
EUROGRAPHICS 2022 / R. Chaine and M. H. Kim
(Guest Editors)

Volume 41 (2022), Number 2

Progressive Denoising of Monte Carlo Rendered Images

Arthur Firmino1,2 , Jeppe Revall Frisvad2 , and Henrik Wann Jensen1

1Luxion
2Technical University of Denmark

(a) input 512spp (b) input crop (c) denoised (d) ours (e) reference

Figure 1: Loss of detail when denoising, (b) to (c), and subsequent recovery with our approach (d). By incorporating error estimates of (b)
and (c), our method is able to infer a per-pixel mixing parameter used to interpolate between the two images and reduce the overall error.
Here we used Intel® Open Image Denoise (OIDN) to denoise the image, albedo and normal auxillary features included.

Abstract
Image denoising based on deep learning has become a powerful tool to accelerate Monte Carlo rendering. Deep learning
techniques can produce smooth images using a low sample count. Unfortunately, existing deep learning methods are biased
and do not converge to the correct solution as the number of samples increase. In this paper, we propose a progressive denoising
technique that aims to use denoising only when it is beneficial and to reduce its impact at high sample counts. We use Stein's
unbiased risk estimate (SURE) to estimate the error in the denoised image, and we combine this with a neural network to
infer a per-pixel mixing parameter. We further augment this network with confidence intervals based on classical statistics to
ensure consistency and convergence of the final denoised image. Our results demonstrate that our method is consistent and that
it improves existing denoising techniques. Furthermore, it can be used in combination with existing high quality denoisers to
ensure consistency. In addition to being asymptotically unbiased, progressive denoising is particularly good at preserving fine
details that would otherwise be lost with existing denoisers.

CCS Concepts
• Computing methodologies → Image processing; Rendering; Ray tracing;

1. Introduction

Monte Carlo (MC) light transport algorithms, such as path tracing,
have been ubiquitous since the introduction of the rendering equa-
tion in 1986 [Kaj86]. However, the nature of these algorithms is
such that many samples may be required to reach an acceptable
level of variance. While research on variance reduction techniques

has continuously progressed, achieving noise-free images directly
from MC rendering algorithms is often still prohibitively expen-
sive and time consuming. This is true despite the advent of more
powerful hardware.

To ameliorate this problem, denoising techniques are employed
as a post-processing step to remove any apparent residual noise.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0003-0372-4744
https://orcid.org/0000-0002-0603-3669

A. Firmino & J.R. Frisvad & H.W. Jensen / Progressive Denoising of Monte Carlo Rendered Images

Improvement in quality of denoisers was one of the decisive factors
leading to the path tracing revolution in the movie industry [CJ16].
At the time, use of features such as per-pixel normals, motion vec-
tors, and surface albedo as well as error estimated using Stein's
unbiased risk estimate (SURE) was a key to obtain better denois-
ers [LWC12,RMZ13,ZJL∗15]. In recent years, denoisers have fur-
ther improved in quality due to the use of neural networks and
machine learning [HY21]. Learned denoisers are not necessarily
perfect, however, and may suffer from bias that is sufficient to be
perceived as an objectionable amount of blurred details.

To preserve details during denoising, Vogels et al. [VRM∗18]
proposed use of an asymmetric loss function when training. This
allows for artistic control between aggressive and conservative de-
noising. Back et al. [BHHM20] proposed another deep learning
method where they combine independent and correlated estimates
(e.g. MC rendered and denoised images). Even more recently, an
optimization-based technique to combine an ensemble of denoised
images has been put forward [ZZXY21]. Combining an ensemble
of denoised images requires significant processing time and is cer-
tainly intended to serve as a post-processing step. As mentioned
by Christensen et al. [CFS∗18] in their description of Pixar's Ren-
derMan, it would be better to denoise images during progressive
rendering to enable faster decision making.

We suggest a method for progressive denoising where a neural
network learns to infer an optimal per-pixel mixing parameter given
two input images as well as estimates of their per-pixel error. In
practice, one of these images is a MC rendered image and the other
its denoised counterpart. The error estimates are of their squared er-
ror, using the estimated variance of the sample mean for the former
and SURE for the latter. We demonstrate that our proposed solution
substantially improves quality when applied onto existing denois-
ers, and that it is asymptotically unbiased in the limit of many sam-
ples. This is demonstrated in comparisons and in application with
existing pre-trained high quality denoisers.

Inspired by an earlier use of confidence intervals for adaptive
sampling in MC rendering [Pur87, TJ97], we use confidence inter-
vals based on the Student's t distribution to bound the mixing pa-
rameter received from our network. This ensures that the rendered
image will converge to the correct solution as the number of sam-
ples increases. With the bounded mixing parameter, our method
enables automatic selective denoising on a per-pixel basis during
a progressive rendering. In this way, details in the image that the
denoiser initially blurs out will gradually appear and become crisp
in the image as more samples are progressively added.

Overview. The overall flow of our method is to get the variance
of the rendered image, denoise it and estimate the error in the
denoised image using SURE. The two images (rendered and de-
noised) and their respective error estimates serve as input for our
network, which finds three parameters per pixel for a theoretically
justified activation function (fact). The activation function calcu-
lates a mixing parameter α used for per pixel linear interpolation of
the rendered image and the denoised image. To ensure convergence
as the number of samples increases, we use a t-statistic based on
the variance in a neighborhood of pixels to bound α (see Figure 6
in Section 4 for a visual overview). The assumptions made are that

the radiance values are normally distributed. This is important for
the accuracy of SURE, and for the meaningfulness of the t-statistic.

2. Related Work

With Cook's introduction of stochastic sampling into the rendering
process [CPC84, Coo86], the scene was set for research on noise
reduction in Monte Carlo rendered images. Some of the first pa-
pers on denoising of rendered images [LR90, RW94] describe well
how noise in MC rendered images tends to be different from the
noise observed in signal processing and computer vision. We refer
to denoising for MC rendered images as Monte Carlo denoising.

2.1. Monte Carlo Denoising

Monte Carlo denoising has been a vital component of the rendering
process since the widespread use in industry of Monte Carlo ren-
dering algorithms [KCK∗18,BAC∗18,CFS∗18,KCSG18]. The first
approaches relied on local non-linear filtering [LR90,RW94,JC95],
and it is generally recognized that for denoising of rendered im-
ages the filter needs to locally adapt to the noise level of every
pixel [KS13]. To obtain more information for per pixel adaptation,
denoisers started taking advantage of auxiliary features (e.g. sur-
face normals and albedo) by employing cross-bilateral [SD12] and
higher-order filters [BRM∗16]. Our method continues the trend of
per-pixel adaptation, but we use our error estimates for selective
application of any preferred denoising technique.

Deep learning has been used for predicting both the param-
eters of classical filters [KBS15] and the filtering kernel it-
self [BVM∗17]. A less restrictive approach has been to di-
rectly predict a final radiance value, and here a variety of meth-
ods have been proposed including the use generative adversar-
ial networks [XZW∗19], residual networks [WW19], and autoen-
coders [CKS∗17]. Most learning based techniques also support in-
clusion of auxiliary features as input.

One drawback of deep learning based MC denoisers is the lack of
control over the amount of perceived blurring, detail preservation,
and variance-bias trade off. To this end, Vogels et al. [VRM∗18]
introduce in their denoiser asymmetric loss functions controlled by
a parameter that can be specified at runtime. This allows artists to
modulate between conservative denoising with some details con-
textually preserved and more aggressive denoising with little noise
but more blurring. Such an approach is beneficial in their setting
where fine artistic control is desired for each rendered frame. In-
stead, our method lets an artificial neural network determine the
extent to which the denoising should be applied in every pixel.

2.2. Combining Denoised Estimates

Recent work has emerged with the idea of using denoising not
as the final product, but as the penultimate step before combin-
ing denoising results and other estimates to achieve better re-
sults [BHHM20, ZZXY21]. This is promising in particular for
learning-based denoisers, because while they often excel at low
sample counts they suffer from bias that is detrimental at higher
sample counts leading to a loss of consistency.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

A. Firmino & J.R. Frisvad & H.W. Jensen / Progressive Denoising of Monte Carlo Rendered Images

Back et al. [BHHM20] propose a method of combining the orig-
inal and the denoised images in order to improve the quality of the
final image. Similar to our method, they leverage neural networks
for the task, but unlike them we base our approach on computed
error estimates of the input images which are included as inputs to
our network. Furthermore, our method computes a per-pixel mix-
ing parameter, while they apply a predicted kernel to the input color
images. Lastly, we guarantee our method converges to the ground
truth image in the limit of many samples, while they do not.

More recently, Zheng et al. [ZZXY21] have put forward an
optimization-based technique for combining the outputs of mul-
tiple MC denoisers. Like ours, their approach is based on comput-
ing mean squared error (MSE) estimates of the denoised images
and while they use a dual-buffer strategy for these estimates, we
opt to use SURE instead. In contrast to their work, ours does not
require application of multiple denoisers or support for rendering
half-sample count images. Furthermore, our method is inherently
consistent and does not rely on the choice of denoiser.

2.3. Stein's Unbiased Risk Estimate

Proposed by Stein in 1981 [Ste81], SURE estimates the MSE of an
estimator of the mean of a normally distributed multivariate ran-
dom variable. Stein states that if x ∈ Rd is a measured vector, dis-
tributed normally with unknown mean µ ∈ Rd and known covari-
ance Σ ∈Rd×d , and F(x) is an estimator of µ that is at least weakly
differentiable, then

SURE(F,x) =
1
d

(
∥F(x)− x∥2 +2tr(JF (x) ·Σ)− tr(Σ)

)
(1)

is an unbiased estimate of the mean squared error of F(x), where
JF (x) is the Jacobian matrix of F at x and tr is the trace. If Σ is
diagonal, or equal to σ

2I, then the equation reduces to its more
commonly seen forms.

SURE has appeared multiple times in computer graphics litera-
ture, being used to guide adaptive sampling and to optimize param-
eters of denoising functions [LWC12, RMZ13, CFS∗18, XC20].

3. Denoising Error Estimation

In this section, we detail our initial investigation into the error prop-
erties of denoised images. We begin with an empirical evaluation
of denoised images by comparing them with ground-truth images,
and end with a practical way of estimating the mean squared error
(MSE) of these images using SURE.

3.1. Evaluating Error of Denoised Images

Images were rendered in pbrt-v4 [PJH16] for a collection of scenes
featuring a variety of different objects, materials, and lighting envi-
ronments. We then denoised these images using Intel® Open Image
Denoise (OIDN) [oid] and compared to ground-truth images ren-
dered at very high samples-per-pixel (spp) counts, 65K or higher.
We computed various error metrics and compared images qualita-
tively as well. Comparing with images denoised using the NVIDIA
OptiX™ AI-Accelerated Denoiser [CKS∗17] and Radeon™ Image
Filter denoiser [rad], we found that the OIDN denoiser generally
outperformed the others in terms of image quality.

Figure 2: Plot of the actual error (orange and blue) and estimated
error (green and red) computed using variance for input images
(green) and SURE for denoised images (red), and using the San
Miguel outdoor scene which is also in the bottom row of Figure 9.
RMSE: root mean squared error (left). SMAPE: symmetric mean
absolute percentage error (right).

For a handful of scenes, we found denoising introduced notice-
able error and often the denoised image appeared to have less visual
fidelity than the input, even when the input had a modest sample
count of around a few hundred samples per pixel. This was still the
case, albeit to a lesser degree, when auxiliary features (albedo and
normals) were included in the denoising input. In common between
these scenes was the presence of high-frequency details, such as
from vegetation or bump maps, and a resultant blurring from de-
noising, an example of which is illustrated in Figure 1.

Plotting the root mean squared error (RMSE) of the rendered and
denoised images with log axis scaling, we observed a common pat-
tern, which is exemplified in Figure 2. Compared with the rendered
input image, the denoised image has significantly less error at very
low sample counts, but as the sample count increases, denoising
results in diminishing improvement until eventually the rendered
input image has less error than its denoised counterpart. For some
scenes, this happens only at very high sample counts (greater than
10K), while for the handful of scenes previously mentioned this can
require only a few hundred samples or less.

3.2. Error Estimation with SURE

To make an a priori estimate of the MSE of denoised images,
without knowledge of the ground-truth image, we resort to SURE.
For simplicity, we assume the sample covariance matrix to be di-
agonal, meaning that there are no correlations between variables.
This assumption is true except between RGB channels of the same
samples, but our initial investigation showed this misassumption to
have no impact at high sample counts.

As we have no closed-form expression for the partial derivatives
of the denoiser F(x), we apply a Monte Carlo SURE first-order
approximation [RBU08] to estimate tr(JF (x) ·Σ) in Eq. 1. This is

tr(JF (x) ·Σ)≈
1

εK

K

∑
k=1

bT
k (F(x+ εbk)−F(x)) , (2)

where bk are normally distributed random vectors with mean zero
and covariance Σ, ε is some small positive number (e.g. 10−4), and
K is the number of MC iterations (1 or 4 in our work).

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

A. Firmino & J.R. Frisvad & H.W. Jensen / Progressive Denoising of Monte Carlo Rendered Images

Figure 3: Per-pixel squared error estimate of a denoised image
using SURE (left), and its actual squared error (right).

As SURE is an unbiased estimator, it produces an accurate es-
timate of the whole image MSE as illustrated in Figure 2. The ac-
curacy of the estimate increases with the sample count, and this
is likely due to the distribution of the sample mean approaching a
normal distribution, as concluded by Li et al. [LWC12].

The variance of SURE is generally too high to make accurate
estimates of the squared error of individual pixels, an example of
which is shown in Figure 3. Despite this we note that local averages
are visibly well correlated with the actual error of the denoised im-
ages, and that these estimates, when compared with variance esti-
mates of the input, could form the basis of a decision between the
pixels of input and denoised images.

4. Progressive Denoising

Our goal of progressive denoising can be summarized as attempt-
ing to solve the following problem: Let x ∼ N(µ, σ

2

n) be an image
produced by MC rendering with n samples, also an unbiased es-
timate of the ground truth image µ. We assume it to be normally
distributed and this assumption is true in the limit of n going to in-
finity, provided σ

2 is finite. Let y be the denoised counterpart of the
image x and also a biased estimate of µ:

y = f (x,Gx;Θ f) ,

where the denoising function f is parametrized by Θ f , and Gx are
auxiliary image features of x such as albedo and normals. Let z =
x+α(y− x), where α is a per-pixel mixing parameter, be a linear
interpolation of x and y. We wish to find a function that outputs the
per-pixel mixing parameter:

α = h(x,y, ...;Θh) (3)

and solves the following constrained optimization problem:

argmin
Θh

L(z,µ) subject to lim
n→∞

z = µ (4)

where L is some loss or error function, and Θh are the parameters
of the function h being sought.

4.1. Theoretically Optimal Solution

An expression for α (in the one-dimensional case) that minimizes
the expectation of the squared error of z, can be derived by follow-
ing the same principles as SURE, such as assuming the estimator
f to be at least weakly differentiable. In the one-dimensional case,

covariance Σ is variance σ
2 and the SURE relation (1) becomes

SURE = ∥y−x∥2 +2σ
2 f ′(x)−σ

2, for which the expected value is
E[SURE] = E[∥y−µ∥2]. An expression for the squared error when
using the mixing parameter α is then

E[∥x+α(y− x)−µ∥2]

= E[∥x−µ+α(y−µ)−α(x−µ)∥2]

= E[∥x−µ∥2]+α
2E[∥y−µ∥2]+α

2E[∥x−µ∥2]

+(2α−2α
2)E[(x−µ)(y−µ)]−2αE[∥x−µ∥2]

= σ
2(1+α

2 −2α)+α
2E[SURE]

+2(α−α
2)E[(x−µ)(y−µ)] , (5)

where we have the variance σ
2 = E[∥x−µ∥2] since µ is the ground

truth image (which is the expected value of an unbiased MC ren-
dering). We then apply Stein's Lemma [Ste81] to rewrite the last
term:

E[(x−µ)(y−µ)] = E[y(x−µ)]−µE[x−µ]

= E[f (x)(x−µ)] = σ
2E[f ′(x)] . (6)

Substituting Eq. 6 into 5 eliminates the unknown µ, yielding

E[∥x+α(y− x)−µ∥2] (7)

= σ
2(1+α

2 −2α)+α
2E[SURE]+2(α−α

2)σ2E[f ′(x)] .(8)

Taking the derivative with respect to α and equating this to 0, we
find the following solution for α by employing the SURE relation:

α =
σ

2 −σ
2E[f ′(x)]

E[SURE]+σ2 −2σ2E[f ′(x)]
=

σ
2 −σ

2E[f ′(x)]
∥y− x∥2 . (9)

If we swap x with y, we find a similar solution for y+β(x− y):

β =
SURE−σ

2E[f ′(x)]
∥y− x∥2 . (10)

It is difficult to apply Eqs. 9 and 10 directly, due to the high de-
gree of noise in the estimates of σ

2, SURE and E[f ′(x)] as exem-
plified by Figure 3. Despite these equations not being used directly
in our work, we extract two interesting properties from them:

1. The shared role of σ
2 and SURE in calculating α and β.

2. The non-linear relationship between the quantities involved.

In Section 4.3, we detail how we incorporate these properties into
our neural network and its training, and in Section 6.1 we demon-
strate their impact.

4.2. Practical Solution

Our approach to constructing a function h(x,y, ...;Θh) that solves
the constrained optimization problem of Eq. 4 can be broken down
into two steps. The first step is aimed at tackling the minimization
part of the problem, and the second step is directed at the limit
constraint.

We begin by training a neural network to learn a function hNN
that predicts a preliminary per-pixel mix between the MC rendered
and denoised images, so that

z = x+α(y− x) , α = hNN(x,y, ...;Θh) . (11)

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

A. Firmino & J.R. Frisvad & H.W. Jensen / Progressive Denoising of Monte Carlo Rendered Images

Figure 4: Scaling of the mixing parameter α, Eq. 18.

We discuss the choice of network architecture for hNN, its inputs,
and details regarding its training in Section 4.3.

The preliminary value for z, while assumed to fulfil the mini-
mization part of the problem, does not guarantee satisfaction of the
limit constraint. Fortunately, since in the limit of many samples we
know x becomes normally distributed, we can apply statistical tests
and compute quantiles estimating confidence intervals for the out-
puts of the network. In early work [Pur87, TJ97], confidence inter-
vals were used for adaptive sampling in MC rendering. In a sense,
we suggest to use confidence intervals for adaptive denoising.

We compute the weighted average of the non-denoised radiance
values x within each pixel's 11-by-11 neighbourhood Np, the vari-
ance of this weighted average, and the weighted average of the
mixed radiance values from the network as follows:

x̄p = xMp + ∑
q∈Np

κp,qxq, (12)

Var[x̄p] = Var[xMp]+ ∑
q∈Np

κ
2
p,qVar[xq] (13)

z̄p = zMp + ∑
q∈Np

κp,q(xq +αq(yq − xq)) (14)

κp,q =
1

σs
√

2π
exp

(
−∥p−q∥2

2σ2
s

)
(15)

Mp = argmax
q∈Np

Var[xq] . (16)

To compensate for insufficient accuracy of the sample variance es-
timates at low sample counts, we use the index Mp to weigh the
average towards the neighbouring pixel with the highest variance.
For the filter parameter σs, we chose min(

√
Var[x̄],1)×102, where

x̄ is the image mean.

These values are used to compute the t-statistic, which corre-
sponds to a quantile estimating the confidence interval of the radi-
ance values predicted by the network. Applying a sigmoid function
S to the magnitude of the t-statistic, as if we wanted to estimate
the significance of the predicted radiance values, we find a scal-
ing factor for α that we use to get our final mixing parameter α

′.
This ensures that if the estimated confidence interval is large, α

′

is reduced, so that we in this case rely more on the original output
from the MC rendering than on the denoised version. This is done

Figure 5: Examples of the per-pixel mixing parameter α
′, the result

of Eq. 18. The images show α
′ for Figures 1 and 3 (left and right).

as follows:

tp =
z̄p − x̄p√
Var[x̄p]+ ε

(17)

α
′
p = (1−S[a(|tp|− c)])αp , (18)

where we use the cumulative distribution function (CDF) of the
standard normal distribution as S while c = 4.2 is a shift param-
eter and a = 2 is a strength parameter, the values of which were
determined via a parameter search over the training dataset. This
parameter search was not crucial. Our motivation for doing so was
to avoid optimizing our method for the test dataset. Another option
for S is the logistic function, which seems to work equally well.
The α scaling factor is plotted as a function of tp in Figure 4. When
this significance-related value is close to one, the network likely
found a radiance value that is not attributable to random noise. We
therefore let the scaling of α follow this value.

The scaling of the mixing parameter does not take much effect
until the magnitude of the quantile |tp| exceeds c− 3/a. Since the
values are weighted averages of many pixels, Var[x̄p] is small and
therefore the predicted value need not deviate a lot for scaling to
apply. As the sample count increases, the necessary deviation be-
comes smaller guaranteeing convergence to the ground truth. Fig-
ure 5 shows two examples of the scaled mixing parameter.

4.3. Network Architecture

The function hNN(x,y, ...;Θh) consists of a small residual convo-
lutional neural network, 6 layers deep, each layer with 48 fea-
ture channels, 3×3 kernels (5×5 for the first layer), ReLU ac-
tivation, and using 'same' padding. See Figure 6. Two residual
blocks [HZRS16] form part of our network, a similar network com-
position was used by Vogels et al. [VRM∗18].

To mirror the theoretical results in Section 4.1, our network does
not directly predict α. Instead, the network outputs three values
(x1,x2,x3) per pixel and per channel that are passed into the fol-
lowing non-linear function that mimics Eqs. 9 and 10:

fact(x1,x2,x3) =
x1 − x2

max(x3,ε)
, (19)

where ε = 10−6 is to avoid the singularity. We demonstrate in our
experiments (Section 6.1) that this approach has a positive impact
when applied to the network's output.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

A. Firmino & J.R. Frisvad & H.W. Jensen / Progressive Denoising of Monte Carlo Rendered Images

Figure 6: Overview of our network hNN(x,y, ...;Θh) for mixing an unbiased MC rendering x with its denoised counterpart y using per-pixel
mixing parameters α

′. The initial 5×5 convolutional layer is followed by two residual blocks and a final convolutional layer. ReLU activation
follows all but the final convolution, which uses fact (see Sections 4.1 and 4.3). Input features include the rendered and denoised images,
along with estimates of their error (Section 4.3). The use of residual blocks is inspired by the networks of Vogels et al. [VRM∗18].

As inputs for the network, we have the MC rendered and de-
noised radiances x and y, also abbreviated as HDR and DEN, as
well as the estimates of their squared error: VAR and SURE, re-
spectively. We also include input features corresponding to the val-
ues of σ

2 f ′(x) and ∥y−x∥2, which are calculated when computing
SURE. The non-radiance quantities are transformed by arctan(x),
rather than log(1+ x) as x may be negative, to ensure that those
network inputs are bounded.

During training we randomly swap HDR, VAR with DEN,
SURE and vice versa, effectively swapping the above calculation
for α to one for β = 1−α. This is to ensure our training does not
converge on a model whose outputs always compute a value of 1 for
α, as the denoised input (DEN) typically has lower error. We posit
that when combined with the network output's non-linear function,
this may lead the network to learn quantities in its output that are
invariant to the swapping. We have found that when the random
swapping is not performed, the networks being trained failed to
converge to the desired solution.

5. Dataset and Training Procedure

5.1. Denoiser Model

The network described in Section 4.3 takes a denoised image and
its SURE as input. So, aside from using a pre-trained denoiser
from OIDN, we also train our own models for comparison. These
are based on the network architecture of Chaitanya et al. 2017
[CKS∗17] as implemented in the OIDN training toolkit, but trained
from scratch [oid]. This architecture consists of a U-Net with 4
encoder and decoder stages using 2×2 max pooling and nearest-
neighbour upsampling, and convolutional layers with 3×3 kernels
and ReLU activation.

As inputs to our denoisers we always include radiance (HDR),
and optionally include diffuse albedo (ALB), shading normals
(NRM), and variance of the radiance channels (VAR). Our vari-
ance is computed during rendering by first estimating the sample
variance using an online approach, and then dividing by the num-
ber of samples to get the variance of the sample mean. Radiance
and albedo quantities are transformed by log(1+ x), and variance
by arctan(x).

Figure 7: Example images from the training dataset. Top row:
Crops generated from available pbrt-v4 scenes. Bottom row: Ran-
domly generated scenes rendered in mitsuba.

Figure 8: The test dataset used in our experiments.

5.2. Dataset Generation

Our training dataset consists of 1348 unique 128×128 crops from
a collection of scenes, rendered using between 2 and 4096 samples
per pixel, for a grand total of 11150 images. Ground-truth coun-
terparts were rendered with 32k or 131k samples per pixel. 5% of
the dataset was set aside as validation during training. Of the 1348
unique crops, 844 originate from publicly available pbrt scenes,
while the remaining 504 were generated procedurally and rendered
in mitsuba [NDVZJ19]. Figure 7 shows examples of some of the
images in our training dataset. For our test dataset, we rendered
10 scenes, shown in Figure 8, from among publicly available pbrt
scenes (not overlapping with scenes used in the training dataset) at
sample counts of between 32 and 8192 samples per pixel.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

A. Firmino & J.R. Frisvad & H.W. Jensen / Progressive Denoising of Monte Carlo Rendered Images

inputs model error
RMSE SMAPE FLIP

den 0.1964 0.0344 0.0816
HDR

pro-den 0.0784 0.0284 0.0726
den 0.1022 0.0292 0.0736

HDR, VAR
pro-den 0.0587 0.0277 0.0713

HDR, ALB,
NRM

den 0.1247 0.0393 0.0947
pro-den 0.0523 0.0298 0.0789

HDR, ALB,
NRM, VAR

den 0.0971 0.0326 0.0838
pro-den 0.0536 0.0278 0.0742

mc-render 0.0841 0.0669 0.1049

Table 1: Comparison of our approach (pro-den) with simple de-
noising (den) for different input feature combinations.

inputs model error
RMSE SMAPE FLIP

HDR, ALB,
NRM, VAR

den-kpcn 0.1342 0.0362 0.0990
pro-den 0.0640 0.0285 0.0788

mc-render 0.0841 0.0669 0.1049

Table 2: Our approach (pro-den) applied to a denoiser based on a
kernel predicting network (den-kpcn). The improvement is similar
as to when applied to the U-Net based denoisers of Table 1.

5.3. Training Hyperparameters

When training our networks (both our hNN and the denoiser mod-
els), we use a batch size of 12, symmetric mean absolute percentage
error (SMAPE) as a loss function, and the 'One Cycle' learning rate
schedule with a maximum learning rate of 2 ·10−5.

6. Results

We performed a series of experiments to characterize the per-
formance of our method in comparison with other denoising ap-
proaches and to investigate the impact of our choices. We also
compare with similar work and highlight the different perfor-
mance characteristics of progressive denoising in the limit of many
samples. We make our comparisons with respect to the follow-
ing three error metrics: RMSE, SMAPE, and FLIP [ANSA21].
Error measures reported in Tables 1–4 are averages across the
scenes/viewports shown in Figure 8, and in Tables 1–3 across sam-
ple counts ranging from 32 to 8192.

Comparison with Denoising. We trained multiple U-Net based
denoisers (Section 5.1), each with a different combination of the in-
put features, for 2500 epochs over our training dataset. For each of
those denoisers we trained our hNN network (Section 4.3). Results
are listed in Table 1 and demonstrate that our progressive denois-
ing approach improves upon each error metric in all cases. Visual
comparisons illustrating preserved details are shown in Figure 9.

In addition to the U-Net based denoisers, we also tested how our
method performs when applied to a denoiser based on a different
network architecture, in this case a kernel-predicting convolutional
network (KPCN) [BVM∗17]. We configured this denoiser to pre-
dict 5×5 kernels, and its training was otherwise equal to that of the
other networks. The results, listed in Table 2, show improvement

inputs model error
RMSE SMAPE FLIP

oidn 0.0499 0.0278 0.0735
HDR

pro-den 0.0394 0.0251 0.0685
HDR, ALB,

NRM
oidn 0.0586 0.0265 0.0743

pro-den 0.0489 0.0248 0.0705
mc-render 0.0841 0.0669 0.1049

Table 3: Applying our method (pro-den) to a pre-trained denoiser,
Intel Open Image Denoise (oidn). Despite the already high-quality
of OIDN, our method is still able to lower the overall error.

for each metric and indicate that our method is not limited to base
denoisers of a single architecture.

Application to an Existing Denoiser. We trained our hNN network
for use with the pre-trained OIDN denoiser, which achieves higher
quality than our own trained models, for 2500 epochs over 100%
of our training dataset. Input images were first denoised and their
SURE were computed. Here, our method was also able to achieve
lower error in our test dataset and with respect to multiple metrics.
Results are detailed in Table 3, and illustrated in Figures 1 and 10.
Additional results, with per-scene and per-sample count errors, are
available in the supplemental document.

Comparison with Deep Combiner [BHHM20]. We applied the
pre-trained 'single buffer' network of deep combiner (DC) to our
test dataset, denoised by one of the networks (HDR, ALB, NRM)
from Table 1. Like our method, DC was able to improve upon the
quality of the denoised images, but its performance characteristics
were notably different to those of our method. As clearly exempli-
fied by Figure 11, while DC continually provides a small improve-
ment over the denoised image, in the limit of many samples its
output has higher RMS error than the rendered image. In contrast,
the output of our method converges to the ground truth along with
the rendered image as the sample count increases. At low sample
counts, DC performs better than our method and we suggest this
is due to our method being constrained to per-pixel mixing, where
as DC combines its inputs by filtering neighbouring pixel residuals
using 15×15 kernels. However, there is nothing preventing us from
applying our method to the output from the DC approach in order
to improve the performance of our method at low sample counts
while retaining consistency.

6.1. Network Ablation

To investigate the contribution of some individual element consti-
tuting our method, we performed a series of ablation experiments
for which we train a network with some element removed and com-
pare it to the unmodified method. The tested elements were the in-
clusion of SURE as a network input, the indirect approach to com-
puting the per-pixel mixing parameter α by using fact, and the t-
statistic based scaling of α. The results, shown in Table 4, indicate
that the removal of any one of these elements lowers the quality of
the output image, in terms of RMS error, by some degree.

All our results were computed on desktop PC equipped with
an AMD Ryzen Threadripper 3970X 32-core CPU, an NVIDIA
GeForce RTX 3090 GPU, and 64 GB of RAM. Excluding file IO, a

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

A. Firmino & J.R. Frisvad & H.W. Jensen / Progressive Denoising of Monte Carlo Rendered Images

(a) reference (b) input crop (c) denoised (d) our method (e) reference (f) denoised (g) our method

Figure 9: Visual comparison of our trained models (HDR, ALB, NRM, VAR of Table 1): denoising (c,f) versus our method (d,g). In the
difference images (f,g), negative difference is red, positive is green, and values are uniformly scaled for visual clarity. RMSE of the denoised
and progressively denoised images are 0.139 and 0.043, respectively, for the top scene (1024spp input), and 0.028 and 0.018 for the bottom
scene (256spp input).

Samples Per Pixel
32 128 512 2048 8192

w/o SURE 0.1216 0.0796 0.0499 0.0288 0.0151
w/o fact 0.1238 0.0821 0.0487 0.0247 0.0123

w/o t-test 0.1224 0.0801 0.0487 0.0247 0.0124
pro-den 0.1185 0.0754 0.0462 0.0239 0.0123

mc-render 0.2331 0.1162 0.0581 0.0287 0.0136

Table 4: Network ablation experiments. Average RMSE of the 10
scenes in our testset. The removal of any of these elements from our
method (pro-den) results in lessened quality improvement, although
the magnitude of this difference is heavily dependent on the input.
In the w/o fact case, the network directly predicts α rather than
values for x1, x2, and x3.

1920x1080 image took 7 ms to denoise, 34 ms to compute SURE,
and 42 ms to run the progressive denoising steps of Section 4.2, for
a total average time of 83 ms. The absolute training time for each
model was approximately 10 hours.

7. Discussion, Limitations, and Future Work

Regarding the choice of denoising input features, we found the ben-
efits of including certain features, particularly albedo and normals,
to be scene dependent. Anecdotally, the inclusion of variance as a
denoiser input seems to be responsible for the biggest increase in

quality. Counterintuitively, including additional features sometimes
results in worse denoising quality in certain image areas.

During training, we swap the rendered and denoised images (as
mentioned in Section 4.3). We do this to avoid that the network
converges to a state of simply returning the denoised image, which
always happened when the swapping was not performed. When
swapping is used in training, the resulting network has the advan-
tage that we can swap the arguments and still get the right blending
factor (β = 1−α). In the ablation experiment results of Table 4,
the exclusion of the SURE input feature leads to degraded perfor-
mance, particularly at high sample counts, which is when the SURE
estimate is most accurate as illustrated in Figure 2. We believe this
demonstrates that the proposed random swapping guides the net-
work to learn a swap invariant association between an image and its
error estimate, as without it the network is no longer able to com-
pare unbiased error estimates and likely relies on some sub-optimal
learned criteria to explain the observed discrepancy.

The neighbourhood size of the filter used to compute the
weighted average of the non-denoised radiance values, as part of
the t-statistic computation, is an important parameter, as is the shift
to the neighbouring pixel with the highest variance. At lower sam-
ple counts, it is difficult to accurately estimate variance for a single
pixel, particularly when sampled paths do not connect with a light
source and return a radiance value of 0, resulting in a variance es-
timate of 0. To overcome this, we instead estimate the variance of
a weighted average of its neighborhood. We found the 11-by-11

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

A. Firmino & J.R. Frisvad & H.W. Jensen / Progressive Denoising of Monte Carlo Rendered Images
M

C
R

en
de

r
O

ID
N

16spp

P
D

64spp 256spp 1024spp reference/difference

M
C

R
en

de
r

O
ID

N

8spp

P
D

32spp 128spp 512spp reference/difference

Figure 10: Two progressive series of MC renderings illustrating the performance of our method (PD) applied onto the OIDN output, and
their convergence plots. Reference images were rendered using 32K samples per pixel (spp) and difference images taken with the result in the
fourth column are scaled by 16 and have negative and positive differences colored red and green. By incorporating error information about
the rendered and denoised images, our method substantially improves the denoised result, especially as the number of samples increases.

size to be a good compromise between gathering sufficient statis-
tics and the performance impact of a larger kernel, and this is il-
lustrated in Figure 12. This still resulted in some artifacts, seen as
noisy splotches, and we found placing more weight on the neigh-
boring pixel of highest variance resolved this issue while keeping
the method convergent. At very low sample counts however, these
artifacts may still be present and are a limitation of our method, as
seen in Figure 13.

For scenes with extremely high sample variance, we have ob-
served that the output of our method may converge to the ground
truth slower than the MC rendered image, as shown in Figure 14.
This is partly a consequence of our previously mentioned variance
overestimation and method of α scaling. Despite this, our method is
still guaranteed to be asymptotically unbiased in the limit of many
samples.

We briefly investigated how our method performs with regard
to temporal coherency by denoising sequences of still images ren-
dered with different random seeds and at sample counts of 32, 256,
and 2048 samples per pixel. When compared to the same sequences
denoised without progressive denoising, we found no visual im-

provement in terms of temporal coherency. It thus remains an area
of future work, to investigate how approaches used to construct
temporally coherent denoisers could be combined with the method
presented here.

Another area of future work would be to research a manner of
computing a neural network's divergence that does not involve MC
estimation. This may lead to better performance for our and other
SURE based methods, although if it is possible, it would likely re-
quire specific support from machine learning frameworks.

8. Conclusion

We have presented a method useful for progressive denoising. Our
approach is to find per-pixel mixing parameters using a neural net-
work. The mix is between MC rendered and denoised images, and it
is asymptotically unbiased in the limit of many samples. We include
computed error estimates as inputs for our network, using SURE to
estimate the squared error of denoised images. To guarantee con-
vergence, we used estimation of confidence intervals based on the
Student’s t distribution. We provided a theoretical motivation for

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

A. Firmino & J.R. Frisvad & H.W. Jensen / Progressive Denoising of Monte Carlo Rendered Images

DC PD

DC

PD

Figure 11: Comparison of our method, Progressive Denoising
(PD), with Deep Combiner (DC), kitchen test scene. While DC con-
tinually improves upon the denoised image, our method performs
the best as the quality of the MC rendered input increases.

3×3 7×7 11×11 15×15

3×3 7×7 11×11 15×15

Figure 12: Visual comparison of using different neighbourhood
sizes for the weighted average calculation of Eq. 14, at 32 samples
per pixel. While increasing the neighbourhood size reduces the vis-
ible artifacts (top row), it is not sufficient. Weighting the average
towards the pixel with the highest variance (bottom row), removes
most of these artifacts at low sample counts.

our approach, and we demonstrated the improvement our method
provides over our trained denoisers, as well as when applied to a
popular existing denoiser.

The source code of our implementation is made avail-
able on GitHub (https://github.com/ArthurFirmino/
progressive-denoising).

Acknowledgements

We would like to thank Shilin Zhu for discussion regarding the
implementation of our procedural scene generator. We also ex-
tend our gratitude to Matt Pharr for the PBRT renderer [PJH16],
Wenzel Jakob for the Mitsuba renderer [NDVZJ19], and their

Figure 13: Limitation of our method at very low sample counts,
2spp in this example, arising from insufficiently accurate sample
variance estimates.

OIDN

PD

Figure 14: Convergence plot of our method for a scene with ex-
tremely high variance. At between 105 and 106 samples, Progres-
sive Denoising converges slower than the MC rendered image, but
still provides improvement over the denoised image.

respective teams. Intel for open sourcing their denoiser training
framework [oid], the scene repositories by Matt Pharr [Pha20]and
Benedikt Bitterli [Bit16], and the individual authors of each scene
(names available in the scene repositories). This research is a part
of PRIME which is funded by the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska
Curie grant agreement No 956585.

References

[ANSA21] ANDERSSON P., NILSSON J., SHIRLEY P., AKENINE-
MÖLLER T.: Visualizing the error in rendered high dynamic range im-
ages. In Eurographics Short Papers (May 2021). doi:10.2312/
egs.20211015. 7

[BAC∗18] BURLEY B., ADLER D., CHIANG M. J.-Y., DRISKILL H.,
HABEL R., KELLY P., KUTZ P., LI Y. K., TEECE D.: The design and
evolution of Disney’s Hyperion renderer. ACM Transactions on Graphics
37, 3 (2018), 33:1–33:22. doi:10.1145/3182159. 2

[BHHM20] BACK J., HUA B.-S., HACHISUKA T., MOON B.: Deep
combiner for independent and correlated pixel estimates. ACM Trans-
actions on Graphics 39, 6 (2020), 242:1–242:12. doi:10.1145/
3414685.3417847. 2, 3, 7

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://github.com/ArthurFirmino/progressive-denoising
https://github.com/ArthurFirmino/progressive-denoising
https://doi.org/10.2312/egs.20211015
https://doi.org/10.2312/egs.20211015
https://doi.org/10.1145/3182159
https://doi.org/10.1145/3414685.3417847
https://doi.org/10.1145/3414685.3417847

A. Firmino & J.R. Frisvad & H.W. Jensen / Progressive Denoising of Monte Carlo Rendered Images

[Bit16] BITTERLI B.: Rendering resources, 2016. https://benedikt-
bitterli.me/resources/. 10

[BRM∗16] BITTERLI B., ROUSSELLE F., MOON B., IGLESIAS-
GUITIÁN J. A., ADLER D., MITCHELL K., JAROSZ W., NOVÁK J.:
Nonlinearly weighted first-order regression for denoising Monte Carlo
renderings. Computer Graphics Forum 35, 4 (2016), 107–117. doi:
10.1111/cgf.12954. 2

[BVM∗17] BAKO S., VOGELS T., MCWILLIAMS B., MEYER M.,
NOVÁK J., HARVILL A., SEN P., DEROSE T., ROUSSELLE F.: Kernel-
predicting convolutional networks for denoising Monte Carlo render-
ings. ACM Transactions on Graphics 36, 4 (2017), 97:1–97:14. doi:
10.1145/3072959.3073708. 2, 7

[CFS∗18] CHRISTENSEN P., FONG J., SHADE J., WOOTEN W., SCHU-
BERT B., KENSLER A., FRIEDMAN S., KILPATRICK C., RAMSHAW
C., BANNISTER M., ET AL.: RenderMan: An advanced path-tracing
architecture for movie rendering. ACM Transactions on Graphics 37, 3
(2018), 30:1–30:21. doi:10.1145/3182162. 2, 3

[CJ16] CHRISTENSEN P. H., JAROSZ W.: The path to path-traced
movies. Foundations and Trends® in Computer Graphics and Vision
10, 2 (2016), 103–175. doi:10.1561/0600000073. 2

[CKS∗17] CHAITANYA C. R. A., KAPLANYAN A. S., SCHIED C.,
SALVI M., LEFOHN A., NOWROUZEZAHRAI D., AILA T.: Interac-
tive reconstruction of Monte Carlo image sequences using a recurrent
denoising autoencoder. ACM Transactions on Graphics 36, 4 (2017),
98:1–98:12. doi:10.1145/3072959.3073601. 2, 3, 6

[Coo86] COOK R. L.: Stochastic sampling in computer graphics. ACM
Transactions on Graphics 5, 1 (January 1986), 51–72. doi:10.1145/
7529.8927. 2

[CPC84] COOK R. L., PORTER T., CARPENTER L.: Distributed ray trac-
ing. Computer Graphics (SIGGRAPH ’84) 18, 3 (July 1984), 137–145.
doi:10.1145/800031.808590. 2

[HY21] HUO Y., YOON S.-E.: A survey on deep learning-based Monte
Carlo denoising. Computational Visual Media 7, 2 (2021), 169–185.
doi:10.1007/s41095-021-0209-9. 2

[HZRS16] HE K., ZHANG X., REN S., SUN J.: Deep residual learn-
ing for image recognition. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2016) (2016), pp. 770–778. doi:
10.1109/CVPR.2016.90. 5

[JC95] JENSEN H. W., CHRISTENSEN N. J.: Optimizing path tracing
using noise reduction filters. In Proceedings of WSCG 1995 (1995),
pp. 134–142. URL: http://hdl.handle.net/11025/16029.
2

[Kaj86] KAJIYA J. T.: The rendering equation. Computer Graphics (SIG-
GRAPH ’86) 20, 4 (August 1986), 143–150. doi:10.1145/15922.
15902. 1

[KBS15] KALANTARI N. K., BAKO S., SEN P.: A machine learning ap-
proach for filtering Monte Carlo noise. ACM Transactions on Graphics
34, 4 (2015), 122:1–122:12. doi:10.1145/2766977. 2

[KCK∗18] KŘIVÁNEK J., CHEVALLIER C., KOYLAZOV V., KARLÍIK
O., JENSEN H. W., LUDWIG T.: Realistic rendering in architecture and
product visualization. In ACM SIGGRAPH 2018 Courses (2018), p. 10.
doi:10.1145/3214834.3214872. 2

[KCSG18] KULLA C., CONTY A., STEIN C., GRITZ L.: Sony Pictures
Imageworks Arnold. ACM Transactions on Graphics 37, 3 (2018), 29:1–
29:18. doi:10.1145/3180495. 2

[KS13] KALANTARI N. K., SEN P.: Removing the noise in Monte Carlo
rendering with general image denoising algorithms. Computer Graphics
Forum 32, 2pt1 (May 2013), 93–102. doi:10.1111/cgf.12029. 2

[LR90] LEE M. E., REDNER R. A.: A note on the use of nonlinear fil-
tering in computer graphics. IEEE Computer Graphics and Applications
10, 3 (May 1990), 23–29. doi:10.1109/38.55149. 2

[LWC12] LI T.-M., WU Y.-T., CHUANG Y.-Y.: SURE-based opti-
mization for adaptive sampling and reconstruction. ACM Transactions

on Graphics 31, 6 (2012), 194:1–194:9. doi:10.1145/2366145.
2366213. 2, 3, 4

[NDVZJ19] NIMIER-DAVID M., VICINI D., ZELTNER T., JAKOB W.:
Mitsuba 2: A retargetable forward and inverse renderer. ACM Trans-
actions on Graphics 38, 6 (2019), 203:1–203:17. doi:10.1145/
3355089.3356498. 6, 10

[oid] Intel® Open Image Denoise. https://www.
openimagedenoise.org/index.html. Accessed: 2021-09-08.
3, 6, 10

[Pha20] PHARR M.: pbrt-v4-scenes. https://github.com/mmp/
pbrt-v4-scenes, 2020. Accessed: 2022-01-13. 10

[PJH16] PHARR M., JAKOB W., HUMPHREYS G.: Physically based
rendering: From theory to implementation. Morgan Kaufmann, 2016.
doi:10.1016/C2013-0-15557-2. 3, 10

[Pur87] PURGATHOFER W.: A statistical method for adaptive stochastic
sampling. Computers & Graphics 11, 2 (1987), 157–162. doi:10.
1016/0097-8493(87)90029-X. 2, 5

[rad] Radeon™ Image Filtering Library. https://gpuopen.com/
radeon-image-filtering-library/. Accessed: 2021-10-03.
3

[RBU08] RAMANI S., BLU T., UNSER M.: Monte-Carlo SURE: A
black-box optimization of regularization parameters for general denois-
ing algorithms. IEEE Transactions on Image Processing 17, 9 (2008),
1540–1554. doi:10.1109/TIP.2008.2001404. 3

[RMZ13] ROUSSELLE F., MANZI M., ZWICKER M.: Robust denoising
using feature and color information. Computer Graphics Forum 32, 7
(October 2013), 121–130. doi:10.1111/cgf.12219. 2, 3

[RW94] RUSHMEIER H. E., WARD G. J.: Energy preserving non-linear
filters. In Proceedings of SIGGRAPH 1994 (1994), pp. 131–138. doi:
10.1145/192161.192189. 2

[SD12] SEN P., DARABI S.: On filtering the noise from the random pa-
rameters in Monte Carlo rendering. ACM Transactions on Graphics 31,
3 (2012), 18:1–18:15. doi:10.1145/2167076.2167083. 2

[Ste81] STEIN C. M.: Estimation of the mean of a multivariate normal
distribution. The Annals of Statistics (1981), 1135–1151. doi:10.
1214/aos/1176345632. 3, 4

[TJ97] TAMSTORF R., JENSEN H. W.: Adaptive sampling and bias es-
timation in path tracing. In Eurographics Workshop on Rendering Tech-
niques (EGWR ’97) (1997), Springer, pp. 285–295. doi:10.1007/
978-3-7091-6858-5_26. 2, 5

[VRM∗18] VOGELS T., ROUSSELLE F., MCWILLIAMS B., RÖTHLIN
G., HARVILL A., ADLER D., MEYER M., NOVÁK J.: Denoising with
kernel prediction and asymmetric loss functions. ACM Transactions
on Graphics 37, 4 (2018), 124:1–124:15. doi:10.1145/3197517.
3201388. 2, 5, 6

[WW19] WONG K.-M., WONG T.-T.: Deep residual learning for denois-
ing Monte Carlo renderings. Computational Visual Media 5, 3 (2019),
239–255. doi:10.1007/s41095-019-0142-3. 2

[XC20] XING Q., CHEN C.: Path tracing denoising based on SURE
adaptive sampling and neural network. IEEE Access 8 (2020), 116336–
116349. doi:10.1109/ACCESS.2020.2999891. 3

[XZW∗19] XU B., ZHANG J., WANG R., XU K., YANG Y.-L., LI C.,
TANG R.: Adversarial Monte Carlo denoising with conditioned auxiliary
feature modulation. ACM Transactions on Graphics 38, 6 (2019), 224:1–
224:12. doi:10.1145/3355089.3356547. 2

[ZJL∗15] ZWICKER M., JAROSZ W., LEHTINEN J., MOON B., RA-
MAMOORTHI R., ROUSSELLE F., SEN P., SOLER C., YOON S.-E.:
Recent advances in adaptive sampling and reconstruction for Monte
Carlo rendering. Computer Graphics Forum 34, 2 (2015), 667–681.
doi:10.1111/cgf.12592. 2

[ZZXY21] ZHENG S., ZHENG F., XU K., YAN L.-Q.: Ensemble de-
noising for Monte Carlo renderings. ACM Transactions on Graphics 40,
6 (2021), 274:1–274:17. doi:10.1145/3478513.3480510. 2, 3

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1111/cgf.12954
https://doi.org/10.1111/cgf.12954
https://doi.org/10.1145/3072959.3073708
https://doi.org/10.1145/3072959.3073708
https://doi.org/10.1145/3182162
https://doi.org/10.1561/0600000073
https://doi.org/10.1145/3072959.3073601
https://doi.org/10.1145/7529.8927
https://doi.org/10.1145/7529.8927
https://doi.org/10.1145/800031.808590
https://doi.org/10.1007/s41095-021-0209-9
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://hdl.handle.net/11025/16029
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/2766977
https://doi.org/10.1145/3214834.3214872
https://doi.org/10.1145/3180495
https://doi.org/10.1111/cgf.12029
https://doi.org/10.1109/38.55149
https://doi.org/10.1145/2366145.2366213
https://doi.org/10.1145/2366145.2366213
https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1145/3355089.3356498
https://www.openimagedenoise.org/index.html
https://www.openimagedenoise.org/index.html
https://github.com/mmp/pbrt-v4-scenes
https://github.com/mmp/pbrt-v4-scenes
https://doi.org/10.1016/C2013-0-15557-2
https://doi.org/10.1016/0097-8493(87)90029-X
https://doi.org/10.1016/0097-8493(87)90029-X
https://gpuopen.com/radeon-image-filtering-library/
https://gpuopen.com/radeon-image-filtering-library/
https://doi.org/10.1109/TIP.2008.2001404
https://doi.org/10.1111/cgf.12219
https://doi.org/10.1145/192161.192189
https://doi.org/10.1145/192161.192189
https://doi.org/10.1145/2167076.2167083
https://doi.org/10.1214/aos/1176345632
https://doi.org/10.1214/aos/1176345632
https://doi.org/10.1007/978-3-7091-6858-5_26
https://doi.org/10.1007/978-3-7091-6858-5_26
https://doi.org/10.1145/3197517.3201388
https://doi.org/10.1145/3197517.3201388
https://doi.org/10.1007/s41095-019-0142-3
https://doi.org/10.1109/ACCESS.2020.2999891
https://doi.org/10.1145/3355089.3356547
https://doi.org/10.1111/cgf.12592
https://doi.org/10.1145/3478513.3480510

