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Figure 1. Our method takes one of three types of user input and generates a stereo image. Accepted user inputs: (a) a photo, (b) a text prompt,
or (c) a user’s image as a depth map and a prompt. We use a latent diffusion model pretrained on either images (a, b) or depth maps (c).

Abstract

The demand for stereo images increases as manufactur-
ers launch more extended reality (XR) devices. To meet
this demand, we introduce StereoDiffusion, a method that,
unlike traditional inpainting pipelines, is training-free and
straightforward to use with seamless integration into the
original Stable Diffusion model. Our method modifies the
latent variable to provide an end-to-end, lightweight method
for fast generation of stereo image pairs, without the need
for fine-tuning model weights or any post-processing of im-
ages. Using the original input to generate a left image and
estimate a disparity map for it, we generate the latent vector
for the right image through Stereo Pixel Shift operations,
complemented by Symmetric Pixel Shift Masking Denoise
and Self-Attention Layer Modifications to align the right-
side image with the left-side image. Moreover, our proposed
method maintains a high standard of image quality through-
out the stereo generation process, achieving state-of-the-art
scores in various quantitative evaluations.

1. Introduction

Large-scale language-image (LLI) models have become
prominent in recent years, acclaimed for their advanced
generative semantic and compositional abilities [6, 21, 25,
29, 45]. Their distinctiveness lies in their training on exten-
sive language-image datasets, enabling them to interpret and
generate content from diverse linguistic and visual contexts.
Utilizing innovative image generative techniques such as
auto-regressive and diffusion models [10] have significantly
advanced the synergy between linguistic understanding and
image generation. This has led to a new era of creative and
semantically rich image synthesis, marking notable advance-
ments in artificial intelligence and computer vision.

A significant recent development in the VR/AR field is
Apple’s introduction of Vision Pro, which has the poten-
tial to drive rapid advancements in this field. Despite the
growing production of 3D content by various manufactur-
ers, and related research [14, 15, 28, 41, 43] in recent years,
the availability of stereo multimedia content, which offers a
depth-enhanced visual experience, remains relatively scarce.
As the VR/AR era looms, the limitations of existing image
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generation models that are confined to producing 2D images
become increasingly apparent. However, there is currently
no relevant research that attempts to use image generation
models to directly generate stereo image pairs. In response to
this challenge, we introduce a novel methodology. Through
modification of the Stable Diffusion model’s latent variable,
we have devised an efficient end-to-end approach, eliminat-
ing the need for additional models like inpainting [12, 31] for
post-processing to generate stereo images. Figure 1 presents
some examples. Code is available at https://github.com/lez-
s/StereoDiffusion.

We address the constraints of traditional image generation
models that employ an inpainting pipeline. Our approach is
to generate stereo image pairs by adjusting the latent variable
of the Stable Diffusion model, see Figure 2. We use Sym-
metric Pixel Shift Masking Denoise and Self-Attention layer
modifications to align the generated right-side image with
the left-side image. This method allows for a lightweight
solution that can be seamlessly integrated into the original
Stable Diffusion model without the need for fine-tuning. To
the best of our knowledge, our approach represents the first
instance of generating stereo images by modifying the latent
variable of Stable Diffusion. Compared with other methods,
our approach enables the training-free end-to-end rapid gen-
eration of high-quality stereo images using only the original
Stable Diffusion model.

2. Related work

Latent space of a Latent Diffusion Model. Diffusion
models, notably the Denoising Diffusion Implicit Models
(DDIM) [32], have made significant strides in image gener-
ation. The DDIM sampling algorithm revealed that using
the same initial noise results in consistent high-level features
across different generative paths, highlighting initial noise
as a potent latent image encoding [32]. This discovery aids
in modifying images by adjusting the Stable Diffusion la-
tent variable. A key challenge in stereo image generation
is maintaining content consistency between paired images.
Researchers are focusing on image editing techniques using
Stable Diffusion [3, 22, 35, 44], such as the ”prompt-to-
prompt” method [10], which involves altering the model’s
cross-attention during sampling for text-prompt-based image
editing. ControlNet [46] is also a notable work in the field,
but instead of utilizing the latent space, the authors trained
ControlNet on a large dataset to better control the genera-
tion of desired images by Stable Diffusion. Additionally,
ControlNet primarily focuses on pose control and lacks the
capability for pixel-level modifications of images. Although
effective, these methods are less suited for tasks needing pre-
cise pixel-level manipulation, like stereo image generation,
due to their reliance on text prompts for image modification.

Video generation by Latent Diffusion Model. Ensuring
the consistency of images within the same batch in Sta-
ble Diffusion has long been a challenge in video genera-
tion [2, 37]. VideoComposer addresses this by incorporating
an STC-encoder into the Latent Diffusion Model’s U-Net
architecture, ensuring consistency in the generated image
content [37]. Similarly, VideoLDM achieves impressive
video generation results by introducing 3D convolution lay-
ers and temporal attention layers into the spatial and tem-
poral layers of U-Net [2]. However, these methods require
fine-tuning of the original models and substantial amounts of
data. Generally, this is not an issue for video generation, but
for achieving stereo image generation, the available stereo
image data is quite limited, mostly comprising road traf-
fic images initially intended for autonomous driving depth
prediction services. In the video generation field, attempts
such as Tune-A-Video [42] have explored zero-shot video
generation [36, 42]. This work utilizes a technique called
ST-Attn to maintain the continuity of videos. We employ a
comparable approach to ensure consistency between the left
and right images.

3D photography and inpainting. Traditional image-
based reconstruction and rendering methods require complex
capture setups, involving numerous images with significant
baselines [8, 9, 13, 40]. Currently, limited research endeav-
ors directly focus on generating stereo images. Many studies
have concentrated on generating 3D photos, a technique al-
lowing subtle changes in the camera angle for observing pho-
tos from different perspectives [12, 18, 31, 34, 47]. Among
3D image generation techniques, 3D Photography Inpainting
is a notable approach [8, 31]. This method employs inpaint-
ing to generate 3D images. After passing the input image
through a depth estimation model, they map the image onto
a mesh and apply changes in perspective based on the depth
map of the original image. Inpainting is then utilized to fill
the gaps left by transformed pixels in the original image.
This approach significantly differs from our modification
of the Stable Diffusion latent space. Although this method
could be adopted as post-processing of an image generated
through Stable Diffusion, it requires additional steps and
consumes more time.

3D scene generation by pretrained Stable Diffusion. Re-
cent studies have used model distillation with pretrained
Stable Diffusion models for text-based 3D reconstruction.
DreamFusion [23] employes ‘Score Distillation Sampling’
(SDS) to initialize and render a NeRF model, improving with
Imagen-surrounding score distillation loss. Variational Score
Distillation (VSD) [38] further enhances 3D scene quality.
These methods can create stereo images via rendering but are
time-intensive. Without full 3D scenes, our method provides
a faster solution for generating stereo image pairs.

https://github.com/lez-s/StereoDiffusion
https://github.com/lez-s/StereoDiffusion
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Figure 2. The pipeline of our Stereo Diffusion. The process starts with random noise and denoising of it to generate a stereo image pair.
The operation of Stereo Pixel Shift is represented by Eq. 3. The Disparity Map for generating stereo image pairs can be obtained from
depth models such as DPT [26] or MiDas [27]. The pipeline only shows the Unidirectional Self-Attention operation, designed to align
the right-side image with the left-side image, a method that satisfies general needs. Bidirectional Self-Attention, being a mutual operation,
would be represented by bidirectional arrows in the image. The orange box in the image depicts the concept of Symmetric Pixel Shift
Masking Denoise, with details explained in Sec. 3.2. The cross attention part of the sampling process is omitted for brevity.

3. Method

Diverging from conventional inpainting methods, our ap-
proach is distinctively simple and training-free. With seam-
less integration into the original Stable Diffusion framework,
we provide end-to-end generation of stereo image pairs, elim-
inating the need for post-processing. Our method leverages
a disparity map in the early denoising stage to apply a Stereo
Pixel Shift (Sec. 3.1) to the latent vector of the left image.
This process generates the latent vector for the right im-
age through disparity. To address the inconsistency issues
between the left and right images during the denoising pro-
cess, we employ a Symmetric Pixel Shift Masking Denoise
(Sec. 3.2) technique and a Self-Attention module (Sec. 3.3)
to align the right image with the left one. Since our method
exclusively manipulates the latent variable, it can be applied
across various image generation tasks in different Stable Dif-
fusion models. This versatility stems from the technique’s
focus on latent space operations, making it adaptable to a
wide range of scenarios within the Stable Diffusion frame-
work (Sec. 3.4). Our method only requires a disparity map,
which can be obtained by various depth estimation models
like DPT [26], MiDas [27] etc. and does not require camera
calibration.

3.1. Stereo Pixels Shift

For the task of generating stereo images, fine-tuning mod-
els on large stereo datasets like KITTI [17] seems intuitive.
However, after fine-tuning the model using various methods
such as ControlNet [4] and LoRA [11], the results of the
generated images remains unsatisfactory. A major flaw of
this approach is that even if we could generate a high-quality
stereo image pairs, the types of images generated will be
limited to driving scenes similar to KITTI, losing the most

important feature of Stable Diffusion: its diversity. Inspired
by the Denoising Diffusion Implicit Models (DDIM) sam-
pling technique for Stable Diffusion [32], we present a new
method, Stereo Pixels Shift, without the aforementioned
drawbacks. Utilizing DDIM for sampling from generalized
generative processes, a latent vector sample xt−1 is gener-
ated from a sample xt via a noise predictor ϵθ:

xt−1 =
√
αt−1

(
xt −

√
1− αt ϵ

(t)
θ (xt)√

αt

)
︸ ︷︷ ︸

predicted x0

+
√

1− αt−1 − σ2
t ϵ

(t)
θ (xt)︸ ︷︷ ︸

direction pointing to xt

+ σtϵt︸︷︷︸
random noise

,

(1)

where ϵt is noise following a standard Gaussian distribution
N (0, I), independent of xt, and αt controls the noise scale
at step t with α0 := 1. If we set σt = 0 for all t and the same
model ϵθ is used, the generative results are consistent and
identical, making the forward process deterministic, given
xt−1 and x0. Thus, the result of xt−1 depends solely on
xt. During the denoise process at a certain step t′, if we
modify xt′ to x′

t′ , subsequently, x′
t′−1 is denoised based

on x′
t′ , eventually generating x′

0 which is different from
the original x0. This pivotal insight enables the practical
application of Stable Diffusion for stereo image generation.
To align with this approach, we scale down the disparity map
to match the dimensions of the latent space. Subsequently,
we manipulate the latent vector on a pixel-by-pixel basis,
guided by the disparity map. Given the relatively small size
of the latent vector, this process does not entail a substantial
computational overhead.

Assuming that the two images have parallel optical axes,



we derive a disparity map from a depth map using

D(x, y) =
fB

Z(x, y)
, (2)

where (x, y) is a point in image space, Z is the depth map,
f represents the focal length, and B is the baseline distance
(i.e., the distance between the two cameras). Typically, we
normalize the range of the disparity map D(x, y) to be in
[0, 1]. When the disparity map is generated by a model
rather than being measured by actual devices, the conversion
process is unnecessary, since many depth estimation models
are capable of directly generating disparity maps.

The Stereo Pixel Shift operation S is expressed by

xright(x, y) = xleft(x− sD(x, y), y) , (3)

where x (left or right) denotes the latent variable xt, xleft(x−
sD(x, y), y) represents the position in the latent space that
is shifted left by D(x, y) pixels relative to the position (x, y)
in the latent space, and s is a scaling factor that controls the
range of disparity, i.e., the pixel shift distance of the point
closest to the observer in the right image relative to the left.
Within reasonable limits, a larger value of s enhances the
stereo effect of the generated images, usually restricted to
within 10% of the image width. Excessively large s values
can cause discomfort or blurriness rather than a sense of
depth. However, using this method on images directly can
lead to problems like flying pixels, as it causes individual
pixels to warp into the empty spaces between two depth
surfaces [39]. But since we operate on pixels in the latent
space, individual pixel issues are typically resolved in the
subsequent denoising and decoding processes. Thus, our
method is straightforward, requiring no additional processing
such as sharpening of the moved pixels.

The reason why we can apply Stereo Pixel Shift to the
latent variable is that, after a certain step, there is a spatial
position correspondence between the latent variable and the
generated image. According to diffusion process theory [1,
20, 24, 32, 33, 44], sampling can be represented as

xt =
√
ᾱtx0 +

√
(1− ᾱt)ϵ , (4)

where ϵ ∼ N (0, I) and ᾱt =
∏t

i=1 αi. Applying the Fourier
transform on both sides, we have

F(xt) =
√
ᾱt F(x0) +

√
(1− ᾱt)F(ϵ) . (5)

If the step t is small, then ᾱt ≈ 1, which indicates that
early-stage sampling involves low-frequency signals primar-
ily defining the contours of the generated image. When the
step t is large, ᾱt ≈ 0, high-frequency signals in the later-
stage sampling refine the image details. This results in a
significant disparity between the generated image and the
original image if pixel offsets are applied too early during

Apply stereo pixels shift step
0 48248 16 32 40
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Figure 3. Comparing the outcomes of applying stereo shifts at
different steps of denoising, reveals varying optimal configurations
for different images. Implementing shifts too early could result in
significant content alterations, while shifts applied too late might
lead to noticeable artifacts in the images.

the sampling steps. Applying pixels shifts too late maintains
high consistency in image content, but results in noticeable
artifacts in the generated images. We found through experi-
ments that setting t to 20% of the total denoise step usually
works well. Additionally, the appropriate sampling steps for
pixel offsets vary depending on the size of the objects in the
images, see Figure 3.

3.2. Symmetric Pixel Shift Masking Denoise

After applying the Stereo Pixel Shift, the right latent vector
becomes inconsistent with the left one, potentially leading
to discrepancies in the moved subject content following the
denoising process.

According to Eq. 1, a pixel shift applied to xt′ to obtain
x′
t′ results in a slight difference between x′

t′−1 and xt′−1.
This difference accumulates during the subsequent denoising
process, leading to variations in the final generated image.
As a result, when the denoising algorithm is applied, it may
interpret the shifted areas differently, potentially causing
variations in how the subject matter appears after processing.
This challenge is crucial in stereo image generation, as main-
taining symmetry and coherence between the two sides is
essential for creating a convincing and realistic stereo effect.

To circumvent the issue, inspired by the concept of in-
painting, we propose a Symmetric Pixel Shift Masking De-
noise method. We create a mask for the area where the stereo
pixel shift is applied. At regular intervals, defined by specific
steps t′, the values from the masked region of the left latent
space are copied to the corresponding area of the mask in
the right latent space. Consequently, the denoising process
for the right image can be reformulated from Eq. 1 as

x′
t′−1 =

√
αt′−1

(
X ′

t′ −
√
1− αt′ ϵ

(t′)
θ (x′

t′)√
αt′

)
+
√

1− αt′−1 ϵ
(t′)
θ (x′

t′) ,

(6)

where x′
t′ represents the right latent vector after undergoing

a pixel shift, and the ith element of X ′
t′ is expressed by

X ′
t′,i =

{
S(xt′−1,i, D) if Mi = True,
x′
t′,i otherwise,

(7)



where S represents the operation of Stereo Pixel Shift in
Eq. 3, D is the corresponding disparity map of the image,
and M is a Boolean matrix of the same shape as x that
signifies the mask, with values set to True for the pixels that
have been shifted. The variable xt′−1 denotes the latent
vector of the left image at time step t′ − 1.

We note that if the area shifted is left blank (i.e., filled
with zeros), the denoised region might become blurry. We
address this blurriness by filling the shifted blank area with
random noise using

x
(deblur)
t′,i =

{
xt′,i if Mi = False,
ϵt′,i otherwise,

(8)

where ϵt′ denotes random noise, M is the same mask as the
one in Eq. 7. However, the effectiveness varies with different
images. Sometimes, it may even lead to a decrease in the
quality of the generated images. A detailed effects analysis
of the Deblur technique is presented in the ablation studies
described in Sec. 4.3.

3.3. Self-Attention layers modification

As numerous studies have attempted to modify the attention
mechanisms within Stable Diffusion to achieve the goal of
modifying the original images [3, 10, 22, 36, 42], we tackle
this challenge by utilizing both Unidirectional and Bidirec-
tional Self-Attention mechanisms. This method eliminates
the need for fine-tuning the model to adjust its weights. Refer
to supplementary materials for detailed explanation.

Algorithm 1 Bi/Uni-directional Attention Modification

Require: A text condition C, a left latent variable zt−1 and
a right latent variable z′t−1.

Ensure: An edited right latent variable z′∗t−1 and an edited
latent latent variable z∗t−1 if bidirection.

1: (zt−1, z
′
t−1), (Mt,M

′
t)← ϵθ((zt, z

′
t), t, C);

2: M̂t, M̂
′
t ← Edit (Mt,M

′
t , t) ;

3: if Unidirection then
4: (zt−1, z

′∗
t−1)← ϵθ((zt, z

′
t), t, C){M ′ ← M̂ ′

t}
5: return (zt−1, z

′∗
t−1)

6: else if Bidirection then
7: (z∗t−1, z

′∗
t−1) ← ϵθ((zt, z

′
t), t, C){M ← M̂t,M

′ ←
M̂ ′

t}
8: return (z∗t−1, z

′∗
t−1)

9: end if

Our modified approach is listed in Algorithm 1. The
term ϵθ((zt, z

′
t), t, C) represents the computation of a sin-

gle step t of the diffusion process, which yields the noisy
image zt−1 and the attention map Mt. Here, (zt, z′t) de-
note the left and right latent variables, respectively. In our
implementation, these latent variables are stacked together

along the batch size dimension. However, they are pre-
sented separately here for ease of explanation. The expres-
sion ϵθ((zt, z

′
t), t, C){M ′ ← M̂ ′

t} denotes the diffusion step
where the attention map M is superseded by an additional
map M̂ . We define the function Edit (Mt,M

′
t , t) as a gen-

eral edit function, designed to process the t-th attention maps
of the left and right latent variables.

3.4. Application scenarios

As shown in Figure 1, our method is compatible with various
types of Stable Diffusion models, enabling it to: (a) produce
the corresponding right-side image from an existing left-side
image; (b) generate stereo images from text prompts; (c)
produce the corresponding right-side image from an existing
left-side image, where the pair shares the same composition
but differs in content. For text-to-image and depth-to-image
tasks, the initial noise is randomly generated. Thus, it is
sufficient to apply a pixel shift to the denoised noise after a
specific denoising step, as illustrated in Figure 2. However,
for generating stereo image pairs of an existing image, it is
necessary to use null-text inversion [19] to obtain the latent
space of the original image. A straightforward inversion
technique was proposed for DDIM sampling [5, 32]. This
technique is grounded in the hypothesis that the ordinary
differential equation (ODE) process is reversible, especially
in scenarios involving small step sizes. The diffusion process
is executed in reverse, meaning the transition is from z0 to
zT , contrary to the typical zT to z0 progression:

zt+1 =

√
αt+1

αt
zt

+

(√
1

αt+1
− 1−

√
1

αt
− 1

)
εθ(zt, t, C) . (9)

Here, εθ is a noise predictor including an embedding of a
text condition C, while z0 is the encoding of the provided
real image. A guidance scale parameter w is used to blend
between a noise predictor with no text condition (w = 0)
and εθ with C.

To address the inefficiency of mapping each noise vector
to a single image, we start with a default DDIM inversion
at w = 1 as the pivot trajectory. Subsequently, we optimize
around this trajectory using a standard guidance ratio of
w > 1. In practical applications, individual optimizations
are conducted for each step t during the diffusion process,
aiming to closely approximate the initial trajectory z∗:

min
∥∥z∗t−1 − zt−1

∥∥2
2
, (10)

where zt−1 represents the intermediate result of the optimiza-
tion. We thus substitute the default blank text embedding
with an optimized embedding. This is because the gener-
ated results are significantly influenced by the unconditional
prediction [19].
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scores achievable by those methods. We do this to facilitate a direct comparison of the effects of each method on the same image. We also
provide LPIPS scores for reference and close-ups of the images generated by the primary benchmark methods for inspection of details.

Table 1. Quantitative evaluation results for Middlebury and KITTI: the results of generating right-side images from left-side images and
disparity maps using different methods. We assess the similarity between the generated and the original images using PSNR, SSIM, and
LPIPS. ‘GT’ indicates the use of ground truth disparity maps, while ‘pseudo’ denotes the use of disparity maps generated by a depth
estimation model. Scores presented in bold indicate the best performance. The numbers in the top right represent the best scores, while those
in the bottom right indicate the worst scores.

Methods
Middlebury KITTI

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Leave blank 11.328+2.483
−3.489 0.315+0.230

−0.154 0.450−0.089
+0.097 12.980+4.919

−3.831 0.374+0.286
−0.251 0.313−0.109

+0.222

Stretch 14.842+2.714
−2.753 0.432+0.265

−0.190 0.285−0.089
+0.112 14.757+5.375

−4.694 0.429+0.287
−0.271 0.212−0.100

+0.145

3D Photography [31] 14.190+2.464
−2.798 0.427+0.238

−0.175 0.275−0.065
+0.073 14.540+7.256

−4.023 0.398+0.270
−0.323 0.210−0.073

+0.099

RePaint [16] 15.102+2.909
−2.802 0.462+0.253

−0.184 0.311−0.079
+0.090 15.056+5.366

−4.897 0.462+0.268
−0.285 0.251−0.095

+0.128

Ours (with GT disparity) 15.456+2.669
−3.313 0.468+0.252

−0.205 0.231−0.088
+0.096 15.679+5.888

−5.487 0.481+0.245
−0.310 0.205−0.099

+0.135

Ours (with pseudo disparity) 16.980+4.737
−3.818 0.551+0.208

−0.166 0.173−0.069
+0.074 15.589+8.061

−5.016 0.479+0.241
−0.300 0.209−0.116

+0.114

4. Experiments

We have compared our results with traditional methods such
as ‘leave blank’ and ‘stretch’. Additionally, we have se-
lected the 3D Photography techniques of Shih et al. [31] for
comparison, as well as the RePaint method of Lugmayr et
al. [16], which involves using Stable Diffusion for inpainting
images processed by the traditional ‘leave blank’ method.
It is important to emphasize that RePaint is not inherently
designed for generating stereo image pairs. However, we be-
lieve that employing inpainting techniques to fill in the blank
areas after creating stereo images is a very straightforward
and common approach. Thus, we have chosen to compare
with the latest model that achieves good results in various
metrics within the same Stable Diffusion framework. This
comparison is intended to demonstrate the innovation and
advantage of our method.

4.1. Quantitative evaluation

Since currently no metrics exists specifically for the compar-
ison of stereo image pair generation, we quantitatively eval-
uate our results using the Middlebury [30] and KITTI [17]
datasets. We evaluate the performance by generating the
right-side image from the left-side image and its disparity
map. We then compare the model-generated right-side im-
age with the ground truth image. We calculated the Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM), and Learned Perceptual Image Patch Simi-
larity (LPIPS) between the generated image and the ground
truth. The results are in Table 1 with some visuals in Figure 4.
We provide the settings used for each method, more compar-
ison figures, and a detailed explanation of the quantitative
evaluation results in the supplemental document.

In Table 3, we compare the time consumption of different
methods for generating a single stereo image pair using an
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Figure 5. Ablation example of Middlebury (up) and KITTI (down).
In the images, ‘P’ and ‘G’ respectively denote whether the image
has been guided by a Pseudo disparity map or a Groundtruth dis-
parity map. ‘A’, ‘S’, and ‘D’ indicate the use of Attention layers
modification, Symmetric Pixel Shift Masking Denoise, and Deblur
technique, respectively. The lower scores associated with the use
of Groundtruth disparity maps in Middlebury may be attributed to
their generally higher precision and complexity. This heightened
detail can render pixel shift operations during image generation
more intricate and sensitive. Our Stereo Pixel Shift operation is
executed within a smaller latent space (64×64), where minor pixels,
such as those around tree trunks and leaves, might be overlooked.
In contrast, disparity maps generated by depth estimation models,
with their lower precision, are more conducive to Pixel Shift in the
latent space without sacrificing image detail.
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Figure 6. User evaluation results. Distribution of the scores pro-
vided by users on the test scenes.

NVIDIA RTX3090 graphics card. Our method offers the
capability to quickly generate high-quality stereo image pairs
with direct integration into Stable Diffusion.

4.2. User evaluations

In our user tests, we adopted a more practical and user-
centric approach. The users’ input were text prompts used

to generate stereo image pairs using Stable Diffusion. For
benchmarking, we compared this with other methods by
generating the left-side images using Stable Diffusion, ob-
taining the corresponding disparity maps via a depth esti-
mation model, and then using the respective methods to
generate stereo image pairs. We utilized Google Cardboard
and presented the stereo images on mobile phones, inviting
participants to assess the image quality and correctness of
the 3D perception. Ratings ranged from 0 to 5, with 5 being
the highest and 0 being the lowest. Some test pictures are
shown in Figure 12 of the supplemental document.

The results of the user tests showed that our method has
the highest average but it did not significantly outperform the
others. This was anticipated, as when viewing stereo images,
people tend to focus more on the overall image rather than
the details. In terms of ease of use, our proposed method has
a clear advantage. It is simpler, does not require an additional
inpainting model, and can be seamlessly integrated with
Stable Diffusion.

4.3. Ablation study

We conducted ablation studies on the proposed method to
evaluate the impact of images guided by either Groundtruth
disparity maps or Pseudo disparity maps (generated by a
depth estimation model), as well as the effects of using Sym-
metric Pixel Shift Masking Denoise, Attention Layer Modi-
fication, and Deblur techniques on PSNR, SSIM, and LPIPS
scores. The results are shown in Table 2. Figure 5 presents
a visual representation of an example from the Middlebury
dataset and KITTI to intuitively demonstrate the impact of
each factor on the image generation outcomes, explaining
the reason that scores using Groundtruth disparity maps in
the Middlebury dataset are unexpectedly lower than those
using Pseudo disparity maps.

5. Limitations and Discussion
Our method relies on the disparity map. If the results gen-
erated by other depth estimation models are inaccurate, our
method will also be unable to produce high-quality stereo
images. Furthermore, when using high-precision disparity
maps obtained from device measurements, the results may
not be entirely satisfactory, as shown in Table 2 and Figure 5.

When using our depth to stereo image model, one may ob-
serve overlapping areas in the generated images. This issue
might stem from the LatentDepth2ImageDiffusion model
we used, which tends to fill blank areas with pixels from
adjacent main subjects rather than background elements. In
such cases, a better-quality image can be generated by first
generating a single image using the Depth2Image model,
and then applying our Image to Stereo Image Pairs method,
as illustrated in Figure 7.

We found that our method can be used for inpainting tasks
with the original text prompt to a Stable Diffusion image



Table 2. Ablation study on Middlebury and KITTI. In the ‘Disparity Map’ column, ‘GT’ and ‘Pseudo’ respectively indicate the use of
groundtruth disparity maps or disparity maps generated by a Depth Estimation Model. In the ‘Technique Applied’ column, ‘Attn Layer,’
‘SPSMD,’ and ‘Deblur’ represent the use of Self-Attention Layers Modification, Symmetric Pixel Shift Masking Denoise, and Deblur
techniques, respectively. The symbol ‘✓’ denotes the adoption of these respective techniques. Bold numbers represent the best scores for
that column. When employing Attn Layer and SPSMD together, LPIPS has a better score, but the effect of Deblur varies from image to
image. When the LPIPS scores are comparable, the higher SSIM score indicates the better similarity. An example is shown in Figure 5.

Disparity map Technique Applied Middlebury KITTI
GT Pseudo Attn Layers SPSMD Deblur PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

✓ 16.352+2.330
−2.139 0.514+0.241

−0.169 0.378−0.149
+0.181 15.286+5.389

−4.622 0.476+0.229
−0.346 0.364−0.206

+0.265

✓ ✓ 17.076+4.450
−3.652 0.549+0.190

−0.174 0.191−0.073
+0.082 15.305+6.013

−4.772 0.474+0.228
−0.303 0.230−0.115

+0.114

✓ ✓ 15.421+2.849
−3.657 0.478+0.245

−0.199 0.255−0.123
+0.116 15.868+7.775

−5.068 0.483+0.240
−0.301 0.212−0.113

+0.114

✓ ✓ ✓ 15.456+2.669
−3.313 0.468+0.252

−0.205 0.231−0.088
+0.096 15.679+5.888

−5.486 0.481+0.245
−0.310 0.205−0.099

+0.135

✓ ✓ ✓ ✓ 15.149+2.769
−3.174 0.444+0.263

−0.231 0.234−0.097
+0.117 15.360+5.787

−5.332 0.461+0.250
−0.306 0.200−0.092

+0.127

✓ ✓ ✓ ✓ 16.753+4.815
−3.783 0.540+0.197

−0.169 0.174−0.071
+0.066 15.269+7.923

−5.053 0.458+0.261
−0.295 0.204−0.111

+0.106

✓ ✓ ✓ 16.980+4.737
−3.818 0.551+0.208

−0.166 0.173−0.069
+0.074 15.589+8.061

−5.016 0.479+0.241
−0.300 0.209−0.116

+0.114

Table 3. Time cost for different methods in seconds. We measure
the total time consumed for each usage scenario, including the
time taken to generate the images using Stable Diffusion. The
scenarios are text to stereo image (T2SI), depth to stereo image
(D2SI), and image to stereo image (I2SI). The time in parenthesis
is the cost excluding the time spent on generating images with
Stable Diffusion. For D2SI, our method, being directly integrated
into Stable Diffusion, requires only a single pass of sampling to
generate stereo image pairs. In I2SI, our method requires the use
of null-text inversion [19] for xt, resulting in an extra 23 seconds.

Methods T2SI D2SI I2SI
3D Photography [31] 245 (231) 247 (231) 231

Repaint[16] 338 (324) 340 (324) 324
Ours 32 (18) 18 40 (17)

Depth to Stereo 
image model

“An astronaut 
is riding horse”

Depth to 
image model

“An astronaut 
is riding horse”

Image to Stereo 
image model

Left Right

Left Right

Figure 7. Limitation: Generating compositionally similar stereo
images directly from a disparity map may sometimes fail. However,
this issue can be mitigated by first generating a compositionally
similar left image using the disparity map, and then employing the
Image to Stereo Image method to generate the right image. This
two-step process helps avoid such failures.

model. We conducted a simple test where, after obtaining xt

using null-text inversion, we applied various masking ratios
to the right side and tested whether Stable Diffusion could

10% masking area 30% masking area 50% masking area

Figure 8. Tests for inpainting tasks using our proposed method, the
red-colored areas represent the masked regions.

fill in the blank areas within the mask during denoising. The
results, as shown in Figure 8, indicate that our method is
somewhat effective for inpainting when a smaller area of
the image is masked. However, when a larger portion of
the image is masked, the inpainting results exhibit a strong
patchwork appearance. Applying our method to inpainting
tasks might require further modifications to both the model
and the technique.

6. Conclusion

We proposed a novel method for generating stereo image
pairs by modifying the latent vector of Latent Stable Dif-
fusion. We implement Stereo Pixel Shift on the left latent
vector and its corresponding disparity map, and during the
denoising process, we ensure consistency between the left
and right images through Symmetric Pixel Shift Masking De-
noise and Self-Attention Layer Modification. Our approach
differs fundamentally from traditional inpainting pipelines
and can be seamlessly integrated into existing Stable Diffu-
sion models, offering end-to-end capabilities for text prompt
to stereo image, depth to stereo image, and image to stereo
image generation, all without the need for fine-tuning any pa-
rameters and using only the original Stable Diffusion model.
Our method achieved better scores on both the KITTI and
Middlebury datasets.
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