatives of τ are defined,

Df � �
∂ fi
∂τ j � i � j � 1 � � � ��� n �

������ 0 �	�	�
∂ f2
∂τ1

0 �	���
∂ f3
∂τ1

∂ f3
∂τ2

0 ���	��	�	�

������� � (1)

Dτ � �
∂τi

∂τ j � i � j � 1 � � � ��� n �
������ 1 0 �	�	�

∂τ2
∂τ1

1 . . .
∂τ3
∂τ1

∂τ3
∂τ2

1 . . .���	�

� ����� � (2)

The chain rule for composite functions

∂τi

∂τ j
� δi j � i � 1

∑
k � j

∂ fi
∂τk

∂τk

∂τ j
� where δi j � �

1 i � j
0 otherwise

for j � i � n can now be formulated as

Dτ � I � DfDτ �
where I is the identity matrix.

Now Dτ can be isolated and we have

Dτ � I � DfDτ � I Df � Dτ � I � (3)

Dτ �! I Df � � 1 �
Dτ I Df �"� I � I Df � T DτT � I (4)

4 The Theory of Automatic Differentiation

where the solution of the triangular systems Eq. (3) and (4) represent the two
different methods used in automatic differentiation – namely the forward and
backward methods respectively.

The solution of Eq. (3) is given by forward substitution

for i � 2 to n �
for j � 1 to i 1 �

∂τi

∂τ j
� i � 1

∑
k � j

∂ fi
∂τk

∂τk

∂τ j
(5)

and the solution of Eq. (4) is given by backward substitution

for j � n 1 downto 1 �
for i � n downto j � 1 �

∂τi

∂τ j
� i

∑
k � j # 1

∂ fk
∂τ j

∂τi

∂τk
� (6)

5

3 Computational Graphs

In the previous section we saw how to use the chain rule in two different ways
to obtain derivatives. To apply these methods in a clever way using operator
overloading we have to introduce a way of interpreting a computation.

In a computer program variables are needed to save values for later use and
to communicate values between different parts of the program. Usually tempo-
rary variables contain values which are only used locally in time, and erased or
overwritten when the value is no longer needed. In this report, variables which
are not directly accessible to the programmer but used internally during the eval-
uation of an expression, will also be considered as temporary variables. E.g. the
calculation, w=x*(y+z) introduces the value of y+z and the value of x*(y+z) as
temporary variables.

Furthermore we need to classify variables according to their use as follows:$ A dependent variable is a variable which has been assigned to another
dependent variable or to an expression in which variables occured (i.e. a
non-constant expression). E.g. after the assignment w=x*(y+z) the vari-
able w is a dependent variable.$ An independent variable is a variable which has not been used yet, or
which has been assigned to a constant, another independent variable or to
an expression where no variables appeared. E.g. after w=117*cos(13) the
variable w is independent.

A way of representing a given calculation is by introducing a computational
graph where each node represents a variable (temporary or not temporary) and
the edges represents the dependencies. Such a graph is called a Directed Acyclic
Graph (DAG) because any node in the graph can only depend on previously
generated nodes, [Shi93]. Consider Program 3.1 – a simple C++ program which
performs the iteration x � y �&%'(cos x � 4) y ��� sin 4) x � y ��� with the initial values
x � 0 � 3 and y � 0 � 4. When it finishes the iteration, it will have the dependency
graph shown in Figure 1 and the variables x,y,t1,t2 will be independent while
f,g will be dependent, since they are functions of x and y. It is crucial that x and
y are not redefined – if they were then f and g would not be functions of them
any more. Notice that t1 and t2 are made independent deliberately by assigning
them to a constant, t1=t2=0.

6 Computational Graphs

Program 3.1 A simple C++ program.

void test1(){
adtype x(0.3),y(0.4),t1,t2,f,g;
int p=2;

// initialize:
f=x; g=y;

for (int i=1;i<=p;i++) {
// loop number i:

t1=cos(f+4*g);
t2=sin(4*f+g);
f=t1; g=t2;

}

// make t1, t2 independent variables:
t1=t2=0;

// end of test1
}

7

x

4

4

4

4

*

*

+

+

cos

sin

*

*

+

+

cos

sin

g

t2

f

t1

y

Figure 1: The DAG generated from Program 3.1.

From the above it should be evident that when a program is running on a se-
quential computer, it will perform a sequence of elementary function evaluations,�

fi � i � 1 � � � ��� n Each of these function evaluations will use one or more previously
generated variables τ1 �	���	�
� τi � 1 to generate a new variable τi with the computed
value, fi τ1 �	���	�*� τi � 1 � . Thus any computation can be represented by the scheme,

initialize the values:
τi � fi � xi � for i � 1 ���	�	� m �
compute:
for i � m � 1 to n �

τi � fi τ1 ���	���*� τi � 1 �+� (7)

Where the elementary functions, fi are also allowed to be constants.
In practice the arity (number of dependencies) of the elementary functions are

low, usually 0 2, which means that the matrix Df given by (1) is very sparse.
Let ai be the arity of the i’th function fi and define the map

κi :
�
1 �	�	���
� ai � %' Ii , �

1 ���	�	�
� i 1 � �
so that

τi � fi τκi1 �	�	���
� τκiai ���

8 Computational Graphs

The forward substitution (5) can now be calculated as

for i � 2 to n �
for j � 1 to i 1 �

∂τi

∂τ j
� ai

∑
k � 1

∂ fi
∂τκik

∂τκik

∂τ j
� (8)

while the backward substitution (6) can be calculated as

for j � n 1 downto 1 �
for i � n downto j � 1 �

∂τi

∂τ j
� ∑

k - J j

∂ fk
∂τ j

∂τi

∂τk
� (9)

where J j � �
t . j / It � denote the indices of the variables which are functions of

τ j.
Since we in general only are interested in derivatives with respect to our

initial values
�
xi � i � 1 � � �m only some of the elements in the matrix Dτ have to be

computed.
When using the forward algorithm, the variables

�
τ̂i � j � i � 1 � � � ��� n � j � 1 � � � ���m are

introduced and the derivatives can then be calculated alongside of the elementary
functions,

initialize the values:
τi � xi � τ̂i j � δi j � for i � j � 1 �	���	� m �
compute:
for i � m � 1 to n �

τi � fi τκi1 ���	�	�
� τκiai ���
τ̂i � j � ai

∑
k � 1

∂ fi
∂τκik

τ̂κik � j for j � 1 �	���	� m � (10)

The partial derivatives are then in τ̂, in fact τ̂i � j � ∂τi
∂τ j

for i � 1 ���	�	�
� n � j � 1 �	���	�*� m.
On a computer the elementary function evaluations can easily be redefined,

using operator overloading, so that both the evaluation and the calculation of
the derivatives with respect to all of the independent variables are performed
subsequently.

9

When using backward automatic differentiation one has to specify which of
the dependent variables

�
τi � i � m # 1 � � � ��� n, one want to differentiate. Assume that

D is the set of indices of the dependent variables that we want to differentiate.
Introduce the variables

�
τ̂i � j � i - D � j � 1 � � � ��� n. Now the evaluation of our elementary

functions and the calculation of the derivatives can be done in one forward and
one reverse sweep by

initialize the forward sweep:
τi � xi � for i � 1 �	���	� m �
forward sweep (function evaluation):
for i � m � 1 to n �

τi � fi τκi1 �	�	���0� τκiai ���
initialize the reverse sweep:

τ̂i � j � �
0 � i 1� j �
1 � i � j � for i / D � j � 1 �	�	���
� n �

reverse sweep (function differentiation):
for j � n downto m � 1 �

τ̂i � κ jk � τ̂i � κ jk � ∂ f j

∂τκ jk
τ̂i � j for i / D � k � 1 ���	���*� a j � (11)

After which we will have τ̂i � j � ∂τi
∂τ j

for i / D � j � 1 ���	�	�
� n.
It is seen that in order to use the backward algorithm all the dependencies

from the forward sweep have to be “remembered”. Some of the terms ∂ f j
∂τκ jk

in

Eq. (11) use the values τκ jk which are calculated during the forward sweep. One
way to save all this information is to “record” the evaluations in the forward
sweep by use of operator overloading. Thus, after the forward sweep one will
have a representation of the computational graph and this can then, during the
reverse sweep, be traversed in the opposite direction of which it was recorded.

There are some main differences between the two methods:$ If only a few dependent variables need to be differentiated with respect to
a large amount of input variables then the backward algorithm is generally
faster. But if a large amount of dependent variables need to be differen-
tiated with respect to a few independent variables, the forward algorithm
should normally be chosen. Of course the right choice of algorithm is
completely dependent on the structure of the DAG.

10 Computational Graphs$ Due to the “recording” in the backward algorithm the space usage during
the evaluation is linear with the time of the evaluation, and can therefore
be very large for complex functions.

11

4 Implementation

FADBAD relies heavily on the operator overloading available in C++, for details
on the topic see [C++95]. Basically the idea is to define a set of classes for the
variables used in the computation one wishes to differentiate and then to use
operator overloading to perform the normal computation and the differentiation
on the classes as if they were just your normal variables. The result is that the
code used for the normal computation and the code used for the differentiation
are identical except for the variable declaration and an identification of dependent
and independent variables. The details on how to use FADBAD will be described
in the next section but it should be evident that the use of classes and operator
overloading makes it possible to make a very user friendly package (since all the
differentiation happens “behind the back” of the user) and it is our hope that we
in FADBAD have achieved this goal.

As already explained the forward and backward algorithm are structurally
very different. In the forward algorithm the differentiation is carried out along-
side of the function evaluation and when differentiating it is convenient to store
the partial derivatives in the classes of the dependent variables. For the backward
algorithm the operator overloading is used to form the DAG during the forward
sweep, i.e. alongside of the function evaluation. During the reverse sweep the
DAG is traversed “backwards” and the class of each occuring variable stores the
partial derivative with respect to itself, of the dependent variables that one wishes
to differentiate. Thus, at the end of the reverse sweep the partial derivatives with
respect to the independent variables are stored in the classes corresponding to
the independent variables. The fact that the partial derivatives are stored in the
classes of either the dependent or independent variables often makes it difficult
to determine where to look for them – especially when combinations of the two
methods are build on top of each other in order to obtain higher order derivatives.

Another significant difference between the forward and backward method is
the use of storage. In the forward algorithm there is no need to store temporaries
when they are no longer used in the function evaluation. This is however not the
case for the backward method where the “recording” requires the storage of all
temporaries until the differentiation is taking place and since most programs lead
to quite a few temporaries the storage cost can be high.

The package also takes advantage of the fact that C++ allows you to view
real numbers (i.e. float or double variables) as classes. The implementation
has been made so that basically any class can be differentiated as long as the

12 Implementation

usual operators (i.e. *,+,sin,exp etc.) as well as member functions for copying
and assigning the class are defined. To our knowledge this is at present the
only package which has this flexibility. As will be seen in App. B this is used
to differentiate intervals which can be used e.g. when doing optimization using
interval analysis. And this is also the reason why higher order derivatives can so
easily be obtained by just differentiating the class itself.

Since C++ is yet not an international standard different implementations have
chosen to handle things differently – one noticeable difference is the use of
templates. It would be natural to define the backward and forward classes as
templates, but even though the current working paper on the standard, [C++95]
clearly states how templates should work – the current implementations are not
able to do this. The main problem is the instantiation of the templates – it is not
trivial to do this correctly when the different operators introduce intermediate
classes and the current version of FADBAD therefore uses macros to achieve a
template-like functionality. The actual classes defined in the implementation are
documented in App. A for the user who would like to enhance their functionality,
but in most cases the next section should provide the necessary information for
using FADBAD successfully.

13

5 User’s Guide

The current version of FADBAD can be obtained from the FADBAD homepage,
http://www.imm.dtu.dk/documents/users/os/fadbad.html or by anony-
mous ftp to ftp://ftp.uni-c.dk/uni-c/unicbe/FADBAD.

5.1 Installation

After unpacking the package the first thing to do is to run the configuration script,
configure. Initially one is asked which C++ compiler to use and how to run the
C++ preprocessor. Then the BaseType has to be entered. This is the class name
of the type which has to be differentiated – by default the base type is double.
If some other class is entered, one is also asked to specify an include file which
defines the class. Then the number of levels in the library is requested, i.e. the
maximum order of derivatives needed. Then one is asked if a production version
should be created and if not then if a debugging version should be build. The
difference between the different versions is the amount of error checks which
are performed. The production version only checks for user errors, the non-
production version also checks for internal errors (e.g. invalid pointers, incorrect
resource counters) and provides a few functions for printing the DAG for the
backward method. The debugging version provides a lot output showing what
is going on during the function evaluation and differentiation. Finally one is
asked if an extended library should be created. The extended library provides
functions for easily accessing and storing the derivatives as well as defining the
independent and dependent variables.

Once the Makefile has been created the configuration file, config.h has
to be edited. Here one defines which operators are available on the base type.
By default config.h is configured so that it matches the operators available on
double or float but if one is e.g. using intervals as the base type it is desirable
to distinguish the case pow(interval,int) from pow(interval,interval)
and thus config.h is edited to reflect this.

Now the package can be build by invoking make. When the package is build
it can be installed by using make install which will install the files in the
default installation directories (if not specified by the user using --includedir
or --libdir when invoking configure). If the extended library was build for
the type double with at least 3 levels then it can be tested by running make in
the directory ./test.

14 User’s Guide

5.2 Using the Extended Library
The extended library is basically an “easy-to-use” interface to the basic library.
In many cases this will be the natural way to use the FADBAD package.

Initially the .h files should be included in the program which defines the
computation one wishes to differentiate. The include files are named by the type
they differentiate and the combination of the forward and backward algorithm
they use. In case one wishes to calculate all 3rd order derivatives on double vari-
ables by one step of the backward algorithm followed by two steps of the forward
algorithm, then one would include the files BFFdouble.h and BFFdoublext.h,
where the latter is the include file for the extended library.

Now all the variables that are used in the function evaluation we wish to
differentiate need to be declared with the included type, i.e. for the example
above as BFFdouble. Before doing the actual computation the independent vari-
ables must be marked by using the independent function. The first argument
is the number of independent variables and the subsequent arguments are their
addresses. Now the computation can be performed. After the computation the
dependent variables are marked in much the same way as the independent ones.
One additional argument of type diffquot for storing the derivatives is needed
for the dependent function and it is given as the first argument. Typically a
subclass of diffquot named diffs is used (this only stores the needed deriva-
tives, i.e. not both ∂2 f 2 ∂xy and ∂2 f 2 ∂yx). Our example, Program 3.1 modified
for use with the extended library is shown as Program 5.1. It is of uttermost
importance that all declared, dependent variables are marked – if one does
not wish to differentiate some dependent variables these must be made in-
dependent explicitly.

The partial derivatives can now be accessed from diffs by using the member
function get. It has an integer argument list. The first argument is the order of
the derivative and the second is the index of the dependent variable. Then the
remaining arguments are the indexes of the independent variables. The function
can be called with the third argument being a vector of indices of the independent
variables. The indices are given by the order of the arguments for the call to
the independent and dependent function – so that the first independent and
dependent variable has index 0 the next index 1 and so forth.

The independent and dependent functions can also be called with a vector
of pointers to the independent/dependent variables instead of the variable argu-
ment list.

One of the problems when using the extended library is that a lot of things

5.2 Using the Extended Library 15

Program 5.1 A simple C++ program using the extended library.
#include "BFFdouble.h"
#include "BFFdoublext.h"

void test1(){
BFFdouble x(0.3),y(0.4),t1,t2,f,g;
int p=2;

// mark independent variables
independent(2,&x,&y);

// initialize:
f=x; g=y;

for (int i=1;i<=p;i++) {
// loop number i:

t1=cos(f+4*g);
t2=sin(4*f+g);
f=t1; g=t2;

}

// make t1, t2 independent variables:
t1=t2=0;

// end of test1

// declare diffs object and mark dependent variables
diffs d;
dependent(d,2,&f,&g);

// display all 3rd order partial derivatives
// of f and g wrt. x and y.
cout<<d;

}

16 User’s Guide

are taking place behind the user’s back. The user does not have to distinguish
between the forward and backward classes and does not have to worry about
which variables to differentiate etc. – the cost however is a loss of flexibility. E.g.
it is not possible to have nested levels of the differentiations as the differentiation
is defined through one call of both independent and dependent and they make
sure that the differentiation is carried out for all the levels in the FADBAD class
hierarchy

5.3 Using the (Basic) Library

When using the basic library it is the user’s responsibility to initiate the differen-
tiation and when using higher order derivatives this has to be done separately for
each level. Even though the forward and backward classes are very different we
have tried to make a homogeneous interface to the two classes.

In order to initiate the differentiation one must call the member function
diff(i,n), where i is the (unique) index of the object (starting from 0) and
n is the number of variables for which diff is called for the current level of
differentiation. Recall that the forward method propagates the derivatives into
the dependent variables during the function evaluation. Therefore diff is called
on the independent variables one wishes to differentiate wrt., prior to the func-
tion evaluation when using the forward method. For the backward method diff
must be called for all the dependent variables after the function evaluation and
the derivatives are then propagated into the independent variables.

The value of an object is returned by the x member function and derivative
number i is returned by calling the member function d(i). In Program 5.2 and
5.3 the use of the basic library is illustrated.

When calculating higher order derivatives one has to remember that both
calculated derivatives and function values become dependent variables. When
using the backward differentiation, one therefore must either make them inde-
pendent or differentiate them. In Program 5.4 an example of the nested use of
the forward and backward classes is presented. The member function, root gives
the base value of an object, i.e. it traverses all levels of forward and backward
classes and returns the value of the object. This function can conveniently be
used to make dependent variables independent without changing their value as
shown in Program 5.4.

Clearly it is not a trivial task to decide which variables have to be differ-
entiated or made independent as well as where to access the partial derivatives

5.3 Using the (Basic) Library 17

Program 5.2 A simple C++ program using forward differentiation from the basic
library.
#include "Fdouble.h"

void test1(){
Fdouble x(0.3),y(0.4),t1,t2,f,g;
int p=2;

// call diff on the indep. variables we wish to diff. wrt.
x.diff(0,2); // second argument is 2 because we wish to
y.diff(1,2); // differentiate wrt. 2 independent variables.

// initialize:
f=x; g=y;

for (int i=1;i<=p;i++) {
// loop number i:

t1=cos(f+4*g);
t2=sin(4*f+g);
f=t1; g=t2;

}

// make t1, t2 independent variables:
t1=t2=0;

// end of test1
// partial derivatives has now been calculated
f.d(0); // df/dx
f.d(1); // df/dy
g.d(0); // dg/dx
g.d(1); // dg/dy
}

18 User’s Guide

Program 5.3 A simple C++ program using backward differentiation from the
basic library.
#include "Bdouble.h"

void test1(){
Bdouble x(0.3),y(0.4),t1,t2,f,g;
int p=2;

// initialize:
f=x; g=y;

for (int i=1;i<=p;i++) {
// loop number i:

t1=cos(f+4*g);
t2=sin(4*f+g);
f=t1; g=t2;

}

// make t1, t2 independent variables:
t1=t2=0;

// end of test1
// call diff on dependent variables.
f.diff(0,2); // second argument is 2 because we have
g.diff(1,2); // 2 dependent variables.

// partial derivatives has now been calculated
x.d(0); // df/dx
x.d(1); // dg/dx
y.d(0); // df/dy
y.d(1); // dg/dy
}

5.3 Using the (Basic) Library 19

when building many layers of the forward and backward classes on top of each
other. In Sec. 6 an easier approach to building classes on top of each other will
be shown.

20 User’s Guide

Program 5.4 A “simple” C++ program using the basic library.
#include "BBFdouble.h"

void test1(){
BBFdouble x(0.3),y(0.4),t1,t2,f,g;
int p=2;

// call diff on forward class.
x.x().x().diff(0,2);
y.x().x().diff(1,2);

// ... function evaluation deleted ...

// call diff on backward classes.
f.diff(0,2); g.diff(1,2);
x.d(0).diff(0,4); x.d(1).diff(1,4);
y.d(0).diff(2,4); y.d(1).diff(3,4);
f.x() = f.root(); g.x() = g.root();

// now all partial derivatives are available.
x.d(0); x.d(1); y.d(0); y.d(1); // df/dx, dg/dx, df/dy, dg/dy
x.x().d(0); x.x().d(1); // d2f/dxx, d2g/dxx
x.x().d(2); x.x().d(3); // d2f/dyx, d2g/dyx
y.x().d(0); y.x().d(1); // d2f/dxy, d2g/dxy
y.x().d(2); y.x().d(3); // d2f/dyy, d2g/dyy
x.x().d(0).d(0); x.x().d(0).d(1); // d3f/dxxx, d3f/dxxy
x.x().d(1).d(0); x.x().d(1).d(1); // d3g/dxxx, d3g/dxxy
x.x().d(2).d(0); x.x().d(2).d(1); // d3f/dyxx, d3f/dyxy
x.x().d(3).d(0); x.x().d(3).d(1); // d3g/dyxx, d3g/dyxy
y.x().d(0).d(0); y.x().d(0).d(1); // d3f/dxyx, d3f/dxyy
y.x().d(1).d(0); y.x().d(1).d(1); // d3g/dxyx, d3g/dxyy
y.x().d(2).d(0); y.x().d(2).d(1); // d3f/dyyx, d3f/dyyy
y.x().d(3).d(0); y.x().d(3).d(1); // d3g/dyyx, d3g/dyyy
}

21

6 Building a Newton solver based on FADBAD
In Sec. 5 we saw that it can be difficult to determine which of the variables in
a computation that are dependent and which are independent. This is especially
a problem when we use several layers of differentiation classes on top of each
other.

In this section we will see how to use subroutines and locally defined vari-
ables to limit the amount of active variables.

Program 6.1 A C++ subroutine.
#define x in[0]
#define y in[1]
#define f out[0]
#define g out[1]
int p=2;
void func(double *in,double *out){
double t1,t2;
f=x;g=y;
for(int i=1;i<=p;i++){
t1=cos(f+4*g);
t2=sin(4*f+g);
f=t1;g=t2;

}
}
#undef x
#undef y
#undef f
#undef g

Consider Program 6.1, here the previous used example is encapsulated in a
function named func, the function has two arrays of type double as arguments,
each array of length 2. The argument in contains the independent variables
for the function, while out is used to return the dependent variables from the
evaluation. All the temporary variables used inside the function are local, so we
do not have to consider if they are independent or not when we use the function.

Imagine that we in Program 6.1 replace all occurrences of the word double
by the word Fdouble without changing anything else. It is now possible to cal-

22 Building a Newton solver based on FADBAD

culate the Jacobian matrix of func by calling the member function diff on the
independent variables in before the function evaluation. We use this in Program
6.2 to perform Newton iterations on func.

Program 6.2 A Newton iteration.
#include "Fdouble"

void func(Fdouble *in,Fdouble *out){
// .. function evaluation deleted ..

}
void newton(double *val){
Fdouble in[2],out[2];
double det,dfdx,dfdy,dgdx,dgdy;
do{
in[0]=val[0];in[1]=val[1];
in[0].diff(0,2); // call diff on the independent
in[1].diff(1,2); // variables of func.
func(in,out);
dfdx=out[0].d(0);dfdy=out[0].d(1); // df/dx ; df/dy
dgdx=out[1].d(0);dgdy=out[1].d(1); // dg/dx ; dg/dy

det=dfdx*dgdy-dgdx*dfdy;
val[0]-=(dgdy*out[0].x()-dfdy*out[1].x())/det;
val[1]-=(dfdx*out[1].x()-dgdx*out[0].x())/det;

}while(out[0]*out[0]+out[1]*out[1]>1e-6);
}

The function newton works by giving it an array of double in the argument
val, when a solution is found (when the 2-norm of the function value is less than
10 � 6) the loop is terminated and the new value of val is returned. Note that val
is used as an argument as well as returning the value of newton. Nevertheless it
is actually possible to differentiate the Newton iteration without too much work.

Assume that the occurrence of the word double in Program 6.2 is replaced
by the word Bdouble, this way double becomes Bdouble, and Fdouble be-
comes FBdouble. Now the Newton iterations can be differentiated by calling
the function newton as shown in Program 6.3.

23

Program 6.3 Differentiating a Newton iteration.
#include "Bdouble"
#include "FBdouble"

void func(FBdouble *in,FBdouble *out){
// .. function evaluation deleted ..

}
void newton(Bdouble *val){
// .. Newton iteration deleted ..

}

int main(){
Bdouble in[2],out[2];
in[0]=.4;in[1]=.5; // initial values
out[0]=in[0];out[1]=in[1]; // save the independent variables
newton(out);
out[0].diff(0,2); // Differentiate the dependent
out[1].diff(1,2); // variables

out[0].x(); // x-result of the Newton iterations
out[1].x(); // y-result of the Newton iterations
in[0].d(0);in[0].d(1); // derivatives wrt. in[0]
in[1].d(0);in[1].d(1); // derivatives wrt. in[1]

return 1;
}

24 Building a Newton solver based on FADBAD

operation FF FB BF BB
+ 534 1182 642 1842
- 114 234 138 258
* 1032 1008 1080 1008
/ 36 60 36 60
pow 24 0 24 0

unary - 144 24 120 0
sin 108 108 108 108
cos 108 108 108 108

TOTAL 2100 2724 2256 3384

Figure 2: The total amount of used flops in the program using different types of
differentiation.

It is important to note that the call of newton in Program 6.3, overwrites
the calling argument out. As already mentioned the derivatives are propagated
into the independent variables when using backward differentiation, hence it is
necessary to retain these independent variables. This is done in Program 6.3 by
assigning another set of variables to the independent variables before the call,
this way we will still have the independent variables after the call.

A problem which we will not go into detail in this report, is the problem
of assuming that our programs are differentiable. In the Newton example we
differentiate the newton function without any problems. But if we look further
into the code, we will see that this assumption is wrong. The do

�
.. � while()

construction determines how many iterations are taken, making the result non-
differentiable. Nevertheless the derivatives of newton are usually meaningful in
a local sense. If the do

�
.. � while() construction was replaced with a constant

number of iterations the newton function would be differentiable.
It is a simple task to modify Program 6.3 to use different combinations of dif-

ferentiations, in total 4 different versions can be made. It is difficult to say which
version is the most optimal with respect to the number of arithmetic operations
– it depends completely on the structure of the DAG which represents the com-
putation. In Figure 2 the amount of used operations are shown, the operations
has been obtained by replacing all doubles with a similar type which also counts
the number of flops (floating point operations). From the figure we see that the
optimal differentiation method in this example is two forward classes on top of

25

each other.

26 Overview of the Class Hierarchy

A Overview of the Class Hierarchy
In the following we try to give an overview of the classes used in FADBAD so
that the interested user will be able to understand and modify the code if nec-
essary. As already mentioned in Sec. 4 the use of templates has been simulated
by using macros and some of these will be described initially. Then the forward
and backward classes will be described followed by the extended functions and
finally we will comment on the classes for storage of derivatives.

A.1 Basic Macros and Defines – macros.h

The define, Dtype has the name of the class to be differentiated. If this is not
a base class, i.e. the class to be differentiated is already one of the FADBAD
classes, then the define, BaseType will hold the name of the base class, e.g.
double.

The most heavily used macro is the prefix macro which returns the first
argument added as prefix to the current Dtype. This is used to give each class a
unique name and is useful for generating a template-like functionality.

A few other macros are used for debugging purposes and the like – their use
is straight forward.

A.2 The Forward Class – fadiff.cc

The forward differentiation is managed by only one class. The class name is
given by prefix(adtype) but by default adtype is redefined so that the class
name becomes “F” concatenated with Dtype.

The class contains a variable and an array of type Dtype for storing the func-
tion values and derivatives respectively. The differentiation is carried out along-
side the function evaluation by overloading operators and mathematical func-
tions.

A.3 The Backward Classes – badiff.cc

The classes are divided in several layers. At the bottom we have the node class
which holds the function value and derivatives in much the same way as in the
forward case. There is however a need for a “resource counter” on the node so
that it is possible to decide when a node is no longer needed. We then have the

A.3 The Backward Classes – badiff.cc 27

op class which has a pointer to a node and manages the resource counter of the
node as well as the logical operators. The op class is not used directly.

On top of the op class we have the UNop and BINop classes which are used
for unary and binary operators respectively. The former has one pointer to an op
object the latter two – and by assigning these pointers the DAG is build during
the forward sweep. These classes are not used directly.

On top of the UNop class is the adtype class which is the class the user will
allocated variables for backward differentiation as. It contains the functions for
initiating and accessing the derivatives and it has the only overloadings of the
“=” operator.

Also on top of the UNop class are all the common unary operators, e.g. unary
+, sine and square root. They each have their own class which is formed by
the macros UNOPCODE, UNOPCLASS and UNOPMATCH. The first macro is just an
interface to the latter two – where UNOPCLASS defines the class and UNOPMATCH
defines the interface to the class so that the class will be allocated when the
unary operator in question is used on the op class or subclasses thereof. Upon
allocation, which happens during the forward sweep, the class just performs the
calculation given by its operator, but during the reverse sweep the member func-
tion propagateop performs the differentiation.

Of special concern is the deallocation of intermediate results – temporaries.
The draft for the C++ standard, [C++95, Subsec. 12.2.3] clearly states that tem-
poraries should be deallocated “as the last step in evaluating the full-expression
that contains the point where they were created” and based on this an allocated
class corresponding to a unary operation will often be deallocated shortly after its
allocation. In order to be able to record the DAG one thus needs to copy the class
prior to the deallocation – this is done from the adtype class for the assignment
operator as well as in the constructor. Many C++ implementations do however
not conform with the proposed standard and deallocates temporaries at a later
time (if this is the case then DELAYTEMPDEALLOC is defined by the configure
script). In order for this not to be a problem we have introduced the “shadow
class” defined through the macro UNOPCLASSTMP which simply acts as an empty
shell around the class of the unary operator.

For the binary operators the macros BINOPCODE, BINOPCLASS and BINOP-
MATCH define classes on top of the BINop class in much the same way as for the
unary operators.

The classes for the unary and binary operations always creates nodes to hold
the calculated value and the derivatives. The adtype class does however often

28 Overview of the Class Hierarchy

just link to a node created by one of these classes and can therefore be viewed as
encapsulating the class of the basic calculations. This encapsulation which can
take place in arbitrarily many layers – each corresponding to a reference to the
result stored in the node – is reflected by the resource counter in the node class.
Thus when performing the reverse sweep the resource counter is decremented
as derivatives are propagated into the node and as the last derivative has been
propagated the derivatives of the node can be propagated onwards – up through
the DAG. The same mechanism is used to deallocated the DAG – when the last
refering object for a node is deallocated the node itself is deallocated and the
references it used are removed, possibly leading to further deallocations.

A.4 The Extended Functions – fadiffxt.cc and
badiffxt.cc

The aim of the extended functions is that the user should not worry about how to
initiate the differentiation correctly as well as where to get the derivatives from,
no matter which combination of forward and backward classes is used on top of
each other.

The call of the independent function stores a reference to all the indepen-
dent variables in a global array and when calling the dependent function all the
levels of forward and backward classes are traversed and the reverse sweeps (if
any) are performed. Basically this function automatizes the procedure described
in Subsec. 5.3. The derivatives are stored by using the diffquot class.

A.5 Storage of the Derivatives – adiff tools.cc

When storing derivatives the symmetry implies that it is not necessary to store
all partial derivatives (e.g. ∂2 f 2 ∂xy is equal to ∂2 f 2 ∂yx). The classes diffquot
and diffs are used for storing only the “needed” derivatives.

The class diffquot just calculates offsets etc. but does not perform any stor-
age of derivatives – thus a user can easily subclass this if control of the storage
is needed. To insert derivatives, the member function insert is called with the
index of the differentiated dependent variable, the level of differentiation and
indexes of the independent variables which the differentiation has occured with
respect to. The member function calcoffs can then be used to calculate the
offset corresponding the partial derivative taking the symmetry of the derivatives

A.5 Storage of the Derivatives – adiff tools.cc 29

into account. This class only defines the needed interface to the functions of the
extended library.

The class diffs is an example of how to store the derivatives using minimal
storage. It overloads the insert function and stores derivatives which have not,
due to symmetry, occured earlier1. It then implements the function get which
can be used to retrieve an arbitrary partial derivative.

1It does not use the calcoffs function to calculate where to store the derivatives but instead
relies on the calling sequence from the extended functions.

30 Interval Example

B Interval Example
As already mentioned FADBAD can be used to differentiate programs using
other types than double. One obvious class of types to use with FADBAD is
interval types2. FADBAD has been successfully tested with the BIAS/PROFIL
interval package [Knü93a, Knü93b] and in this section we will see how FAD-
BAD is configured to use the class INTERVAL defined in PROFIL as base type in
FADBAD.

A file which defines the class INTERVAL and the arithmetic operations is
shown in File B.1. The file is specified when running the configure script
and included when the FADBAD library is compiled. The definition of the

File B.1 The file interval.h.
#include "Interval.h"
#include "Functions.h"
#define pow Power
#define exp Exp
#define log Log
#define sqrt Sqrt
#define sin Sin
#define cos Cos
#define tan Tan
#define asin ArcSin
#define acos ArcCos
#define atan ArcTan

class INTERVAL and some of the basic operations are defined in the header file
Interval.h while exotic operations are defined in Functions.h. Furthermore,
because PROFIL uses non-standard function names, we have to redefine the
names of the arithmetic functions used in FADBAD to match the names used
in PROFIL.

File B.2 is used to tell FADBAD which arithmetic and logical operations are
defined on the base type.

The script, configure is called to generate a Makefile configured for the
type of system that the script is executed on. The user is prompted for the base

2When using interval types, we are capable of computing mathematical correct enclosures of
derivatives.

31

File B.2 The file configure.h.
// Configure this file to match the operations that is
// defined in your base type.
// Note that the binary operations + -, and the
// compound assignment operations += -= should always
// be present.

#define HASPOWOPN // Has pow(BaseType,int)
#define HASMULOP // Has BaseType*BaseType
#define HASDIVOP // Has BaseType/BaseType
#define HASPOWOP // Has pow(BaseType,BaseType)
#define HASUADDOP // Has +BaseType
#define HASUSUBOP // Has -BaseType
#define HASEXPOP // Has exp(BaseType)
#define HASLOGOP // Has log(BaseType)
#define HASSQRTOP // Has sqrt(BaseType)
#define HASSINOP // Has sin(BaseType)
#define HASCOSOP // Has cos(BaseType)
#define HASTANOP // Has tan(BaseType)
#define HASASINOP // Has asin(BaseType)
#define HASACOSOP // Has acos(BaseType)
#define HASATANOP // Has atan(BaseType)
#define HASASINOP // Has asin(BaseType)
#define HASACOSOP // Has acos(BaseType)
#define HASATANOP // Has atan(BaseType)
#define HASEQ // Has BaseType == BaseType
#define HASNEQ // Has BaseType != BaseType
//#define HASGEQ // Has BaseType >= BaseType
#define HASLEQ // Has BaseType <= BaseType
//#define HASGT // Has BaseType > BaseType
#define HASLT // Has BaseType < BaseType
#define HASCMULOP // Has BaseType *= BaseType
#define HASCDIVOP // Has BaseType /= BaseType

32 Interval Example

type to build the FADBAD library upon, the number of differentiation levels to
build, etc. When the Makefile has been generated the library can be compiled
by typing make. See Subsec. 5.1 for details on using the configure script.

REFERENCES 33

References
[C++95] ASC, ANSI, AT&T Bell Laboratories, USA. Working Paper for

Draft Proposed International Standard for Information Systems—
Programming Language C++, x3j16/95-0087, wg21/n0687 edition,
1995.

[Jue91] David W. Juedes. A Taxonomy of Automatic Differentiation Tools.
In Andreas Griewank and George F. Corliss, editors, Automatic Dif-
ferentiation of Algorithms, pages 315–329. SIAM, 1991.

[Knü93a] Olaf Knüppel. BIAS – Basic Interval Arithmetic Subroutines. Tech-
nical report, Technische Universität Hamburg-Harburg, July 1993.

[Knü93b] Olaf Knüppel. PROFIL – Programmer’s Runtime Optimized Fast In-
terval Library. Technical report, Technische Universität Hamburg-
Harburg, July 1993.

[Shi93] Dmitri Shiriaev. Fast Automatic Differentiation for Vector Proces-
sors and Reduction of the Spatial Complexity in a Source Translation
Environment. PhD thesis, Universität Karlsruhe, 1993.

