Automatic Validation of
Numerical Solutions

Ole Stauning

LYNGBY 1997

IMM-PHD-1997-36

IMM

CONTENTS i

Contents
Preface i
Summary v
Danish summary — Resune Vil
1 Intr oduction 1
2 Interval arithmetic 5
2.1 Imtervals 5
2.2 Interval vectors and matrices 8
2.3 Imtervalfunctions, 10
3 Taylor's Theoremand the meanvalue enclosue 15
3.1 The interval Newton and Krawczyk methods 16
4 Enclosure methodsfor discrete mappings 19
4.1 Lohner’s method used on discrete maps 20
4.1.1 The mean valueenclosure 22
4.1.2 The extended mean value enclosure 23
4.2 Enclosing iterates of the Cos-Sinmap 29
5 Automatic differ entiation 33
5.1 Rational functions, code-lists and computational graphs 33
5.2 Theory of the Forward and Backward modes 35
5.3 Theory of the Taylor expansion method 40
5.4 The FADBAD/TADIFF packages 45
5.4.1 Types and states of arithmetic variables 46
54.2 Using the forward mode (FAD) 47
5.4.3 Using the backward mode (BAD) 49
5.4.4 Using the Taylor expansion method (TADIFF) 51
5.4.5 Using combinations of methods 53
5.5 Examples using the FADBAD/TADIFF packages 55
5.5.1 Numerical integration 55

5.5.2 Solving an initial value problem (IVP) 58

il

CONTENTS

Enclosingsolutionsof ordinary differ ential equations 63

6.1 Proving existence and uniqueness of the solution 63

6.2 Obtaining an interval vector enclosure of the solution 65

6.3 Enclosing solutions of initial value problems 66
6.3.1 An automatic differentiation interval ordinary differen-

tial equation solver (ADIODES) 69

6.4 Integration example (the Brusselator) 70

Computer-assistedproofsin dynamical systems 73

7.1 A note on the representation of intervals used in this report . . . 73

7.2 Periodic solutions of autonomous systems 74

7.2.1 TheBrusselator 75

7.2.2 TheLorenzsystem 76

7.2.3 The Vander Polsystem. 80

7.3 Periodic solutions of non-autonomous systems 82

7.3.1 The forced Brusselator 83

7.4 Solutions of boundary value problems 84

Solvingintegral equations 87

81 Theory e 87

8.2 The mean value enclosure of an integral operator 88

8.2.1 Zero order approximation 91

8.2.2 Firstorder approximation 92

8.2.3 Second order approximation 93

8.3 Using a Bernstein polynomial enclosure 95

8.4 Numerical examples 97

8.4.1 The Chandrasekhar equation 99

8.4.2 Solving a boundary value problem 100

Conclusion 105

9.1 Directions for futureresearch 106

Bibliography 109

Index 115

iii

Preface

This thesis has been written in partial fulfilment of the requirements for obtaining
the Ph.D. degree. The work was supported by the Technical University of Den-
mark (DTU) and has been completed at Department of Mathematical Modelling,
DTU, from September 1, 1994 to August 31, 1997. In the period from Septem-
ber 1, 1995 to February 29, 1996 I visited Institut fiir Angewandte Mathematik,
Universitit Karlsruhe.

I thank my main supervisor Prof. Kaj Madsen at the Department of Mathe-
matical Modelling. Kaj Madsen was the person who introduced me to interval
analysis when I as an undergraduate student attended his lectures in “0202 Ad-
vanced Numerical Analysis”: In this course, I realized how powerful interval
methods are. My thanks extend to my supervisor Dr. Carsten Knudsen at the
Department of Applied Mathematical Studies, University of Leeds. He intro-
duced me to problems occuring in discrete dynamical systems, which seem to be
impossible to solve by analytical methods, but to some extend can be dealt with
using interval methods, as described in my master’s thesis. I have benefited con-
siderably from the many discussions I have had with Kaj Madsen and Carsten
Knudsen with respect to interval analysis and mathematics in general.

I am also very grateful to Dr. Rudolf Lohner at the Institut fiir Angewandte
Mathematik. First of all, for allowing me to visit the Institute and for his hospi-
tality during my stay, but also for the many discussions we had about the method
behind his famous AWA-program for solving ordinary differential equations ob-
taining interval bounds of the solution. Rudolf Lohner is also the person who
introduced me to automatic differentiation. This introduction has had an enor-
mous influence on my work; and is also reflected by the contents of this thesis. I
thank the staff at the Institut fiir Angewandte Mathematik for their hospitality —
my stay in Karlsruhe has been a very nice experience for me.

During the studies of automatic differentiation I have had the pleasure to
work with Dr. Claus Bendtsen at Danish Computing Centre for Research and
Education, UNI C. He is the co-author of our packages: FADBAD/TADIFF
for performing automatic differentiation, and two technical reports describing
the packages. I thank Claus Bendtsen for the many discussions we have had
about automatic differentiation and for the many hours we have spent together in
developing our packages.

v Preface

Thanks to Pia Stauning for reading the draft and pointing out a few errors.
Last, but not least, I would like to thank my friends and my family for their
support during my studies.

, : . OLE STAUNING
Tedhnical Universityof Denmark

August,1997

Summary

This thesis is concerned with “Automatic Validation of Numerical Solutions”.
The basic theory of interval analysis and self-validating methods is introduced.
The mean value enclosure is applied to discrete mappings for obtaining narrow
enclosures of the iterates when applying these mappings with intervals as initial
values. A modification of the mean value enclosure of discrete mappings is con-
sidered, namely the extended mean value enclosure which in most cases leads to
even better enclosures. These methods have previously been described in con-
nection with discretizing solutions of ordinary differential equations, but in this
thesis, we describe how to use the methods for enclosing iterates of discrete map-
pings, and then later use them for discretizing solutions of ordinary differential
equations.

The theory of automatic differentiation is introduced, and three methods for
obtaining derivatives are described: The forward, the backward, and the Taylor
expansion methods. The three methods have been implemented in the C++ pro-
gram packages FADBAD/TADIFF. Some examples showing how to use the three
methods are presented. A feature of FADBAD/TADIFF not present in other auto-
matic differentiation packages is the possiblility to combine the three methods in
an extremely flexible way. We examine some applications where this flexibility
is very useful.

A method for Taylor expanding solutions of ordinary differential equations
is presented, and a method for obtaining interval enclosures of the truncation
errors incurred, when truncating these Taylor series expansions is described. By
combining the forward method and the Taylor expansion method, it is possible
to implement the (extended) mean value enclosure of a truncated Taylor series
expansion with enclosures of the truncation errors. A C++ program package:
ADIODES, using this method has been developed?.

ADIODES is used to prove existence and uniqueness of periodic solutions
to specific ordinary differential equations occuring in dynamical systems theory.
These proofs of existence and uniqueness are difficult or impossible to obtain us-
ing other known methods. Also, a method for solving boundary value problems
is described.

Finally a method for enclosing solutions to a class of integral equations is
described. This method is based on the mean value enclosure of an integral op-

1ADIODES is an abbreiation of “Automatic Differentiationinterval Ordinary Differential
EquationSolver”.

vi Summary

erator and uses interval Bernstein polynomials for enclosing the solution. Two
numerical examples are given, using two orders of approximation and using dif-
ferent numbers of discretization points.

vii

Danish summary — Resumé

Denne afthandling omhandler “Automatisk Bevisfgrelse for Numeriske Lgsning-
er”’. Den grundleggende teori for interval analyse samt automatisk differenti-
ation er introduceret. Middelvaerdiformen er anvendt pa en diskret afbildning
for at opna en snaver interval indkapsling af afbildningens iterater. Ogsa en
forbedring af middelvardiformen, kaldet den udvidede middelvardiform, er in-
troduceret. Metoderne har fgr veret beskrevet i forbindelse med diskretisering af
lgsninger til sedvanlige differentialligninger. Her bliver det beskrevet hvordan
man bruger metoden til at indkapsle iteraterne af en diskret afbildning, for senere
at diskretisere lgsninger til sedvanlige differentialligninger.

Teorien bag automatisk differentiation er introduceret og tre metoder: for-
lens- og baglans differentiation samt Taylorudvikling, er beskrevet; de tre me-
toder er blevet implementeret i C++ programpakkerne FADBAD/TADIFF. Ek-
sempler pa brugen af disse programpakker er givet. I programpakkerne FAD-
BAD/TADIFF er det muligt ogsa at bruge kombinationer af metoder. Ingen an-
dre programpakker benytter denne mulighed. Vi vil se nogle applikationer hvor
disse kombinationsmuligheder er meget brugbare.

En metode for at Taylorudvikle lgsninger til sedvanlige differentialligning-
er samt beregning af en interval indkapsling af trunkerings fejlen, begéet ved
trunkering af denne raekke, er beskrevet. Ved at kombinere forlens metoden med
Taylorudvikling er det muligt at implementere den (udvidede) middelvaerdiform
af en trunkeret Taylorudvikling med en indkapsling af trunkeringsfejlen og en
C++ programpakke, ADIODES, der benytter denne metode, er udviklet?.

ADIODES er brugt til at bevise eksistens samt entydighed af periodiske
lgsninger til nogle sedvanlige differentialligninger som er af speciel interesse in-
denfor dynamisk systemteori. Disse beviser er svere — maske umulige, at udfgre
med andre kendte metoder. Ogsa en metode til 1gsning af randvardiproblemer
er kort beskrevet.

En metode til lgsning af en klasse af integralligninger er beskrevet. Denne
metode er baseret pa middelvaerdiformen af en integraloperator og bruger in-
terval Bernstein polynomier til indkapsling af lgsningen. To eksempler pa in-
tegralligninger er givet og lgsningerne til disse er indkapslet ved brug af to
approksimations-ordener samt forskelligt antal af diskretiseringspunkter.

2ADIODES er en forkortelseaf “Automatic Differentiationinterval Ordinary Differential
EquationSolver”.

viii Danish summary — Resumé

1 Introduction

Computers seem to play a more and more important role in the scientific com-
munity. Even new fields of science have emerged because of the invention and
development of the computer. However the computer is in many cases not a per-
fect tool for doing scientific calculations. When using floating point arithmetic,
which is a discretization of real arithmetic, the results of the computations per-
formed will usually be affected by rounding errors and in the worst cases leads to
completely wrong results. This problem is getting even worse since computers
are becoming faster, and it is possible to execute more and more computations
within a fixed time, without the standard floating point arithmetic becoming more
reliable. Since it is impossible to verify the accuracy of the results generated by
some complicated programs, *by hand’, we have to trust the validity of the com-
putations we perform.

A branch of numerical analysis, called interval analysis, is dedicated to this
problem [2, 22, 38, 39]. In interval analysis we use intervals of real numbers as
the fundamental elements of computation rather than real numbers themselves.
We will in Section 2 see how to define operations on intervals so that the result of
an interval operation encloses the true results of the corresponding real operation
with any combination of real arguments in the corresponding interval arguments.
Interval vectors and matrices and operations on these can be defined in the usual
way, i.e., the elements of interval matrices and vectors are intervals. The round-
ing is controlled in every single arithmetic operation when implementing interval
arithmetic on a computer. The infimum of the result should be computed while
rounding down, and the supremum should be computed while rounding up. Us-
ing this outward rounding method, we will always get correct enclosures of the
result of an algorithm, when running a computer-based implementation. On most
modern computers this rounding control is hardwired into the CPU, and it is just
a matter of controlling a register [24]. A public domain C++ program package
PROFIL/BIAS for doing interval arithmetic with outwards rounding is available
[28, 29, 30]. This package is used to perform all interval computations presented
in this report.

Another useful application of interval arithmetic is when some parameters or
initial values in an algorithm are not exactly known, but known to lie within some
intervals. By implementing algorithms using interval arithmetic and including
the uncertain values as intervals, we obtain results which are valid for every
combination of real parameters and/or initial values in their respective interval

2 Introduction

enclosures. This property is important when modelling real systems, where val-
ues of parameters are based on measurements performed on a real system and
therefore are uncertain due to the uncertaincy of the measurements.

A general problem in interval analysis is to obtain interval results with narrow
bounds. Itis usually no problem to implement existing algorithms using intervals
instead of real numbers, but obtaining narrow interval enclosures when using the
algorithms is often difficult, and interval results can be totally useless if they are
too wide. The reason why a specific interval algorithm yields intervals which are
wide can either be because of the nature of the problem we are trying to solve, in
which case nothing can be done, or it can be because the algorithm is not suited
for intervals, in which case the interval enclosures used in the algorithm might
be improved by modifying the algorithm.

One way to improve enclosures of a differentiable function evaluated with
interval arguments is by using the mean value enclosure [38, 8, 47]. This method
is described in Section 3. In the mean value enclosure, we use derivatives of a
function to obtain narrow interval enclosures when evaluating it. We will use the
mean value enclosure extensively in this report.

One of the most exciting properties of interval methods is their ability to pro-
vide information about existence of solutions to some implicit problems, e.g. to
non-linear equations [1, 31, 39, 42, 53]. These self-validating methods are possi-
ble since we are capable of performing computations on sets of real numbers and
to obtain interval bounds of the results. In Section 3 we describe two of the most
common self-validating methods for obtaining solutions of non-linear equations.
The two methods use a set theoretic fixed point theorem and are capable of prov-
ing existence of solutions, which are impossible to prove by known analytical
methods.

By using automatic differentiation, described in Section 5, it is possible to
obtain derivatives fast and without any symbolic manipulations [5, 16, 19, 20,
45, 51]. The derivatives obtained by automatic differentiation are just as ac-
curate as evaluating the expressions for the true derivatives. By using interval
arithmetic for evaluating the derivatives, we obtain correct enclosures. Two C++
program packages FADBAD/TADIFF for doing automatic differentiation have
been developed [5, 6]. These packages are capable of differentiating functions
implemented in C++ functions. Three methods have been implemented in FAD-
BAD/TADIFF: The forward, the backward, and the Taylor expansion methods.
Since FADBAD/TADIFF are capable of differentiating a C++ function which it-
self uses automatic differentiation, it is possible to combine the methods and this

way generate derivatives in a very flexible way.

Automatic differentiation can also be used to obtain derivatives of a function
given implicitly as a solution to an ordinary differential equation [6, 17, 18, 15].
By using these derivatives, it is possible to form a truncated Taylor series expan-
sion and this way discretize the solution by an approximation of any order. Using
interval analysis, it is also possible to enclose the remainder term of a truncated
Taylor series expansions [34, 35, 33, 41, 50, 49, 55]. These remainder term en-
closures will be used in Section 6 to develop a program package ADIODES for
enclosing solutions of ordinary differential equations. This package is used in
Section 7 to generate computer-assisted proofs.

A method for enclosing solutions of integral equations using the mean value
form of an integral operator [7, 11, 43, 44, 48, 54] is described in Section 8, and
two applications are presented.

Introduction

2 Interval arithmetic

2.1 |Intervals

The fundamentals of interval analysis described in this section are also described
in the books of R.E. Moore [38, 39] and later in a book by G. Alefeld and J.
Herzberger [2]. An interval X is a nonempty set of real numbers®

X X X X X 2.1

where X X are real numbers. Here X is called the infimum of X, and Xis called
the supremum. We also use the notation X X to denote the interval X . The set
of all intervals is denoted by

XX XX X X (2.2)
The real number
m X X X (2.3)
2
is the midpoint of X, and the non-negative number
w X X X 2.4)

denotes the width of X . If the width of X is zero, then the interval is called
degenerate and consists of only one real number, i.e., X . The magnitude?®
of an interval X is defined by

X max X X (2.5)
The intersection of two intervals X Yy is
0 ifX yory Xx
Xy max Xy min XYy otherwise. (2.6)

Since the empty set is not an interval, we have that is not closed with respect
to intersection, and special care has to be taken when X 'y 0. We extend the
ordering relation to intervals by

X y Xy 2.7)

3We usethenotation in thisreportto denoteintervals.
4Sometimeslsocalledthe absolutevalue.

6 Interval arithmetic

and in a similar manner. Both relations are transitive. If X and Yy overlap,
then and do not exclude each other. Therefore the ordering is only partial.
Another transitive and partial ordering relation, inclusion in ,is defined by

X y ifandonlyif y Xxandy X (2.8)

and the proper inclusion by

X y ifandonlyif y Xxandy X (2.9)

Interval arithmetic operations are defined on so that the interval result
of an operation encloses the corresponding real operations. Let X Yy be
intervals. We define the usual binary operations with

Xy XYy X Xy Yy (2.10)

for ,and y Oif is the division operator. As indicated above
we use the same symbols for the interval operations as for the real operations.
This is natural since interval arithmetic is a superset of real arithmetic. This
can be seen from the fact that if X and Yy are degenerate intervals, and hence
real numbers, then any of the defined interval operations produces a degenerate
interval which by definition is the result of the corresponding real operation.

The elementary operations on given by Eq. (2.10) can be implemented
with

y X yx 'y (2.11a)
y X yxX vy (2.11b)
1 x 1 x1x if0 X (2.11¢)
Xy min Xy Xy Xy Xy (2.11d)

2.1 Intervals 7

The formula for the product can also be split into nine cases

0 x0 y: Xy XyXy Xy (2.12a)
Xx 0 X0 y: Xy XXy Xy (2.12b)
X 00 y: Xy XyXy Xy (2.12¢)
Xy 0 y: Xy XYXy Xy (2.12d)
Oy 0 y: Xy XXy XYy (2.12e)
0 xy 0 : Xy XXy Xy (2.12f)
x 0 Xy O Xy XyXy Xxy (2.12g)
x 0y O Xy XyXy Xy (2.12h)

x 0y O 5/ min Xy Xy B
Xy max Xy Xy (2.121)

The elementary functions such as cos sin exp etc. can also be defined to
operate on elements in so that the interval result encloses the corresponding
real operation.

For addition and multiplication we have the associative and commutative
laws

X y z X y z (2.13a)
X yz Xy z (2.13b)

X Yy y X (2.13¢)

Xy y X (2.13d)

The distributive law “X X 'y Xy XZ’ is not always valid for interval values.
Instead we have the sub-distributive law [39]

Xy z Xy Xz (2.13e)
In some special cases, the distributive law is valid:

Xy z Xy Xz forx and y z (2.14a)
z xy xzifyz 0 (2.14b)

We have the following properties regarding the absolute values and the widths of

8 Interval arithmetic

the result of arithmetic operations [2]:

X Y X y (2.152)
Xy Xy (2.15b)

w X Yy W X w Yy (2.15¢)
w XYy max Xwy YwX (2.15d)
w XYy X wy y w X (2.15e)
wly 1 y?wy (2.15f)

When implementing interval arithmetic on a computer, we control the round-
ing performed in every elementary interval operation so that the infimum of an
interval computation is rounded downwards, and the supremum is rounded up-
wards. Computations using rounded interval arithmetic always encloses the re-
sult of the exact interval arithmetic calculations.

2.2 Interval vectorsand matrices

We define interval vectors and interval matrices in the natural way, i.e., having
intervals instead of real numbers as elements. The space of all n dimensional
interval vectors is denoted by ", and the space of all m ninterval matrices is
denoted ™ " LetD N, We denote the set of all interval vectors in D by D

D X "'x D (2.16)

All arithmetic operations on interval matrices and vectors arise from interval
operations in the same way real matrix and vector operations arise from real op-
erations. The midpoint, width, magnitude, and intersection are definedon ™ "
by component-wise definitions. Let X and Y M Nbe interval matrices or
vectors with interval components Xjj VYij . Then we have

m X m Xj (2.17)

w X W Xij (2.18)

X Xij (2.19)

2.2 Interval vectors and matrices 9

X Y Xij Vi (2.20)
The ordering relations are defined component-wise,
X Y Xij yij fori 1 mj 1 n (2.21)
and in a similar manner. Inclusion is defined by
X Y Xij yij fori 1 mj 1 n (2.22)
and proper inclusion
X Y Xij yij fori 1 mj 1 n (2.23)

For interval matrix and vector additions, we have the associative and com-
mutative laws

X Y <Z X Y Z (2.24a)
X Y Y X (2.24b)
for X Y Z M N Clearly we do not in general have the associative and

commutative laws for interval matrix and vector multiplications. We however do
still have the sub-distributive law

XY Z XY XZ (2.24¢)
Y Z X Y X ZX (2.244)

for suitable dimensions of the interval matrices or vectors. If X is a real matrix,
or vector, of the proper size, we have the distributive laws

XY Z XY XZ (2.24e)
Y ZX YX ZX (2.24f)

Further details on the properties of interval matrix operations can be found in
Alefeld and Herzberger [2, pp. 120-130].

10 Interval arithmetic

2.3 Interval functions

An interval function is a function F: ™M N F is said to be an interval
extension of the real function f if
fx F x forx X (2.25)

Interval functions are usually designed to be interval extensions of some real
function. If an interval function F has the property

X1 X2 F xq F X (2.26)

then it is said to be inclusion monotonic.

If a real function f: ™M " is given by an expression, then an interval
extension F: M "of f can be obtained by replacing all real arguments
by interval arguments, and all real operations by the corresponding interval op-
erations. It should be evident that by this transformation we obtain an interval
extension F of f. Interval extensions obtained in this way are called natural inter-
val extensions. Simple interval extensions are in theory inclusion monotonic, but
in practice, when performing rounded interval arithmetic on a computer, it will
depend on the actual rounding performed. We do not use inclusion monotonicity
in this report because of this machine dependency.

Using interval arithmetic we can calculate enclosures of the range R f X
of f over interval vectors X n

R f X fx x X (2.27)

However, we will generally not obtain the exact range R f X when evaluating
the interval extension F X . For example, the function

fx x1 x (2.28)
has the range 0 025 over X 0 1, while the interval extension
F x X1 X (2.29)

yields the interval O 1. This overestimation occurs because the two occur-
rences of X in the expression are regarded as independent in the interval ex-
tension. Since every occurrence of a variable in an expression is considered
as independent when forming the interval extension, it is important to minimize

2.3 Interval functions 11

these occurrences. The occurrence of X in the above example cannot be min-
imized. However, if for g X X 1 X, we should use the interval extension
G x 1 1 x 1 instead of the obvious G X X 1 Xx.

Overestimation can also cause an interval extension of a real function to be
undefined for some interval arguments [2, p.22]. The real function

1

h x 2 1 (2.30)
2
1s defined for all X and has an interval extension
1
H x — (2.31)
XX 3
However, evaluating H 1 1 , we obtain
1 1

H 11 2.32
11 11 3 0515 .
so the interval extension H is not defined for all X . In the following we will

not regard this as a problem since we automatically will discover if an interval
function is undefined when evaluating it.

Integrals of interval functions can be defined [10, 38]. We will only consider
integration of interval functions of type F : X , where X , which have

integrable endpoint functions F F, so that F t Ft Ft ,fort x. We
define the integral of F in the interval ab X by

F t dt Ftdt Ftdt (2.33)
ab ab ab

which has the following properties [10, 38]:

ft Ft fort ab ftdt Ftdt (2.34a)
ab ab

F t dt F t dt Ftdt forx ab (2.34b)

ab ax xb

Furthermore, if F is either non-negative or non-positive in the interval a b, then
for c we have [54]

b b
cFtdt c Ftdt (2.34¢)

a a

12 Interval arithmetic

Proof
Assume that F is non-negative, i.e., that
0 Ft Ft fort ab (2.35)
Now we have
b b b
0 Ftdt Ftdt Ftdt (2.36)
a a a

By splitting into three cases and using the relations Eqgs. (2.12a-2.121), we obtain

a) If0 ¢ G, thenusing Eq. (2.12a) we obtain the following

b b . b b
cF tadt cFt cFtdt ¢ Ftdttc Ftdt
a a a a
b . b
cT Ft Ftdt c Ftdt

N a a

b) Ifc 0 C,then using Eq. (2.12b) we have

b b - b b
cF t dt cFt cFtdt ¢ Ftdtc Ftadt
a a a a
b b
ccT Ftdt c¢ Ftdt

a a

c) Ifc T 0, then using (2.12¢) we have

b b b b
cF tadt cFt cFtdt ¢ Ftdttc Ftdt
a a a a
b . b
cT Ft Ftdt c Ftdt

N a

o))

Since all three cases leads to the same result we have proven Eq. (2.34c) for
non-negative F t . The same can be done for an F which is non-positive.

2.3 Interval functions 13

It is important to note that Eq. (2.34c) cannot be used if F changes sign over

the interval we integrate. As an example, let C 11 andF t tt:
1 1
11¢ttdt t t dt 11
1 1
but
1

11 ttdt 110 O
1

14

Interval arithmetic

15

3 Taylor’s Theorem and the mean value enclosure

Taylor’s Theorem plays a very important role in this report.

Theorem 1 (Taylor's Theorem) Supposé¢hat p x is differentiablen timesin a
convex setD containingthepointxy D, andthatp " x is integrable fromxg

toanypointx; D. Nowwehave

n 1
1
PXt PX égp"xO x1 XK Ryxoxt
k 1™
whee
n Yo 1 gt
Rh X0 X1 X1 Xo Op ogx1 1 QXoﬁdq

For the proof, see [44].
Using n 1 we obtain the well known formula

1
PX1 PX X1 Xo Oqul 1 qxpdg

This relation is used in the following theorem.

Theorem2 Letf C!D ",wheeD ™Misanopenset. For x
have

fx fy F x x yforxy x

LetF beaninterval extensionof f .

Proof
Using that X is a convex set, Eq. (3.2) and Eq. (2.34¢) yields

1
fx fy Xy f gx 1 gydq
0
1
Xy F x dq
0

1
X YF X 0ldq

X YF X

(3.1a)

(3.1b)

3.2)

D we

(3.3)

16 Taylor’s Theorem and the mean value enclosure

O

A way to reduce overestimation in the evaluation of a differentiable function f
Cl ™ N inasetofreal numbers X X is by using the mean value enclosure:
Sincefx fy f X x y,wherexy X,wehavef x Fyn XYy,

Fmxy fy F x x y fory X (3.4)

The interval function Fy, is called the mean value enclosure of f. For small
widths of X, this interval function often provides tighter enclosures than the
natural interval extension of f. Normally Yy is chosen to be the midpoint of X .

It has been shown that Fy, is inclusion monotonic if the interval Jacobian
matrix F is inclusion monotonic [8, 47]. However this property is not always
inherited when using rounded interval arithmetic. As an example, consider the
function f X X2, with the mean value interval extension Fy, X m X 2
2X X m X . If we evaluate Fy, using rounded interval arithmetic where
only integers are allowed as interval bounds, we can obtain different results when
evaluatingin X 01,

Fn 01 moO012 201 01 moOl
Depending on which way we round m 0 1 , we have the two cases

Fn 01 0 201 01 0 02
Fn 01 12 201 01 1 11

Both cases leads to an enclosure of the true result 0 1, but the example shows
that Fy, does not have the inclusion monotonicity property.

3.1 Theinterval Newtonand Krawczyk methods

Among the most important tools in interval analysis are fixed point theorems.
One of these is the Brouwer fixed point Theorem [21].

Theorem 3 (Brouwer's xed point Theorem) Everycontinuousmappingof a
closedboundectorvexsetin "intoitselfhasa xed point.

Assume that f : " Nis a continuous function, and F is an interval extension

of f. Since an interval vector X Nis a closed and bounded convex setin ",

we have that if R f X X then it follows from the fixed point theorem that

3.1 The interval Newton and Krawczyk methods 17

f has a fixed point in X . Since R f X F x , it follows that the condition
F X X, which can be checked automatically in a computer program, also
implies existence of a fixed point of f in X. Algorithms which use fixed point
theorems in this way to prove existence are called ‘“‘self-validating algorithms”.
In the example, Eq. (2.28), where f X X1 X wefoundthatF 0 1 01.
Hence, f has a fixed point in 0 1. In the following we will see some very
important applications of fixed point methods.
Consider the problem of solving the non-linear equation

fx 0 (3.5)

where f: " "is a continuous function. A well known method for solving

this equation is finding fixed points of the mapg XY x Yf X, where Y

N Nis a non-singular matrix. We have the relation

fx 0 gxY x (3.6)

Assume that f is differentiable. UsingY ~ f x lin the fixed point oper-
ator g yields the method of Newton

nx x fx fx (3.7)

if f X is a non-singular matrix. Because of the property Eq. (2.15¢) the simple
interval extension of Newton’s method X F x 1F x is useless since
its width generally is larger than X, unless F X 0. Instead, we define the
interval Newton operator by

Nxx x F x Yxforx x (3.8)

where F is a interval extension of f ,and F X should not contain any singular
matrices. The interval Newton operator has the following properties [1]:

1) If x X is a solution of Eq. (3.5),thenx N X X.
2) If x N x X O, then no solutionin X exists.
3) IfN x X X then a unique solution exists in X .

It is normal to choose X m X when implementing the method. Furthermore
the interval linear system F X r f X can be solved using an interval Gaus-
sian algorithm instead of explicitly computing the inverse of F X , (see [1]).

18 Taylor’s Theorem and the mean value enclosure

If we have a case where N X X X 0, but neither 2) og 3) apply it is usual
to continue the search for solutions of Eq. (3.5) in X N x X X or if
X X, the two halves in a bisection of X .

Another fixed point operator is the Krawczyk operator, which occurs when
forming the mean value enclosure of g X Y , (see [31]):

K xxY x Yfx I YF x x x forx X 3.9)

SincegxY x fx OandK X XY isaninterval extension (mean value
enclosure) of g X Y , we have by Brouwer’s fixed point theorem that the condi-
tion K X XY X implies existence of a solution X x to Eq. (3.5). We
have the same properties for the Krawczyk operator as for the Newton operator,
except for uniqueness, but if one of the following criteria is fulfilled along with
the condition K X XY X, then we have uniqueness:

1) F X does not contain any singular matrices, (see [1]).
2) We have the proper inclusion K X XY X, (see [42]).

It is normal again to choose X m X and the real matrix Y f x 1 when
implementing the Krawczyk operator. The advantage of using the Krawczyk op-
erator instead of the Newton operator is that we do not have to solve a linear in-
terval system, but instead we invert f X ! using normal machine arithmetic.

Since the mentioned fixed point methods are capable of proving existence
and uniqueness or non-existence of solutions to Eq. (3.5) in some interval vector
it is possible to create algorithms that find all solutions of Eq. (3.5) in a given
interval vector. These algorithms work by subdividing the interval vectors until
existence/uniqueness or non-existence of solutions can be proved [9, 40]. Using
these methods it is possible to find all solutions of non-linear equations of very
high complexity [53, 26].

19

4 Enclosure methods for discrete mappings

An n dimensional discrete map is a function | which maps the n dimensional
real space onto itself, j : " N, These classes of functions are often used
to describe the development of the state of some system, e.g. when discretizing
ordinary differential equations, which we will see later. Given an initial value
Yo N, we can generate a sequence of points i j o defined by

Yi1 jVyi fori 0O 4.1)

The problem of enclosing these points by using interval arithmetic is very well
known, and in many cases it is difficult to obtain narrow interval vector enclo-
sures. The difficulties arise since the set R j y; in general is not an interval
vector, but since the evaluation of the simple interval extension of j is an interval
vector which encloses® R j Vi , it inevitably also includes points which are not
intheset R j Yy . If we use the simple interval iteration

yi1 F y fori O 4.2)

where F is an interval extension of | , the problem gets even worse since false
values introduce other false values throughout the iterative process. This effect
has been named “The wrapping effect” and is mainly discussed in connection
with solving ordinary differential equations [37, 38, 41].

Moore demonstrates the wrapping effect by using the following map [38]

X cos Dx sin Dt X

J rot y sin Dt cos DX y 43)

This map rotates points in the plane clockwise in an angle of Dt about the ori-
gin. If we apply the map, using Dt %, on an interval vector Xg Yo
095005 005005 ,wegetasetRjrt Xo Yo , which is a rotated
rectangle. Enclosing R jyot Xo Yo in the interval vector X; Y1 intro-
duces some overestimation. In the next step, Xp Yo is an enclosure of
Rjrot X1 Y1 ,and so forth; see Figure 4.1.
From Figure 4.1 we see that the simple interval iteration Eq. (4.2) performs
very bad on Eq. (4.3); the size of Xs VY5 is many times biggerthan Xg VYo ,

eventhoughR j >, Xo Yo in theory has the same size as Xo Yo .

SThisis calledthewrappingof R j y;i .

20 Enclosure methods for discrete mappings

15

0.5]

-1.5 -1 -0.5 0 0.5 1 15

Figure 4.1: Five simpleinterval iterations,using the mapin Eq. (4.3) with Dr & andthe
initial interval vector xo yo 095105 005005 . The solid rectanglesare the
interval vector enclosures xj y; j o 5 while the dashedrectanglesare their images
Rjra x y forj O 4,

4.1 Lohner'smethodusedon discretemaps

Lohner’s method is probably the best known method for solving ordinary differ-

ential equations with automatic verification of existence of the solution in inter-

val bounds. The method is described in various places [34, 35, 41, 50, 49, 55]

and Lohner has developed a program, called “AWA”®, for solving initial value

problems, using this method. We will here see how to use the method on discrete

mappings, and then later use it for discretizing ordinary differential equations.
Consider discrete maps of the type

jy Ty ey 4.4)

where | is a known and differentiable function which approximatesj , and eis an
error which can be bounded by some interval function S y ,i.e., we haveey

6AWA is anabbreiationfor “anfangswertaufgabenthichis germarandmeansnitial value
problem.

4.1 Lohner’s method used on discrete maps 21

Sy fory y. Given an initial point Yo n

Yi j o by

, we generate the sequence

Yir Jyi Ty ey j 0 4.5)

Let 2z j o be asequence of interval vectors in " which encloses the er-
ror term, i.e.,, Zj 1 SYj so that eyj; zj 1 forj 0. Note that zg
is chosen arbitrarily. Furthermore, let Sj j o be a sequence of vectors so
Sj zj for] 0. Define the vector sequence yj j o0 by

Yo Yo S and Yj 1 [Y s forj O (4.6)
and an enclosure sequence Yj | o by
Yo Yo 2% and Yj1 [y oz forj O 4.7)

We will now have §; yj forj Oand
0 z sij 9y 9jforj O (4.8)
Using Eq. (3.2) to expand | yj in Eq. (4.5) we obtain
R, S/ . . .
Yi1 'Y [ayj 1 aqyjdg y; ¥ ey
o 1y (4.9)
Definingrj yj; ¥jand

lﬂ'~
RY; 9 ."iyqyj 1 qy; dq (4.10)

we can rewrite Eq. (4.9) as
Yir T Y¥ Ssi1 Ryjpyirj eyj s
Vi1 Ij1 (4.11)
where
rir Ryjyiri eyj s1 (4.12)

Since ¥j 1 in Eq. (4.11) is a real vector which can be found in practice, the
problem of finding a narrow enclosure of rj 1 remains. In the following we will

use an interval extension of %, denoted by F.

22 Enclosure methods for discrete mappings

4.1.1 The meanvalueenclosue

Assume that a) rj is an enclosure of rj, b) 0 rj, and ¢) Yyj is an enclosure
of both yj and ;. Define §; F y; sothat Ryj Y; Sj . We can now
enclose j 11in Eq. (4.12) by

1 Srj Zj1 S 1 (4.13)

Using the relation in Eq. (4.8) we have rj 1 rj 1, where

ri 1 Sj rj Vi1 Y1 (4.14)
From Eq. (4.11) we havey; 1 ¥ 1 rj 1. Hence we define
Yi1 Y1 fj1 (4.15)

‘We have now that
a) rj 1 rj 1 by definition.
b) Sincey; 1 Yj 1 and0 rj, we have from Eq. (4.14) thatO rj 1.

¢)Yj 1 Yj 1 bydefinition. Since 0 rj 1 we have from Eq. (4.15) that
Yi1 Yj1-

Since our assumptions a)-c) are invariant throughout one iteration, they will be
true throughout all iterations as long as they are true from the beginning.

This leads us to Algorithm 4.1.

If also the error term e yj in Eq. (4.5) is known to be a differentiable func-
tion with the interval extension S 'y of the Jacobian matrix, then we are also
capable of calculating an enclosure of the matrix

R
P 4.16
j Ty Yo ()
Using the chain rule on Eq. (4.5), we get
1} e
i —vyvi — Vi Dj 4.17
i1 Ty Yi Ty Yi j ()
Hence we have Dj 1 Dj 1, where
Do | and (4.18a)
Dj 1 S Sy Dj forj 0 (4.18b)

It is easy to modify Algorithm 4.1 to also include calculation of Dj 1.

4.1 Lohner’s method used on discrete maps 23

Initialize:

Yo.Yo m Yo ., fo Yo VYo

Input:

Yi»Vis T -

Iteration:

Zj 1 S y] s

Vi1 TY9 7,
S F i,

Yi1 m Y1,

Yiit Siri Vi,
a2 Yi1 91

Output:
Yi 1,Y 1, Fj 1.

Algorithm 4.1: The meanvalueenclosureof thediscretemapEg. (4.1).

4.1.2 The extendedmeanvalueenclosue

Let Aj j o be a sequence of regular real matrices’ and define f; A .

Assume that a) fj is an enclosure of fj, b) 0 fj, and ¢) Yyj is an enclosure
of both yj and yj. Define S F yj ,sothat Ryj V; Sj . We have from
Eq. (4.12) that

r 1 Aj 1Aj 11R Yi Vi AjA; ll‘j Aj 1Aj 11 eyj S 1
Aj 1 A LRy ¥j Ajf; A Ley, s (4.19)
And using fj 1 Aj llrj 1, we find
i1 A LRy yj Ajf; A Ley, s1 (4.20)
which can be enclosed by

fj 1 Aj l1 SjAj Aj 11 Vi1 Y1 (4.21)

"Wewill laterdiscusshow tochoose Aj j o .

24 Enclosure methods for discrete mappings

An enclosure of yj 1in Eq. (4.11) can be found by [50]
Yi1 Y1 SA i Y1 Y (4.22)
We now have
a) fj 1 fj 1 by definition.
b) Since¥; 1 ¥j 1 and0 f;, we have from Eq. (4.21) that0 fj 1.

c)Yj 1 Yj 1 bydefinition. Since 0 f; 1 we have from Eq. (4.22) that
Vi1 Y.

Also here our assumptions a)-c) are invariant throughout one iteration, and they
will be true throughout all iterations as long as they are true from the beginning.
This leads us to Algorithm 4.2.

Initialize:

Yo.Yo m Yo ,fo Yo VYo.Ao |I.

Input:

YioYis fi. A
Iteration:

Zj 1 S Yi >

Vi1 TY9 7,
S F oy,

Yi1 m Y1,

Choose a regular real matrix Aj 1,
Yir SAR Vi
fie AT SA ff Ay Y.

Output:
Yj 1.Y 1. fj 1.

Algorithm 4.2: Theextendedmeanvalueenclosureof thediscretemapEg. (4.1).

As in the previous method, we are able to calculate an enclosure of the ma-
trix Dj given in Eq. (4.16) if the error term e yj in Eq. (4.5) is known to be a

4.1 Lohner’s method used on discrete maps 25

differentiable function with the interval extension S 'y of its Jacobian matrix.
Let D; A Dj, we have from Eq. (4.5) that

Dj1 A %yj %yj AjD; (4.23)

Hence we have Dj 1 Dj 1, where
Do Agt and (4.24a)
Dj 1 AYy S Sy A Dj forj 0 (424b)

We now have an enclosure of Dj 1 by
Dj1 A 1Dj1 (4.25)

This enclosure can easily be included in Algorithm 4.2.

If we choose Aj | for j 0 in Algorithm 4.2, then we will obtain the nor-
mal mean value method described in Algorithm 4.1, which encloses the uncer-
tainty of the solution set in an interval vector

r 1 r 1 (4.26)

The reason for introducing the sequence Aj j o in the latter method is to be
able to represent the uncertainty of the solution set as

r 1 Aj 1f f f’j 1 4.27)

which is a more flexible set than the interval vector enclosure. The matrix Aj 1
should be chosen in such a way that the set

fi 1 Ajllsp,- 4§ Ajlly Vi1 S S f fy 91
(4.28)

“looks” like an interval vector so that the interval vector enclosure fj 1 does
not introduce too much overestimation. Since the error term in general is small,
ie., ¥j 1 ¥j 1isanarrow interval vector, we will only consider the problem
of choosing Aj 1 in a way that the set A, L'sA ¢S S f £ “looks”
like an interval vector.

An obvious choice is Aj 1 m Sj Aj so that Aj 11 Sj Aj encloses the
identity matrix. Lohner [34] calls the enclosure using this choice of Aj 1, the

26 Enclosure methods for discrete mappings

“parallelepiped enclosure”. He argues that this enclosure method is only practi-
cal if the matrices A;j 1 are very well conditioned. This leaves out stiff systems.
The matrix Aj 1 should also be regular, which is not assured by this choice of
Aj 1.

In general, the best known method is the “QR-factorization method” which
was proposed by Lohner [34]. In this method, the matrix A;j 1 is the Q matrix ob-
tained in a QR factorization of the matrix Aj 1 Aj 1P} 1, where Aj 1 Sj A
and Pj 1 is a permutation matrix. The Q matrix in a QR factorization is orthog-
onal, and the matrix R1is upper triangular. Since the matrix A;j 1 is orthogonal,
the enclosure obtained by using this matrix is a rectangular enclosure, which can
rotate freely.

By the relation Aj 1R Aj 1, where R is an upper triangular matrix and

Aj 1 2 1, we see that the first column in Aj 1 is a normalization of the first
column of Aj 1 and that the ith column of Aj 1, fori 2 Nis a normalization
of the projection of the ith column of Aj 1 to the orthogonal complement of the
previousi 1 columnsof Aj 1.

By choosing a permutation matrix Pj 1 so that the first column in Aj 1P 1
contains the vector in which the parallelepiped Aj 1f £ fj has the largest
span and the second column of Aj 1Pj 1 contains the vector in which the set has
its second largest span, and so forth, we insure that the directions in which the
parallelepiped has the largest span are enclosed best by the rectangular enclosure.

Consider the vector |, where the ith component |; is the norm of the ith col-
umn of Aj 1 multiplied with the width of the ith component of f; :

l; Aj 110 ow fji (4.29)

Now l; is the length of the edge in the parallelepiped induced by the ith compo-
nent of fj. By choosing Pj 1 so that the vector ITPj 1 contains the elements
of |, sorted in decreasing order, we insure that the vectors in Aj 1 are sorted by
1mportance.

Consider the following example: Let

~ 1 2 11

Aj 1 31 and I 39 (4.30)
The parallelepiped Aj 1f ¢ fj , which we want to enclose, is shown in
Figure 4.2. We find | 2 105 57, and see that the second component of

fj induces the direction in which the parallelepiped has the largest span. Hence

4.1 Lohner’s method used on discrete maps 27

Figure 4.2: The parallelepiped Aj 17 7 Fj (grey area),with Aj 1 and 7 givenin
Eq. (4.30), the coordinatesysteminducedby A 1, andthe rectangularenclosureof the par
allelepiped.

the matrix Aj 1 18 chosen so that it contains the columns from Aj 1 1In reverse
order.

A 2 1
Aj 1 | 3 (4.31)
A QRfactorization of Aj 1 yields
1 2 1
Aj 1 — . 2 (4.32)

28 Enclosure methods for discrete mappings

The coordinate system induced by Aj 1 is shown in Figure 4.2. The paral-
lelepiped can then be enclosed by the rectangle Aj f £ fj 1

10 7

- 1
-
fi 1 Aj 1A 1 1] —§ 55

(4.33)

where we have used that Aj 1 is orthogonal, hence Aj 11 AjT 1- The rectangular
enclosure is shown in Figure 4.2.

In practice, on a computer where we compute Aj 1 using a QR-factorization
based on floating point calculations, we cannot be sure that Aj 1 is completely
orthogonal. To enclose the true inverse, consider the following: We have that

Al AT AAT 1
AT AT AAT 1 ATAAT AAT 1
AT AT AAT AAT 1
Al AT AAT 1 1 o AAT T
Consider a norm where | 1, e.g. the max-norm y,and letq | AAT .
Assume that 1, now we have

AT ¢ | AAT y q

Al AT AT 4.34
¥ I T A ¢ 1 g ¥ (4.34)

which means that we can enclose the correct inverse by
Al AT dd d %} AT (4.35)

where d d isann ninterval matrix with all elements equalto d d.

Consider again the map in Eq. (4.3), which rotates points in 2 clockwise
in an angle of Dt about the origin. This time we form the extended mean value
enclosure using the “QR-factorization method”. Since the map Eq. (4.3) is com-
pletely known, we have thatey 0 in Eq. (4.4). This means that z; O for
J 1in Algorithm 4.2. Furthermore the Jacobian

~ cos Dt sin Dt

S F oy sin Dt cos Dx (4.36)

is an real orthogonal matrix so, Aj 1 Sj , assuming that no permutation is
done before the QR-factorization. With these considerations in mind, we can
simplify Algorithm 4.2 considerably.

4.2 Enclosing iterates of the Cos-Sin map 29

15

0.5]

051 €| 3

1.5 I I I I I

Figure4.3: Teninterval iterationsof the extendedmeanvalueenclosureof the mapin Eq. (4.3)
with Dr % andthe initial interval vector xp yo 095105 005005 . Thesolid
rectanglesretheinterval vectorenclosures xj yj j o 10Whilethedashedectanglesire
therotatingrectangleenclosuresAj + 7 7 1 forj 1 10.

Using the same Dt and initial values as before and applying the extended
mean value enclosure, we obtain the enclosures shown in Figure 4.3. From the
figure we see that the extended mean value enclosure performs better on this
example, compared to the natural interval extension that we used in Figure 4.1.
Since the set R j rot Xj Yj itself is a rotating rectangle, we can enclose it
perfectly, without any global overestimation. The only overestimation present in
this example is when forming the local enclosure the rotating rectangle.

4.2 Enclosingiterates of the Cos-Sinmap

Consider the Cos-Sin map, given by [26, 53]:

X cos X ay

y sin bx 'y (*.37)

jcs

30 Enclosure methods for discrete mappings

This map is a non-invertible map which maps the area 1 1 1 1 intoitself.
The map is completely known, and we canuse €y 0 in Eq. (4.4). From an
initial point Xg Yo , we generate a sequence of points in 2, XjYji jo

by Xj 1Yj 1 JecsXjyj. By forming the simple, the mean value, and the
extended mean value interval enclosures of the iteration starting with the initial
value Xo Yo 106 11 1 1 ,and the parametersa 2andb 2,
we obtain three sequences of interval vectors. In Figure 4.4 the maximal widths
of iterates max w X; w Yj for the three sequences are plotted versus the
iteration number j.

15

<,
B}
T
*
*

)

iy

I

*
*
P R e e e e R
*

©

o

max(w(lyDw(lx))

*
*

*

we
*
+

bawn 1 10"}

max(w(lx]),w(f

=
o
el

10 .) 20

0 10 2b 30 40 0 100 200 300 400 500
iteration j j

10

Figure4.4: Thewidth of threeinterval sequenceenclosingiteratesof the Cos-Sinmap. (both
gures) + : naturalinterval enclosure(left gure) * : meanvalueenclosureor j 0 40,
(right gure) * : extendedmeanvalueenclosurdor j 0 250. The parameterarea 2
andb 2.

From Figure 4.4 we see that when using the natural interval enclosure, the
width of the iterates grows very fast until they have reached the width 2 after
approx. 20 iterations, then it stalls since the interval implementation of cos and
sin returns intervals which lies in the interval 1 1. The width of the mean
value enclosure also grows very fast, but does not stop at the width 2, but con-
tinues to grow because of overestimation. However the width of the extended
mean value enclosure grows in the beginning, but then, after the a few iterations,
it decays until a steady state is reached, after approx. 400 iterations. The width
of the enclosure when it has reached the steady state is of the order of the ma-
chine accuracy and we cannot expect better enclosures. When examining the
sequence Xj Yj j o fromthe extended mean value enclosure (not shown
here), it appears that the sequence converges towards a period 8 fixed point, i.e.,

4.2 Enclosing iterates of the Cos-Sin map 31

a sequence of points where Xj yj] gs Xj Yj . From the example, we see that
wrapping can cause the width of the interval solution to grow unacceptably —
causing the enclosures to be completely useless. But by using a method which
fights the wrapping effect, the example shows that even if we start with some
uncertainty in the initial value, this uncertainty will be damped throughout the
iterative process. We can in principle continue the iteration of the extended mean
value enclosure and enclose any iterate Xj Yj .
Now consider a modified Cos-Sin map,

. X cos X ay eXYy

J mes y sinbx y Xy (4.38)
where the functions € and €y are not exactly known, but known to belong to
some interval & €y e e. Two interval sequences were generated using the

extended mean value enclosure with the error bounds € 10 8ande 10 .
The same parameters and initial values as before were used. The widths of the
enclosures are plotted in Figure 4.5.

3 10
10 T T 10
A
* * o
* * % A
* % "
P * s a
Al e BT 5 A
10 T s ¥ n * 10 »
— * * ¥ KK — *
= R * * = *
= P = K
X &j * o * X *
= = P
z . * P }* }* * 2 Py
= * * * % _.A0
St07 ¢ . Tt T T 1 30 -
=4 ¥ * Ha Feoge R R g 5 . R
< * * P PR - 4 g PR
é * L < A R A *
* * ok K x A @ ot *
£ * * £ W*’*ﬁ HF
10°k * * ox x x o x w 10° L
*
7 10
10 - . 10 . . .
0 50 100 150 0 20 40 60 80
iteration j iteration j

Figure4.5: Enclosingiteratesof the not completelyknown function mcs using the extended
mearvalueenclosurelLeft gure, usinge 10 & Right gure, usinge 10 ’. Theparameters
area 2andb 2.

From Figure 4.5 we see that even if each step in the iterative process is not
completely known, we are still able to form a good enclosure of the sequence
(e 10 8), however, if the uncertainty gets too big, the enclosure will after some
iterations get too wide and not be very informative (e 10 7).

We can even also allow the parameters a and b to be intervals; using a
2 dd, b 2 dd ford 10810 “ande 10 8,wegenerated

32 Enclosure methods for discrete mappings

two interval sequences using the same initial values as before. The width of the
enclosures are plotted in Figure 4.6.

3 10
T

10 10
* *
* *
*ER B
4 ox XN * 5 N
100 ot R * 10 ol
* R T T *
— * g * * ¥ — *
= X% * Ky oxx ¥ = *
X * * o F * = R
= * %) K
s L. . T, =t K
= 5 P . x Kk *F x x = o 2
= Lg En 4 = *
=10 * b R s ke wx kA 310 *
= E R A = S
2 * . Xk, A KK 2 K
= wy T T T T T Z F g A
x * * * x X * A* X
% * P s PR *
€ . £ gt *
6 P 5 PP h
10 * 1 107 e
7 10
10 . . 10 . . .
0 50 100 150 0 20 40 60 80
iteration j iteration j

Figure4.6: Enclosingiteratesof the not completelyknown function mcs usingthe extended
meanvalue enclosure. Left gure, usinga b 2 1110 8ande 10 & Right gure,
usinga b 2 1110 “ande 10 8.

As in the previous example, where we only had uncertainty on € and €y, we
see that we are able to enclose all iterations of the map with all combinations of
the uncertaincies introduced, and as long as these uncertaincies are reasonably
small, still obtain narrow bounds.

33

5 Automatic differentiation

In the previous sections, we have seen that derivatives are quite important in
connection with interval analysis. We have used derivatives in Section 3 for
obtaining narrow bounds when evaluating functions and for proving existence of
solutions to non-linear equations using the Newton or the Krawczyk operators.
In Section 4 derivatives were used in connection with obtaining narrow interval
vector enclosures when evaluating iterative mappings.

Derivatives are important in other areas of science as well, but the use of
exact derivatives have been quite limited due to the misconception that they are
hard to obtain. Many people still think that the only alternative to the symbolic
way of obtaining derivatives is to use divided differences in which the difficulties
in finding an expression for the derivatives are avoided. By using divided differ-
ences, truncation errors are introduced, which usually have a negative effect on
further computations — in fact they can lead to very inaccurate results.

The use of a symbolic differentiation package such as Maple or Mathematica
can solve the problem of obtaining expressions for the derivatives. This method
obviously avoids truncation errors, but these packages usually have problems in
handling large expressions and the time/space usage for computing derivatives
can be enormous. In worst case it can even cause a program to crash. Further-
more, common subexpressions are usually not identified in the expressions and
this leads to unnecessary computations during the evaluation of the derivatives.

Automatic differentiation (AD) is an alternative to the above methods. Here
derivatives are computed by using the chain rule for composite functions. In
automatic differentiation the evaluation of a function and its derivatives are cal-
culated using the same code and common temporary values. If the code for the
evaluation is optimized, then the computation of the derivatives will be optimized
as well. The resulting differentiation is accurate up to roundoff errors. If we cal-
culate the derivatives using interval arithmetic we obtain enclosures of the true
derivatives. Automatic differentiation is easy to implement in languages with
operator overloading such as C++, Fortran 90, Java, Ada, and PASCAL-XSC:
See e.g. [25] for a survey of available AD tools.

5.1 Rational functions, code-listsand computational graphs

Assume that f: ™M "is a rational function, given by an expression in which
only rational operations occurs, e.g. the elementaryopemtions sin

34 Automatic differentiation

exp etc. We can decompose the expression for f X , X X1 Xm , into a list
of equations representing the function.

ti X g x Xfori 1 m (5.1a)
ti X gi t1 x ti 1 x fori m 1 [(5.1b)

where all the functions tj and g; are scalar functions and only one elementary
operation occurs in each of the functions gj. Such a list of equations are called a
code-list Let a; be the arity (number of dependencies) of the ith function gj in the
code-list. Elementary functions usually have an arity of 0, 1, or 2, corresponding
to a constant, an unary, or a binary operation. Define the map

ki: 1 aj li 1 i1 (5.2)
so that Egs. (5.1a-5.1b) can be written

ti Otk tka fori 1 | (5.3)

3

As an example, consider the function f : 2 given by

A xxy B 1 acoswt

fxyt XB xy

(5.4)

where A B a and w are given constants. Introducing the scalar functions t;
tj X y t , this function can be decomposed into the following code-list

t1 X tg ts tg

to y t10 t1 to

t3 t t1a ty 0

ta A tio t1n tio

tg B t13 ty t3 (53)
te a t14 cos t13

ty w tis te t14

tg ty to ti6 ti2 t1s

where f t16 t10 . The number of elementary operations used in Eq. (5.4) is
12 while it is 9 in Eq. (5.5). The reason for this difference is that we have used
tioXyt XxXB Xy asacommon subexpression.

The code-list can also be represented as a directedacyclic graph (DAG),
which is a graph where the functions t; are represented by nodes, and the depen-
dencies are represented by vertices. The graphs are directed to indicate which

5.2 Theory of the Forward and Backward modes 35

N

Figure5.7: A directedagyclic graph(DAG) representinghecode-listin Eq. (5.5).

way the dependencies goes, and they are acyclic since tj cannot depend on t j,
forj .

Figure 5.7 shows the DAG representation of the code-list in Eq. (5.5).

When a computer is used to evaluate a program implementing the function
f, the actual operations performed correspond to the operations in the code-list.
That is, the computer will interpret the expression into a list of simple operations
similar to those in the code-list and the values obtained when evaluating the
functions tj, at runtime correspond to temporary variables. Hence, we call this
the computational graph.

5.2 Theory of the Forward and Backward modes

Assume that f: ™M " is a rational function, given by an expression which
is decomposable into a code-list given by the functions gj. Furthermore assume
that all the functions gj are differentiable, and that we can obtain their derivatives.
Using the chain rule for composite functions on Egs. (5.1a-5.1b), we obtain

Tti 'o 1 Tgi Mt i
DG 8 I Ghere d
m; ka j Tt Tt A 0 otherwise

(5.6)

36 Automatic differentiation

forj i |.Usingt tiij1 1andg Oi i 1 I,thecode-list Egs. (5.1a-
5.1b) can be writtenast gt . Introducing the matrices

0
T92
foi 1 Y
Dg ar Tos g3 (5.7)
ity 451 T Y
and
1 0
Itz
it T
Dt — (5.8)
. Ttz it
Mty i1 T m |
we can formulate Eq. (5.6) as the matrix equation
Dt | DgDt (5.9
Since | Dgis a regular matrix, we have
Dt | DgDt
| DgDt | (5.10)
Dt | Dg !
Dt Dg |
| Dg 'DtT | (5.11)

The matrix Dg is usually very sparse since only the columns KijK x 1 g inthe
ith row can contain non-zero elements. This sparsity will be exploited later when
solving the above matrix equation w.r.t. Dt. We can solve the equation either by
using Eq. (5.10) or by using the transposed equation Eq. (5.11). Investigating
these matrix equations more closely, we see some important differences.

5.2 Theory of the Forward and Backward modes 37

In Eq. (5.10) we have

1 0 0 1 0
h[*] - Tt
1ty 1 ’ 0 ity 1
Tty It 1 ’ 0 qt, qt, 1 : 0
.) : S . . : (5.12)
190 T9n T9n 1 Ttn tn tn 1
Tty It2 Tth 1 1ty itz Tth 1

This equation can be solved for any of the columns in Dt by forward substitution.
By solving for the ith column, we obtain all derivatives with respect to ti. If we
want to find derivatives w.r.t. all arguments of f, we solve for the first mcolumns
of Dt. This method is called forward mode automatic differentiation (FAD).

Algorithm 5.3 is an algorithm, using forward substitution, exploiting the
sparsity of Dt. The algorithm evaluates the function f and all its partial deriva-
tives. It is very simple to alter the algorithm to find derivatives with respect to a
subset of the arguments of f.

Initialize the function evaluation and differentiation:
ti x fjj dij forij 1 m

Function evaluation and differentiation:

fori m 1tol

ti Otk tkia;

fi & — feiforj 1 m
4 kalﬂtkik kitor]
Output:
Iti
fiji1 171 m -
i i ﬂtj

Algorithm 5.3: Theforwardmodeautomatiaifferentiationrmethod(FAD).

38

Automatic differentiation

From Eq. (5.11) we have

1 hlls3 fgn 1 Tgn 1 T ta 1 ta
1t 1t 1t 1t 1t 1t
- Ton 4 T9n Tth 1 Mty
O ’ 1 ﬂtn 2 ﬂtn 2 1 ﬂtn 2 ﬂtn 2
(5.13)
0 .. 1 T9n 1 Mtn
’ ﬂtn 1 ’ ﬂtn 1
0 0 1 0 0 1

Equation Eq. (5.13) can be solved using backward substitution. If we solve
the equation w.r.t. the ith column in Dt T, we obtain derivatives of t; w.r.t. all
arguments of f (tjfor1 j m). This method is called backward mode auto-
matic differentiation (BAD).

Let D be the set of indices of the functions tj which are function values of f.
Algorithm 5.4 is an algorithm which evaluates the function f and all its partial
derivatives using backward substitution and exploiting the sparsity of Dt.

The surprising property of the backward method, and the reason why it has
become very popular, is that we are capable of computing all partial derivatives
of a scalar function f : Ct ™ just by solving w.r.t. one column of Dt in
Eq. (5.13), whereas in Eq. (5.12) we must solve w.r.t. m columns of Dt to ob-
tain all partial derivatives. The rule of thumb when choosing which method to
use for obtaining the Jacobian of f : C1 ™ " s to use the forward mode if
m nand the backward mode if m n. Another main difference between the
two methods is that, in the forward mode we obtain derivatives along with the
function evaluation while. In the backward mode we compute the function val-
ues first while saving all intermediate results, and then compute the derivatives
using the code-list in the reverse order. Because of this reverse order evalua-
tion of the derivatives, we have to obtain the dependencies and the values of the
intermediate variables used when evaluating the function. This corresponds to
“recording” a representation of the DAG for the function.

In both the forward and the backward modes we use partial derivatives of the
functions gj. In the following tables, we summarize the most commonly used
operations and standard functions and their derivatives.

5.2 Theory of the Forward and Backward modes

Initialize the function evaluation:
ti X fori 1 m

Function evaluation:
fori m 1tol

ti Qi tka tkia
Initialize the backward differentiation:
tij dijfori D j 1 [
Backward differentiation:
forj | downtom 1

fikjk fikjk &fijfori D k 1 aj

Ttk

Output:
fIti
fijioja i rr

Algorithm 5.4: The backwardmodeautomatidifferentiationrmethod(BAD).

40 Automatic differentiation

Unary operations:
. [l
g u U u
u 1
u 1
Binary operations:
: . exp u exp u
gi uv Yo uv o] uv
flu v 1 1
og u U
u v 1 1
U 1
u v 1 1 26i U
sin U cos u
uv v u
0 | g uv cos u sin U
\Y \Y Vv 5
tan u 1 g-u
u v 1 | giuvinu
asin U 1
2
1 gu
acos U I
2
1 gru
1
atan U ——
1 g u

5.3 Theory of the Taylor expansionmethod

The Taylor expansion method is a generalization of the forward method, where
instead of computing only the first derivatives, we obtain higher order derivatives
using recursive rules. These rules, also called Taylor arithmetic, is applied on the
code-list for the function in order to obtain derivatives of all intermediate values
in the same way that we did in the forward method. In this report we only
consider Taylor expansions of functions in one variable.

The kth Taylor coefficient function of f ~ CX N is denoted by f ¥,

ac fR 1 d

K K O (5.14)

5.3 Theory of the Taylor expansion method 41

where f f t . The kth Taylor coefficient of f in the point of expansion tg
is denoted by f ,

f k
fr fKtp —1 (5.15)
k!
Note that the zero order Taylor coefficient of f by definition is the function value
intg,i.e.,, f o f top. We have an important relationship between the Taylor
coefficients of f and the Taylor coefficients of f ,

. 11d'<dft 1
K1 k1 kidtk dt ° "k 1

o (5.16)

This relationship will be used extensively.
Letut andvt be k times differentiable functions. The elementary opera-
tions of the Taylor series arithmetic are [39]:

u Vg Uk Vi (5.17a)

u vy Uk Vi (5.17b)
I\ I\

u vy A UiVki Q UkiVi (5.17¢)
i 0 i 0
1 &

uvg — Uk aQ Vjuvg forvg 0 (5.17d)
Vo i1

The rule for division is formed by a simple rewriting of Eq. (5.17¢). Letw U v,
where v o 0. Now we have

k k
[] []

u g aA VijWk j VoWgk a VjWkgj
i 0 i1
1 k

W — U g éV‘Wk'

k

Vo e J J

If one of the functions U or Vv in the above binary operations is a constant, then all
of the Taylor expansion formulas shown above can be simplified considerably.
This is possible since all but the zero order Taylor coefficient of a constant is
zero,i.e.,ut C Uog Cand uj Oforj 1

42 Automatic differentiation

Because of symmetry in Eq. (5.17¢) when U Vv, we can make a special
formula for the Taylor coefficients of the square function. For K 1 we have

5 &
u= k a Ui Uy
i 0

k12

2 a Uj Uk kiSOdd,
E 2 (5.18)

2 é Ui Uk uﬁz kis even.

i 0

For the square root, let w Uso that W@ U, by using Eq. (5.18) we obtain

k12
2WoWyg 2 é Wi Wk i K is odd,
i1
Uk k2 2
2WoWgk 2 a WiWg; Wﬁz K is even.
i1
Isolating W U i, we obtain
Uy
k12
o — — .
L ux 2 34 Ui Uk i k is odd,
2 Uo i1
k 2 2
21U0 Uk 2 é Ui Uk i Gﬁz kis even, (O-19)
i1

The formula for w U?, where a is a constant, can be derived using Eq. (5.16)
and Eq. (5.17c). Assume thatuty 0, sincew au® 'u wu alfu
awu we have

k 1 k 1

o o
a W ijuki1j ag wWjuyg jfork 1
i 0 i o
From Eq. (5.16) we have W j 1 w 1. Using this relation we get

k 1 k 1
Kwyguo éjoUkj aék joUkijI‘k 1
j 0 j o

5.3 Theory of the Taylor expansion method 43

Isolating w U2 y gives the formula

1K1 o
k—uoa ak j j uwjuygjfork 1 (5.20)
j 0

Uak

This formula can not be used when U tg 0. In this case we have to use another
method.

The formula forw expucan be found in a similar way. Sincew wu we
have the relation

11
expu k Eé k j wjug jfork 1 (5.21)
j 0

Formulas for cos and sin can be obtained from the relations cos u sinu u
andsin U cosu u

15t
cosu i Eé K j sinujuyg jfork 1 (5.22)
j 0
1k°l
sinuU i Ea K j cosujuyg jfork 1 (5.23)
j 0

These relations have to be used in pairs.

Some other elementary functions can be expanded after the following con-
siderations. Letw f u be a composite function where w éu and é %.
Assume that the Taylor coefficients of g can be obtained. Now we havew g U,
SO

Kk 1 Kk 1 K
[} o . o . . .
kuyk aWwWijdk1j al 1 wWjidk j1 Qalwjgkj
i o0 jo i1

After isolating W g, we obtain

1 1kol
Wk — Uk —ajogkj fork 1 (5.24)
Jdo k]l

The following list of functions has been expanded using Eq. (5.24); see [51] for

44 Automatic differentiation

a more complete list.

1 151
loguy — Uk —Q jlogujuy j (5.25)
uo k i1
tanu ! u e, tanU ; cos?U i (5.26)
K cos? u 0 k jalj . K .
arcsinU g u g K a Jarcsinuj 1 U g
1 uj it (5.27)
arccos U g u g P a Jarccosu j 1 Uy
1 uj j1 (5.28)
1 151)
arctanu g 5 u g K a Jarctanu j 1 U g
Uo j1 (5.29)
all fork 1.
Assume that f : ™ "is a rational function given by an expression de-

composed into a code-list given by the functions gj as in Egs. (5.1a-5.1b). Fur-
thermore assume that all the functions g; are k times differentiable and that we
can obtain recursive formulas for their derivatives. Algorithm 5.5 computes Tay-
lor coefficients of f X to order K, using the code-list and the recursive rules, with
respect to the pth componentin X X Xm ,wherel p m

Since we have the relation Eq. (5.16) we can compute Taylor coefficients of
a function u t given implicitly by an ordinary differential equation

u fu (5.30)
Using the recursive relation
fk
u — 5.31
k1 1 (5.31)
and some initial value Ug Utp N we use Algorithm 5.5 to compute

uiq f o,then U % and so forth. In practice, one saves the Taylor co-
efficients of all the intermediate functions tij j 1 | j 0 «k When obtaining
the kth order coefficients, since they are unchanged when computing the k 1th
Taylor coefficients[16].

54 The FADBAD/TADIFF packages 45

Initialize the Taylor coefficients of the arguments:
tio X tix dip tij 0 fori 1 mij 2 Kk

Function evaluation in Taylor arithmetic:

fori m 1tol

forj Otok
tij O j g tki tia
Output:
Tt
tiji1 1jo0 Py
fitp

Algorithm 5.5: The Taylor expansionmethod.

5.4 The FADBAD/TADIFF packages

Two program packages FADBAD and TADIFF have been developed for doing
automatic differentiation of functions implemented as C++ programs [5, 6]. Both
packages work by overloading every arithmetic operation used in the program
implementing the function. This overloading does not affect the functionality of
the program, but adds computations of the derivatives as described previously.

The arithmetic used for performing the computations, called the basictypein
this connection, can be chosen freely when using FADBAD/TADIFF. This way,
programs based on double precision arithmetic, interval arithmetic, etc. can be
differentiated using the same library of overloaded operators, and the usage of
the packages is the same no matter what basic type one chooses.

FADBAD is a C++ program package which implements the forward and
backward automatic differentiation modes. As already discussed, the for-
ward method is mainly used for differentiating programs with few input
variables but many function values, i.e., of thetype f :C1 ™ " 'm n,
whereas the backward mode is superior on programs which compute few
function values but have many input variables, i.e., m n. Usually the for-
ward method is preferable on functions of the type N m. These rules are
just rules of thumb, as the optimal method depends on the actual structure
of the computations performed [20].

46 Automatic differentiation

TADIFF is also a C++ program package, but this package implements a
method which specializes in computing Taylor expansions, i.e., higher or-
der derivatives with respect to one variable. This is also possible using the
FADBAD package, but since FADBAD is designed to compute one order
of derivatives at a time, it is not optimal to use it for performing Taylor
expansions.

To invoke the overloaded operators, so that derivatives are computed when
running the program, one changes the names of the arithmetic types used in the
program. If the arithmetic type of the computations performed in a program
is, e.g. INTERVAL then automatic differentiation is enabled by changing occur-
rences of INTERVAL in the program to one of the types FINTERVAL, BINTERVA.,
or TINTERVAL depending on which method to use. Since the computation of the
derivatives using one of the three implemented methods in FADBAD/TADIFF
again can be differentiated, it is possible to generate higher order derivatives in
an extremely flexible way by combining the methods. Types which implement
combinations of the three methods are named: FF, FB, FT, BF, BB, BT, TF, TB,
TT, FFF, FFB,... and so forth, depending on the methods and order of differenti-
ation. The automatic differentiation libraries in FADBAD/TADIFF are generic,
so that any combination of the methods is possible. This flexibility opens up for
a whole new range of applications.

5.4.1 Typesand statesof arithmetic variables

When declaring variables to be one of the three automatic differentiation types,
some extra functionality is added. In order to describe how to use this function-
ality when a program using automatic differentiation is being executed, we have
to define some types and states of variables.

Tempoary variablesare variables that have been used during a computa-
tion to store intermediate values and then later discarded. This includes
variables introduced by the compiler to contain temporary results in evalu-
ation of expressions. These variables are previously used variables which
are not accessible by the user in the active scope of the program.

Activevariablesare variables that are declared in the currently active scope
of the program. If a new value is assigned to an active variable, the old
value of the active variable is remembered using a temporary variable.

54 The FADBAD/TADIFF packages 47

These two types of variables exclude each other. Furthermore the variables can
have one of two states:

Dependenvariablesare variables whose values are results of expressions
in which variables occured. Also an assignment to another variable makes
the assigned variable dependent.

Independenvariablesare variables which are not dependent. l.e., vari-
ables whose values has been assigned to a constant or an expression in
which only constants occured. Uninitialized variables are independent.

The type and state of a variable is dependent on its place in the program and
the state of the execution. Consider the function brussel in Program 5.1. This
function is a C++ implementation of Eq. (5.4) using the arithmetic type type for
performing the evaluation.

We can also present the function as the computational graph shown in Figure
5.7. Each node in the graph represents a variable which has been used during
the function execution. A vertex corresponds to a dependency: If the arrow on
the vertex is pointing to the node, then this node is dependent of the node in
the other end of the vertex. A node is independent if no arrow is pointing to it.
E.g. node number 1 is independent, corresponding to the independent variable X,
node number 16 is dependent, corresponding to the variable Xp. Node number
10 is also dependent, corresponding to the temporary variable tmp, which was
used internally in brussel , and the dependent variable yp. From the graph, we
see that also temporary variables used internally in expression evaluations are
nodes in the graph, e.g. node number 8 corresponds to the subexpression X*y in
the expression for the variable tmp.

Normally when implementing a function f as a C++ function, the indepen-
dent variables in the C++ program correspond to the arguments of f, while the
dependent variables would correspond to function values of f. In terms of auto-
matic differentiation of a C++ function, we differentiate the dependent variables
with respect to the independent variables.

5.4.2 Usingthe forward mode (FAD)

The forward mode of AD is probably the most easy to use since this method
does not need any recording of dependencies. Assume that the variables v and
w have been declared to be of Ftype , where type is some arithmetic type (e.g.
another automatic differentiation type). Furthermore assume that w during the

48 Automatic differentiation

Program 5.1 A simple C++ program, based on the arithmetic type type .

#include <math.h>
#include <type.h>

Il Declare some independ ent variables :
type A(2.0/5), B(6.0/5) ,0(M_PI/4) ,a(0 3);

void brussel(t ype &xptype &yptype xtype ytype 1)

{
type tmp(x*(B-x *y)); Il Declare dependent variable tmp
Xp=A-x-tmp +a*co s(0*t); Il xp is now a dependent variable
yp=tmp; II' yp is now a dependent variable

} /I tmp runs out of scope, it is

II' now a temporary variable.
void main()
{

Il Declare independe nt variables
type x(0.5)y(1 .5)t (0)x p.yp;

brussel(xp .y px,y.b) ; /I Function evaluatio n.

Il The variables xp and yp are here dependent variable s.
Il They are dependent on x)y and t.

54 The FADBAD/TADIFF packages 49

function evaluation becomes dependent of the independent variable v. We have
the following member functions:

void v.diffin t i, int m)is called befoe the function which makes
w dependent of v. It indicates that v is the i ’th variable out of m that
we want to differentiate with respect to. This actually corresponds to the
initialization in Algorithm 5.3.

type w.d(int i) is called after the function which makes w dependent
of v. It is used to obtain the derivatives of W w.r.t. the | ’th variable as

indicated by v.diffi ,m). This corresponds to reading the output values
in Algorithm 5.3. The value of the derivative is returned in the underlying
type; type .

type vx(int i) ortype wx(int i) can be called at any time. It
returns the value of the variable using the underlying type; type .

If we want to differentiate the dependent variables Xp and yp returned from
the C++ function brussel in Program 5.1 w.r.t. the independent variables X and
Yy, we change the types of the variables in brussel and main to Ftype and insert
the following piece of code in main instead of brussel(x p,y p, X,y ,t); .

x.diff(0,2); Il Indicate that we want to
y.diff(1,2); Il differen ti ate wrt. x and Y.
brussel(xp .,y pXx,y.b) ; /I Evaluati on and differenti ati on.

After the call to brussel in main, we have the values xp.x() , yp.X() , and
their derivatives xp.d(0) , xp.d(1) , yp.d(0) , yp.d(1)

5.4.3 Usingthe backward mode (BAD)

Assume that the variables v and w have been declared to be of Btype , where
type is some arithmetic type (e.g. another automatic differentiation type). Fur-
thermore assume that Wduring the function evaluation becomes dependent of the
independent variable v. We have the following member functions:

void w.diff(in t i, int n) is called after the function which makes
w dependent of v. It indicates that wis the i ’th function value out of n
that we want to differentiate. This actually correspond to the initialization
of the backward differentiation in Algorithm 5.4. Using this function we

50 Automatic differentiation

will also trigger the backward differentiation, so that derivatives are propa-
gated backwards in the computational graph which was obtained when the
function was evaluated. This backward propagation has been programmed
so that each node in the graph awaits results from all other nodes depen-
dent on it before propagating derivatives to the nodes which the node itself
is dependent on. Since all dependencies in the graph should be triggered
for the method to work properly it is very important to trigger the back-
ward differentiation on all active and dependent variables obtained from
the evaluation.

type v.d(int i) is called after the backward differentiation. It is used
to obtain the derivatives of the i ’th variable as indicated by w.diff(i, n)

w.r.t. V. This corresponds to reading the output values in Algorithm 5.4.
The value of the derivative is returned in the underlying type; type .

type v.x(int) ortype wux(int i) can be called at any time, it will
return the value of the variable using the underlying type; type .

If we want to differentiate the dependent variable yp, returned from the C++
function brussel in Program 5.1 w.r.t. the independent variables X, y, and t , we
change the types of the variables in brussel and main to Btype and insert the
following piece of code in main instead of brussel(xp ,y p,x ,y ,t)

brussel(xp .,y pXx,y.b) ; /I Evaluato n and different ia tio n.
Xp=xp.X(); II' Make xp an independen t variable
yp.diff(0, 1); /I Different iate yp.

After the call to brussel in main, we will have a computational graph equiv-
alent to Figure 5.7 stored internally in the computer. With the assignment
xp=xp.X() ; we assign a variable of type type to a variable of type Btype , the
value of xp is unchanged, but Xp is now considered as independent. This way
when we trigger the backward differentiation using yp.diff(0, 1); all active
and dependent variables has been triggered. Also an assignment Xp=117; would
make Xp independent, but this would change the value of xp. After the backward
differentiation, Xp and yp contains the function values, and the partial deriva-
tives of yp can be found in x.d(0) , y.d(0) , and t.d(0) . When performing the
backward differentiation, the allocated graph will automatically be deallocated.

54 The FADBAD/TADIFF packages 51

5.4.4 Usingthe Taylor expansionmethod (TADIFF)

The Taylor expansion method implemented in TADIFF can be used in two dif-
ferent ways; it can be used for Taylor expanding functions given explicitly by a
C++ function, or we can Taylor expand a function which is given implicitly as
the solution of an ordinary differential equation u f u , where the right hand
side is given explicitly by a C++ function.

Assume that the variables v and w have been declared to be of Ttype , where
type is some arithmetic type (e.g. another automatic differentiation type). Fur-
thermore assume that Wduring the function evaluation becomes dependent of the
independent variable v. We have the following member functions:

The index operator [] is used to access the Taylor coefficients. E.g. v[i]=a
assigns the i "th Taylor coefficient of v to the value a. Since the values of
the Taylor coefficients of dependent variables are dependent themselves,
the user should only assign other values to Taylor coefficients of variables
which are independent. After computing the Taylor coefficients of the de-
pendent variables — see w.eval(j) later — these coefficients are accessible
using the index operator, e.g. a=w[i] .

w.eval(k) computes up to order k’th Taylor coefficients of w. This oper-
ation will also compute Taylor coefficients of all the intermediate values
which was used to compute W. Note that, since Wis dependent on Vv, the
operation will use up to order k Taylor coefficients of v. These coefficients
have to be initialized by the user, either by assigning a value to v before the
recording of the tree, or explicitly by using the index operator [| as shown
above. Using the index operator on a variable v will not disturb dependen-
cies on vV, while assigning a constant to v will decouple all dependencies
of v.

w.reset() resets the Taylor coefficients of the dependent variable w and
Taylor coefficients of all dependent variables of which wis dependent, in-
cluding temporary variables. The independent variables will not be af-
fected. This operation is necessary if one wishes to reuse the computa-
tional graph to perform several Taylor expansions.

If we want to Taylor expand the function brussel in Program 5.1 with re-
spect to the variable t, we first change the types of the variables in brussel
and main to Ttype and insert the following piece of code in main instead of
brussel(x py p, X,y ,t); .

52 Automatic differentiation

brussel(xp .,y pXx,y.b) ; Il Record the computati onal graph.

Il The variables xp and yp are here dependent variable s.
Il They are dependent on x)y and t.

t[1]=1; Il Taylor expansio n wrt. t
xp.eval(10); /I Compute xp[d],..., xp[10].
yp.eval(10); /I Compute yp[1],..., yp[10].

After the call to brussel in main, we have a computational graph equivalent
to Figure 5.7 stored internally.

The line t[1]=1; sets the first order Taylor coefficient of t to the value 1.
This indicates that the Taylor coefficients of Xp and xp are to be calculated with
respect to t. If the line were omitted, all Taylor coefficients, higher that order
zero, will simply become zero. The line xp.eval(10); computes Taylor coef-
ficients to order 10 of xp. The Taylor coefficients to order i of Xp are available
after the evaluation as Xp[0] ,....xp[i] . All temporary results used in the com-
putations are saved along the computational graph, so when we evaluate the next
lineyp.eval(10) ; the temporary variable corresponding to tmp in Program 5.1
does not have to be Taylor expanded once again.

Since we do not deallocate the computational graph when we perform the
Taylor expansions it is possible to reuse the graph for Taylor expanding in other
points as well. If we also want to expand in e.g. the point (X,y,t)=(2,-0.5, 1.8)
we could insert the following piece of code after the previously inserted code.

Xp.reset() ; /I Resets dependent variables of which
yp.reset() Il either xp or yp is dependent .
X[0]=2;y[0]=-5; /I New point of expansio n is inserted
t[0]=1.8; II' in the zero order coefficien ts.
t[1]=1; Il Taylor expansion wrt. t

xp.eval(10); /I Compute xp[0],.. ., xp[10].

yp.eval(10); /I Compute yp[0],.. ., yp[10].

If the two lines resetting the dependent variables Xp and yp were omitted,
the statements xp.eval(l 0); and yp.eval(10); would do nothing since the

54 The FADBAD/TADIFF packages 53

Taylor coefficients of Xp and yp and all intermediate variables in the dependency
graph already have been computed to order 10. It is also important to see how
the values of the independent variables are changed, i.e., we use X[0]=2; and
NOT x=2; as the latter would decouple the variable X from the computational
graph.

As mentioned in Section 5.3, Taylor expansion can also be used for expand-
ing a function given implicitly as the solution to an ordinary differential equa-
tion (ODE) u f u. Here we have the relation from Eq. (5.31) between the
k 1th coefficient of the solution u and the kth coefficient of f u . Since this
kind of dependency forms a kind of “feedback” in the variables which cannot
be represented by a directed acyclic graph, we have to make additional code for
performing this kind of Taylor expansion.

The function expand in Program 5.2 is an example which shows how the
solution of the ODE X y f xyt, with f given in Eq. (5.4), can be ex-
panded. The main program starts by “recording” the computational graph for
brussel ~with independent variables: X and y, t and dependent variables: Xp,
yp. These variables are then used in expand to access the computational graph
of brussel for Taylor expanding the solution of the ODE, here to order 10 at the
point X yt 05 15 0, using the arithmetic type double .

5.4.5 Using combinationsof methods

The real strength of FADBAD/TADIFF lies in the possibility to differentiate
functions implemented as algorithms which themselves uses automatic differ-
entiation. Unfortunately the structures of the variables, which are combinations
of automatic differentiation types, can become very complicated, so to use this
possibility it is important to implement the algorithm in a modular way and apply
one automatic differentiation type to the program at a time [6]. Also the problem
of keeping track of the types and the states of the variables in a program can
be avoided by using scopes, e.g. function scopes, and it is a good rule to avoid
global variables of automatic differentiation types.

Assume that a functionvoid f(type& ol,..typ e& ontype& ii,...,
type& im) is an implementation of the function f: ™ " with the input
variables i1 ...im and the output variables 01...on. The function f is allowed to
call/use other functions with automatic differentiation types, derived from type ,
i.e., with names ending with type , as input and output variables. To differentiate
f using one of the three methods, all occurrences of the word type are replaced

54 Automatic differentiation

Program 5.2 Taylor expanding the solution of an ODE.
#include <math.h>
#include "Tdouble.h

double A(2.0/5),B (6.0/ 5),0(M_PI/ 4),a(.03);

void brussel(T doubl e &xp,Tdou ble &yp,
Tdouble x,Tdoubl e y,Tdoubl e t)

{
Tdouble tmp(x*(B- x*y)); /I Declare dependent variable tmp
xp=A-x-tmp +a*co s(0*t); II' xp is now a dependent variable
yp=tmp; II' yp is now a dependent variable

}
void expand(Td ouble &xp,Tdoub le &yp,

Tdouble &x,Tdouble &y, Tdoubl e tint order)

{
xp.reset() Il Reset the computati onal
yp.reset() ; Il graph of brussel.
t[1]=1; Il Taylor expand wrt. t.
for(int i=0;i<ord er; i++) // One coefficien t at a time
{
xp.eval() /I Evaluate the ith order
yp.eval(i) ; Il coefficie nts of xp and yp
X[+1]=xp[i)/ (i +1); Il Use the relation
ylitl=ypl i)/ (i +1); i xy=t x 1
}
}
void main()
{
Tdouble xy,txp, yp; Il Declare variable s.
x=0.5;y=1. 5;t=0; Il Specify the point of expansion .
brussel(xp .,y pXx,y.b) ; Il Get the computat ion al graph of

Il the function brussel.
expand(xp, yp.X, ¥, t1 0); [/ Compute the Taylor Expansion of
Il brussel in the point (.5,1.5,0)

5.5 Examples using the FADBAD/TADIFF packages 55

with Ftype , Btype , or Ttype , depending on the method to use, in the function f
and all functions upon which f is dependent. Now we are capable of evaluating
f with input and output variables which are of automatic differentiation type.

5.5 Examplesusingthe FADBAD/TADIFF packages

In the Section 5.4.4 we saw how to use the TADIFF package for Taylor ex-
panding a function given by an expression, and how to expand a function which
is the solution of an ordinary differential equation. In this section we will see
some more advanced applications using TADIFF, and we will also see how to
use FADBAD to differentiate the computations we perform with TADIFF, using
the strategy introduced in Section 5.4.5.

5.5.1 Numerical integration
Consider the following quadrature rule [32]

b h 1
f — — 41 f f 128 f h
) x dx 70 3 ao fTpho 8 fm o far1 fo1

h

18
wherem a b 2,h b a and f;j is a shorthand notation for the ith
Taylor coefficient of f at the point &, etc. The remainder has the form

fa 2 foo 16 fno2 R (5.32)

R ch9f 10 x x ab (5.33)
1

S 34
130977000 (5-34)

We will use this approximation piecewise on N subintervals of the interval 0 p
to compute the value of the integral

p
l cd In ¢ dcosx dx (5.35)
0

which has the true solution

C c2 d?

lcd pln 5

(5.36)

The following C++ function is an implementation of the integrand

56 Automatic differentiation

double f(double x, double c, double d)
{

return log(c+d*co s(x)) ;

}

After replacing all occurrences of double by Tdouble in the function f so
that Taylor expansion of f is possible, we can implement the numerical integral
as shown in Program 5.3. Note that in this program the actual recording of the
computational graph of f takes place in the first line of | . This line also shows a
neat trick which is possible using the TADIFF package: It is possible to record
the computational graph without first initializing the independent variables. This
has been made possible since the computational graph can be used to produce
several Taylor expansions, using different values of the independent variables.
One restriction to this method is that the actual values in the graph may not be
used during the recording [6]. Since the Taylor expansion fx.eval(2); uses
Taylor coefficients of X to the order 2, these coefficients has to be initialized be-
fore the expansion. This is done using the index operator [] on X. It is important
to specify the Taylor coefficients of X to the same order as we are going to ex-
pand the function, in this case to order 2. Otherwise we get an error message
from TADIFF.

Since the integral | ¢ d : 2 in Eq. (5.35) is a differentiable function
with the partial derivatives

)l P

1 pd
—cd 5.38
1d c & d2 2 d? (5-38)

it is also possible to differentiate the program which computes the numerical
approximation. To apply the backward automatic differentiation method from
the FADBAD package, we replace all occurrences of double to Bdouble in the
functions f and | . This way Tdouble is modified to TBdouble . The function dI

below computes numerical approximations of the integral | ¢ d and its partial
derivatives with respect to ¢ and d.

5.5 Examples using the FADBAD/TADIFF packages 57
Program 5.3 Numerical integration using Taylor Expansion.
double I(double ¢, double d, double N)
{
Tdouble xix(f(x, c¢d)) ; Il Record the graph of f.
double fa[3],fm[3]f Db[3],
h(M_PI/N), sum(0);
int i;
X[1]=1;x[2]=0; Il Specify order 1 and 2 of x.
X[0]=0; II' Expand f in the left point
fx.eval(2) ; Il to order 2.
for(=0;j< =2;j+ +) Il Save the 0.1. and 2. order
fafj]=fx[j I; Il coeffici ents of f.
for(i=0;i< N;i++)
{
fx.reset() Il Reset before wusing the graph.
X[0]=(M_PI' *(2 *i +1))/ (2* N);// Expand f in the midpoint
fxeval(2) ; Il to order 2.
for(=0;j< =2; j+ +) /I Save the 0.1. and 2. order
fm[j]=fx [|] ; Il coeffici ents of f.
fx.reset() Il Reset before wusing the graph.
X[0]=(M_PI *(i +1))/ N; II' Expand f in the right point.
fx.eval(2) ; II' to order 2.
for(=0;j< =2; j+ +) Il Save the 0.1. and 2. order
fol=fx [|] ; Il coeffici ents of f.
/I Compute the integral, using the Taylor Coefficien ts:

}

sum+=(41*(fa[0] +fb [0)+ 1284 m[0]) /3 +h*(f a[1]- fo [1] +

h*(fa[2]+f b[2]+ 16* fm[2])/ 18);
for(=0;j< =2; j+ +) /I The right endpoint is the next
fafl=fb [I] ; Il left endpoint.
}
return h*sum/70;

58 Automatic differentiation
N lcdN 53N 53N
2 | 4725206749584612 | 0 7853779605604702 02617657164041858
4 | 4725198468158792 | 0 7853982250374074 02617994905324145
8 | 4725198500140277 | 0 7853981634075534 02617993878159910
16 | 4 725198500142803 | 0 7853981633974484 02617993877991494
4 725198500142803 | 0 7853981633974483 0 2617993877991494

Table5.1: Theresultof differentiatinga numericalntegrationfor anincreasingiumberof subin-
tenalsN usingthevaluesc 5andd 3. Thelastline shavs thevaluesobtainedwhenevalu-
atingtheexpressiorof I ¢ d andits partialderivativesusingdoubleprecision.

void di(double &lval, double &didc, double &didd,
double c, double d, int N)
{
Bdouble Bc(c),Bd(d), Il Initialize the input variables
BI(I(Bc,B d,N)) ; /[Compute the integral.
BI.diff(0, 1); Il Compute the partial derivative s
/I of the integral wrt. Bc and Bd.
Ival=BL.x() Il Store the value of the integral
didc=Bc.d(0); /I and its partial derivativ es in
didd=Bd.d(0); Il the variable s Ival,dld ¢ and didd.

When calling dl forc 5andd 3, using different values of N, we obtain
the numbers shown in Table 5.1. When we use 16 subintervals the result of the
numerical integration and its partial derivatives are just as accurate as evaluating
their true expressions in double precision.

5.5.2 Solvinganinitial value problem (IVP)

We have already seen in Section 5.4.4 how to Taylor expand the solution of an
ordinary differential equation (ODE) of the formu f u in some point U tg

Up. Since we only are capable of calculating a finite number of Taylor coefficients
on a computer, our Taylor expansions are only local approximations to the true
solution. If we wish to solve the ODE for some t;, tg, we have to discretize
the interval top t in some points g 1 tnh and find an approximation

5.5 Examples using the FADBAD/TADIFF packages 59

to the solution pointwise int t; for increasing values of i. By computing the
Taylor polynomial of order p in the point U; tj , and evaluating this polynomial
att t; 1, we obtain an approximation of the solution U; 1 int; 1,

p
U1 Q Ukt tX (5.39)
k 0

where U g denotes the kth Taylor coefficient of the solutionof u g ut in
the point U; tj .

Consider the ODE X y f x yt with f given in Eq. (5.4). The function
solve in Program 5.4 uses the C++ implementation brussel of f given in Pro-
gram 5.2 to compute an approximation of the solution for somet tgbased on a
given initial value Xg Yo to . The order of the Taylor expansions and the number
of discretization points used in the interval to t are specified by the user. In the
program, we use the relation that ifwt u ht we have %—‘{" t hfwt t.
If we choose h tj 1 tj, the sum in Eq. (5.39) can be calculated as the sum of
the Taylor coefficients for w. Hence we compute the Taylor expansion for w and
not u.

Since the right hand side of the ODE is a periodic function with the period
T 2p w, we can consider U p T , where pis a positive integer, as a discrete
map of the initial value u 0 Up. This map is differentiable, and we can use
Newton’s method for locating periodic solution, i.e., find solutions of the equa-
tion

U upT O andu fut u0 U (5.40)

for a given positive integer value of p.

For Newton’s method, we need derivatives of Ug U p T with respect to
the initial value Up. Since U p T is a function of Ug given approximately by
the C++ function solve , we differentiate solve , by replacing all occurrences of
double with Fdouble given by the FADBAD package. This way we can au-
tomatically obtain derivatives of solve with respect to the initial values. See
Program 5.5 for an implementation of Newton’s method. The program will
after a few iterations find the periodic p 2 solution with the initial values

x0 yoO 0 385047 3 25168 .

It is worth noting that the initial value solver, when using the type TFdouble
for evaluation, not only computes an approximation to the solutionofu f u't
but also computes an approximation to the solution of the variational equation

60 Automatic differentiation

Program 5.4 Solving an initial value problem using Taylor expansion.
void solve(dou ble &x,double &y, double &t, double tto,
int N, int order)

{
Tdouble Tx, Ty, Tt(0), xp,yp ; // Declare variables

double h((tto-t)/ N);
int i;

brussel(xp .,y p,T x, Ty, Tt); Il Get the computati onal graph of
Il the function brussel.

Tt[1]=h; Il Taylor expand wrt. t.
for(i=0;i< N;i++)
{
xp.reset() ; Il Reset the computati onal
yp.reset() ; Il graph of brussel.
Tx[0]=x; Il Initializ e the point of
Ty[0]=y; Il expansion by initializ ing
Tt[0]=t; Il the zero order coefficie nts .
for(j=0;j< ord er;j+ +) Il One coeffici ent at a time
{
xp.eval(j); /I Evaluate the ith order
yp.eval(j); Il coefficie nts of xp and yp
TX[j+1]= xp[]j] *n/ (+1); /I Use the relation:
Ty+1= ypl il *v/ G +1); /1 Y)=fC xoyt)
x+=Tx[j+ 1]; Il Evaluate the Taylor
y+=Ty[j+ 1J; /I polynomia Is.
}
t+=h; /I 'We have a new solution point.
}

5.5 Examples using the FADBAD/TADIFF packages 61

Program 5.5 Taylor expanding the solution of an ODE, and searching for peri-
odic solutions, using Newton’s method.
void Newton(do ubl e &x,double &y)
{
Fdouble Fx,Fy,Ft, IFx I Fy;
double det,dx,dy;

int i

do

{
Fx=x;Fy=y; Ft=0; /I Initial value of integrati on.
Fx.diff(0, 2); /I We want derivative s of the
Fy.diff(1, 2); Il integrat ion wrt. x and V.
IFx=Fx;IFy =Fy; Il Save the initial point.

solve(IFx, IFy ,Ft1 6,40,7);// Solve the IVP in 2 periods.
Fx-=IFx;Fy -=I Fy; Il (Fx,Fy)= 0 => periodic sol.
det=Fx.d(0)*Fy. d(1)- Fy. d(0)* Fx.d(1); Il Compute
dx=(Fy.d(1)*F x. x() -Fxd (1)*Fy. x())/ det; // the Newton
dy=(Fx.d(0)*Fy. x() -Fy.d (0)*F x. x())/ det; /I correctio n.
x-=dx;y-=d ; Il Make the Newton iteration.

Jwhile(dx* dx+dy*d y>1e- 6); Il Repeat until convergenc e.

}

void main()

{

double x(0.38),y(3.3); Il Initial guess.
Newton(x,y); /I Find periodic solution.

62 Automatic differentiation

v Dyf ut vwhere Dyf denotes the Jacobian matrix of f with respect to u.
All this, just by replacing double with Fdouble .

63

6 Enclosing solutions of ordinary differential equa-
tions

There are many algorithms for obtaining approximate solutions of ordinary dif-
ferential equations. Unfortunately most algorithms are unable to give a realistic
bound of the global error accumulated during the integration process. In many
cases, the numerical solution found by some algorithm is not even close to the
exact solution. Many people do not see this as a problem since only the overall
behaviour of the system may be of interest, but even in this case some numerical
algorithms might produce spurious behaviour which is not seen in the original
system, e.g. spurious periodic orbits. The problem of keeping track of when
spurious behaviour can occur using some numerical method is often quite com-
plicated [56].

Using the method described in Section 4, we can obtain enclosures of the
iterates found when discretizing ordinary differential equations using the Taylor
expansion method described in Section 5.3 and a method described later to prove
existence of the solution within some bounds.

We consider ordinary differential equations (ODE’s) of the form

y fy (6.1)
where f CKD ",D "is an open set, and y is a function of the indepen-

dent variable t,ie.,y Yyt.

6.1 Proving existenceand uniquenessof the solution

For more details about the basics of proving existence of solutions to ordinary
differential equations see [23, 14, 3].
Recall the well known Theorem [21]:

Theorem 4 (Contraction Mapping Theorem) Amappingl : S Sofaclosed
subsetSof a Banat spacehasexactlyone xed pointu SsothatTu u if
there existsa positivenumbera 1, sothat

Tu Tv au v foralluv S (6.2)

T is saidto bea contractionmappingon S.

64 Enclosing solutions of ordinary differential equations

Consider solutions to Eq. (6.1) which satisfy the initial condition Y t;
yj D. With this initial condition of the solution, we have an integral equation
equivalent to Eq. (6.1)
t
yt oy fys ds fort tjtj, (6.3)
tj
This equation has the same solution as Eq. (6.1) with the initial valuey t; Y;
fort tjtj 1. We define the Picard-Lindelof operator, by
t

Ty t . fys ds fort tjtj, (6.4)
]

Consider the space of continuous functions CcO t it M with the norm

eattj

ua max ut (6.5)

t gt
for some fixed a 0. It can be shown that C° t it M with this norm is a
Banach space.
Let S CO titj 1 ™ beaclosed set and assume that Sis mapped into
itself by the Picard-Lindelof operator. Furthermore assume that f satisfies the
Lipschitz condition

fut fvt Lut vt foruv St tjtj
(6.6)
Leta L befixed. Now fort tjtj 1 we have
t
Tu t Tv t fus fvs ds
t.
Jt
L us Vvs ds
t
Hence
t
et Tut Tvt L e?t'Se?st ys vs ds

t
Lu v, e?tsds

alLu V a

6.2 Obtaining an interval vector enclosure of the solution 65

Therefore
Tut Tvita allu vy

By the Contraction Mapping Theorem, we have proven the existence of a unique
solution to Eq. (6.3) in Sprovided that Sis mapped into itself by T and f satisfies
the Lipschitz condition Eq. (6.6).

Notice that by the Mean Value Theorem, we have that if the function f is
differentiable, it automatically satisfies the Lipschitz condition Eq. (6.6).

6.2 Obtaining an interval vector enclosure of the solution

A rough enclosure of the solution to Eq. (6.1) with a fixedyt; yj Yj,can
be obtained by applying the Picard-Lindelof operator [34, 35, 33, 41, 50, 49, 55].
Assume that y? is a superset of yj so we have thatyj ;)7? . Let Sbe the
closed set of continuous functions in the interval tj tj 1 bounded by the interval

%
S uu Cttr ¥ (6.7)

Using the Picard-Lindel6f operator on a function U S we obtain a continu-
ous function Tu t , where

t
Tu t Vi F ¥ ds
tj
t
yj F ¢ 1ds

t

yj F¥ oh (6.8)
fort tjtj ¢ andhj t; ¢ tj.If the condition
vy (6.9)

is true, then Sis mapped into itself. If f is differentiable in §° , we have proven

existence and uniqueness of the solution in y(j’ (and in y}) fort tjtj 1.
Notice that we can always find a step size hj small enough in Eq. (6.8), so that
Eq. (6.9) is satisfied.

Consider Algorithm 6.6, an algorithm for obtaining a rough enclosure of the
solutions of Eq. (6.1) with initial values in the interval y; . The input variables

66 Enclosing solutions of ordinary differential equations

are a guess of the step size h, the desired number of Picard iterations before prov-
ing the existence and uniqueness of the solution | Thormar, the maximum number
of Picard iterations before reducing the step size | Tmayx and a parameter e for
the epsilon-inflation)7? 1 e 37]1 e 37]1 which generates an interval vector

)7? 37]1 around y} . The output of the algorithm is a rough enclosure)7]1 ,
the actual step size performed h, and a guess of the next step size hpe¢. The
algorithm will not stop unless an enclosure of the solution has been obtained.

The strategy of the step size control is to raise the step size if less than | Thormal
Picard iterations are used before succeeding the proof and to lower the step size
if more iterations were used. This way the step size is changed according to
how easy we obtain the condition Eq. (6.9). It is normal to choose such a step
size strategy since it is the the Picard operator which proves the existence of the
solution in each integration step.

6.3 Enclosingsolutionsof initial value problems

Consider Eq. (6.1) with the initial valueytg Yo D. Assume that a unique
solutiony t exists fort tg ty wherety 1o 8. Consider a discretization of the
solutionby yj ytj,j O N, for the discrete values of the independent
variable tg 11 tn. Since y ck1 toty D, we can use Thm. 1 to
obtain a discrete map of the same form as the map in Eq. (4.4),

Yit Jiyi Tiyi €y for0O j N (6.10)
where
Fiviovioavyi (6.11a)
ki 1 I .

€ Yij hjJ ki 1 ykJ L ;1 1 qt; 1 q K dqg
0 (6.11b)
where hj tj 1 tj is the step size in the jth step, and K; is the degree of the
Taylor expansion in the jth step, where kj k. The function | j y; is differen-

tiable with respect to yj. We need an enclosure of the remainder term €} yj in
order to apply the mean value enclosures as described in Section 4. Since

— 6.12)

y

8Algorithm 6.6will stall or breakdown if thisis notthecase.

6.3 Enclosing solutions of initial value problems 67

Input:

h yj 1 Thormal | Tmax €

Validation:
it 0
proved false
vy
do
i 1 ey ey
yjl yi F)7(]) 0h
if y} y‘f thenproved true
it it 1
if it IThorma thenhned max : yj FyY oh
while NOT proved ANDit |Tmax
if it 1Toomai thenhnee max:y; F §f Oh

if NOT proved thenh hpe¢ gotoValidation

Output:
¥} h hneq

Algorithm 6.6: Algorithm for proving existenceanduniquenesandfor obtainingaroughenclo-
sureof the solutionof the ODE.

68 Enclosing solutions of ordinary differential equations

we have that
k11, .
€ Yij hjJ f ki yag; 2 1 gt 1 q ki dqg
0 (6.13)
In order to obtain a value for €j yj , we have to know the solution y t in the

interval tj t; 1. Assume that an interval vector Y; , enclosing the solution in
this interval is known. Now we have

) 1
& Yj hi ' FY oy 1 qkidg
0
, 1
o 'Fk oy 1 qlidg
0
Ho 1P,
] ki 1
k.
hi 'y 1 (6.14)

where F Ki is an interval extension of f Ki | and Vi Kk 1 is an enclosure the
Kj 1th Taylor coefficient of the solution in the interval tj tj 1. Anenclosure of
the remainder term can be obtained by expanding the K; 1th Taylor coefficient
of the solution in the interval vector Yj 37]1 obtained as the rough enclosure
from Algorithm 6.6.

We are now capable of applying the mean value enclosures to enclose the
solution of the initial value problem Eq. (6.1) withy tg Yo by using the fol-
lowing strategy for obtaining enclosures of ¥ 1 and §j F yj , which is
needed in Algorithms 4.1 and 4.2.

Use Algorithm 6.6 to find a hj 0 and)7]1 so that y t)7]1 fort

ti 0 hj.
Find the degree of expansion Kj so that w Yi 1k w Y 1K 1 , where
Vi1 iV Z o1 (6.15)
and
K
- o .
JiYi Vi a yjih (6.16a)
i1

ki 1
Zj 1k h' © 9« e (6.16b)

6.3 Enclosing solutions of initial value problems 69

The degree of the Taylor expansion Kj is by this choice the smallest integer
for which the width of yj 1 Kj » i.e., the local error (truncation+rounding),
has a minimum (hopefully global). In practice we will also have the re-
striction Kj Kmax for some maximum allowed degree of expansion Kmax.
By differentiating jj yj in Eq. (6.11a) with respect to yj and forming the
interval extension, we obtain the interval matrix

_ g 1y’ -
S F vy Il a W Yj h'j (6.17)
i 1)
where % yj is the ith Taylor coefficient differentiated with respect to

the point of expansion Yj, evaluated using interval arithmetic in yj .

We can enclose the partial derivatives Dj in Eq. (4.16), where | o i
Jij1] 0, by providing an enclosure of the partial derivatives of the
T&
error term m;°
Tej Tyki 1 ki 1
— Vi i h 6.18

We have the relation D; D tj , where the function D is the solution to
the variational equation
qaf

Dt — vyt Dt Dt | 6.19
."yy 0 (6.19)

6.3.1 An automatic differ entiation interval ordinary differ ential equation
solver (ADIODES)

A package for solving ordinary differential equations has been developed. The
package uses the interval packages BIAS/PROFIL, defining the INTERVAL type,
and the packages FADBAD/TADIFF for performing the differentiation, using
the types TINTERVAL and TFINTERVAL. To use ADIODES for solving Eq. (6.1),
the function f is specified as a C++ function, an enclosure of the initial value
Yo Yo 1is specified as an interval vector, and also the interval tp ty in which
we want to solve the equation is specified. Some additional parameters, such as
the initial step size h, the maximum allowed degree of expansion Kmax and the
parameters | Thormal | Tmax and e used in Algorithm 6.6 can also be specified.

70 Enclosing solutions of ordinary differential equations

For enclosing the solution, the two enclosure methods described in Section 4,
with or without an enclosure of the solution to the variational equation, can be
used. The output of the algorithm is an enclosure of

N 1
yitnsYo N Yo where tN 1o é h (6.20)
i 0
and (if desired) its partial derivatives
iy tnsy fi"
- 6.21
Ty Yo Ty Yo (6.21)

6.4 Integration example(the Brusselator)
Consider the ordinary differential equation, called the Brusselator [27]

X A xxy B 1

y XB xy (6.22)

which is a model of a chemical reaction with variables X and Y representing two
chemical intermediates. For the values A % and B g and using the initial
values X 0 3074 3081 and y O 3, the solution has been enclosed us-
ing the extended mean value enclosure for discrete values of t 0 50 . Fig-
ure 6.8 shows the enclosures of X tj and ytj , the width of the enclosures
max w Xtj w ytj , the step sizes used hj, and the orders of the Tay-
lor expansions used Kj, all as functions of the discrete values of the independent
variable t;.

In Figure 6.8 it can be seen that the width of the enclosure of the solution is
well behaved fort 0 40, but fort 40 50 the width begins to grow faster.
The step sizes used lies in the interval O 1 0 3, and the order of the Taylor
expansions lies in the interval 11 21 . We will later show that the initial values
used in the integration overlaps a periodic solution of Eq. (6.22), i.e., a solution
which repeats itself infinitely. The overlap in the initial value will cause all
enclosures of the solution to overlap when integrating the system. This property
of the solution is more obvious in Figure 6.9, where the last revolution of the
encapsulated solution (t 30 50) is shown in phase space. The boxes in the
figure shows the “rotating rectangle” enclosure used in Algorithm 4.2. From the
figure it seems like the uncertainty is smeared out along the periodic solution.
If the integration process was continued fort 50, the width of the enclosure
would get too large, causing Algorithm 6.6 to stall, i.e., hj 0.

6.4 Integration example (the Brusselator) 71

0.6 - - . .

< 0.4

y
w

n
3y

0.04 T T T T

)

0.02

->

max(w([x]),w(ly]))

0.4 T T T T

CRITIIR U P S “W""

40 T T T T

x 20 e, _—

Figure6.8: Solving the unforcedBrusselator:The graphsshavs the enclosureof the solution,
thewidth of theenclosurethe stepsizesusedandthe ordersof the Taylor expansionsused.

72 Enclosing solutions of ordinary differential equations

3.3

3.2 I]

>29F
i
28 W v

2.7t N ‘-

2.6 < _ i

2.5 | | | |
0.3 0.35 0.4 0.45 0.5 0.55

Figure6.9: Solutionof the unforcedBrusselatorThegraphshavs the enclosureof the solution
for discretevaluesof+ 30 50 in phasespace.

73

7 Computer-assisted proofs in dynamical systems

The study of ordinary differential equations is an important field of dynamical
systems. The behaviour of real-life systems in physics is often described by
differential equations, but since these equations often have solutions which are
impossible to represent in closed form, people use numerical methods to obtain
approximations of the solutions. Since the use of approximate solutions can only
lead to a qualitative investigation of systems, it is difficult to prove whether some
property of some approximate solution also is a property of the exact solution or
if it is an artifact introduced by the approximation method. Since it is possible
using the interval methods described in this report to obtain verified enclosures
of the solutions of ordinary differential equations, it is also possible to prove
properties of the exact solutions. We will in this section investigate some sys-
tems, which are considered to be non-trivial, and prove existence and uniqueness
of some specific solutions of the systems.

7.1 A note on the representationof intervals usedin this re-
port

A general problem when publishing results obtained using a computer is that
the computer’s representation of floating point numbers is not the same as we
humans use. Humans represent numbers in base 10, while most computers rep-
resent numbers in base 2. This difference in representation is normally not con-
sidered as a problem since conversion programs, convert numbers between the
two bases. Unfortunately these programs often commit roundoff errors so that
our interpretation of a computer-assisted proof may be wrong. In most cases we
are satisfied knowing that the computer has proven a result for some intervals of
which we do not know the exact values, but if we want to publish these intervals,
then we have to publish the exact values down to the last digit.

Fortunately the integer numbers are normally exact representable on comput-
ers, if we stick to small values. In most cases the numbers used as parameters
and initial values in some programs are not exactly representable by the com-
puter, and intervals are used instead to bound the correct values. To generate the
correct bounds, we use integers and interval arithmetics. For example, to enclose
the number % we perform the division in rounded interval arithmetic to obtain a
lower and an upper bound of the value; for a correct enclosure of the interval

0308} we use the outward rounded result 308} 10%

74 Computer-assisted proofs in dynamical systems

In some cases, using outward rounding is not enough. If we want to prove
existence and uniqueness of some solution in an interval vector X which is not
exact representable by the computer, the computer-assisted proof will then be
valid for the rounded value of the interval vector instead of the interval vector
itself: If outward rounding were used to enclose the interval vector, the solution
could lie outside X . If inward rounding were used, another solution could exist
between X and the inward rounded interval vector. To deal with this problem,
both roundings have to be applied, so we have X X X, and the proof has
to be applied twice, once for the outward rounded interval vector X and once
for the inwards rounded interval vector X. Obviously we only have to prove
uniqueness for the outwards rounded interval vector and existence for the in-
wards rounded interval vector to obtain existence and uniqueness of the solution
in the original interval vector X.

7.2 Periodic solutionsof autonomoussystems

Consider the equation
y fy y0 yT forT 0 (7.1)

where f CKD ", D N is an open set. Solutions of this equation are
called periodic solutions of period T. Furthermore, ifyt y O fort 0T,
then T is called the prime period. Obviously if T is a period of the periodic
solution, then 2T 3T 4T are also periods of the same solution, and we have
yo yT y2T

Since we also want to find an enclosure of the period T when solving
Eq. (7.1), we transform it into an equation

3; (';’f Y g0 yi (7.2)

introducing a state variable p. This equation is just a rescaling w.r.t. the indepen-
dent variable t compared to Eq. (7.1), and solutions of this equation are scaled
solutions of Eq. (7.1), sothaty Tt yt where T p.

Lety t;Yo po be the solution of the ordinary differential equation in Eq. (7.2)
with the initial value Yo po . If Yp is a point on the periodic solution of Eq. (7.1)
with period T po, then we have

Yy1LYopo Yo O (7.3)

7.2 Periodic solutions of autonomous systems 75

A solution to this equation is not isolated since other points on the periodic orbit
exist arbitrarily close to Yo, but by letting one of the components in Yo be fixed
in Eq. (7.3), it is possible to make the solution isolated. Let us w.l.o.g. fix the
nth component Yo, of yo. Defining X Yo1 Yo2 Yon 1 Po , we obtain the
system of equations

Y1 1;X Yon X1
¥2 1;X Yon X2
0 (7.4)
¥n 1 I;X Yon Xn 1
Yn 1;X Yon Yon

which can be solved for X using an interval Newton or interval Krawczyk method.
In the following sections, the interval Newton method will be used to solve
Eq. (7.4), proving existence and uniqueness of periodic solutions. Enclosures
of ¥ 1; and its partial derivatives are obtained by using the extended mean
value enclosure implemented in ADIODES. In the following computer-assisted
proofs, we wish to prove uniqueness of solutions in intervals which are as wide
as possible.

7.2.1 The Brusselator

Using the interval Newton method, a periodic solution XYy of period
T 16 758 of the Brusselator Eq. (6.22), with the parameters A % and B g,
has been proven to exist and be unique forx 0 0305} and a fixedy 0 3.
By continuing the Newton iterations, it was possible to determine X 0 and T to

an uncertainty of order 10 10. see Figure 7.10.

1 0 T T T T

fsssesssssees NIV 80 00000002880 6%%0%%%%% %% %% %% 3188888222200
lececececcesccsecscccscoescecccscecececesssccesceeesssscsscssscsscsosssescssesssoscscscccoscscscocoscse

0 £ 00ssscssssccscsccsscccccsccsccscocd

0 0.2 0.4 0.6 0.8 1

tT

max(w([x]),w([p]))
5..l

Figure7.10: The widths of the enclosure®f the periodicsolutionof the Brusselatoduringthe
Newtoniterations.

76 Computer-assisted proofs in dynamical systems

7.2.2 The Lorenzsystem

The Lorenz equations are given by [36]

X Sy X
y X y Xz (7.5)
z Xy bz

where b r and s are positive parameters. For a detailed analysis of these equa-
tions see [52]. The equations have a stationary point at the origin. For r 1

the points X Xxr 1 and X Xr 1, whereX br 1 are stationary
points. Using the parameters b % r 28 ands 6, solutions of Eq. (7.5)
seem to behave chaoticly. In Figure 7.11 the result of a floating-point ODE
solver, solving the system with the initial values X0 41879y 0 6 7601
andz 0O 16 1091, is shown. From the figure, it is seen that the solution lies on
some object in 3. This object is called a strange attractor since it is a strange

looking set and because solutions of the system converges to it.

30

20

Figure7.11: Floating-pointsolutionof Eq. (7.5) usingb % r 28ands 6. Theleft graph
shaws the resultof the computationdgn a three-dimensiongbhaseplot. In the right graph,a
projectionof the solutionto the x y planeis seenandtheintersectiorof the solutionwith the
planez 27 hasbeenmarkedwith smallcircles. The stationarypointshave beenmarkedwith

'+' onboth gures.

In the right graph of Figure 7.11, the intersection of the floating point based
solution and the plane z r 1 27 is marked with small circles. The figure
indicates that using a fixed z0 27 when looking for periodic solutions is a
good choice, and the locations of the circles mark the areas where to find them.

7.2 Periodic solutions of autonomous systems 77

Six different periodic solutions of Eq. (7.5) were proven, by the interval New-
ton method, to exist and to be unique for interval values of T X0 y 0, and a
fixed valuez 0 27. Figures 7.12-7.13 show the periodic solutions found, and
the corresponding intervals in which existence and uniqueness was obtained.
Since the Lorenz equations have a natural symmetry XYy z X yz,four
other solutions, different from the previously found, exist with initial values
T x0 yO,andz0O 27 for valuesof T X0 and y O corresponding to
the asymmetric solutions listed in Figures 7.12-7.13, i.e., the solutions 2:1, 3:1,
4:1, 3:2. By continuing the interval Newton iterations, it was possible to com-
pute the values of T x 0 and y 0 to an accuracy of order 10 1© for solution
1:1, which was the best accuracy obtained, and to order 3 10 9 for solution 3:2,
which was the lowest accuracy obtained. The interval Newton method was un-
able to prove solutions with higher periodicity than solution 3:2, since the widths
of the interval Newton operations becomes larger than the widths of the initial
values when attempting to prove existence.

In an article by Brian A. Coomes, Hiiseyin Kocak and Kenneth J. Palmer
[13], two periodic solutions of the Lorenz equations have been proven to exist
by using a method called periodic shadowing. In their first proof they use pa-
rameters b % r 1005,ands 10 and prove that a stable periodic solution
exist for

X0 1 758904452774827471 ee
y 0 4 480910873458781704 ee (7.6)
z0 80 99267161483650640 ee

with a shadowing distance € 3 299220544489139846 10 12 and with a pe-
riod T 10962388136. To verify this result, the interval Newton method was
applied. We proved existence and uniqueness of a periodic solution of period
T 10962330 withx 0 17589043,y 0 4 4809190 and a fixed in-
terval value z 0 80 992671612 . By continuing the Newton iterations with
a fixed value z0 80 99267161483650640 the accuracy of T, X 0 , and y O
could be determined to the order 4 10 11, which is less accurate than the accu-
racy obtained by the periodic shadowing method. Since the enclosures obtained
by the interval Newton method overlaps with the intervals obtained by periodic
shadowing it was not possible to prove or disprove the result obtained from the
periodic shadowing method.

In the second proof of the article [13], an unstable periodic solution of the

Lorenz equations, using the parameters b % r 28and s 10, has been

78 Computer-assisted proofs in dynamical systems

30 30
20t 20t
10t 10t
ol EEERR R - ol ‘ . }_J
-1op; /\ 10t -)
_20—' 20 f
05 S0 s 0 5 10 15 % 10 0 10 20

X

(a) Solution1:1, T 17516, x 0

X

(b) Solution2:1,T7 259427%,x O

45732,y 0 3978, andz 0 419426¢, y 0 5173485, and
27. z0 27,

30 30

20t 20

10 107
- ol ./ -~ of }(

10F . i 10} ‘

20 -201

%0 10 0 10 20 % 10 0 10 20

X

(c) Solution3:1,7 3405932 ,x 0

3 95233% ,y0 5 928351@ , and
z0 27.

X

(d)Solution2:2,7 3469322 ,x 0

4 31269% ,y0 4 8029@; , and
z0 27.

Figure7.12: Periodicsolutionsof the Lorenzequations€q. (7.5)usingparameters 8 3 r
28ands 6. All solutionswere provento exist andbe uniquefor the speci ed intervals by

usingtheinterval Newton method.

7.2 Periodic solutions of autonomous systems 79

30 T T T 30

20} L 20}

10} o 1 10} *

> Ot ,, ‘ | ~ ol ., .: }(

10 ¢ ",i _--""” s 1 10 |

20 Sl 1 20t

30 : : : 30 : : :
20 10 0 10 20 20 10 0 10 20

X X

(a) Solution 4:1, T 420127733, (b) Solution 3:2, T 43001049,

x0 3772054835, yO x0 4050179% , y0
648667584 ,andz 0 27. 5624205§,andz 0 27.

Figure7.13: Periodicsolutionsof the Lorenzequation€q. (7.5) usingparameters % r 28
ands 6. All solutionswereprovento exist andbe uniquefor the speci edintervalsby using

theinterval Nenton method.

proven to exist for

X0 12 78619065852397651 ee
y 0 19 36418793711800464 ee (7.7)
z0 24 ee

with a shadowing distance € 1 799087099871078045 10 2and with a period
T 1558652210. Using the interval Newton method a periodic solution has
been proved to exist and be unique for T 1 558653 and x 0 12 78638,
y 0 19 364%8 with a fixed interval valuez0 24 10 ® 1 1. By con-
tinuing the Newton iterations with a fixed valuez 0 24 the accuracy of T, X 0
andy 0 could be determined to the order 4 10 1. Also in this case the result
obtained by the interval Newton method overlaps with the result obtained by us-
ing the periodic shadowing method and it was not possible to prove or disprove
the result obtained from the periodic shadowing method.

80 Computer-assisted proofs in dynamical systems

7.2.3 The Van der Pol system

Consider the Van der Pol equation

u e 1u u 0 (7.8)

This equation becomes stiff in a region of phase space for increasing values of
e, and ordinary differential equation solvers intended for non-stiff problems tend
to choose small integration step sizes in this region. Furthermore the type of
the stability changes from stiff to non-stiff and back when integrating the system
along the periodic orbit for which we will prove the existence.

The change of variables X uandy X yields the system

X y

y el Xy x (7.9)
which is the form needed by ADIODES. Since this equation has the natural
symmetry XY X 'y we have that a solution of Eq. (7.9) for which
X0 xXxT2 ady0O OyT?2 OforsomeT O0is a periodic solu-
tion with period T. Using this property, it is possible to modify Eq. (7.4) so
that only the piece of the periodic solution which lies in the areay 0 has to be
encapsulated for proving the existence.

In Figure 7.14, some periodic solutions for different values of the e param-
eter, are shown. Existence and uniqueness has been proven for all solutions by
using the interval Newton method.

When increasing the stiffness parameter €, the number of discretization points
increased as expected. The accuracy of the enclosure is almost constant in the
stiff area, but when crossing over into the non-stiff area (when the distance in
between the points increases) some accuracy is lost. In the last case, when
e 10, too much accuracy was lost, and the interval Newton operator became
unable to prove existence. By choosing a smaller epsilon-inflation parameter
e 0001 instead of the default value 0 01 in Algorithm 6.6, it was possible to
force ADIODES to choose smaller step sizes in the non-stiff area and the accu-
racy of the enclosure became better. By doing this, it became possible to prove
the existence and uniqueness of the periodic solution when € 10. In Figure
7.15 the width of the enclosure, the step sizes, and the orders of the Taylor ex-
pansions are shown, when encapsulating the periodic solution for € 10 using
the initial values listed in Figure 14(d). From this figure, it is seen that the width
of the enclosure blows up for a while but then contracts again just before the end
of the integration.

7.2 Periodic solutions of autonomous systems

0.5

o

051
1t

>
157}

2t

251

3
3

(e
333%.

ol —

3 2

(c)e 5x0

T

T 58061%.

Figure7.14: Periodicsolutionsof the VanderPol equationEq. (7.9). All solutionswereproven

20215@, y 0

to exist andbe uniquefor the speci edintervalsby usingtheinterval Newton method.

. ‘ ‘ ‘ ‘
3 2 0 1 2
(b)e 2,x0 202%,y0 0,7
38133.
5
Or '
. 7
> 5t
10
15 : : : :
3 2 1 1 2 3
(d)e 10,x0 20142¢,y0 O,
95391§,.

82 Computer-assisted proofs in dynamical systems

max(w([x]),w([y]))
Bb

10 1 1 1 1
X 103
4 T T T T
< 2.
0 1 1 1 1
40 T T T T
2 A
x -
0 [_..-/ 3
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

YT

Figure7.15: Solvingthe Van der Pol equatiorwith e 10: The graphsshavs the width of the
enclosurethe stepsizesused,andthe ordersof the Taylor expansionaised.

7.3 Periodic solutionsof non-autonomoussystems

Consider the equation
y fyt yo ypT (7.10)

where the function f CK D N is periodic in t with the period T 0, D

is an open set, and p is a positive integer. Solutions of this equations are called
periodic solutions of period p. Furthermore,ify jJT y 0 forj 1 p 1
then p is called the prime period. Obviously, if p is a period of the periodic
solution, then also 2p 3p 4p are periods on the same solution, and we have

yo ypT y2pT

7.3 Periodic solutions of non-autonomous systems 83

We can rewrite Eq. (7.10) into an equivalent autonomous form

y pTf y pTt

" | yo y1to o0 (7.11)

The solutions of this equation are scaled solutions of Eq. (7.10) so thaty pTt
gt.
Let ¥ t;yo be the solution of the ordinary differential equation in Eq. (7.11)

with the initial value Yo when using a fixed positive integer p. If Yo is a point on
a periodic solution of Eq. (7.10) with the period p, then we have

YyLYo Yo O (7.12)

which can be solved for yg by using the interval Newton method or the interval
Krawczyk method.

7.3.1 TheforcedBrusselator

The forced Brusselator is given by the equations [27]

X A xxy B 1 acoswt

y XB Xy (7.13)

where A B a, and w are parameters. The function given by the right hand side
is periodic in t with the period T %VQ Using the parameters A %, B g,
a 003,andw §is was possible to use the interval Newton method to prove
existence and uniqueness of an unstable periodic solution of period p 1, for the
initial valuesx 0 0 38% andy 0 3 05% and a stable periodic solution with
period p 2, for the initial valuesx 0 0 385% andy 0 3 25%2 . In Figure
7.16, the computed solutions of Eq. (7.13) is shown, when using the previously
obtained initial values. The initial values of both solutions have been determined

to an accuracy of the order 10 13 by continuing the interval Newton iterations.

84 Computer-assisted proofs in dynamical systems

3.1
3.2
3.051 S -~ _
/// \\\ 3
~ .
~ .
3t . 28 %
N >
> 7, N
2.95) []ﬂ N 29
I 1 \\\ 2.4¢ A
29| L RS
285 ‘ ‘ ‘ ‘ ‘ 5 ‘ ‘ ‘ ‘
034 036 038 04 042 044 046 0.3 0.4 0.5 0.6
X X

Figure7.16: Periodicsolutionof the forced Brusselatgrusingthe parameterst % B g,
a 03,andw . Theleft gure shavstheperiodp 1 solution,andtheright gure shaws
theperiodp 2 solution.

7.4 Solutionsof boundary value problems

Also solutions of boundary value problems can be proved to exist with the aid of
interval methods [35]. Consider the problem

ut a’sinut sintp O u0O ul O (7.14)

where a . Using the change of variables X Uandy X and addingt as a
state variable, we obtain the equivalent problem

X y
y sintp @sin X t x0 x1 0t0 O
t 1 (7.15)

Since the values of X 0 andt O are known, we can solve the equation by finding
an initial value Yp, so that the ordinary differential equation in Eq. (7.15) with the
initial valuex 0 0y 0 ypandt O Oyieldsa solution for whichx 1 0.
Such an initial value can be found by solving

Xliyo O (7.16)

where X t;yp is the X component of the solution of the ordinary differential
equation in Eq. (7.15) with the initial valuex 0 0y 0 Yypandt O O.
Equation Eq. (7.16) can be solved by using the interval Newton method or the

7.4 Solutions of boundary value problems 85

interval Krawczyk method. We used the interval Newton method to prove exis-
tence and uniqueness of a solution to Eq. (7.15), using a 1, for yg 0 32 .
See Figure 7.17.

0.2 T T T T
S 0» R N -4
0.2 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Figure7.17: Enclosureof the solutionu to the boundaryvalueproblemEqg. (7.14)for discrete
valuesof ¢.

86

Computer-assisted proofs in dynamical systems

87

8 Solving integral equations

We will consider the problem of solving integral equations of the following type

b
y X gxtyx yt dt fx x ab (8.1)
a

for an unknown function y, where f and K are given functions.

Ifgxtyx yt K xtyt,then Eq. (8.1) is a Fredholm equation of the
second kind. This form of integral equation is probably the most interesting in
real applications [57], but also the non-linear Fredholm equation of the second
kind are covered by using g Xt y X yt K xtyt while the linear and
non-linear Volterra type integral equation of the second kind are attained by using
a function g for whichg xt y x yt Ofory x

8.1 Theory

We shall look for solutions of Eq. (8.1) in the class of square-integrable functions
Lo a b, using the usual norm

b 3
y y x 2dx (8.2)

a

Assume that
G f Loab.
(i1) gsatisfies the Lipschitz condition

gxtzzyr gXxXtzy NXt zz 2 Yy1 Y2
(8.3)

where N is square-integrable, with
2 b b 2
p N xt “dtdx (8.4)

a a

(iii)) g xt 0 O iscontinuousforxy ab.

88 Solving integral equations

Under these conditions we will show that the integral operator T defined by

b
Ty x fx gxtyx yt dt x ab (8.5)
a

maps L2 a b into itself. Since f Lo a b and Ly a b is a vector space, it re-
mains to show that ,fg xtyx yt dt Lzab.

Proof

Using condition (ii), we have

gxtuv gxto00 Nxt u v

gxtuv gxtoo Nxtu NXxtv
b

gxtux vt dt

a

b b b
gxt00 dt ux N xt dt Nxt vt dt

a a a

Each term in the right hand side of this inequality is square-integrable, the first
because g Xt 0 0 is continuous. For last two terms since for a function w
Lo a b, using the Cauchy-Schwartz inequality for integrals yields

b b 2 b b b
Nxt wt dt dx Nxt 2dt wt 2dt dx

a a a a a
b b 2 2 2
w 2 Nxt 2dtdx w ?p
a a

Hence ,fg Xxtyx yt dtis square-integrable, and we have shown that T
maps Lo a b into itself.

O

8.2 The meanvalue enclosure of an integral operator
We wish to solve the equation

Ty vy (8.6)

which is equivalent to solving Eq. (8.1). Consider the set of functionsin L, a b
bounded by an upper and a lower endpoint functiony ¥y Lo ab

Y yy 'y Lzab yt yt yt fort ab (8.7)

8.2 The mean value enclosure of an integral operator 89

Such a set of functions is called a function interval. Assume that we can calculate
the set

Y Tyy Y (8.8)

for a function interval Y Y ©, wherey Y9 andy Ty is a solution to
Eq. (8.1). The iteration

vkl vk Tyk kK 01 (8.9)

will then generate a nested sequence of non-empty function intervals Y K |
for whichy Y K. The conditionY K TY K @ would result in a contradic-
tionsincey YK YK 1 andthe assumption thaty Ty cannot be true
if this happens. It is usually not possible to compute TY exactly, unless T has
some special properties, e.g. if T has a monotonicity property TY Ty Ty or
TY Ty Ty. Here we will consider a general computational scheme which
does not assume any special properties of T. Consider a subdivision a X
X1 Xn b, and define

Xk Xk Xk 1 fork O n 1 (8.10)

Let the function interval Y be defined piecewise by the functions Yk k 0 n 1
sothatY X Yy Xx forx Xg,where

Yoo kY Y Lox wt oyt Wt fort X

(8.11)
See Figure 8.18 for an example.
TY can now be enclosed by
n 1
TY X F X% aGXx Xy ywx forx X
i 0 (8.12)

where F and G are interval extensions of f and g, and Yk is an interval which
contains the range of Yy

Y« yty Yt X (8.13)

However the approximation Eq. (8.12) is very rough and does not necessarily
maintain a contraction property of T [11, 7]. Instead we will consider a mean
value enclosure Ty of T sothat TY X TmY X, [8, 53]

T Tym TY Y ynm (8.14)

90 Solving integral equations

Yo

Figure8.18: A functioninterval Y yy de ned piecaviseonthegrid Xk x o n. In this
examplewehaven 4.

for ym Y. Or more detailed

b
TnY X TymX Y X YmX Gy xtYx Yt dt
a
b
GyXtYX Yt Yt ymt dt (8.15)
a
where
faxtuv
Xxtuv _ 8.16
93 U (8.16a)
faxtuv
Xtuv —_ 8.16b
Qs v ()

and G3 and G are interval extensions of g3 and g4. Using ym Y in Eq. (8.15)

8.2 The mean value enclosure of an integral operator 91

yields
n 1
T x Tyx YXx yx a GyxtYx Yt dt
a a i 0 X
n 1
a GyxtYx Yt Yt yt dt
i 0 X a
n 1
Tyx Yx yx aGs X X Vi YjwX
j o
n 1
aGs X Xj Vi Vi Yt yt dt (8.17)
jo X;

using Eq. (2.34c) and that Y t y t is non-negative. The last two terms in this
formula are exactly computable in practice. Under the assumption that Ty can
be found exactly and certain other assumptions, it can be shown that Ty, retains a
contraction property of T [11].

To apply an enclosure of Eq. (8.17), we need to compute an enclosure of
Ty. We will describe three different formulas for calculating such an enclosure,
based on the zero, the first, and the second order Taylor approximations of f and

g.

8.2.1 Zero order approximation
‘We have the obvious enclosure

n 1
Tyx F X aG x X Yi Vi WX (8.18)
jo o

for X X, where

Y YX X X (8.19)

92 Solving integral equations

Using this enclosure, we define the zero order interval integral operator by

n 1
IoTY X F X éGXijﬁﬂWXj

jo
n 1
YX yx aGs X X Vi YjwX
jo
n 1
a Gy X X Vi Y Yt yt dt
jo Xi (8.20)
forx X.
8.2.2 First order approximation
Defining the real function h by
hxt gxtyx yt (8.21)
we have
h; xt g1 Xxtyx yt gxtyx ytyx (8.22a)
h, x t g Xtyx yt gxtyx yt yt (8.22b)

Let H; and H, be interval extensions of hl and h2. From the mean value enclo-
sure, Eq. (3.3), we have forany Xj X X andany Xj t X that

hxt hx% Hp x X X &% Hyx X t ¥
(8.23)

and

fx % F X X X% (8.24)

8.2 The mean value enclosure of an integral operator 93

Using these enclosures with Xk Xk, and for X X we obtain the first order
enclosure

n 1
Tyx fx F X X X é h Xi Xj
b4 %

X

Hi X X Xi W X Hy x Xx; t xdt
Xj
1

n
fxi F x X X é h Xi Xj
j

j 0
1 2
Hi Xi Xj X Xi w X Hzxixjiwxj
(8.25)
The first order interval integral operator can be defined by
n 1
HTY X fxi F X X X a hxx;
j o
Hi Xi Xj X Xi w X Hy X Xj zw X
n 1
YXx yx aGs X X Vi VYjWw X
j 0
n 1
aGs X Xj Vi Vi Yt yt dt (8.26)
jo X
8.2.3 Secondorder approximation
Differentiating Egs. (8.22a-8.22b) once more yields
hyp xt O11 913 931 O3y X ¥ X Qgy X (8.27a)
hyp X't Oi2 Gyt G2 Oay t y X (8.27b)
hyy x t Oo1 Oo3y X Oa1 Oagy X Y U (8.27¢)
hyp X t O2 24 Ua2 OJagy t Yy U gyt (83.27d)

where all derivatives of g are evaluated in the point Xty X y t ,ie., g5
gp Xty x y t ,etc..LetHy; Hy, Hyy and Hy, be interval extensions of the

94 Solving integral equations

second order derivatives of h. Forany % X X and any Xj t X; , we have

hxt hf R h X% X X% XXt X
1
EHuxinX)?i2 H22xixjt>2,-2

Hi, X X Hoy X Xj X Xt X

(8.28)

and
f x f)?ifﬂixﬁi%inxXi (8.29)

Again choosing Xx Xk, and for X X we obtain the second order enclosure

= 2
nol 1
a hxxj hy Xi Xj EHllxi Xj X Xi X Xi W Xj
j o
1 1 5
hy Xi Xj Ele Xi Xj Hyy X Xj X X ZW X
1
cH2 X X w 3 (8.30)

The second order interval integral operator can be defined by

[,TY X f X f Xi =F X X X X X

2

n 1 1
a hxx; hy Xi Xj zHyp X Xj X Xi X Xi W X
j 0

1 1
hy Xi Xj Elex. Xj Hyy X Xj X X >W X
1 3
6H22xi Xj W Xj

n 1
YXx yx aGs X X Vi Vi W X

j 0
n 1
aGs X Xj Vi Vi 'Yt yt dt (8.31)

8.3 Using a Bernstein polynomial enclosure 95

8.3 Usinga Bernstein polynomial enclosure

For representing the function interval Y, we use interval Bernstein polynomials
since they have some nice properties; see [54]. The Bernstein basis polynomials
of degree k are given by

Z1 zK1 j 0 kz 01 (8.32)

A real function in the Bernstein basis of order Kk is given by the coefficients
aj j 0 K,

&k
uz a ajfj y4 (8.33)
i 0
An interval function is given by the coefficients a;] 0 K,
& k
Uz a ajfj z (8.34)
i 0

The Bernstein polynomials have some nice properties:
1) The basis functions are non-negative forz 0 1.

2) The sum of the Kk basis functions is 1,

k
af<z 1 (8.35)

j 0

3) The value of the polynomialsinz Oandz 1 are given by the Oth and the
kth coefficients. i.e, U0 aul a,andU O ap U1 ay .

Because of property 1) we have that the endpoint functions U and U of the interval
function U z in the Bernstein basis are given by real Bernstein polynomials of
the same degree with coefficients which are the endpoints of the corresponding
interval coefficients in the interval Bernstein polynomial,

k
Uz uzuz QJafz gaffz (8.36)

i 0 i 0

96 Solving integral equations

Assume that U and V are interval Bernstein polynomials of degree K given by the
coefficients aj j o kand Dbj j o kandlet c be an interval. Now
we have the following elementary operations [55]

k
UVz §a btffz (8.37a)
j 0
k
U cz aa cffz (8.37b)
j o
k
UVz §a btffz (8.37¢)
jo
k
U cz aa cffz (8.37d)
j 0
2k k
Uuyv z ééa,bij ij fiZkZ 2Ik
i 0j 0 (8.37¢)
K k
Ucz acafz (8.37f)
i 0
We have that
1
£ zdz e (8.38)
0 k 1

Since f jk Z is non-negative forz 0 1, we have that

1 1k
U zdz aafzdz §a fzdz
0 0 j i
1 &
——a 3aj (8.39)
k 1.
j 0
using Eq. (2.34c). We want the function intervals to be defined piecewise by
Eq. (8.11), where each function Yy : Xk is an interval Bernstein polynomial
given by

X X fork 0 n I (8.40)

8.4 Numerical examples 97

where Uy z : 0 1 are interval Bernstein polynomials given in the same
form as in Eq. (8.34). Because of this rescaling of the argument, we have

1
Y X dx W X Uk z dz
Xk 0
woXe &
a a (8.41)

We also need to differentiate real Bernstein polynomials for implementing the
first and second order enclosures. Since for K 0 we have that

kfok ! fori 0
£ k£ Y foro ik (8.42)
Kf < fori Kk

the differentiation of a real Bernstein polynomial yields

k 1

uz Aka 1 af 'z (8.43)
j 0
If the real functions Yy : Xk are given by
X X
Ve X Uk K fork 0 n 1 (8.44)
WX

where Uy are real Bernstein polynomials given in the same form as in Eq. (8.33),
then we have

k 1
1 k1 X X
ékajl aj f; k

(8.45)
WX o WX

Yk X

8.4 Numerical examples

Using the iteration scheme Eq. (8.9) based on one of the interval integral oper-
ators loT 11T, or I2T it is possible to implement Algorithm 8.7 for obtaining an
enclosure of the solution to the integral equation Eq. (8.1).

The symbol ~ in Algorithm 8.7 denotes a modified intersection operator:
Since the result of the intersection IpTYj Y] cannot necessarily be represented

98 Solving integral equations

Initialize:
N Xjjo n Yko npP
Iteration:
forj Oton 1
Yj: 1pTY;7Y,
if Yj Othen No solution exists
Output:
Yak 0 n
Algorithm 8.7: Functioninterval iterationscheme.
by an interval Bernstein polynomial, we use a modification: Uj; 1pTY; Y] de-
fined by
U IpTY; if IpTY; X Yj X forx X 8.46
et} Yi otherwise (8.462)
U_j |_pTYj ifIpTYj X Yjx forx X (8.46b)

Yj otherwise

Using ~ instead of in the iteration Eq. (8.9) retains the nesting property of the
iterates. If we encounter a case whereY; 0, 1i.e., Y] X 7] X forsomeX Xj,
we stop the program with the message that no solution exists within the initial
value.

The function interval Y in Algorithm 8.7 is updated each time a new piece
of the function interval Yj has been calculated. This Gauss-Seidel-like method
helps to speeds up the convergence of the method [12].

We terminate the iteration process in Algorithm 8.7 when Y becomes invari-
ant,i.e., whenY |pTY Y. It can be proven that this condition will be true after
a finite number of iterations [46]. The result will be denoted Y since it is a fixed
point of Algorithm 8.7.

8.4 Numerical examples 99

8.4.1 The Chandrasekharequation

Consider the Chandrasekhar equation (or the H-equation)

Iy tyt

X 1 XxXyXx
y yoxt

dt forx 01 (8.47)

which arises from problems in radiative transfer [4, 48]. The function Y is a
known function for X 0 1. Here we use Y t | , where | is a constant.
Using f x 1and

X
gxtyx yt Iﬂyxyt (8.48)

we obtain the form of Eq. (8.1). The derivatives needed for implementing the
zero order enclosure Eq. (8.20) are

X
| -~

G Xty X Yt il
X

g Xtyx yt I—X tyx

Forxt 0 we can use the simple interval extension, but when Xt Xg , we use
the fact that X X t to derive the interval extensions

G X X Yo Yo |01y Yo (8.49)

and

Gs X0 X Yo Yo G4 X X Yo Yo |01 yo

When implementing the first order approximation Eq. (8.26), we also need the
interval extensions of g, and g,

X
xtyx yt | ———yxyt

O Xtyxy thyy
X

X t?2

g Xtyx yt I yxyt

For Xt O the simple interval extensions of g, and g, are used, but g; and g,
become unbounded when Xt Xg . In this case, we are forced to use the zero
order approximation of hin Eq. (8.26).

100 Solving integral equations

n loT [T

1519692423 10 2| 4693960 10 °
30 | 4492288 10 2| 1134352 10 2
60 | 2177521 10 2| 2817790 10 3

Table8.2: Thewidth of the nal functionintervalw ¥ whenusingthe zeroandthe rst order
enclosuresindusingdifferentnumbersof discretizatiorpointsn 15 30 60.

Algorithm 8.7 has been applied to Eq. (8.47) with the constant | %1, using

the non-equidistant discretization points Xk 'r‘]—i fork 0 N and an initial
valueY 099 1 4. The result of using the zero order and the modified first or-
der method for different numbers of discretization pointsn 15 30 60 is shown
in Figure 8.19. In the graphs in Figure 8.19, all iterates are shown until the
algorithm terminates. Table 8.2 lists the width of Y

wY max w Y X (8.47)
x 01

From this example we see that the convergence of the zero order method is
O % , while it is O n—12 for the first order method. This result of the convergence
has been shown to be true in general [11].

8.4.2 Solvingaboundary value problem

Consider again the boundary value problem Eq. (7.14). By using Green’s func-
tion [44, 21], we obtain an equivalent integral equation, which has the same
solutions as Eq. (7.14)
1
u X sxt a’sinut sintp dt (8.48)
0

where Sis Green’s function

sxt (8.49)

Using f X Oand

gxtux ut sxt a’sinut sintp (8.50)

8.4 Numerical examples 101

15 T T T T 15

1.4 14

al i 1l]

e == P

—— _— —

L = _— //?//

>1.2 — = = >12 — /Z —— e
— = = P — _ —

%% 0.2 0.4 06 0.8 %% 0.2 0.4 06 0.8 1

(c)p 0,n 30. dp 1,n 30.

0. L L L L 0. L L L L
[0.2 0.4 0.6 0.8 1 [0.2 0.4 0.6 0.8 1
X X

(e)p 0,n 60. ®p 1,n 60.

Figure8.19: Solvingthe Chandrasekharquationusingthe zero-andthe rst orderenclosures
anddifferentnumbersof discretizatiorpoints.

102 Solving integral equations

we obtain the form of Eq. (8.1). The derivatives of g with respect to the third and
fourth variable are

gz Xtux ut 0
gaxtux ut a’sxt cos Ut

The interval extensions of g and its derivatives are

GX Xj UV Sx xj a’sin v sin xjp
Gs X Xj u v 0
Gy X Xj U Vv a®S X Xj cos V

where for X X andt Xj, we have the interval extension

i1 % 0 t X

S XX X 1 x5 x t 1

(8.51)
We have thati | x tandi | t X butwheni | we do not know
which of the cases in Eq. (8.51) to use. Fortunately, it does not matter here since
the two cases become equal.

The partial derivatives of g with respect to the its first and second variable are

tsintp asinut 0 t x

g xtux ut 1 t asinut sintp x t 1

1 x asinut sin tp tpcos tp
Xtux ut 0t x
% X 1 tpcostp a%sinut sin tp

X t 1

When implementing the interval extensions G; and G,, we have to take special
care when i since the two cases have different values. One way to fix this
problem is to use the smallest interval containing the values of the two cases.
However we use the zero order approximation of h instead as we did when solv-
ing the Chandrasekhar equation, since this method seems to produce tighter en-
closures. The result of using the zero and the modified first order method with
an equidistant discretization Xy 'ﬁ‘ fork O n,n 15 30 60 and an initial
value Y 02 01 is shown in Figure 8.48. In the graphs in Figure 8.20, all
iterates are shown until the algorithm terminates. Table 8.3 lists the width of Y .
Also here the convergence of the zero order methodis O 1 n and O 1 n?
for the first order method.

8.4 Numerical examples

103

0.15

0.1

0.051

5 0.05
0.1 —_— B

0.15 | T

0.2

0.25
0

0.15

0.1

0.051

S5 0.05

0.1

0.15 -

0.2

0.25
0 0.2 0.4 0.6 0.8 1

(c)p 0,n 30.

0.15

0.1

0.051

0.2

0.25
0
X

(e)p 0,n 60.

0.2 0.4 0.6 0.8 1

0.15

0.1

0.051

5 0.05

0.1

0.15 -

0.2

0.25
0 0.2 0.4 0.6 0.8 1

X

®)p 1,n 15.

0.15

0.1

0.051

5 0.05

0.1

0.15 -

0.2

0.25
0 0.2 0.4 0.6 0.8 1

dp 1,n 30.

0.15

0.1

0.051

5 0.05
0.1

0.15 -

0.2

0.25
0 0.2 0.4 0.6 0.8 1

X

®p Ln 60

Figure8.20: SolvingtheintegralequatiorEq. (8.48)usingthezero-andthe rst orderenclosures

anddifferentnumbersof discretizatiorpoints.

104 Solving integral equations

n loT 11T

151212875 10 1] 2173564 10 2
30 | 5808942 10 2| 5510507 10 8
60 | 2 868874 10 2| 1388055 10 3

Table8.3: Thewidth of the nal functionintervalw ¥ whenusingthe zeroandthe rst order
enclosuresindusingdifferentnumbersof discretizatiorpointsn 15 30 60.

105

9 Conclusion

We have seen how to perform interval arithmetic in which intervals of real num-
bers are used instead of real numbers. These intervals are represented by two
real numbers, the lower and the upper endpoints. When implementing interval
arithmetic on a computer, the endpoints are taken from the limited set of real
numbers which are representable by the actual computer used. When operating
on intervals, we use outward rounding so that the interval result is guaranteed
to contain all the true results of the corresponding real operation for all com-
bination of real numbers within the interval arguments. Since we are capable
of performing computations on sets of real numbers, we can apply fixed point
theorems, which enable us to prove existence and in some cases uniqueness of
fixed points of mappings. For example using the interval Newton or the interval
Krawczyk methods, we can implement algorithms capable of proving existence
and uniqueness of solutions to non-linear equations within some interval vector.
Algorithms based on such methods are called ““self-validating methods”.

Using the natural interval extension of a discrete map often lead to unneces-
sarily wide interval enclosures of its iterates. However, by using the derivatives
to form the mean value enclosure will in general lead to tighter enclosures since
this extension reduces the overestimation caused by multiple instances of interval
variables representing the same value. Using the extended mean value enclosure
will in many cases improve the enclosures even more since this enclosure fights
the so-called wrapping by using a rotating rectangular enclosure.

The actual expressions we need to differentiate in practice can be fairly com-
plicated and it would be quite tedious to differentiate by hand. By using auto-
matic differentiation, it is possible to generate derivatives automatically along
with the computations themselves and expressions implemented as algorithms
can easily be differentiated without writing additional code. Three methods for
obtaining derivatives have been implemented in C++: the forward- and the back-
ward methods have been implemented in the package FADBAD, and the Taylor
expansion method has been implemented in the package TADIFF. We have also
seen that the methods can be combined so that derivatives can be obtained in a
very flexible way — opening up for several new applications which would be hard
to implement without the aid of automatic differentiation.

One important application of the Taylor expansion method is the ability to
obtain the Taylor coefficients of a function given implicitly by an ordinary dif-
ferential equation. Since we are also capable of computing enclosures of the

106 Conclusion

truncation errors of truncated Taylor series, it is possible to discretize solutions
of ordinary differential equations and obtain interval mappings which enclose
the true solutions of the ordinary differential equations. The enclosures which
are obtained using these mappings can be improved considerably by using the
mean value enclosure of the mapping instead of the mapping itself. By using the
extended mean value enclosure, we can improve the enclosures even more, since
this method also fights the wrapping effect. Using the FADBAD/TADIFF pack-
ages, an ordinary differential equation solver called “Automatic Differentiation
Interval Ordinary Differential Equation Solver (ADIODES)” has been imple-
mented in C++. This package is based on a combination of the forward and the
Taylor expansion methods for obtaining the mean value enclosure of a Taylor ex-
pansion of the ordinary differential equation, which is given by the user as a C++
function. Only this function has to be altered when implementing other ordinary
differential equations.

Using ADIODES and the interval Newton method, we have proven existence
and uniqueness of periodic solutions to both autonomous and non-autonomous
systems of ordinary differential equations. These equations are of special interest
in dynamical systems theory, and the existence of these periodic solutions has not
yet been proven by analytical methods.

We have also seen how to use ADIODES for proving existence and unique-
ness of a solution to a boundary value problem.

Interval methods has also been applied to a class of integral equations, and
the mean value enclosure of the corresponding integral operator is use to obtain
a piecewise upper- and lower endpoint functions which bounds the true solu-
tions. Two integral equations have been implemented using zero and first order
polynomial bounds.

9.1 Directionsfor futur ereseach

The FADBAD/TADIFF packages can handle combinations of automatic differ-
entiation methods using in principle any arithmetic type. This flexibility enables
for new interesting applications, of which we have seen only a few. Other appli-
cations which might be worth examining are

Applications involving multidimensional Taylor series expansions.

Taylor expanding a function X a given implicitly by a fixed point problem
fxa a xa.

9.1 Directions for future research 107

The FADBAD/TADIFF packages need to be further developed

Optimization w.r.t. sparsity. The packages has not yet been optimized for
handling large and sparse systems.

We have seen how to combine interval analysis and automatic differentiation
for developing a modular, user friendly and easy to use package for enclosing
solutions of ordinary differential equations, but still much more work needs to
be done to improve the method. Some problems include:

Since the Picard iterations used for proving existence and obtaining the
first hand enclosure of the solution are based on an interval vector enclo-
sure, the integration steps are restricted to Euler steps. We need higher
order methods which are capable of proving existence using longer inte-
gration steps, also when solving stiff problems.

When solving stiff systems, the Taylor series expansion has a very slow
convergence, the coefficients becomes very large, and they oscillate. In
ADIODES, we handle this problem by taking very small integration steps,
but if we want to take larger integration steps we need alternative methods
instead of evaluating the Taylor series expansion, e.g. by using implicit
methods.

We need to find a better strategy for combined control of the integration
step size and the order of the Taylor expansion.

The ADIODES program needs to be further developed

A function for obtaining an enclosure of the solution at any value of the
independent variable needs to be implemented.

A function for obtaining an enclosure of the intersection of the solution
and a hyper-plane in the phase space needs to be implemented.

Other applications in dynamical systems theory which need to be developed in-
clude:

Global methods for finding and proving existence of all periodic solutions
of an ordinary differential equation, e.g. by using a divide and conquer
strategy, as used in [53] for discrete mappings.

108

Conclusion

Methods for proving existence of chaos in a system. E.g. by proving inter-
section of unstable and stable manifolds of hyperbolic fixed points.

Methods for encapsulating all possible solutions of an ordinary differential
equation by enclosing its invariant sets in phase space, e.g. by using the
method described in [53, 26] for discrete mappings.

REFERENCES 109

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

[8]

[9]

[10]

[11]

G. ALEFELD, InclusionMethoddor SystemsfNonlinearEquations- The
Interval NewtonMethodandModi cations, in Topics in Validated Compu-
tations, J. Herzberger, ed., IMACS-GAMM, 1994, pp. 7-26.

G. ALEFELD AND J. HERZBERGER, Introductionto Interval Computa-
tions Academic Press, 1983.

V. 1. ARNOLD, Ordinary Differential Equations The MIT Press, Cam-
bridge, Massachusetts, and London, England, 1973.

C. T. H. BAKER, TheNumericalTreatmenof Integral EquationsClaren-
don press, Oxford, 1977.

C. BENDTSEN AND O. STAUNING, FADBAD, A Flexible C++ Padkage
for AutomaticDifferentiation,Using the Forward and Badkward Methods
Tech. Rep. IMM-REP-1996-17, Department of Mathematical Modelling,
Technical University of Denmark, 2800 Lyngby, Denmark, Aug. 1996.

—, TADIFF, AFlexible C++ Padkagefor AutomaticDifferentiation,Us-
ing Taylor SeriesExpansionTech. Rep. IMM-REP-1997-07, Department
of Mathematical Modelling, Technical University of Denmark, 2800 Lyn-
gby, Denmark, Apr. 1997.

O. CAPRANI AND K. MADSEN, Interval Contractionsfor the Solutionof
Integral EquationsInterval Mathematics, (1980), pp. 281-290.

—, Mean \alue Forms in Interval Analysis Computing, 25 (1980),
pp. 147-154.

—, Experimentsvith Interval Methodgor NonlinearSystemgech. rep.,
Institut fiir Angewandte Mathematik, Universitét Freiburg i. Br., Hermann—
Herder—Stralle 10, D-7800 Freiburg i. Br., Germany, 1981.

O. CAPRANI, K. MADSEN, AND L. B. RALL, Integration of Interval
Functions SIAM J. Numer. Anal., 12 (1981), pp. 321-341.

O. CAPRANI, K. MADSEN, AND O. STAUNING, EnclosingSolutionsof
Integral Equations Tech. Rep. IMM-REP-1996-19, Department of Mathe-
matical Modelling, Technical University of Denmark, 2800 Lyngby, Den-
mark, Aug. 1996.

110

REFERENCES

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

—, Existencdlestfor Asyn@ironouslinterval lteration, Reliable Comput-
ing, 3 (1997), pp. 269-275.

B. A. CooMES, H. KogAaK, AND K. J. PALMER, Periodic shadowing
Contemporary Mathematics, 172 (1994), pp. 115-130.

W. A. CopPEL, Stability and AsymptoticBehaviorof Differential Equa-
tions D. C. Heath and Company, Boston, 1965.

G. F. CorLiss, Surve of Interval Algorithmsfor Ordinary Differential
Equations Appl. Math. Comput., 31 (1989), pp. 112—120.

—, Overloading Point and Interval Taylor Opemtors in Automatic
Differentiation of Algorithms: Theory, Implementation, and Application,
A. Griewank and G. F. Corliss, eds., Philadelphia, Penna., 1991, STIAM,
pp- 139-146.

G. F. CoRLISS AND Y. CHANG, Solving Ordinary Differential Equa-
tions using Taylor Series ACM Transactions on Mathematical Software,
8 (1982), pp. 114-144.

G. F. CorLIss, G. S. KRENz, AND P. H. DAvVIS, Bibliographyoninterval
methoddor thesolutionof ordinary differential equationsTech. Rep. 289,
Department of Mathematics, Statistics and Computer Science, Marquette
University, Milwaukee, WI 53233., Sept. 1988.

A. GRIEWANK, On AutomaticDifferentiation Kluwer Academic Publish-
ers, PO.Box 17, 2200 AA Dordrecht, The Netherlands, 1989, pp. 83—108.
Also available as Tecnical Report number ANL/MCS-P10-1088 or CRPC-
TR89003 from Argonne National Laboratory, Mathematics and Computer
Science Division, 9700 South Cass Avenue Argonne, Illinois 60439.

A. GRIEWANK AND S. REESE, On the Calculationof JacobianMatrices
by the MarkowitzRule in Automatic Differentiation of Algorithms: The-
ory, Implementation, and Application, A. Griewank and G. F. Corliss, eds.,
Philadelphia, Penna., 1991, SIAM, pp. 126-135.

D. GRIFFEL, AppliedFunctional Analysis Ellis Horwood, Market Cross
House, Cooper Street Chichester, West Sussex, PO19 1EB, 1981.

REFERENCES 111

[22] E. HANSEN, Topicsin Interval Analysis Oxford University Press, Ely
House, London W. 1, 1969.

[23] P. HARTMAN, Ordinary Differential EquationsJohn Wiley & Sons, Inc.,
New York, London, Sydney, 1964.

[24] INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.,
IEEE Standartfor Binary Floating-Roint Arithmetic 345 East 47th Street,
New York, NY 10017, USA., Aug. 1985.

[25] D. W. JUEDES, A Taxonomyof AutomaticDifferentiationTools in Auto-
matic Differentiation of Algorithms: Theory, Implementation, and Appli-
cation, A. Griewank and G. F. Corliss, eds., Philadelphia, Penna., 1991,
SIAM, pp. 315-329.

[26] C. KNUDSEN AND O. STAUNING, ExactNumericalMethodsn Dynamical
System3 heory Submitted, 1997.

[27] C. KNUDSEN, J. STURIS, AND J. S. THOMSEN, Generic bifurcation
structuesof Arnol'd tonguesn forcedoscillators Physical Review A, 44
(1991), pp. 3503-3510.

[28] O. KNUPPEL, BIAS - BasicInterval Arithmetic Subobutines Technische
Universitit Hamburg—Harburg, Technische Universitit Hamburg—Harburg
Technische Informatik III D-21071 Hamburg, Germany, 1993. Also avail-
able from http://www.ti3.tu-harburg.de/indexEnglisch.html

[29] ——, PROFIL — Programmers Runtime Optimized Fast Interval
Library, Technische Universitit Hamburg—Harburg, Technische Uni-
versitit Hamburg—Harburg Technische Informatik III D-21071 Ham-
burg, Germany, 1993. Also available from http://www.ti3.tu-
harburg.de/indexEnglisch.html

[30] ——, PROFIL/BIAS - A Fast Interval Library, Computing, 53 (1994),
pp. 277-287.

[31] R. KrRAWCZYK, Newton-Algorithmerzur Bestimmungon Nullstellenmit
Fehlerstiranken Computing, 4 (1969), pp. 187-201.

112 REFERENCES

[32] J. LAMBERT AND A. R. MITCHELL, Onthe Solutionofy f xy by
a Classof High Accumacy DifferenceFormulaeof Low Order, ZAMP, 13
(1962), pp. 223-232.

[33] R. LOHNER, Interval Arithmeticin Staggeed Correction Format Scien-
tific Computing with Automatic Result Verification, (1993), pp. 301-321.

[34] R. J. LOHNER, Enclosingthe Soulutionof Ordinary Initial andBoundary
Value Problemsin Computer Arithmetic: Scientific Computation and Pro-
gramming Languages, E. Kaucher, U. Kulisch, and C. Ullrich, eds., B. G.
Teubner Stuttgart, 1987, Universitit Karlsruhe, pp. 255-286.

[35] ——, EinsdlieBungder Losunggenodhnlicher Anfangs-undRandwertauf-
gaben PhD thesis, Fakultit fiir Mathematik der Universitit Karlsruhe, June
1988. In German.

[36] E. N. LORENZ, DeterministicNonperiodicFlow, J. Atmos. Sci, (1963),
pp. 130-141.

[37] R. E. MOORE, AutomaticLocal CoodinateTransformatiorto Reducehe
Growth of Error Boundsin Interval Computatiorof Solutionsof Ordinary
Differential Equations in Error in Digital Computation, L. B. Rall, ed.,
vol. 2, John Wiley & Sons, 1965, pp. 103—-140.

[38] ——, Interval Analysis Prentice—Hall, Series in Automatic Computation,
Englewood Cliffs, N.J., 1966.

[39] ——, MethodsandApplicationsof Interval Analysis SIAM Studies in Ap-
plied Mathematics, Philadelphia, 1978.

[40] ——, Interval Methodsfor Nonlinear Systemsin Fundamentals of Nu-
merical Computation (Computer-Oriented Numerical Analysis, G. Alefeld,
R. Grigorieff, R. Albrecht, U. Kulisch, and F. Stummel, eds., vol. 2, Wien
New York, 1980, Springer-Verlag, pp. 113-120.

[41] N. S. NEDIALKOV, K. R. JACKSON, AND G. F. CoRLISS, Validated So-
lutionsif Initial Value Problemsfor Ordinary Differential EQuationstech.
rep., Department of Computer Science of the University of Toronto, Feb.
1997.

REFERENCES 113

[42] L. QI, Interval Boxesof Solutionsof Nonlinear SystemsComputing, 27
(1981), pp. 137-144.

[43] L. B. RALL, Numericallntegrationandthe Solutionof Integral Equations
by theuseof RiemannfSumsSIAM J. Numer. Anal., 7 (1965), pp. 55-64.

[44] ——, ComputationaBolutionof NonlinearOpeiator Equations Prentice—
Hall, Series in Automatic Computation, Englewood Cliff, NJ., 1979.

[45] ——, Applicationsof Softwae for AutomaticDifferentiationin Numeri-
cal Computationin Fundamentals of Numerical Computation (Computer-
Oriented Numerical Analysis), G. Alefeld, R. Grigorieff, R. Albrecht,
U. Kulisch, and F. Stummel, eds., vol. 2, Wien, New York, 1980, Springer-
Verlag, pp. 141-156.

[46] ——, A Theoryof Interval Iteration, Proceedings of the American Mathe-
matical Society, 86 (1982), pp. 625-631.

[47] ——, MeanValue and Taylor Formsin Interval Analysis SIAM J. Numer.
Anal., 14 (1983), pp. 223-238.

[48] ——, Applicationof Interval Integration to the Solutionof Integral Equa-
tions Journal of Integral Equations, 6 (1984), pp. 127-141.

[49] R. RIHM, Interval Methodsfor Initial Value Problemsin ODES in Top-
ics in Validated Computations, J. Herzberger, ed., IMACS—-GAMM, 1994,
pp. 173-207.

[50] ——, On a Classof Enclosue Methodsfor Initial Value Problems Com-
puting, 53 (1994), pp. 369-377.

[51] D. SHIRIAEV, Fast AutomaticDifferentiationfor Vlector Processorsaand
Reductiorof the Spatial Compleity in a Source TranslationErnvironment
PhD thesis, Fakultit fiir Mathematik der Universitit Karlsruhe, Dec. 1993.

[52] C. SPARROW, TheLorenzequationsSpringer, New York, 1982.

[53] O. STAUNING, Interval Analysel DynamiskSystemteoyiMaster’s thesis,
Department of Mathematical Modelling, Technical University of Denmark,
2800 Lyngby, Denmark, 1994. In Danish.

114 REFERENCES

[54] ——, Solvingintegral EquationdJsinginterval Analysis Tech. Rep. IMM-
REP-1995-21, Department of Mathematical Modelling, Technical Univer-
sity of Denmark, 2800 Lyngby, Denmark, 1995.

[55] ——, EnclosingSolutionsof Ordinary Differential Equations Tech. Rep.
IMM-REP-1996-18, Department of Mathematical Modelling, Technical
University of Denmark, 2800 Lyngby, Denmark, 1996.

[56] A. STUART, NumericalAnalysisof DynamicalSystemsCambridge Uni-
versity Press, 1994.

[57] P. P. ZABREYKO, A. 1. KOSHELEV, M. A. KRASNOSEL’SKII, S. G.
MIKHLIN, L. S. RAKOVSHCHIK, AND V. Y. STET SENKO, Integral Equa-
tions- A RefeenceText, Noordhoff, The Netherlands, 1975.

Index

of interval matrices, 9
of interval vectors, 9
of intervals, 5

interval matrix relation, 9

interval relation, 6

interval vector relation, 9
5

m n
, 8

n’8

interval matrix relation, 9
interval relation, 5
interval vector relation, 9

interval matrix relation, 9
interval relation, 6
interval vector relation, 9

interval matrix relation, 9
interval relation, 6
interval vector relation, 9

active variable, 46
ADIODES, 69

backward mode automatic differen-
tiation, 38, 49

basic type, 45

Bernstein polynomial, 95

boundary value problem, 84

Brouwer fixed point theorem, 16

Brusselator, 70, 75

Chandrasekhar equation, 99

115

code-list, 34, 35, 38
computational graph, 35
contraction mapping, 63
Contraction Mapping Theorem, 63
Cos-Sin map, 29

dependent variable, 47
directed acyclic graph, 34
discrete map, 19, 20

epsilon-inflation, 66
extended mean value enclosure, 23,
24, 29, 30

FADBAD, 45, 53

forced Brusselator, 83

forward mode automatic differentia-
tion, 37, 47

Fredholm equation, 87

function interval, 89

inclusion monotonic, 10
independent variable, 47
infimum of an interval, 5
initial value problem, 58, 66, 68
integral equation, 87
integral operator, 88
first order approximation, 92
second order approximation, 93
zero order approximation, 91
interval, 5
arithmetic, 6-9
extension, 10
function, 10
integral of, 11
mean value enclosure, 16

116 INDEX

matrix, 8 TADIFF, 46, 53

vector, 8 Taylor arithmetic, 40-44

Taylor coefficient function, 40
Taylor expansion method, 40, 51
Taylor’s Theorem, 15

temporary variable, 35, 46

Krawczyk operator, 18
Lorenz system, 76

magnitude
of an interval, 5
of an interval matrix, 8
of an interval vector, 8

Van der Pol system, 80
variational equation, 59
Volterra equation, 87

mean value enclosure, 22-30, 68 width

midpoint of an interval, 5
of an interval, 5 of an interval matrix, 8
of an interval matrix, 8 of an interval vector, 8
of an interval vector, 8 wrapping effect, 19

natural interval enclosure, 30
natural interval extension, 10
Newton operator, 17
numerical integration, 55

ordinary differential equation, 44, 53,
58, 63

parallelepiped enclosure, 26
periodic solutions, 59

of autonomous systems, 74

of non-autonomous systems, 82
Picard-Lindelof operator, 64

QR-factorization method, 26, 28

range, 10
rough enclosure, 65

self-validating, 17, 18
simple interval iteration, 19
step size, 66

supremum of an interval, 5

