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This manual describes a Matlab toolbox with space mapping optimization
algorithms and test problems. The theoretical background for the algorithms
in this toolbox are given in [9] and [4]. The earlier toolbox version 1.0 has
been augmented with a new space mapping algorithm, and the new version
2.0 of the toolbox is covered by this manual.

The problems to be solved by the optimization algorithms in this toolbox
have two models available: One model denoted the fine model, being the
model of primary interest, and the other denoted the coarse model. The
fine model is often expensive to evaluate, though this is not always the case
with the simple test problems in this toolbox. It is expected that the coarse
model somehow resembles the behaviour of the fine model. Further, it is
expected that the coarse model is cheaper to evaluate than the fine model,
and therefore it is most likely less accurate than the fine model.

The optimization algorithms employ the coarse model in the search for the
fine model minimizer. This is done through a parameter mapping, the so-
called space mapping, which in effect makes the coarse model behave as the
fine model. We call this combination of the space mapping and the coarse
model, the mapped coarse model or the surrogate model. Hence, in the
space mapping technique, this mapped coarse model is to take the place of
the fine model in search for a minimizer of the latter. For a more thorough
introduction to the space mapping technique see [1].

This manual is divided into three sections. The first section introduces the
test problems, and the second section introduces the algorithms. Both sec-
tions provide a brief description of the Matlab interface. The last section
consists of two small examples of running the software.

We should note here that the optimization algorithms in this toolbox rely
on the Matlab optimization toolbox [7] in order to run. The test problems
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do not require the Matlab optimization toolbox. The toolbox version 1.0
has been developed with Matlab version 6.5 (R13), and version 2.0 has been
upgraded to work with the latest version of Matlab 7.0 (R14). Though the
toolbox should work with other recent versions of Matlab.

1 Space Mapping Optimization Test Problems

We first describe the common interface to the models, and thereafter we
briefly introduce the individual test problems.

1.1 Interface

The definitions of the test problems are stored in the function smprob.

To obtain a structure for a given problem the call is
[prob, opts] = smprob(num, opts)
where the inputs are

num the number of the wanted problem (see below),
opts options for space mapping optimization algorithms (see smopts),

the outputs are

prob  structure with the problem definition,
opts modified options.

The second input argument is optional, and is meant for the case where the
user want to provide alternative default options, instead of those provided
by smopts. The opts structure returned from smprob contains the problem
specific parameters like initial trust region size etc.



The test problems are:

Tranmission Line Transformer problems
1 - two-section impedance transformer (TLT2)
2 - seven-section impedance transformer (TLT7)

Piston problem
3 - piston simulator (PISTON)

Rosenbrock problem
4 - rosenbrock function, with linear transformation (ROSEN)

Parallel Resonator problems
5 - exact linear mapping (RLCA)
6 - exact non-linear mapping (RLCB)
7 - inexact non-linear mapping (different topology) (RLCC)
8 - inexact non-linear mapping (RLCD)

Quadratic functions
9 - quada (coarse responses shifted up) (QUADA)
10 - quadb (coarse responses shifted down) (QUADB)

The test problems are placed in separate directories in the toolbox. In order
to access the problems, the path variable of Matlab is automatically modified
when first interfacing the test problems through smprob. This modified path
variable is temporary for the session. If the changes should be permanent

use Matlabs pathtool to perform the changes.



1.2 The Test Problems

We now briefly introduce the individual test problems. But first some general
comments:

Even though the optimization methods in the toolbox are general for all
norms, the test problems presented here are posed as minimax problems.
For minimization problems in the co-norm, the test problem is still posed as
a minimax problem and solved by a minimax optimization algorithm, but

the original vector function f is extended to f = ( _f f)'

Unless explicitly noted in the description the space mapping (using the usual
formulation) is not perfect, hence p(z*) # z*. As described in [9, Chapter
4], this condition is critical for the success of the original space mapping
algorithms, see also Section 2 below.

All test examples are continuously differentiable in their parameters.

1.2.1 TLT2

The problem TLT2 concerns the design of a twosection capacitively-loaded
10 : 1 impedance transformer. The exact physical origin of the problem is
described in [1].

The designable parameters are the physical lengths of the two transmission
lines. Eleven frequency points are simulated per sweep. The objective is to
minimize the maximum input reflection coefficient over all simulated fre-
quencies. The design specifications are that all input reflection coefficient
responses should be below 50%.

Formally, the fine model response function is f : R? — R and the specifi-
cations are

H(f(x)) = max{f;(x)} < 0.50.

The coarse model is as the fine model, except that coupling effects (modelled
by capacitors) are not modelled.

1.2.2 TLT7

The TLT7 problem concerns the design of a seven-section capacitively-
loaded impedance transformer. The exact physical origin of the problem
is described in [1].

The designable parameters are the physical lengths of the seven transmis-
sion lines. 68 frequency points are simulated per sweep. The objective is to



minimize the maximum input reflection coefficient over all simulated fre-
quencies. The design specifications are that all input reflection coefficient
responses should be below 7%.

Formally, the fine model response function is f : R’ — R% and the specifi-
cations are

H(f(x)) = max{f;(x)} < 0.07.

The coarse model is as the fine model, except that coupling effects (modelled
by capacitors) are not modelled.

1.2.3 PISTON

The PISTON problem is a data fitting problem, where a piston simulator
should be fitted to a given target response. Here the piston simulator is
a model which calculates the pressure over time at an oil producing one-
dimensional well, relative to a fixed injection pressure. The target response
is the fine model evaluated for a certain set of parameters, so the match of
the model to the target response is exact at the optimal parameters. Because
of this, we have chosen to formulate the problem as solving the nonlinear
equations f(z) = 0 using the Lo, merit function.

The fine model is a piston model with six sections of different reservoir
permeabilities along the shaft of the well. Two of the six reservoir perme-
abilities are chosen as designable parameters. The coarse model is a piston
model with two sections of different reservoir permeabilities along the shaft
of the well. Both permeabilities in the coarse model are considered designable
parameters. For both models, 20 simulation times are simulated per model
evaluation.

Let the model response be f : R? — R and let the target response be
y € R®. In the implementation we use the minimax merit for the nonlinear

f*@{)_
y—f
Formally, the deviations of the fine model response and the specifications
are f: R?> — R*, and the optimization problem is

equations, instead of the L, merit, by introducing the residuals f = (

min max{ f; (z)}
X 1=

The deviation of the coarse model to the specifications is defined equiva-

lently.

The PISTON problem is provided by Poul Erik Frandsen from Ticra Engi-
neering Consultants, Copenhagen, Denmark.



1.2.4 ROSEN

The ROSEN problem involve solving the Rosenbrock equations, f(x) = 0,
where f : R? — R?,

filz) = 10*(1‘2—.%’%)
fo(x) = 1—m:

We formulate the problem as a minimax problem, by defining the fine model
response function as f = (f1, fa, —f1, —f2)" . Hence the problem is

ming max?zl{fj (x)}.
We define the coarse model response as a linear transformation of the fine
model response. Hence, ¢(z) = f(Az + b), where

e[ (3]

We note that the space mapping between the coarse and the fine model is
exact linear:

pla) = A7 @ 1),

since A is invertible.

It is easy to see that the mapping is perfect, i.e. p(z*) = z*, for this problem
as the responses of both models vanish in their optimum.

1.2.5 RLC

The RLC problem concerns design of parallel RLC lumped resonators.

The coarse model is a parallel RLC lumped resonator with three designable
parameters. 15 frequency points are simulated per sweep. The objective is
to minimize the maximum deviation between the input reflection coefficient
and some design specifications over all simulated frequencies. The specifica-
tions consists in a passband at the center frequencies and a stopband at all
other frequencies.

The problem has four fine models that also model a parallel RLC lumped
resonator, but the fine models also have some parasitic elements. The fine
models are related to the same design problem (i.e. the same specifications)
as the coarse model.

Here are the characteristics of the differences between the models:

RLCA : The fine model has an exact linear mapping to the coarse model.



RLCB : The fine model has an exact nonlinear mapping to the coarse model.

RLCC': The fine model has an inexact non-linear mapping (different topol-
ogy) to the coarse model.

RLCD : The fine model has an inexact non-linear mapping to the coarse
model.

The deviation of the fine model response to the specifications is f : R3 —
R', the problem is min max}il{fj(:c)}. The deviation of the coarse model
to the specifications is defined equivalently.

1.2.6 QUAD

The QUAD problems, QUADA and QUADB, involve three quadratic func-
tions. The fine model response is f : R? — R3, f = (f1, fa, f3)T, where

fi(z) = 0527 +.123 —2x9—2
fo(z) = 0222 +0123 +22y -2
f3(x) = 01z —32;+0223 —2.

The fine model is the same for both QUADA and QUADB.

The coarse model for QUADA is ¢(z) = f(z + 0.1) + 0.1 and the coarse
model for QUADB is ¢(z) = f(z — 0.1) +0.1.

The simple shift in the response functions causes that for neither problem
the space mapping is perfect, p(z*) # z*.



2 Space Mapping Optimization Algorithms

The toolbox contains six algorithms based on space mapping technique. Two
algorithms, namely smo and smon, are related to the original space mapping
formulation. Three algorithms, namely smh, smho and smhc, are so-called
hybrid space mapping algorithms, combining space mapping technique with
classical Taylor based optimization. The last algorithm, smis, is a space
mapping algorithm with interpolating surrogates. The first five algorithms
employ only input mappings, while the latter employs both input and output
mappings.

2.1 Interface
The algorithms have a common interface:
[xk, fk, Hfk, stop, trace] =
smx(H, fine, coarse, x0, A, b, eq, opts, P1, P2, ...)
where smx is one of the following

smo original space mapping,

smon new space mapping formulation,

smh hybrid space mapping,

smho hybrid space mapping with orthogonal steps.

smhc hybrid space mapping with response correction,
smis space mapping with interpolating surrogate model.

The mandatory arguments of the algorithms are the merit function H, the
file handles to the fine and the coarse model and a starting point x0. Any
parameters that should be passed directly to the fine and the coarse model
can be specified in the place of P1, P2,

The smis algorithm has an extra input argument mmap, which is the num-
ber of response functions for which the mapping parameter extraction is
performed. In case of minimization in the co-norm, mmap is the length of 1,
otherwise the length of f.

The algorithms return the best iterate xk, the fine model response fk at
xk, the merit Hfk of the response and the reason for stopping the algorithm
stop. A fifth output option is a trace structure which contains a trace of
important values gathered in the iteration process. The trace structure is
mandatory, if the results should be visualized by the function smplot.

The user may supply the algorithm with linear constraints A-x < b, where the
first eq rows are equality constraints. If the problem is unconstrained empty



matrices may be passed. The toolbox provides no check for consistency of
the constraints.

The constraints only apply to fine model parameters, e.g. in the trust region
subproblems, hence the coarse model may be evaluated at any z € R"™. The
only exception is in the initial phase of the algorithms, where the coarse
model parameters are constrained in the search for the coarse model mini-
mizer, z*. This is needed because the first iterate is the coarse model mini-
mizer, xg = z*, i.e. the first point where the fine model is evaluated.

Specific options determining the behaviour of the optimization algorithms
are passed in the structure opts. The default values for the structure opts
are obtained from the function smopts. The structure contains all options
used to determine the behaviour of the specific algorithms. If an empty
matrix is passed instead of a structure, the default values are obtained from
smopts.

The function smopts is called as follows

smopts (keyl, valuel, key2, value2, ...)
smopts (opts, keyl, valuel, key2, value2, ...)

opts
opts

See the source file for a more complete description of the options, than is
presented in this manual. An existing structure with options can be passed
as input to override default values. Individual default options can be over-
written by specifying new key-value pairs as input arguments.

We mentioned some of the more important options here:

Most of the optimization algorithms in this toolbox rely on trust region
methodology to enforce convergence. Control of the trust region is deter-
mined by a number of options. The most important is dx, the initial trust
region size, which is problem dependent. Refer to smopts for the other op-
tions related to the trust region handling.

The accuracy of the optimization result is determined by the option epsilon.
The algorithms stop if the relative step length or trust region size becomes
smaller than epsilon. Another option controlling when the algorithms stops
is kmax which determines the maximum allowed number of fine model eval-
uations. So the algorithms are stopped if one of the following conditions are
satisfied

k > kmax
[Pl < epsilon(l + [lz[])
dx < epsilon(l+ ||zk||)

where k counts fine model function evaluations, ||hg|| is the step length, dx
is the size of the trust region and ||zk|| is the norm of the current iterate.



The last criterion is there to avoid an unnecessary extra iteration, solving a
trust region problem with a trust region size that is less than the minimum
allowed step length.

In the smis algorithm an additional stopping criterion is

H(f(xx)) — H(f(xx +h) < epsilon(l+[H(f(zx))])

requiring a sufficient decrease in the objective function to continue.

A quick way to test-run the algorithms is through the smrun function, which
is called by

[p, trace, opts] = smrun(num, algo, opts)

where num is the number of the test problem (see p. 3), and algo is the
number of the algorithm to test:

SMO orginal space mapping formulation

SMON new space mapping formulation with mapped coarse model
SMH space mapping hybrid algorithm

SMHO space mapping hybrid algorithm with orthogonal steps
SMHC space mapping hybrid algorithm with response correction
SMIS space mapping algorithm with interpolating surrogate model
direct optimization of the fine model, 1st order method

direct optimization of the fine model, 2nd order method

direct optimization of the coarse model, 2nd order method

© 00 N T W -

If the third input argument opts is missing in the call to smrun, the default
options are used.

The variables p and opts are the structures obtained from smprob, and
trace is the trace of the optimization process obtained by calling one of the
algorithms. See Section 3 for examples showing the content of trace and p.
For the choices 8 and 9 of algo there cannot be produced a trace variable.

A quick way to plot some of the results from algorithm 1-7 is through the
smplot function, which is called by

smplot(p, trace, opts)

where p is the structure obtained by the function smprob (see p. 2), and
trace is the structure containing the trace of the optimization process. opts
is the structure defining the options, if the default values have been used
in the algorithm, the argument can be omitted. For algorithm 1-7 at least
three plots are provided:
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1 The performance measured in the merit function H(f(zy)) — H(f(z*))
The performance measured in the iterate ||xx — z*||2

2 The trust region radius and the step length

3 The fine model response function at «* and at the best iterate

If the optimizer z* is not available, the performance is measured according to
the best solution available. Additional plots depend on the problem type and
the optimization algorithm. For algorithm 1-5 the convergence of the space
mapping compared to the perfect space mapping is plotted, for algorithm 3-5
also the transition parameter, and for algorithm 5 furthermore the response
correction factors. For algorithm 6 in case of a two-dimensional problem the
approximation errors from using a linear Taylor model and from using the
optimal surrogate model are visualized in a three-dimensional figure.

For all algorithms a table with the level of accuracy (H(f(xx)) — H(f(x*)))
for each iteration is displayed in the Matlab command window.

Since the smplot function relies on the existence of the trace variable, it can
not be used in case algo is 8 or 9.

Before we describe the algorithms we first give a brief theoretical overview
of space mapping theory.

2.2 Theoretical Overview

The main problem consists in finding the minimizer z* (assumed unique) of
the fine model,

v = argmin H(f (x)) . 1)

where f : R™ — IR™ is the vector response function representing the fine
model, and H : R™ — IR is a convex merit function, usually a norm. We
denote z* the fine model minimizer. We note that f is assumed so expensive
that using a classical Taylor based optimization method is infeasible, so
finding z*, or an approximation to it, is nontrivial.

A related problem is finding the minimizer z* (assumed unique) of the coarse
model,

2* = arg min H(c(z2)),
zeR™
with ¢ : R"™ — IR™ being the vector response function representing the
coarse model. We denote z* the coarse model minimizer. Since ¢ is assumed
cheap to evaluate the gradient is available (e.g. by finite difference approx-
imation), hence finding z* is a trivial problem for a classical Taylor based
optimization method.

11



For the space mapping algorithms with only input mappings, the space
mapping p : R" — R" linking the parameter space of the fine and the
coarse model is usually defined as solving the so-called parameter extraction
problem,

p(z) = arg min [lc(z) — f(z)ll2-

This definition of the space mapping may lead to nonuniqueness in the
parameter extraction problem, so several alternative definitions are available
in the toolbox:

Regularization with regard to the distance to z*,
pa(e) = argmin { (1 =) [le(z) = f(@)I[5 + Mlz =213 } (2)

for some value of 0 < A < 1.

Regularization with regard to the distance to z,
pa(e) = argmin { (1 =) [le(2) = f(@)|[5 + Ml =23 } (3)

for some value of 0 < A < 1.

Regularization using gradient information,
pa(e) = argmin { (1= A) fle(z) = f(@)[5+ A1 (2) = /(@) } . (4)

for some value of 0 < A < 1. In the optimization algorithms f/(x)7 is
approximated by a secant approximation D € R™*" during iterations, so
this D is used instead of the true Jacobian matrix in (4).

In the implementation the above regularized problems are solved as normal
nonlinear least-squares problems, exemplified here by (2),

(1 =) (e(2) = f(2))
VA (z =2

for some value of 0 < A < 1. As the Jacobian of ¢ is assumed available,
the gradient for this least-squares objective function is available, at least
for (2) and (3). In the case of (4) though, the gradient of the least-squares
objective function depends on the second derivatives of ¢. So, as second
order information is not available, the gradient of the least-squares objective
function is found by finite difference approximation.

2

9
2

pa(x) = arg min
4

The space mapping algorithm smis employs both input and output map-
pings. The space mapping-based interpolating surrogate model s : R" —
R™ is defined by input mappings P, : R" — IR", transforming the param-
eter space of the coarse model, and by output mappings O; : R™ — R,
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transforming the coarse model responses, for ¢ = 1, ..., m. The output map-
pings ensure exact interpolation between the fine model responses and the
surrogate model responses in the expansion point. Each of the responses are
considered individually.

The space mapping is hereby linking the coarse model and the surrogate
model, and is defined by the so-called mapping parameters. These are found
by solving m mapping parameter extraction problems, formulated as non-
linear least-squares problems,

wy (s(z1,p) — f(x1))

P BB wor (s(anmrs ) — f@nor)
wa (s (2, p) — folzw)) ||,

where wy and woy are weighting factors. The formulation aims for alignment
of the fine model and the surrogate model at the previous iteration points,
and also includes gradient information at the best iterate. Since second order
information for the coarse model is not available, the gradient of the least-
squares objective function is found by finite difference approximation. It
should also be mentioned, that the mapping parameter extraction problems
may be nonunique.

With this theoretical introduction we are now in a position to introduce the
algorithms.

2.2.1 The Original Space Mapping Formulation

The original space mapping technique involves solving the nonlinear equa-
tions

p(x) =27,

for x € R". The algorithm implemented in the toolbox function smo ad-
dresses this problem, by solving the least-squares formulation of the prob-
lem,

i —2%2. 5
Jnin [|p(z) — 27|z (5)

Another space mapping technique, equivalent with the original formulation
in some ways, is to minimize the mapped coarse model,

min H(c(p())). (6)

The algorithm implemented in the toolbox function smon solves this prob-
lem.
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The solutions of (5) and (6) are not necessarily the solution z* of the main
problem (1). In fact we can only be certain that the solution is x* if the
space mapping is perfect, p(z*) = z*.

In the description of the test problems above it is stated which of the test
problems that have a perfect mapping. Due to this drawback, the results of
the functions smo and smon are not directly comparable with the functions
implementing the hybrid space mapping framework, described next.

2.2.2 Hybrid Space Mapping Algorithms

The toolbox contains three functions, namely smh, smho and smhc, imple-
menting the hybrid space mapping framework described in [6]. Basically the
algorithms rely on a model of the form

s(z) = wep(z)) + (1 —w)l(x)

where 0 < w < 1 is a transition parameter, c o p is a mapped coarse model
and [ is linear Taylor model of the fine model. An exception is the algorithm
in smhc which uses a form of the mapped coarse model where the responses
are corrected to match the fine model using a secant method.

All the algorithms start with w = 1 and end with w = 0, provided enough
iterations. Thereby a switch from the mapped coarse model to the linear
Taylor model takes place.

With k being the iteration counter, it is proven in [6] that the main condition
for convergence of this class of algorithms is that

Wg = ka . 0(1)

where dxy, is the size of the trust region and o(1) — 0 for £ — oc.

Two of the algorithms, namely smh and smhc, use a gradual switching strat-
egy, whereas the third algorithm smho switches abruptly from w = 1 to
w = 0 at a certain point in the iteration process.

The algorithms use linear Taylor model with secant approximations to the
derivatives for both the space mapping p and [. So the last stage of the
three algorithms involves sequential linear programming, where the linear
model has inexact derivatives. To help speed up the convergence, the options
dofinitediff and maxuphill (refer to the source of smopts) can force the
algorithms to correct the linear model by a finite difference approximation.
Further we should note that the option initd controls the way that the
initial approximation to the derivatives of the fine model is obtained.
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2.2.3 The Space Mapping Algorithm with Interpolating Surro-
gate model

This new method employs both input and output mappings to construct an
interpolating surrogate model, with the ¢th response given by

si(z) = ai (¢i(Pi()) — ¢i(Pi(wx))) + filzr)

where xj, is the best iterate so far. The ¢th input mapping P; is a linear
transformation of the design parameters

Pi(z) = Az + b;

The output mapping parameter «; transforms the coarse model response.
The formulation ensures exact alignment of the surrogate model responses
and the fine model responses in the expansion point x. The mapping param-
eters for the ith response are gathered in the vector p;, which has n? +n+1
elements. The total number of unknown mapping parameters in each main
iteration is then m - (n? 4+ n + 1).

To speed up the calculations the option diag-a can be set to 1, which makes
the input mapping parameter matrix A; a diagonal matrix for all responses.
The total number of unknown mapping parameters is now m - (2n + 1). The
default value of diag_a is 0.

It must be mentioned, that in case of co-norm minimization, the mapping
parameter extraction is only performed for mmap = m/2 responses, since
the other half is identical due to the symmetry of the fine model function

_(f
F=0%)
The residual formulation includes weighting factors. The value of the weight-
ing factor wy is relative to the weighting factor ws, which has the fixed value
1. The ratio between w; and wy is set by the option weight_f, which has
the default value 1. The value of weight f is recommended to be < 1. Both

weighting factors are furthermore normalized according to the residual ele-
ments.

Another option concerning the smis algorithm is eta, which determines the
step length used in the forward difference approximation for the gradient of
the residual, when solving the mapping parameter extraction problems. The
recommended value is eta = 107°.

2.3 The Optimization Algorithms
2.3.1 SMO

The function smo implements the original space mapping technique solving
the problem in (5) using a trust region secant method. The secant method
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involves a linear Taylor model of the space mapping with a secant approxi-
mation to the Jacobian matrix.

2.3.2 SMON

The function smon implements the alternative space mapping technique solv-
ing the problem (6), using a trust region method with sequential linear ap-
proximations to p by a secant method.

2.3.3 SMH

The function smh implements the hybrid space mapping algorithm, with a
gradual switching between the mapped coarse model and the linear Taylor
model of the fine model.

The control of w is determined by the options wmin, w_reduce and
max_w_not_reduced. If either a proposed step is not accepted or if the number
of iterations where w has not been changed reaches max{n,max not_reduced}
then w is updated. The updating formula is

Wk41 = Wy - wreduce - min{dxx1,1},

where dx is the size of the trust region. If w by updating gets below w_min
then w is set to zero.

2.3.4 SMHO

The function smho implements a hybrid space mapping algorithm with or-
thogonal updating steps of the space mapping approximation.

If the space mapping fails within the first n iterations the algorithm eval-
uates the fine model at a step in a direction orthogonal to previous steps,
this is in order to improve the quality of the space mapping secant approx-
imation. Which of the orthogonal directions that is chosen and the length
of the step in that direction can be controlled by the options ortho_met,
ortho_scale_type and ortho_scale. If a single orthogonal step is not suf-
ficient, further steps are taken, until the fine model has been evaluated at
most n times. Thereafter the algorithm switches to a linear Taylor model of
the fine model.

If the space mapping steps are successful the algorithm keeps taking space
mapping steps until at most max_w not_reduced + n steps have been taken.
Thereafter the algorithm is forced to switch to the linear Taylor model of
the fine model.
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2.3.5 SMHC
The function smhc implements a hybrid space mapping algorithm with re-
sponse correction of the mapped coarse model.

The combined model for this algorithm is

sk(2) = wi(gr * [e(pr(2)) — c(p(zr))] + f(21)) + (1 — wi)lx ()

where g € R™ are the correction factors and * is element-wise multiplica-
tion.

The correction factors are found by the secant update

(4) f(j)(xk—l—l) - f(j)(l“k)

T2 = O plaesr)) — D (play)) 7

where the superscript (j) indicates the jth element of the vector.

The transition parameter w is controlled as in the smh algorithm described
above.

2.3.6 SMIS

The function smis implements a space mapping algorithm with interpolat-
ing surrogate model. The interpolating surrogate model employs individual
linear input and output mappings for each response, and is given by:

a1 (e1(Pr(z)) — e (Pi(zr))) + fi(xg)
sk(z) = :
m (Cm (P (7)) — em(Pm(7x))) + fm ()

where xy, is the best iterate so far.

2.4 Auxiliary Functions

Both the main directory and the directory private contains a number of
auxiliary functions. An overview of directories and functions is provided in
the ps-file overview. We briefly introduce the most important ones.

parameter extraction For a given x the function solves the parameter
extraction problem, determining p(x). The user can choose between four
different space mapping definitions through the option petype. The start-
ing point for the parameter extraction problem is specified by the option
pestart, four possibilities exist. Further, for the regularization formulations,
the value of A can be specified by the option lambda.
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combined model For a given x the function calculates the response of the
combined model si(x) = we(pg(x)) + (1 — w)lk(x), where c(pg(x)) is the
mapped coarse model (see mapped-model below) and li(z) = D(z — x) +
f(xg) is a linear Taylor model of the fine model.

combined_corrected.model For a given z the function calculates the re-
sponse of the combined model si(z) = w(g .x (c(pg(z)) —c(p(xk)))+ f(zx))+
(1 — w)lg(x), where the first part is the response corrected model, with
¢(px(z)) being the mapped coarse model (see mapped model below), and
lg(x) = D(x — z) + f(xg) is a linear Taylor model of the fine model.

mapped model For a given x the function calculates the response of the
mapped coarse model ¢(pg(z)), where py(x) = B(x — xy) + p(zy) is a linear
Taylor model of the space mapping.

mapping parameter_extraction For a given x the function solves the pa-
rameter extraction problem, determining p(z). The user can choose between
four different space mapping definitions through the option petype. The
starting point for the parameter extraction problem is specified by the op-
tion pestart, four possibilities exist. Further, for the regularization formu-
lations, the value of A can be specified by the option lambda.

surrogatemodel For a given x the function calculates the response vec-
tor of the surrogate model s(z,p), where p is a holding input and output
mapping parameters for all m responses. The function is only used in the
minimization of the surrogate model, giving the next iterate.

surrogate model i For a given z the function calculates the ith response
of the surrogate model s;(z,p;), where p; is holding the input and output
mapping parameters for the ith response. The function is used only in the
solving of the mapping parameter extraction problems.

smtrlinear For a given x the function finds a minimizer of a given linear
model subject to linear trust region constraints (infinity norm trust region)
and, if any, user provided linear constraints. Formally the problem solved is

min H (I (z))
xT
st. |z —zillee < dxg
Ax < b
where the first eq rows of the user constraints are equality constraints.
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smdirect Direct, classical Taylor based optimization. Solves the problems
of the general type

min H(s(x))
st. Ax <b

(7)

where s is a nonlinear vector response function. The first eq rows of the linear
constraints are equality constraints. Exact gradient information is assumed
available.

direct Direct, classical Taylor based optimization with inexact gradient
information. Solves (7) using a trust region algorithm with secant gradient
approximations.
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3 Examples

We now give two small examples to show how the toolbox can be used.
In these examples the MINCIN subroutine [5] is used to solve the minimax
subproblems, other results may be obtained when the minimax algorithm in
Matlab’s Optimization Toolbox [7] is used instead.

3.1 Quick Run

Assume that we want to run the TLT2 problem with the hybrid space map-
ping algorithm smh. The easiest way to do this is by calling smrun,

[p, trace] = smrun(l, 3);

(the semicolon suppresses the display of the output variables). After the
algorithm has finished the iteration process we now have a trace variable
with the results (the contents of the variable p is shown in the next example).
The trace variable is a Matlab structure. We list the contents from this run:

trace =
k: [1x66 double]
x: [2x66 double]
z: [2x66 double]
f: [11x66 double]
h: [1x66 double]

dx: [1x66 double]

w: [1x66 double]
rho: [1x65 double]
obj: [1x66 double]

We see that there are nine fields containing the trace of variables in the 66
steps taken by the algorithm. For example the field trace.f contains all fine
model responses evaluated by the algorithm. In the field trace.x are the
corresponding fine model parameters. The field trace.z contains the space
mapped parameters, z = p(z).

Now we could for example check how close the best fine model response
found by the algorithm is to the optimal response of the fine model. First
the best objective function value found by the algorithm:

>> min(max(trace.f))
ans =
0.455324591088871
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Then the objective function value of the optimal response:

>> max(p.fast)
ans =
0.45532459108887

We see that the solutions only differ in the 15th decimal. In fact the difference
is around full calculating accuracy.

If we want to plot the initial response (i.e. the response in the starting point
xg = 2z*) and the best response found by the algorithm, we first obtain the
index of the best response:

>> [fmin idx] = min(max(trace.f))
fmin =
0.455324591088871
idx =
63

Then we plot the responses:

>> plot(l:p.m, trace.f(:,idx), ’.-’,
1:p.m, trace.f(:, 1), ’.-=?)

08
07F L,
0.6 ’ E

05+ / 4

1 2 3 4 5 6 7 8 9 10 11

We see that the first response violated the specifications, since the maximum
value of the response is above 0.5 (refer to the problem description above).
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3.2  Quick plots

A quick way to make some relevant plots of the results contained in the
trace variable is by the command

smplot(p, trace)

For the quick run of the TLT2 problem with the smh algorithm we get the
following four Matlab figures:

o Performance measured in merit function H(f(x))—H(f(x*)) Trust region radius and norm of the step length
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If we instead use the smis algorithm on the TLT2 problem, we get conver-
gence with an accuracy of 10~!3 in 7 iterations, if we run the algorithm with
the command:

[p, trace, opts] = smrun(l, 6, smopts(’weight_£f’, 0.001));

The value of weight_f is here changed from the default value 1 to the value
0.001. To produce plots of the results we now type the command:

smplot(p, trace, opts)
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Note that the extra input argument opts is added, because we want to use
the same options as before.

smplot now produces four figures: the first three figures similar to the ones
from the smh run, but the fourth is replaced by a 3-dimensional plot of the
approximation errors:

Approximation error for fine model Taylor appr. and surrogate model
with expansion point x = [ 74.23 , 79.27 ]
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Norm of approximation error

Furthermore smplot for this algorithm produces three more figures showing
the norm of the residual vector for each of the 11 response functions as the
iterations proceed. Finally the following table is displayed in the Matlab
command window:

k  Level of accuracy
1 2.9662e-01
2 1.7145e-01
3 5.9678e-02
4 1.1477e-04
5 5.0508e-08
6 1.0198e-11
7 1.4766e-14

where the level of accuracy is measured by the difference H (f(zx))—H (f(z*))
for each iteration.
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3.3 Examining a Problem

Now let us examine the structure with the problem returned from smprob.

>> p = smprob(1)

p =
xast: [2x1 double]
zast: [2x1 double]

x0: [2x1 double]
fine: @tlt2af
coarse: @tlt2c
n: 2
fopts: [1x1 struct]
m: 11
fast: [11x1 double]
A: [4x2 double]
b: [4x1 double]
eq: O
H: ’minimax’

We see that the problem is a minimax problem (H

’minimax’). Further

we see that it is a two-dimensional problem (n = 2 and xast = z* € R?).
There are 11 response functions (m = 11 and fast = f(z*) € R'). The
fine model handle refers to the function t1t2f.

3.4 Results from the smis algorithm

The smis algorithm has been tested on some of the test problems available
in this toolbox. The performance is shown in the following table, which
displays the number of fine model evaluations needed to obtain the given
level of accuracy.

24



Level of Test problem no.
accuracy | 3 | 4 |
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The level of accuracy at the kth iteration is measured by:
Level of accuracy = H(f(x)) — H(f(z¥))

where the fine model is evaluated once per iteration. The reason for stopping
the algorithm is also visible in the table:

ND the algorithm stopped because of insuffiecient decrease in the fine model objective
SL the algorithm stopped because the step length or the trust region radius was too small

Performance results for the remaining algorithms can be seen in [9)].
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