Socio-technical Organisation

Virginia Dignum
Develop theory and tools for engineering complex multi-actor systems, integrating artificial and human partners, based on computational models of organization and adaptation

- Engineering socially intelligent systems
- Integrating systems in human organizations

- Taking into account
 - Predictability, Control, Adaptability, Macro / micro behavior...
Motivation: Theoretical Individuals and Organizations

- Individuals ➔ Autonomy
- Organization ➔ Regulation

- Individuals (agents) are motivated by their own objectives
 - May take up role in organization if that serves their purposes

- Organizations have their own purpose
 - Mission exists independently of the agents populating it
Motivation: Practical Socio-technical interaction

• Concerns
 • Human-system/agent interaction
 • Individual interests
 • Global goals and requirements
 • Interdependencies
 • Control and monitoring
 • Social features for computer systems
 • Computer as social actor
 • Adaptation

• Domains
 • Transport
 • Governance
 • Energy
 • Inter-organization processes
 • Training and coaching
 • Social-sensor networks
 • Search and rescue
 • Serious games
Our research at TU Delft

• Organization modeling and simulation
 • Analysis, design, redesign
• Formal organization models: modal logics
• Computational models of organization;
• Organizational models of (information) systems

• Applications
 • Service orchestration
 • Business processes / Logistic processes
 • Smart infrastructures

• Tools/Methods: OperA / OperA+ / OperettA /
• Formalisation: LAO
Organisation

Socio-tech System

Intention

Regulation
1. Agent organization: Main features

- Make a clear distinction between description of organization and description of agents
- Agents are
 - dynamic, autonomous entities that evolve within organizations
- Organizations
 - Are regulative environments that constrain the behaviors of the agents
 - or: may appear as the result of agents’ activities
Specific concerns of agent organization

• Interaction among components cannot be completely foreseen at design-time
• Agents, organisation, and environment are ‘independent’ of each other
 • architecture choices
• Explicit representation of the system's inherent organizational structure
Formalisms for Agent Organization

- **Formal**
 - Representation of organization, environment, agents, objectives
 - Partial contribution to performance
 - Representation of dynamics of organization
 - Enable verification of organizational properties

- **Realistic**
 - Pragmatic issues (time, cost,...)
 - Based on positions/roles, not on specific agents
 - Responsibility vs. action vs. ability
Requirements

1. represent notions of ability and activity of an agent, without requiring knowledge about the specific actions available to a specific agent
 • (open environments)
2. represent ability and activity of a group of agents
3. deal with temporal issues, especially the fact that activity takes time
4. accept limitedness of agent capability
5. represent the notion of responsibility for the achievement of a given state of affairs
Requirements (cont.)

6. represent **global goals** and its relation to agents' activities (organizational structure)
7. relate activity and organizational **structure**
8. deal with resource **limitations** and the dependency of activity on resources (e.g. costs)
9. Deal with the fact that agent activities are **NOT independent**
10. distinguish between organizational **roles** (positions) and agents’ functionality
11. deal with **normative** issues (representation of boundaries for action and the violation thereof)
12. represent organizational **dynamics**: evolution of organization over time, changes on agent population (reorganization)
More on LAO

• Journal papers on LAO
 • A logic of agent organizations. (Logic Journal of the IGPL, 2012)
 • A formal semantics for agent (re)organization. Journal of Logic and Computation, 2013

• Background
 • Contracts and landmarks:
 • LCR (V. Dignum PhD, 2004)
 • Modal logics
 • Branching time: CTL* (Emerson and Halpern, 1990)
 • Deontic: BTLcont (F. Dignum and Kuiper, 1999)
 • Stit theories
 • stit operator (Pörn, 1974; Wooldridge, 1996)
 • Agency theory (Elgesem, 1997)
 • Responsibility and delegation (Governatori, 2002), (Santos, Jones, Carmo, 1997)
LAO – Logic of Agent Organization

• Given an organization

\[O_i = (A_{s_i}, R_i, rea_i, \leq_i, D_i, Obj_i, K_i) \]

1. \(\varphi \in \mathcal{L} \Rightarrow \varphi \in \mathcal{L}_{\mathcal{O}} \)
2. \(a \in A_{s_i}, \varphi \in \mathcal{L}_{\mathcal{O}} \Rightarrow C_a \varphi, G_a \varphi, H_a \varphi, E_a \varphi \in \mathcal{L}_{\mathcal{O}} \)
3. \(Z \subseteq A_{s_i}, \varphi \in \mathcal{L}_{\mathcal{O}} \Rightarrow C_Z \varphi, G_Z \varphi, H_Z \varphi, E_Z \varphi \in \mathcal{L}_{\mathcal{O}} \)
4. \(a \in A_{s_i}, r \in R_i, \varphi \in \mathcal{L}_{\mathcal{O}} \Rightarrow C_{ar} \varphi, G_{ar} \varphi, H_{ar} \varphi, E_{ar} \varphi \in \mathcal{L}_{\mathcal{O}} \)
5. \(a \in A_{s_i}, r, q \in R_i, \varphi \in \mathcal{L}_{\mathcal{O}} \Rightarrow \text{member}(a, o_i), \text{role}(r, o_i), \text{play}(a, r, o_i), \text{dep}(o_i, r, q), \text{incharge}(o_i, r, q), \text{know}(o_i, \varphi), \text{desire}(o_i, \varphi) \in \mathcal{L}_{\mathcal{O}} \)
6. \(r \in R_i, Z \subseteq R_i, \varphi \in \mathcal{L}_{\mathcal{O}} \Rightarrow I_r \varphi, I_Z \varphi \in \mathcal{L}_{\mathcal{O}} \)
Agent activity

- Agent Capability: $C_a\varphi$
 - Based on a partition of Φ into controllable and not controllable atomic propositions
- Agent Ability: $G_a\varphi$
 - $C_a\varphi$ and a has influence in current world
- Agent Attempt: $H_a\varphi$
 - φ is true in a world reachable under influence of a
- Agent stit: $E_a\varphi$
 - $C_a\varphi$ and φ is true in all worlds reachable from current world
Definition 2.2 (Initiative)

Given an organization O_i in a model M_O, $O_i = (A_{si}, R_i, rea_i, \leq_i, D_i, Obj_i, K_i)$, and a role $r \in R_i(w)$, or a group $Z \subseteq R_i(w)$, initiative $I_r\varphi$, resp. $I_Z\varphi$, is defined informally as: r has the initiative to achieve φ iff an agent a playing r will eventually attempt to achieve φ or attempt to put another role in charge of φ. Formally:

$w \models I_r\varphi \iff w \models \exists a : play(a, r, O_i) \land \diamond (H_{ar}\varphi \lor H_{arincharge}(O_i, q, \varphi))$, for some $q \in R_i(w)$

$w \models I_Z\varphi \iff \exists U \subseteq A_{si}(w) \forall a \in U \exists r \in Z:
\quad w \models play(a, r, O_i) \land \diamond (H_{UZ}\varphi \lor H_{UZ incharge}(O_i, Z', \varphi))$, for some $Z' \subseteq R_i(w)$
Organization properties I

1. **Well defined** organization (WD):

\[
M_O, w \models WD(o_i) \iff
M_O, w \models desire(o_i, \varphi) \rightarrow \exists r : (\text{role}(r, o_i) \land I_r \varphi)
\]

2. **Successful** organization (SU):

\[
M_O, w \models SU(o_i) \iff
M_O, w \models desire(o_i, \varphi) \rightarrow C_{o_i} \varphi \land \exists r : (\text{role}(r, o_i) \land I_r \varphi)
\]

3. **Good** organization (GO):

\[
M_O, w \models GO(o_i) \iff
\text{if } M_O, w \models (C_{o_i} \varphi \land I_Z \varphi) \text{ then } (\exists U \subseteq R_i(w) \\
\text{and } M_O, w \models \text{dep}(o_i, Z, U) \land C_V \varphi)
\]
Organization properties II

4. **Effective** organization (EF):

\[M_O, w \models EF(o_i) \text{ iff } \]
\[M_O, w \models \left(I_r \varphi \land \neg C_r \varphi \land \text{dep}(o_i, r, Q) \land \right. \]
\[\exists b, q : q \in Q \land \text{play}(b, q, o_i) \land \text{know}(o_i, C_{bq} \varphi) \Rightarrow \]
\[(\exists a : \text{play}(a, r, o_i) \land E_{ar} \text{incharge}(o_i, q', \varphi) \land q' \in Q \land \]
\[\exists b' : \text{play}(b', q', o_i) \land \text{know}(o_i, C_{b'q'} \varphi)) \]

5. **Responsible** organization (RES):

\[M_O, w \models RES(o_i) \text{ iff } \]
\[M_O, w \models E_Z \text{incharge}(o_i, r, \varphi) \land X(H_{V_{r} \varphi} \rightarrow X(\varphi \lor I_{Z} \varphi)). \]
Organizational dynamics

S_O: current state of organization O
D_O: desired state of organization O
C_O: scope of control of agents in O
C_A: scope of control of all agents
Reorganization operation

- **Staffing**: changes to the set of agents
 - \textit{staff+}, \textit{staff-}
- **Restaffing**: assigning agents to different roles
 - \textit{enact}, \textit{deact}, \textit{move}
- **Structuring**: change to organization’s structure
 - \textit{position+}, \textit{position-}, \textit{struct+}, \textit{struct-}
- **Strategy**: change to organization’s objectives
 - \textit{strateg+}, \textit{strateg-}
- **Duty**: change to organization’s initiative (\textit{incharge} relations)
 - \textit{duty+}, \textit{duty=}
- **Learn**: change to organization’s knowledge
 - \textit{learn+}, \textit{learn-}
Definition 9 (Reorganization Operations). Given an organization $O_i = (A_{s_i}, R_i, rea_i, \leq_i, D_i, Obj_i, K_i)$, in a model M_O, the reorganization operations over O_i in M_O are:

1. $w \models \text{staff}^+(o_i, a, U)$ iff $w \models \neg \text{member}(a, o_i) \land \mathcal{X}(\text{member}(a, o_i) \land \forall r \in U : \text{play}(a, r, o_i) \land \forall \varphi : \text{Car} \varphi \rightarrow \text{know}(o_i, \text{Car} \varphi))$, where $U \subseteq R_i(w)$
2. $w \models \text{staff}^-(o_i, a)$ iff $w \models \text{member}(a, o_i) \land \mathcal{X}(\neg \text{member}(a, o_i) \land \neg \exists r \in R_i : \text{play}(a, r, o_i))$
3. $w \models \text{enact}(o_i, a, r)$ iff $w \models \neg \text{play}(a, r, o_i) \land \mathcal{X}(\text{member}(o_i, a) \land \text{play}(a, r, o_i))$
4. $w \models \text{deact}(o_i, a, r)$ iff $w \models \text{play}(a, r, o_i) \land \mathcal{X}(\neg \text{play}(a, r, o_i))$
5. $w \models \text{move}(o_i, a, r, q)$ iff $w \models \text{play}(a, r, o_i) \land \neg \text{play}(a, q, o_i) \land \mathcal{X}(\text{play}(a, q, o_i) \land \neg \text{play}(a, r, o_i))$
6. $w \models \text{position}^+(o_i, r)$ iff $w \models \neg \text{role}(r, o_i) \land \mathcal{X} \text{role}(r, o_i)$
7. $w \models \text{position}^-(o_i, r)$ iff $w \models \text{role}(r, o_i) \land \neg \exists a \in A_{s_i} : \text{play}(a, r, o_i) \land \neg \exists q \in R_i : (\text{dep}(q, r, o_i) \lor \text{dep}(r, q, o_i)) \land \mathcal{X}(\neg \text{role}(r, o_i))$
8. $w \models \text{struct}^+(o_i, (r \leq q))$ iff $w \models \text{role}(r, o_i) \land \text{role}(q, o_i) \land \mathcal{X} \text{dep}(o_i, r, q)$
9. $w \models \text{struct}^-(o_i, (r \leq q))$ iff $w \models \text{role}(r, o_i) \land \text{role}(q, o_i) \land \mathcal{X}(\neg \text{dep}(o_i, r, q))$
10. For $d : \neg (d \land D) \rightarrow \bot$, $w \models \text{strat}^+(o_i, d)$ iff $w \models \mathcal{X} \text{desire}(o_i, d)$
11. $w \models \text{strat}^-(o_i, d)$ iff $w \models \mathcal{X}(\neg \text{desire}(o_i, d))$
12. $w \models \text{duty}^+(o_i, r, \varphi)$ iff $w \models \mathcal{X} \text{incharge}(o_i, r, \varphi)$
13. $w \models \text{duty}^-(o_i, r, \varphi)$ iff $w \models \mathcal{X}(\neg \text{incharge}(o_i, r, \varphi))$
14. $w \models \text{learn}^+(o_i, \varphi)$ iff $w \models \mathcal{X} \text{know}(o_i, \varphi)$
15. $w \models \text{learn}^-(o_i, \varphi)$ iff $w \models \mathcal{X}(\neg \text{know}(o_i, \varphi))$
Definition 10 (Safe Reorganization). For a semantic model M_O, given an organization $O_i = (A_{si}, R_i, rea_{si}, \leq_i, D_i, Obj_i, K_i)$, the reorganization operations over O_i in M_O are safe if the following properties hold:

1. $\models I_r \varphi \land \text{staff}^{-}(o_i, a) \rightarrow X I_r \varphi$
2. $\models C_Z \varphi \land \text{staff}^{-}(o_i, a) \rightarrow X C_Z \varphi$
3. $\models (I_r \varphi \land (\forall a : \text{play}(a, r, o_i) \rightarrow \neg C_{ar} \varphi) \land \text{staff}^{-}(O_i, a)) \rightarrow \neg E_{ar} \text{incharge}(o_i, q, \varphi)$
4. $\models I_r \varphi \land \text{deact}(o_i, a, r) \rightarrow X I_r \varphi$
5. $\models C_Z \varphi \land \text{deact}(o_i, a, r) \rightarrow X C_Z \varphi$
6. $\models (I_r \varphi \land (\forall a : \text{play}(a, r, o_i) \rightarrow \neg C_{ar} \varphi) \land \text{deact}(o_i, a, r)) \rightarrow \neg E_{ar} \text{incharge}(o_i, q, \varphi)$
7. $\models I_r \varphi \land \text{move}(o_i, a, r, q) \rightarrow X (I_r \varphi \lor I_q)$
8. $\models C_Z \varphi \land \text{move}(o_i, a, r, q) \rightarrow X C_Z \varphi$
9. $\models (I_r \varphi \land (\forall a : \text{play}(a, r, o_i) \rightarrow \neg C_{ar} \varphi) \land \text{move}(o_i, a, r, q)) \rightarrow \neg E_{ar} \text{incharge}(o_i, t, \varphi)$
10. $\models (C_{oi} \varphi \land I_r \varphi \land \text{struct}^{-}(o_i, (r \leq q)) \land \exists U \subseteq R_i(w) : (\text{dep}(o_i, r, U) \land C_U \varphi) \rightarrow X (\exists W \subseteq R_i(w) : (\text{dep}(o_i, r, W) \land C_W \varphi))$
11. $\models \text{strateg}^{+}(o_i, \varphi) \rightarrow X (C_{oi} \varphi \land \exists r : (\text{role}(r, o_i) \land I_r \varphi))$
12. $\models C_{oi} \varphi \land \text{duty}^{+}(o_i, r, \varphi) \rightarrow X \exists U \subseteq R_i(w) : (\text{dep}(o_i, r, U) \land C_U \varphi)$
13. $\models (\text{duty}^{+}(o_i, r, \varphi) \land (\forall a : \text{play}(a, r, o_i) \rightarrow \neg C_{ar} \varphi) \land \text{dep}(o_i, r, q) \land \text{play}(b, q, o_i) \land \text{know}(C_{bq} \varphi)) \rightarrow X (\exists a : \text{play}(a, r, o_i) \land E_{ar} \text{incharge}(o_i, q, \varphi))$
14. $\models \text{desire}(o_i, \varphi) \rightarrow \exists r : (\text{role}(r, o_i) \land I_r \varphi) \land \text{duty}^{-}(o_i, t, \psi) \rightarrow X (\text{desire}(o_i, \varphi) \rightarrow \exists r : (\text{role}(r, o_i) \land I_r \varphi))$
15. $\models I_r \land (\forall a : \text{play}(a, r, o_i) \rightarrow \neg C_{ar} \varphi) \land \text{dep}(o_i, r, q) \land \text{play}(b, q, o_i) \land \text{learn}^{+}(o_i, \varphi)) \rightarrow X (\exists a : \text{play}(a, r, o_i) \land E_{ar} \text{incharge}(o_i, q, \varphi))$
Safe reorganization

Theorem 1. Given $O_i = (A_{s_i}, R_i, r_{ea_i}, \leq_i, D_i, \text{Obj}_i, K_i)$ and a semantic model M_O, a safe reorganization Reorg, is such that:

- $M_O, w \models WD(o_i) \land \text{Reorg} \rightarrow \exists WD(o_i)$
- $M_O, w \models SU(o_i) \land \text{Reorg} \rightarrow \exists SU(o_i)$
- $M_O, w \models GO(o_i) \land \text{Reorg} \rightarrow \exists GO(o_i)$
- $M_O, w \models EF(o_i) \land \text{Reorg} \rightarrow \exists EF(o_i)$
- $M_O, w \models RES(o_i) \land \text{Reorg} \rightarrow \exists RES(o_i)$
Implementing Organization

• ‘Balancing’ agents and organizations
• Assuming agents to be heterogeneous entities
 • Different architectures
 • Independent from social design
 • Joining organization as means to fulfill own goals
 • No guarantee on truthfulness, cooperation, …
• Means are needed to ascertain organizational operation
 • Negotiation scenes
 • Contracts
Approaches to AOS design

• Implicit:
 • organization emerges (is observable) from the agents’ behaviour

• Explicit:
 • Organization model is first order entity, independent from agents

• Internal
 • organization model is embedded in the agents

• External
 • Shared representation of organization model, outside agents
Our Approach: External – Explicit
Integrating Regulation with Autonomy

• Internal autonomy requirement:
 Specify organization independently from the internal design of the agent
 • Enables open systems
 • Heterogeneous participation

• Collaboration autonomy requirement:
 Specify organizations without fixing a priori all structures, interactions and protocols
 • Enables evolving societies
 • Balances organizational needs and agent autonomy
OperA Model

• Components for organization specification
 • Organizational Model
 • represents organizational aims and requirements
 • roles, interaction structures, scene scripts, norms
 • Social Model
 • represents agreements concerning participation of individual agents (‘job’ contracts for agents)
 • Interaction Model
 • represents agreements concerning interaction between the agents themselves (‘trade’ contracts between reas)
OperettA: Organisation model specification and verification
OperA+

- Work of Jie Jiang (2009-present)
 - Agent organization modeling framework
 - Addresses different aspects
 - Organizational model
 - Social model
 - Interaction model
- Aimed at multi-organizational collaboration (OperA+)
 - Multi-level: business values to operational details
 - Multi-context: different application environments
Organisation contextualisation and refinement

Multi-level: business values to operational details

Multi-context: different application environments
2. Regulation

- Formal / computational social reasoning
 - Socially intelligent agents (norms, emotions, culture...)
 - Institutional analysis and design
- Value-sensitive Software Engineering Systems and Services
 - Norms engineering: from abstract values to implemented rules

- Application areas
 - Compliance Engineering
 - Security and trust

- Tools/Methods: OperA+ / VSSD
Norms in OperA+

- Norm definition based on ADICO (Elinor Ostrom)
- Formally an norm is defined as a tuple \(n = (D; rap; d; p) \)
 where:
 - \(D = \{O; F; P\} \) indicates the deontic type of the norm, i.e., Obliged, Forbidden, and Permitted;
 - \(rap = (r, a) \), the target, a role action pair;
 - \(d \in RAP \), describing the deadline;
 - \(p \in LRAP \), describing the precondition;

- Norm Net
 - \(NN ::= \text{norm} | NN \text{ AND } NN | NN \text{ OR } NN | NN \text{ OE } NN \)
Operational semantics: CPN

32 Challenge the future
Compliance Query
Normative Compliance

- Legal regulations
- Norm Nets
- Business process
- Event sequences
- Consistency checker
- Compliance checker

Flow:
- regulate
- formalized by
- operationlized in
- non-compliances

Consistency checker
CC tool box
Socio-tech Organization

Context / System

Intention

Regulation
3. Intention

- Intelligent agents
 - Social interaction and coordination
 - Reason about own role / others role
- Rich cognitive models
 - culture, norms, personality effect on reasoning

- Applications
 - Human-agent-robot teams;
 - Healthy Lifestyle solutions / Coaching systems
 - Gaming
 - Social Simulation

- Tools/Methods: BRIDGE / ABCLab / MAIA
The people in the loop

- **Participatory design**
 - Value-sensitive design
 - Engineering with stakeholders
 - Rapid prototyping
 - User-friendly development environments

- **HA(R)T (human-agent-robot teamwork)**
 - Hybrid teams
 - Human-agent collaboration within MAS
 - Ethical / responsibility issues
Social Actors Development: From Agents to Partners

- Intentionality
 - Purpose, autonomy
- Social awareness
 - With others, despite others, for others, using others
- Values as basic ‘constructs’
- Culture, personality, context as ‘modifiers’
Elements of rich agent models

- Rational: Goal-directed
- Social: Culture and norms
- Personality: Individual differences
- Physiological: Hierarchy of needs/urges
- Emotional: reaction to a perceived situation

- Resulting behaviour
 - Perceived social environment
 - Possible worlds foreseen
 - Emotions and goals drive decision making and perception of current state
Extending BDI

Beliefs
Desires
Intentions

B ➔ D ➔ I ➔ act

sense ➔ B ➔ plan select ➔ B

generate ➔ D ➔ update ➔ D

direct ➔ I ➔ direct ➔ I
The BRIDGE architecture

- **Beliefs**
- **Response**
- **Intentions**
- **Desires**
- **Goals**
- **Ego**

Diagram Components

- **B**: Normative beliefs
 - Sense
 - Cultural beliefs

- **D**: Growth needs
 - Generate
 - Update

- **G**: Deficiency needs
 - Select

- **I**: Urges, stress
 - Direct

- **E**: Personal ordering preference
 - Select
 - Interpret

- **R**: Overrule

- **TU Delft**
Conclusion

- Interaction of (intelligent) autonomous entities
 - Common goals / Shared resources
 - Own reasoning
- Separation of concerns
 - Global vs. individual (organisation vs. agent)
 - Design vs. simulation vs. deployment
- Human-agent collaboration
 - Norms, values
 - Communication / understanding
- Open, dynamic environments
 - Co-evolution
- Cost-benefit: Not ‘one size fits all’