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Figure 1: Our method maintains a cache of stable samples suitable for adaptive blending of the images in a stereo pair. This leads to better
temporal stability and better stereo consistency. The stable samples further enable us to reduce the performance hit by using adaptive shading

and adaptive visibility tracing. Shading Rate and Tracing Rate indicate the values we use to dynamically control these adaptive techniques.

Abstract

We present an algorithm for interactive stereoscopic ray tracing that decouples visibility from shading and enables caching of
radiance results for temporally stable and stereoscopically consistent rendering. With an outset in interactive stable ray tracing,
we build a screen space cache that carries surface samples from frame to frame via forward reprojection. Using a visibility
heuristic, we adaptively trace the samples and achieve high performance with little temporal artefacts. Our method also serves
as a shading cache, which enables temporal reuse and filtering of shading results in virtual reality (VR). We demonstrate
good antialiasing and temporal coherence when filtering geometric edges. We compare our sample-based radiance caching
that operates in screen space with temporal antialiasing (TAA) and a hash-based shading cache that operates in a voxel
representation of world space. In addition, we show how to extend the shading cache into a radiance cache. Finally, we use
the per-sample radiance values to improve stereo vision by employing stereo blending with improved estimates of the blending

parameter between the two views.

CCS Concepts
» Computing methodologies — Rendering; Virtual reality;

1. Introduction

With recent advances in graphics hardware, we start seeing ray-
traced rendering of complex geometry and lighting effects within
highly interactive real-time applications, such as video games.
Meanwhile, stereoscopic applications like virtual reality (VR)
rarely feature ray tracing as they require rendering a high-resolution
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image pair approximately every 10 milliseconds. This very lim-
ited frame time makes it a challenge to sample the image enough
to avoid aliasing, flicker, and noise. In VR settings, these artifacts
are very unpleasant as temporal incoherence and discrepancies be-
tween the two views can disturb motion parallax and depth percep-
tion and lead to user discomfort [LJOO, KT04].
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Because stereo views have large overlaps and consecutive frames
also contain similar content, reuse of rendering results between
frames via filtering or caching has the potential to lower the
rendering cost. Filtering generally comes at the cost of bias in
the form of blur and/or ghosting while caching largely avoids
these artifacts. Reuse of shading results from previous frames via
caching [MNV*21] or filtering [SKW*17] can tremendously re-
duce computational load and avoid temporal artifacts. Similarly,
temporal antialiasing (TAA) [YLS20] filters geometric edges by fil-
tering temporally, thereby reducing flicker and aliasing at the cost
of blur. Caching first-hit samples enables improved temporal sta-
bility without introducing blur but at a high cost of frame times
50% higher than native supersampling [DSK*17]. In this paper,
we present a sample caching algorithm that is faster than previous
work while retaining the benefit of temporal stability, and it can also
serve as a shading cache. We improve efficiency by using adaptive
shading and tracing, see Figure 1

2. Related Work

Our work is at the intersection between visibility caching, such
as interactive stable ray tracing [DSK*17], and TAA [YNS*09,
YLS20] as well as previous work on shading reuse, particularly
in VR [MNV*21]. We improve stable ray tracing with a modified
reprojection algorithm and data structure, and we add an adaptive
tracing scheme that significantly improves performance and tempo-
ral stability. In addition, our shading cache allows reuse of shading
work and filtering across stereo views.

Temporal screen space filtering. TAA [YNS*09, YLS20], re-
cently improved with neural networks and extended with frame
generation [NVI25], reuses primary visibility computations across
frames. Instead of supersampling the frame to accurately re-
solve geometric edges and texture details, a history frame is pro-
jected from frame to frame via resampling and then temporally
filtered with an exponential moving average. When radiance is
demodulated to separate high-frequency components, the low-
frequency indirect lighting can additionally be filtered spatiotem-
porally [CKS*17, SKW™*17, TLP*22], allowing for heavier use of
filtering without blurring geometric edges and texture details. De-
spite this, most approaches still use TAA as a post-process on the
composited image to improve temporal stability and aliasing. This
leads to the typical look of modern real-time rendering with blurry
geometric edges and textures especially during movement. The loss
of detail from resampling and ghosting is an inherent trade-off of
temporal filtering [PFJ23]. The only technique we know of that
avoids resampling blur while still reusing visibility computations
is interactive stable ray tracing [DSK*17]. However, this method
has a significant overhead even over native supersampling. Our ob-
jective is to achieve improved temporal stability without compro-
mising image crispness and performance.

Shading caches. While visibility caching is constrained to screen
space, shading caches [NSL*07] come with all kinds of data struc-
tures and methods. One way to cache shading results is to replace
the 3D geometry with screen-aligned imposters [Sch96] which can
be extended with voxel hierarchies [SS96] and ray-marched paral-
lax corrections [MFL21]. More commonly, though, the 3D geome-

try is rendered as is and shading results are stored in a separate data
structure. The shading atlas cache [MVD™ 18] stores shading results
in a dynamically remapped texture space while other caches store
the data in barycentric space [HSG*22]. More commonly, though,
the (ir)radiance is stored in a world space cache such as a sparse
voxel hierarchy [CP22,ZW23].

Using a hierarchical data structure to store radiance is constrain-
ing because one either has a fixed minimum voxel size and there-
fore limited precision or rendering requires constant building and
updating a sparse data structure over the scene’s geometry. Vox-
els are therefore often stored in a hashmap [DS07, PGSD13]. Stor-
ing average radiance in a voxel hash grid can simplify updates
to sparse world-space caches [RWB*20, Gau21]. Storing the hash
cells at dynamic LoD enables varying accuracy of the stored radi-
ance depending on the view position. In addition, this enables fast
and space-efficient reconstruction of low-frequency details such as
diffuse global illumination in real-time [DDB*09, BMdD*23] and
even glossy reflections to some degree [EMHB23]. The cache can
also be shared between multiple views to achieve a coherent render-
ing for all viewing angles [WTS*23]. Some recent methods com-
bine hash-based caching with screen space light probes, which are
filtered in space and time [Wri21, BMdD*23].

Radiance can also be represented via a neural network. Recent
work uses multi-layer perceptrons (MLPs) to query low-frequency
secondary hit radiance and adjust training speed to scene changes,
which leads to significant noise reduction [MRNK21]. Neural net-
works can also be used during the reconstruction step from a cache
to retrieve high-quality first-hit radiance from imperfect barycentric
irradiance caches [HSG*22]. Lastly, ReSTIR can also be consid-
ered a shading/radiance cache as it stores secondary ray samples at
the primary hit point to reduce variance and acts as an unbiased fil-
tering mechanism [BWP*20,0LK*21]. We consider ReSTIR to be
mostly orthogonal to our work as we cache visibility rays instead
of secondary rays and the provided variance reduction of ReSTIR
may be combined with a shading cache.

We provide a screen space sample cache for caching both vis-
ibility and shading computations without requiring preprocessing
or scene-specific optimisations. The cache is updated sparsely to
reduce tracing of primary rays and shader invocations at superres-
olution. Our cache can be combined with existing methods for ra-
diance caching, denoising, and filtering. In summary, we

e present an improved data structure and reprojection algorithm
for sample caching,

e provide a method for adaptive primary ray tracing with the sam-
ple cache,

e extend the method with a shading cache with the ability to adap-
tively shade samples based on sample count or error, and

e demonstrate that the sample cache can improve a stereoscopic
post-processing filter by providing a better variance estimate.

3. Method

Our method consists of four parts, visualised in Figure 2: Reprojec-
tion, Primary Ray Tracing, Shading/Secondary Ray Tracing, and
Reconstruction. In the reprojection phase, all cached samples are
forward reprojected into the new frame according to animations
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Figure 2: Overview of our rendering algorithm. The sample cache is reprojected each frame and visibility is redetermined using primary
rays. A subset of visibility samples is then reshaded and shading results of all samples within a pixel are used to produce a final colour in a

reconstruction step.
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Figure 3: Visualising the content of the radiance cache. Each pixel
holds a dynamic number of samples with at most N (in this case
N = 3) samples. The data for the samples is held in an array of
textures, a bitmask holds occupancy and visibility information.

and changes of the camera view. We use the resulting distribution
of samples to identify holes in the sample cache and samples that
were likely occluded by the scene changes. Where necessary, new
samples are created or pruned, and a subset of persistent samples
is retraced to update their visibility. Furthermore, the shading pass
can use the sample information to shoot secondary rays into the
scene and accumulate radiance information over time. Finally, the
reconstruction pass produces a final colour for the display based
on the visible samples in the cache and their radiance values and
material parameters.

The core of our algorithm is a screen space data structure that
holds an array of samples for each pixel. Each sample contains
a surface point hit by a primary ray. The cache has N slots for
each pixel, so that it can hold zero to N samples per pixel. We
identify a sample within a pixel by its index within the cache
s € {0,...,N — 1}. The cache data is held in an array of textures
with each texture holding all samples of index s as illustrated in Fig-
ure 3. In addition, a sample mask carries occupancy os and visibility
bits vy of all slots within a pixel. The information is encoded into a
texture with one integer per pixel. Since each sample slot takes two
bits, oy and vy, a 32-bit mask can support up to 16 samples, 32 for
a 64-bit mask. Each sample may also hold additional fields to carry
shading information like radiance Ly from secondary rays with an
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Listing 1: Pseudocode to encode a first hit into the 128 bits of fh.

input: float2 bary, uint instance, uint prim, uint mat

1

2 output: float4 fh

3 uint2 b = uint(round(clamp(bary,0,1) = float(OXxFFFFFF)))
4 fh.x = asfloat ((b.x & OxFFFFFF) | ((mat & OxFF) << 24))

5 fh.y = asfloat((b.y & OxFFFFFF) | ((mat & 0xFF00) << 16))
6 fh.z = asfloat(prim)

7 fh.w = asfloat(instance)

associated accumulated sample count c¢s. To avoid confusion, we
refer to the samples stored in the cache as visibility samples and the
accumulated secondary rays as radiance samples.

Each slot contains enough information to reconstruct the local
geometry and shading parameters of a primary hit sample. In our
case, we pack an instance index, a primitive index, a material index,
and barycentric coordinates into a float4 vector as shown in List-
ing 1. Using the scene’s vertex buffer and material textures, we re-
construct the position, normal, and material parameters of the sam-
ple in order to perform reprojection, shading, and retracing. The
reconstructed world space position is used to reproject the samples
within the cache from frame to frame and retrace samples to keep
visibility information up-to-date. The accumulated radiance Ly and
its sample count cg are stored in a single float4 (128-bits) value.

3.1. Forward Reprojection

At the beginning of each frame, we reproject the cache of the pre-
vious frame into a new cache for the current frame. We obtain the
destination of each sample by computing the sample position p;
and projecting that into the view of the current frame. When the
target pixel has been computed, a slot has to be reserved in the
list of pixels in which the sample can be stored. This is done via
atomic operations on the sample mask’s occupancy and visibility
bits. Unlike the reprojection algorithm in interactive stable ray trac-
ing [DSK*17], where the subpixel position of a sample determines
the samples’s cache location, a sample in our method may be stored
in any of the available slots of a pixel. Therefore, a failed reserva-
tion on a pixel’s sample slot may be retried on another slot until
success or no more slots are available.

When a sample s is to be reprojected into the cache of a target
pixel with sample slots i = 0...N — 1, we first read back the target
sample mask to determine the indices of the slots that are unoccu-
pied. If a slot is unoccupied, the sample tries to reserve it via an
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Listing 2: Pseudocode for cache slot allocation, where pixel is
the target pixel for the projection, i is the index of the sample we
would like to reserve, s is the sample we are reprojecting, and m
is a 32-bit integer containing the visibility and occupancy bits of a
pixel. We obtain m from the texture mask_tex.

1 bool try_reserve(pixel, i, s, inout m):

2 int o_bit = 1 << i

3 int v_bit = 1 << (i +N)

4 int s_val = o_bit | (is_visible(s) ? v_bit : 0)
5 m = InterlockedOr (mask_tex[pixel], s_val)
6

7 /! check previous mask value to confirm reservation
8 bool success = (m & o_bit) == 0

9 if (is_visible(s) && !success)

10 success |= (m & v_bit) ==

11

12 m |= s_val

13 return success

14

15 void write_sample(s, pixel):

16 int m = mask_tex[pixel]

17 while (slots_available(s, m)):

18 i = choose_target_slot(s, m)

19 if (try_reserve(pixel, i, s, m)):

20 write_sample_data(s, pixel, i)
21 break

atomic OR operation on the sample mask. The visibility bit, which
is encoded into the same integer is updated at the same time. If
unsuccessful due to a lost race with another thread, the operation
is retried as long as unoccupied slots remain. If all slots are occu-
pied, we overwrite invisible samples by racing to set the visibility
bit to 1. Listing 2 provides pseudo-code.

This approach contains two possible race conditions. One may
happen between reserving a slot and writing it and the other one
while writing the sample data. The first one happens when a thread
projecting a visible sample overtakes a thread projecting an invisi-
ble sample into the same pixel and slot. The thread with the invis-
ible sample will read success and overwrite the sample data of the
visible sample. The second race condition can happen if the sample
data requires multiple write operations for all data. Common GPUs
typically support atomic writes for 128-bit writes, but our cache can
exceed that if additional radiance data is stored within the samples.
In both cases, the sample data might become inconsistent, mean-
ing that either the radiance information or the visibility bit does not
belong to the written sample information.

Both of these can be fixed by splitting the reprojection into two
steps. Instead of performing the sample write directly, the sample
address is written to a target texture. A second step then simply
copies all samples including their visibility and occupancy bits. In
practice, we found that this step is not required as we did not ob-
serve any problems as a result of these race conditions. A similar
observation was made before [DSK*17].

3.2. Primary Ray Tracing

The reprojected sample cache needs an update to reflect changes in
the scene and the view. Some pixels may not contain any samples
while others may contain samples that were visible last frame but
occluded in the current frame. To make sure all holes are filled and
visibility is updated, we device a three-step procedure:

1. (only for adaptive sampling) analyse samples and mark a subset
to be retraced,

2. fill holes by creating new samples, remove samples from regions
with too many samples,
3. trace a subset of samples to update their visibility.

We test three different strategies for choosing the samples to
be retraced: single-, multi-, and adaptive sampling. In single-
sampling, only a single sample for each pixel is chosen (round
robin) for retracing. This may lead to artefacts from lagging vis-
ibility, so for reference, the multi-sampling approach retraces all
samples every frame. Adaptive sampling analyses the samples be-
fore deciding which subset is to be retraced. The adaptive sampling
traces fewer rays than multi-sampling. More details on this in Sec-
tion 3.4.

In the second step, the density of the samples is controlled to be
roughly ntarget With an allowed tolerance 8. We measure the average
density of visibility samples within a 3x3 neighborhood around
each pixel. If the density is out of bounds, we then either add or
purge visibility samples (randomly) while ensuring that at least one
sample remains per pixel. To delete a sample, we simply mark it
as unoccupied and invisible in the sample mask. New samples are
either created in an unoccupied slot or, when none are available, an
invisible sample is overwritten.

Following target selection and density adjustment, the chosen
subset of samples in each pixel is retraced with rays from the eye
point to the stored hit positions. This is in principle like shooting
shadow rays, which can be done with minimal loss of precision by
choosing the ray direction directly as the vector between the camera
and the hit position [vA23]. The visibility bit is set to 1 if the closest
hit is within €y (we use 0.001) of the stored sample and set to O if
a closer hit is encountered when tracing the ray. New samples are
traced by generating a random direction within the pixel they reside
in and storing the first hit information within the cache upon a hit.
To ensure that at least one visible sample remains for each pixel,
the last visible sample is overwritten if it fails the verification test.

3.3. Shading and Reconstruction

Expensive shading operations such as tracing of secondary rays for
global illumination can be cached in the radiance value of the sam-
ple cache. Each frame, a subset of samples are then chosen for re-
shading, by default we select one sample for each pixel in a round-
robin fashion. Shading samples within the cache can happen com-
pletely independently of the primary rays shot in the frame because
the sample cache contains all information necessary to reconstruct
the local geometry and shading parameters by consulting the vertex
buffer and scene textures. In our case, we shoot secondary rays into
the scene to compute ray traced global illumination for one of the
samples in each pixel.

To compute the final colour of each pixel, we average the ob-
served radiance stored in all visibility samples with vy = 1 within
each pixel. The radiance can be stored demodulated. In this case,
the pass also recombines albedo and demodulated radiance to com-
pute the final colour. Additionally, the environment is evaluated
where the stored samples represent the rendered background.

© 2025 The Author(s).
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3.4. Adaptive Ray Tracing

The visibility needs to be up-to-date for all samples to fully avoid
image artifacts. In practice, this means retracing all samples for
every frame, which is prohibitively expensive. However, we can
approximate the ideal behaviour with a sparse tracing pattern and
an adaptive heuristic based on analysing the samples within each
pixel. We trace a single sample within a 4 x4 block of pixels and
trace all samples where the geometry of a pixel is inconsistent with
a flat smooth surface. To this end, we compute the distance between
the camera and the surface for each sample. Based on the closest
and furthest distances, i, and fmax, of the visible samples within
a pixel, we can identify image regions that likely contain occluded
samples and shoot additional primary rays.

A high difference fmax — fin in the sample distances helps us
identify edges, where most visibility changes usually occur. How-
ever, simply thresholding the difference would lead to many false
positives since surfaces hit at oblique angles also exhibit high dif-
ferences in the same pixel. To distinguish oblique angled surfaces
from geometric edges, we compute a slope A; based on the sur-
face normal 7 and the distance #; of sample s from the camera (see
App. A):

cos B
cos(6—0)

where 0 is the angle between the direction toward the camera ®,
and the surface normal (cos = 7i - @,) and ¢ is the angle subtended
by the diagonal of a single pixel. This slope serves as an expected
distance within a pixel frustum. Using this, we can threshold the
difference using

Aﬁ:ts 1

. )

tmax < (1+€1)(tmin +247) )

with some suitable €; > 0 to account for numerical precision. We
use €1 = 0.005.

Because the sample cache may have holes and scene changes
may change visibility outside of geometric edges, we analyse a
3% 3 neighbourhood of each pixel so that visibility changes propa-
gate through the image within a few frames. To avoid reading and
reconstructing surface points for all samples within the 3 x3 block,
we adjust the reprojection step to write out minimum and maxi-
mum depth textures. Whenever a sample is successfully reprojected
into a pixel, that pixel’s min and max depth values are updated via
atomic operations using bit reinterpretation of the depth as integers.
The normal slope A;; is carried in the lower 32-bit within a 64-bit
integer together with the closest depth in the higher 32-bit. The pri-
mary tracing pass can then cheaply access the closest and furthest
distances by reading these textures. Figure 4 visualises the compu-
tation of the trace mask based on the inequality (2), determining the
samples to be traced.

3.5. Adaptive Shading

Our stable set of samples enables us to recompute the shading re-
sults for the samples adaptively. Since the sample information is
self-contained, a sample may even be updated when it is not veri-
fied in the same frame. This is especially interesting when the sam-
ple cache carries Monte Carlo estimates. We set up a simple adap-
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Figure 4: Analysing the distance between samples within a pixel
and its neighbourhood can detect edges in the image, where more
primary rays should be used to ensure up-to-date visibility values in
the sample cache. To avoid false positives, the difference between
maximum and minimum distances is adjusted by the slope of the
surface before being used in the decision to trace all samples within
a pixel or not. A sparse subset of the samples is always traced as
can be seen by the faint grid in the trace mask.

tive shading scheme that focuses computation on disoccluded re-
gions and aims to equalise the accumulated radiance samples across
the entire frame. As in the case of adaptive primary ray tracing, we
shade one sample in every 4 x4 block of pixels as a base shading
rate and dispatch the rest dynamically.

For the dynamic dispatch decision, each sample is assigned an
importance that indicates how often it should be updated. This im-
portance value may be a rate of change in the shading result as is
done in [MNV*21]. To use the shading cache as a form of radiance
cache, one may take the number of accumulated radiance samples
¢s to set the importance to Wghage = (14 C‘y)il which gives higher
priority to samples with lower sample counts. During reprojection,
we compute a histogram from these importance values by counting
the samples of each pixel into M(M = 13) logarithmically sized
buckets via atomic instructions. This histogram is illustrated in Fig-
ure 5. The minimum and maximum importance for the full frame,
Win and Wiax, are also computed via atomics and used in the next
frame to compute the bounds of the M bins.

The dispatch decision is done in a separate kernel that writes out
sample indices for the shading pass to compact the work. The shad-
ing rate is user-defined as a percentage where 100% means that the
number of shading invocations is equal to the number of pixels.
With the shading rate, we can compute an importance threshold us-
ing the prefix sum of the histogram bins. Buckets that fall below are
not shaded, buckets above are dispatched for shading. For samples
in the bucket that cross the shading rate threshold, samples are dis-
patched randomly based on a weighted coin toss for each sample
so that, in expectation, the correct amount of samples is dispatched.
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Figure 5: Adaptive shading works by dispatching the samples with
highest importance. A histogram is used to make this decision per
sample. A splitting line is defined by the shading rate. Samples that
fall in bins above are all dispatched.

3.6. Stereo Blending

Rendering in stereo warrants special care with respect to how the
images are perceived by the user. Monte Carlo noise and Aliasing
can induce a stereo discrepancy error that is generally considered
uncomfortable for the user [KT04]. We use the sample cache to
reduce this stereo discrepancy. Since we treat both eyes separately,
each having its own cache, we use a post-process to combine the
views after reconstruction via a stereoscopic filter.

The optimal blending factor might depend on material and ge-
ometry being rendered in each pixel. Suppose X is a sampled pixel
value in one image that we project to a pixel in another image with
a sampled value Y. If we want to use linear interpolation to improve
the pixel value in Y through replacement with

lerP(X7Y7 B) = (1 - B)X+BY, 3

the theoretically optimal blending parameter B in terms of mean
squared error is [PFJ23]

oy

B R R
Bias” + oy + oy

=1 )
where 6)2( and 012/ are variances of the initial sampled pixel values
and Bias®> = (E[X] — E[Y])? with E denoting the expected value.
To find a good stereo blending parameter, we need good estimates
of the variances and expected values in this equation. This is where
we utilise the sample cache.

For a pixel with n € [0,N — 1] visibility samples s, ...,s,—1,
each containing a radiance estimate Ly,...,L,_1, we derive an es-
timate of the optimal blending parameter using the first and second
raw moments of the underlying distribution. These moments are
u1(X) = E[X] and up(X) = E[X?], and we estimate them from our
shading cache using

1 ny—1 1 ny—1 )
X))~ — L X))~ — L 5
I«ll( ) cx S;) Csls | 5 ,Uz( ) cx Sgb csLy |, (5

where c; is the effective number of samples [YNS*09] of a visibil-
ity sample in the pixel with sampled value X and

ny—1

cx = Z Cs (6)
s=0

is the total effective sample count for this pixel. The variance of a
random variable X is

oy = E[X°] — (E[X])* = m(X) — (1 (X)), @)

which we use to rewrite Eq. 4 in terms of the first and second raw
moments. We then estimate B’ using

g1 ) —m)
2 (X) + o (Y) =2 (X (Y)
As compared with the original technique for finding per pixel stereo
blending parameters [PFJ23], we utilise the multiple samples per
pixel of our sample cache which avoids the blur resulting from es-
timates based on neighborhood sampling.

®

In practice, we store u for all pixels within the reconstruction
pass and then implement stereo blending with a texture fetch. We
also reproject using the closest visibility sample’s position which
gives a more stable depth value compared to taking either the tar-
geted sample’s position or a jittered first hit common in other tech-
niques. The final colour is then given by inserting Eq. 8 in Eq. 3.

4. Implementation

We implemented our method in Vulkan (SDK Version 1.3.296)
using hardware ray tracing [KHBW20] and refer to it as
SampleCache. Unless mentioned otherwise, we used N = 12 lay-
ers, a target density of nurget = 4, and a sample tolerance of 5=1.
Each layer of the cache requires 4 bytes per pixel for the mask and
16 bytes for each sample with an additional 16 bytes for each sam-
ple in the shading cache. That’s approximately 31Mb for each layer
at a resolution of 1080p.

We compare our results to previous works in visibility and shad-
ing caches. We compare our sample cache with and without shad-
ing to TAA [YLS20] and DLSS [NVI25]. As for caching shading
results, we omit comparisons to straight shading caches and instead
use our shading cache as a radiance cache in which secondary ray
results for diffuse global illumination are accumulated. The sam-
ple cache can then be compared to existing hash-based radiance
caching with TAA for Antialiasing. We implement a state-of-the-art
hashing-based radiance cache, HashCache, and compare with this
in terms of quality and performance. We choose the Level-of-Detail
(LoD) of the voxels such that they are smaller than a pixel. This en-
sures a fair comparison with our sample cache. We also combine
the two caches into a Hybrid in which our sample cache without
shading storage is used for adaptive first hit tracing and to provide
stable lookups into the hashing-based radiance cache. The radiance
caches for both our sample cache and the hash-based cache recon-
struct radiance as is with only non-resampled temporal filtering ap-
plied to make sure sources of blur can be accurately discriminated
and assessed. In a full rendering pipeline, the output indirect light-
ing may be denoised using a spatiotemporal denoiser.

Our implementation of HashCache roughly follows the existing
literature on hash-based radiance caching [RWB*20, BMdD™*23,
WTS*23, MKK?24]. A hash-based radiance cache relies on double
hashing of voxel coordinates where the first hash is used to index
the cache and the second is used to resolve cache collisions. Entries
are found by linear probing (open addressing), and each entry car-
ries the information of the last access to the entry. When a value has
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no shading

cached shading

Method Reserve (ms) Copy (ms) Total (ms)
single-pass-no-shade ~ 1.48 £0.02 / 1.48 £ 0.02
single-pass 2.10 £ 0.03 / 2.10 £ 0.03
two-pass-no-shade 1.12£0.03 1.68+0.03 2.79 +0.06
two-pass 1.01+£0.03 249+0.08 3.50+0.11
simple reprojection 1.00 £ 0.01 / 1.00 £ 0.01

Figure 6: Comparison of 1-pass and 2-pass reprojections at 1080p
on an RTX 3060. Without shading, the cache carries only 128 bits
per sample. This grows to 256 bits when caching shading results for
each sample. While 2-pass is technically more correct, artefacts are
rare and performance is much better with 1-pass.

not been accessed for a while, it is free to be overwritten by subse-
quent insertions into the cache. The cache is stored in two textures,
one containing a 64-bit integer with a last access value and the colli-
sion hash, and a second texture containing the radiance information
including sample count for each voxel in a 4-component 32-bit float
vector. This results in a total of 24 bytes per voxel entry. For more
coalesced memory accesses, the voxels are stored in spatially co-
herent 2D tiles which represent a volume projected onto the major
axis of the hit normal, an optimisation introduced by [BMdD*23].

For HashCache and Hybrid, the rendering and access are sim-
ilar to the algorithm for SampleCache. We trace jittered first hits
at 1spp and each primary hit position is used to perform a cache
lookup. Upon reserving the cache cell, a secondary ray is traced and
the radiance information is updated. The updated radiance informa-
tion is used to compute the final colour. This is done in only two
passes, one for primary tracing and one for cache lookup, update,
and final colour computation. Just like in SampleCache, we decou-
ple albedo from lighting for the HashCache. To smooth out voxel
artefacts and keep nearby cache cells alive, we apply voxel jitter-
ing [BFK18] before lookup and apply TAA [YLS20] to the final
image using temporal weights as derived by Philippi et al. [PFJ23].
The TAA removes the jitter artefacts resulting from first hit and
voxel jitter. For Hybrid, we compute the final colour from the hit
voxel and its parent one level-of-detail above. The update randomly
updates one of the two levels. To keep our implementation within a
real-time frame budget, we only cache first hits and apply no spatial
denoising, making the methods comparable to our SampleCache.

5. Results

We first test the different algorithmic options in our method and
then move on to comparisons with other methods as well as docu-
menting the improved temporal stability and stereo consistency.

Reprojection performance. In Section 3.1, we discussed single-
pass (1-pass) and dual-pass (2-pass) versions of the forward repro-
jection, where 2-pass corrects the race conditions of the reprojec-

© 2025 The Author(s).
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tion in a deferred copy pass. Figure 6 lists performance numbers
for both algorithms with and without a shading payload. The latter
means that the cache has an additional 128 bits of radiance data in
each cache cell for a total of 256 bits per sample cache entry. The
2-pass reprojection has almost twice the overhead of 1-pass. We ob-
served no artefacts with 1-pass (neither on other graphics hardware,
see App. B), so we use this version in all the following results.

Adaptive sampling. Figure 7 demonstrates the difference between
the three retracing strategies described in Sections 3.2 and 3.4 (sin-
gle, multi, and adaptive). The sample cache reprojection and the
reconstruction have significant overhead as compared with sim-
ple ray tracing. While single-sampling improves temporal stability
and filters textures with good performance, geometric edges ex-
hibit temporal lag (ghosting) during movement. Multi-sampling,
tracing all samples, completely removes such artefacts at the cost
of lower performance, a strategy used in prior work [DSK*17].
On the other hand, our adaptive strategy has a performance that
is close to single-sampling despite the overhead of the shading
cache (larger payload). It also exhibits very few artefacts except
for edge cases where extreme visibility changes happen from one
frame to the next. Even then, the heuristic’s neighbourhood scan
makes sure these changes propagate within few frames. In the fol-
lowing, results involving the SampleCache use adaptive sampling
unless mentioned otherwise.

Temporal stability without excessive blur. To evaluate the an-
tialiasing and temporal stability of our sample cache, we compare
our method with 4 spp supersampling (as a baseline) and 4 spp plus
DLAA (DLSS version 3.5.10 at native resolution without upscal-
ing) as a temporal antiliasing method. This is done in Figure § and a
supplementary video using a hairball lit by a single directional light
for a non-stochastic shader evaluation. Our method uses adaptive
sampling with nsqrger = 4 and has the shading cache enabled. The
reference is rendered at 16 spp. Our method shows slightly worse
antialiasing than 4 spp rendering but less flicker. The temporal in-
tegration of DLAA makes its result the most stable at the cost of
excessive blurring and ghosting, which is typical for temporal an-
tialiasing methods. The performance impact of DLAA is slightly
higher than that of our method despite the scene being a challeng-
ing edge case for our adaptive sampling scheme.

Temporally stable radiance lookups. A still view is the optimal
situation for both the HashCache and our SampleCache. Figure 9
and a supplementary video shows the antialiasing and temporal sta-
bility of these methods with and without TAA applied. As seen,
our method is significantly less aliased and temporally stable with-
out relying on TAA and thereby introducing blur. When using the
HashCache method, many voxels can fall into the same pixel at
oblique viewing angles, making lookups temporally unstable as a
different voxel is queried for each frame. Applying an LoD adjust-
ment based on the normal incidence avoids this problem at the cost
of increased blur along the surface, mimicking the look of trilinear
texture filtering at high angles of incidence.

Comparison with interactive stable ray tracing. Figure 10 com-
pares quality and performance of our method with a version of
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single

A T T e
10.37ms
multi adaptiv
Method  Reprojection (ms)  Tracing (ms) Total (ms)
single 1.43 £ 0.01 1.95+£0.03 5.06 £ 0.06
multi 1.49 £0.02 7.15+£0.16 1037 +£0.26
adaptive 2.47 +£0.04 1.46 £ 0.03 5.79 £0.10

Figure 7: Comparing the different tracing modes of our Sample-
Cache against simple supersampling at 1080p on an RTX 3060, see
also supplementary video. Tracing a single sample each frame ex-
hibits artifacts during movements, while multi-sampling increases
the tracing cost significantly. The total frame time also includes re-
construction time, shading is skipped in this test.

16 spp
dds 4

DLSS
(4 = u) smo

Figure 8: Antialiasing comparison between native rendering,
DLAA (DLSS without upscaling) and our method at 1080p on an
RTX 3060. Our method reaches an image quality close to 4 spp
with much better temporal stability and without the blur of tempo-
ral methods like DLSS.

SampleCache following the layout and reprojection logic of inter-
active stable ray tracing (isrt) [DSK*17]. These results demon-
strate that our method improves the reprojection algorithm and the
sample cache data structure. For better comparison, we omit adap-
tive sampling here and only trace one sample per pixel which leads
to edge artifacts during movements. Our method shows better per-
formance, quality, and temporal stability when carrying radiance
information in each visibility sample. Due to more visibility sam-
ples staying alive after each reprojection, our sample cache can
accumulate a longer history for each radiance in a sample which
improves temporal stability and quality. The superresolution cache
of isrt is disadvantageous for memory accesses since samples are
scattered sparsely within the grid of each pixel, whereas our data
structure keeps the samples in the first layers of each pixel, leading
to coalesced memory accesses into the sample cache during repro-
jection and reconstruction.

5.1. Moving Camera and Performance

In supplementary videos, we provide video results with a mov-
ing camera for each method using the three scenes in Figure 11.
The scenes were rendered with three-bounce global illumination
and Russian roulette starting from the second bounce, a com-
mon choice in real-time rendering. The three scenes are sponza,
bistro, and san-miguel. A Preetham sun and sky model illumi-
nates the bistro and san-miguel scenes, while sponza is lit by a
constant background and a directional light source. All three show
significant camera movement with san-miguel playing back cap-
tured position data recorded from a VR headset during use. De-
tailed frame times and RSE are plotted in Figure 12. We apply TAA
on top of all methods to level the playing field for the error com-
parison. However, our method is decently temporally stable with-
out TAA. These results demonstrate that we achieve the same error
levels as state-of-the-art hash-based radiance caching (HashCache).
The additional performance hit of our method is a trade-off to im-
prove temporal stability without excessive blurring and to enable
better stereo consistency (the latter is evaluated in Section 5.2).

Both HashCache, SampleCache, and Hybrid perform well in
terms of measured error. However, RSE does not capture tempo-
ral stability problems. For this reason, we provide a closeup of the
animation in the bistro scene in a supplementary video showing
how temporal flickering is reduced with our method. All caching
methods have trouble during fast movements where many cache
misses occur and rendering has to reconverge. The san-miguel
scene shows this well as the frame sequence plays back a captured
VR session with a sudden head turn around frame 130 that inval-
idates most of the cache and therefore increases error toward the
level of a naive 1spp rendering.

In all three methods, performance is mostly unaffected by the
number of cache evictions. This matches our objective of a method
suitable for preview applications in VR. Figure 13 has a break-
down of frame times. Overall, performance was consistently lower
for SampleCache and Hybrid due to reprojection overhead. Cache
lookups and updates run with similar execution times for both
SampleCache and HashCache. Hybrid requires a total of three
lookups per pixel (one for shading, two for reconstruction) into
both its sample cache and its hash map, adding additional over-

© 2025 The Author(s).
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HashCache (LoD)

Figure 9: From left to right: SampleCache, HashCache using only distance to choose a Level-of-Detail (LoD) and next to it the same
HashCache method using distance and normal to determine LoD. Each method is shown with and without TAA. Our method shows better
antialiasing and less blur for illumination edges like hard shadows. Temporal stability of the HashCashe can be significantly improved by
choosing the LoD based on the angle of indicence at the first hit surface albeit at the cost of blurring the shadow edges further. The same
scene is attached as a video in the supplementary materials.

f isrt M=3 isrt M=4 ours N=9 ours N=16

re
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b
isrt M=3) isrt(M=4) ours(N=9) ours(N=16)
Reprojection Time (ms)  4.66+0.26 6.69£1.52 3.15£0.41 3.33£0.56
Resolve Time (ms) 1.14£0.01 1.67+£0.12 1.16 £0.02 1.20+£0.03

Lt — L(g_151)]

Figure 10: Comparison of quality and temporal stability between isrt and ours at 1080p on an RTX 3060 without adaptive sampling. The
columns show results with superresolution factor M for isrt (M=3 means 3 x 3 = 9 visibility samples per pixel) and number of layers N for
ours. The target density is nrget = 4 and niarget = 6 for N =9 and N = 16, respectively. The top row shows a closeup of rendered radiance
and the bottom row shows a frame-to-frame reprojected difference, which serves as a proxy for temporal stability for the shading cache. Our
method is faster and more stable when holding onto samples, which is seen in the lower temporal differences. The total frame time includes
around 1 ms for first-hit tracing and 10 ms (12 ms for isrt) for material evaluation and secondary hit tracing.

sponza bistro san-miguel

Figure 11: Three test scenes. Rendered here using our screen space shading cache. Despite continuous movement, radiance caching meth-
ods can significantly reduce noise and quickly converge to a high-quality result while providing real-time feedback by showing noisy, but
temporally coherent frames during convergence.

© 2025 The Author(s).
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Figure 12: Mean relative squared error (RSE) and frame times for
sequences of 500 frames on the three scenes at 1080p on an RTX
4090. A sharp rise in error indicate a large camera movement that
invalidated large parts of the cache. Performance is mostly unaf-
fected and dependent on ray tracing time. Lines are smoothed via
a moving average for visualisation purposes.

head in shading and resolve. HashCache has a lower shading load
because nearby pixels may hit the same voxel in which case only
one is traced. The overhead of the caching methods on top of
1 spp tracing is significant but fairly modest when considering the
achieved error reduction. Figure 13 also includes SC-adaptive,
which is our SampleCache with adaptive shading enabled. Fig-
ure 14 demonstrates that adaptive shading improves the perfor-
mance of SampleCache without compromising the overall error.

5.2. Stereo Discrepancy Error

To assess how well stereo signals are improved by our stereo blend-
ing algorithm (outlined in Section 3.6), we use the bistro scene
with view-dependent glossy materials switched on. To let the high-
lights change with view changes, we added a temporal filter in the
sample update procedure using a fixed blending parameter o = 0.1.
The resulting image is used as input for stereo blending. We com-
pare with related work by Philippi et al. [PFJ23], where the stereo
blending parameter [ is estimated using a 3x3 kernels (while we

H. Philippi et al. / Stable Sample Caching for Interactive Stereoscopic Ray Tracing
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Figure 13: Execution time breakdown for the bistro scene with
1spp, SampleCache, HashCache, Hybrid, and SC-adaptive at
1080p on an RTX 4090. The latter is SampleCache with adaptive
shading enabled. Secondary hit tracing includes the cache lookup
and update and takes most time in all the methods. In 1spp, first
and secondary hit tracing are integrated into a single stage. The
red bar sums the reconstruction (here: “resolve”) and TAA passes.
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Figure 14: Adaptive shading results for the Bistro scene at 1080p
on an RTX 4090. Adaptive shading focuses secondary rays where
radiance sample count is low thereby reducing noisy trails. Despite
adaptive shading using only 70% of the shading rate used for uni-
form shading, the error is equally low.

use Eq. 4). Because kernel estimation tends to blur the result, which
may or may not be desirable, we introduce a sharpness parameter
R € [0, 1] in our technique that controls how much the 1st and 2nd
raw moments are blurred before being used in an estimate. Specif-
ically, we blur the estimates within a 3x3 neighbourhood where
the weight of each pixel is w = 1 — R except for the center pixel
for which the weight is always w = 1. The raw moments from the

© 2025 The Author(s).
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Figure 15: Comparing stereo blending techniques. From left to right: reference, SampleCache without any stereo blending, with our stereo
blending and R = 1, then R = 0, and finally stereo blending using a neighbourhood estimated blending parameter as in related work [PFJ23].
Using variance estimated from samples, we can tune the sharpness parameter R and get a desired trade-off between blur and error. The
bottom row shows the stereo difference of the images, in which the left eye was reprojected onto the right view to show stereo discrepancy
error. At lowest R, our method gives lower RSE, sharpness (CPBD) similar to the reference, and lower stereo discrepancy error than previous
work with no significant performance overhead. The sharpness metric was used in a similar way in work on stable ray tracing [DSK*17].
Frame times were measured using an RTX 4090 at 2x960x 1080 resolution.

projected eye are smoothed using Dodgson’s quadratic resampling
kernel [Dod97] with R as the spline parameter.

Figure 15 shows the quality and performance of our method in
comparison with related work. We provide results for R = 1 as well
as R = 0. We note that while R = 1 does not perform as well in terms
of error and stereo discrepancy, it provides a conservative option for
cases where any kind of blur is undesirable. It is slightly cheaper
too, as it needs fewer texture fetches. Best quality is achieved with
an R = 0, which improves RSE, sharpness, and stereo discrepancy
as compared with the related work. We measure sharpness using
cumulative probability of blur detection (CPBD) [NK11]. Ideally,
we would like the same level of sharpness in our images as in the
reference image, which is achieved very nicely with R = 0.

To better visualise the improvement in stereo discrepancy, we
provide a supplementary video that switches between the two
views, comparing our sample-based stereo blending to previous
work. We use R = 0.8, a common value for the spline parameter
in Dodgson’s kernel [Dod97]. The scene uses a more aggressive
temporal filter o = 0.25 and a more complex environment texture
to exaggerate the effect. In stereoscopic vision, such as VR, even
low discrepancies between the eyes can lead to discomfort [KT04],
which might not be immediately visible in a single view video. The
video shows that our method achieves a better compromise between
blur and improved stereo vision.

© 2025 The Author(s).
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6. Discussion and Conclusion

To test our method for more view-dependent materials with vary-
ing degrees of glossiness, we use a simple Cornell box scene with a
metal and a glass sphere. We find that our method still significantly
improves temporal stability over multisampling, but the temporal
blending needs to be controlled for view-dependent materials lead-
ing to a tradeoff between bias and variance, see App. C. A test of
the method for animated objects is in App. D.

Our video results demonstrate qualitatively that sample caching
can significantly increase temporal stability at a minor cost in terms
of performance. Unlike interactive stable ray tracing [DSK*17],
our method does not require validating all samples every frame
and provides a better compromise between performance and qual-
ity for VR. Screen space methods that utilise backwards repro-
jection can show good results for many scenes, but are limited
as resampling from frame to frame is lossy. We obtain real-time
frame rates and practical convergence times in our results that
show converged global illumination without sophisticated sampling
techniques, reservoir resampling, or path guiding. Such techniques
could be used to improve the radiance values we cache.

Foveated rendering or focusing shading on noisier regions are
extensions worth considering, especially since we can compute
good variance estimates for each frame given the visibility sam-
ples (as we did for stereo blending in Section 3.6). Another avenue
of future work would be to estimate optimal temporal blending pa-
rameters using subpixel estimates. Computing an adaptive temporal
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parameter based on measured gradients has been shown to improve
the responsiveness of view-dependent effects [SPD18].

By combining our SampleCache with HashCache, we show that
stable surface points can improve existing radiance caching meth-
ods. While we did use TAA for some of our results, the Hybrid
method delivers a good picture without it. As TAA always reduces
variance at the cost of bias (blur and ghosting), removing the need
for temporal filtering in any part of a rendering algorithm can im-
prove image clarity.

Temporal stability and stereo discrepancy error play a big role
in stereoscopic ray tracing, especially when using Monte Carlo
techniques. We show that antialiasing and shading reuse can be
achieved with a sample cache that lends well to stereoscopic ray
tracing.
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ty

Figure 16: Figure for deriving Eq. (1).

Appendix A: Derivation of Equation (1)

Testing whether two first hits belong to the same surface is done
using ray cones. Inspired by previous work on level of detail (LoD)
selection using ray cones [AMNA™19], we derive an expected dis-
tance extent A; based on the diagonal field of view of a single
pixel ¢ and the angle of incidence 0 between the camera ray ®,
and the surface normal 7.

Considering the setup in Figure 16, we are looking for the dif-
ference A; = |ty — t+|, where the sign in the subscript indicates
whether a sample within the pixel at the farthest possible distance
from the intersection point along the locally flat surface is closer to
or further away from the ray origin o than the intersection point s
(that is, 7— <ty < t4). Using the law of sines in a triangle and
trigonometric identities, we have

A sin(5 £+ 6) _, cos@
T Sin(m— (T£0)—0) cos(0+0)’
Thus,
cos0

Because we take the absolute value and ¢ is very small, the sign
only makes a difference at almost tangential observation of the sur-
face. Using @ — ¢ avoids the singularity at 8¢ = 5 since 8 € [0, J].
Selecting © — ¢ as a good approximation (since the surface geome-
try does not extend to infinity in any case), we have Eq. (1), which
is bounded.

Considering samples within a pixel’s 3x3 neighbourhood, the
angle between a ray in the centre pixel and a ray in another pixel
in the neighbourhood is at most 2¢. If the sample closest to the
observer in a pixel is at the distance #,;,, we obtain the maximum
distance to a sample within the 3 x3 neighbourhood by adding Az
computed using 2¢ instead of ¢. Alternatively, 2A; with 6 — ¢ as the
argument of the cosine function in the denominator is between A
with 8 — 2¢ and A; with 6 4 2¢ while still avoiding the singularity.
This is a good compromise, so we use this and have that the dis-
tance fmax to the farthest sample is less than #,,;, +2A;;. Multiplying
this by 1 with an added epsilon value, we have the inequality (2).

Appendix B: Single-Pass Reprojection on Other Hardware

To verify that the single-pass reprojection works on graphics hard-
ware from other vendors, we reran the experiment in Figures 6 and
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Table 1: To verify the single-pass reprojection on non-NVIDIA
hardware, we tested on an AMD Radeon 760M Graphics iGPU.
Being a mobile chip, performance is very low but gives similar rel-
ative frametimes for the single-pass and two-pass method.

Method Reserve (ms)  Copy (ms) Total (ms)
single-pass-no-shade  5.13 £ 0.04 / 5.13£0.04
single-pass 9.06 £ 0.31 / 9.06 £ 0.31
two-pass-no-shade 362+0.02 441+0.02 8.02+0.04
two-pass 353+£0.02 7.03+0.08 10.56 +0.09
simple reprojection 0.97 £0.00 / 0.97 £ 0.00

4spp single multi

adaptive

Method  Reprojection (ms)  Tracing (ms) Total (ms)

single 4.84 +£0.05 320+£0.52 12.07+0.63
multi 4.72 £0.09 11.99£0.25 20.65+1.11
adaptive 6.22 +£0.23 5.81+£0.09 16.09 £0.66

Figure 17: A rerun of the experiment in Figure 7 on an AMD
Radeon 760M Graphics iGPU shows similar relative performance
and equivalent image quality.

7 at 720p on an AMD Radeon 760M Graphics iGPU. The results
are in Table 1 and Figure 17. The results demonstrate equivalent
relative performance and image quality.

Appendix C: Caching Specular Materials

While previous work has analysed to what degree view-dependent
results can be reused over time [MNV*21], modern rendering tech-
niques often rely on a temporal filter to combine shading results of
many frames into one. We therefore include an analysis of the de-
gree to which this is possible without a shading cache. For this pur-
pose, we run our SampleCache method with adaptive tracing and
uniform shading on a Cornell box with two spheres with a metal
and a glass material of varying roughness (0ggx € {0,0.2,0.4}).
Because our method relies on the reprojection of first hits, we can-
not use advanced techniques to compensate the motion of view-
dependent effects [ZLY*21] and thus caching view-dependent ef-
fects is limited. To allow the shading cache to accommodate some
view-dependent effects, we clamp the temporal blending factor (o)
to a minimum value (Qy,;,) depending on the roughness

Omin = (1 —0gex) - 0.5+ aggx - 0.1.

For a more generalised technique to get an adaptive temporal blend-
ing parameter, we refer to previous work [SPD18]. Results are
shown in Figure 18 as well as a video in the supplementary files.
Caching materials with high roughness is possible without intro-
ducing large errors in practice. The optimal temporal filter depends
on the noise of the rendered effect, as well as the bias introduced
by ghosting.
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OGGxX = 0.4
RSE: 0.03

oggx = 0.2
RSE: 0.04

dggx = 0.0
RSE: 0.15

clamped o

Diff

0.1

fixed o

Diff

Figure 18: Caching and temporally filtering view-dependent effects
such as specular highlights and refractive transmissions is chal-
lenging since results cannot be accumulated indefinitely when the
camera moves. The second and fourth rows show the difference to
the reference (scaled by 3) with positive/negative differences seen
as green/red. For the specular/glossy objects, the first two rows
clamp the temporal blending factor o to a minimum Ouyin. The last
two rows use a fixed o = 0.1 for these objects. As seen in the dif-
ference images, the blending factor o can be used in this way to
control the tradeoff between variance and bias.

ref

SampleCache Diff
Figure 19: Object animations can lead to temporal lag in the shad-
ing. In this example, the rotating cone stays too bright where its
surface turns away from the sun.

Appendix D: Moving Objects

As with view-dependent effects, moving objects may change the
lighting of the scene in a way that requires reshading. We test our
shading cache with a fixed temporal filter on a scene with animated
objects. No additional changes are necessary to accomodate anima-
tions, since the first-hit information contains all necessary informa-
tion, such as an instance ID, to fetch the transformation from the
scene data. The result is in Figure 19 and the accompanying video.
As with view dependence, the shading exhibits a temporal lag.
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