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Abstract. This paper offers background and perspective on a little-
known memoir by Ludvig Lorenz on light scattering by spheres, which
was published in Danish in 1890. It is a companion to an English trans-
lation of the memoir appearing separately. Apart from introducing
Lorenz and some of his contributions to optics and electrodynamics,
the paper focuses on the emergence, content and reception of the 1890
memoir and its role in what is often called the Lorenz-Mie theory.
In addition to the historical analysis, the paper illuminates aspects of
modern Lorenz-Mie theory and its many applications, with an eye to
Lorenz’s original work.

1 Introduction

According to Google Scholar, the term “Lorenz-Mie” appears in about 7,300 scien-
tific articles of which 5,900 date from the last two decades. While the second name
refers to Gustav Mie, a well-known German physicist who published his theory in
1908, the first name is much less known. In a nutshell, in a lengthy memoir of
1890 the Danish physicist Ludvig Lorenz published an elaborate optical theory on
the scattering of light by small transparent spheres, which was essentially a non-
electromagnetic version of Mie’s later theory. Mie’s seminal paper was written in
German and originally it attracted very little attention. Reflecting the growing in-
terest in Mie’s theory, the paper has been translated into English and thus made
accessible to physicists and historians of physics all over the world [Wriedt 2012,
p. 55; https://scattport.org/index.php/classic-papers]. Lorenz published his memoir
in Danish, which effectively has made it unknown to the physics community. Only
now, almost 130 years later, we can present a complete English translation of this
great and complex paper which has been called “one of the most remarkable memoirs
to be published in the 19th century” [Logan 1965, p. 77].

In the present paper, a companion to the translation, we discuss the historical
context of Lorenz’s scattering theory and relate it to some of his earlier contributions
to optics and electrodynamics. We also include a brief biographical section and outline
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the main trajectory that led to Mie’s celebrated theory of 1908. From a historical point
of view the reception of a scientific work is no less important than the work itself, and
for this reason we refer to how Lorenz’s theory was received by contemporary and
later physicists. The second part of our paper is less historically oriented as it takes
up in a more critical way some of the mathematical and physical problems appearing
in or related to Lorenz’s memoir. Moreover, in this part we also discuss, if only briefly
and selectively, the revival of interest in Lorenz-Mie theory and aspects of its current
significance and applications.

2 Biographical sketch

Ludvig Valentin Lorenz (1829-1891) was born in Elsinore, the city housing the castle
of Shakespeare’s Hamlet. “Very early on I showed an interest in calculations and math-
ematics,” he recalled in an autobiographical note of 1877 [Kragh 2018b, pp. 243–245].
However, rather than studying mathematics or physics, as a young man he entered
the Polytechnic College in Copenhagen to study applied or engineering chemistry.
During his studies he followed a course in chemical physics given by the aging Hans
Christian Ørsted, whose romantic natural philosophy influenced him to some degree.
On the other hand, he generally preferred – contrary to Ørsted – a mathematical
rather than a philosophical approach to physics.

Lorenz graduated in 1852 without distinction and without being seriously inter-
ested in his chosen field of study. Indeed, none of his later scientific works related to
problems of a chemical nature. During most of the period 1852-1866 Lorenz lived a
modest life as part-time teacher at middle and gymnasium schools in Copenhagen,
where he taught elementary physics, chemistry and mathematics. At the same time
he continued his private studies of still more advanced topics in theoretical physics. It
was a turning point in Lorenz’s life when he, in 1858, received grants that enabled him
to travel to Paris and study physics at Sorbonne University. Attending lecture courses
by illustrious physicists such as Joseph Liouville, Gabriel Lamé and Henri Regnault
he was for the first time confronted with modern and advanced mathematical physics.
As a direct result of his one-year stay in Paris, in 1860 he published his first scientific
paper on theoretical optics. Two years later he married Agatha Fogtmann, who was
to survive her husband by 31 years. The marriage was childless.

Lorenz’s fortunes changed to the better only in 1866, when he obtained for the
first time a permanent position as physics teacher at the Royal Military High School
established in 1829. In this position, he had at his disposal an excellent laboratory
and instrument collection which allowed him to engage in experimental research and
not only theoretical physics. For his teaching at the Military High School, he wrote
three textbooks on, respectively, general physics, optics, and heat. The book on optics
was translated into German and published by the recognized Leipzig publisher B. G.
Teubner [Lorenz 1877]. In the same year that Lorenz was appointed physics teacher
at the Military High School, he was elected a member, at the relatively young age
of 37, of the prestigious Royal Danish Academy of Sciences and Letters founded in
1742. Although Lorenz never became a professor and never wrote a doctoral disserta-
tion, he came to be recognized as an important member of the small Danish physics
community and the country’s first and foremost theoretical physicist (Figure 1). In
a testimony of 1873 to the Ministry of Church and Education, the German-born
professor of astronomy Heinrich Louis d’Arrest wrote as follows: “I do not hesitate
to point out to the high Ministry that associate professor Lorenz is one of the first
and internationally respected scientists within this field [mathematical physics]. His
extremely penetrating investigations belong to the most difficult and remarkable ac-
complishments of our time” [Kragh 2018b, p. 238].
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Fig. 1. Ludvig V. Lorenz. Royal Library, Copenhagen, Picture Collection.

Compared to other Danish physicists in the period Lorenz was internationally
oriented and for several decades the only one with a solid reputation abroad. He was
probably better known and more appreciated by physicists in German-speaking Eu-
rope than in his own country. Not only did he publish in leading physics journals such
as Journal de Physique, Crelles Journal and Annalen der Physik und Chemie, he also
corresponded with several of Europe’s foremost physicists. Among his correspondents
were distinguished scientists including Ludwig Boltzmann, Carl Neumann, Friedrich
Kohlrausch, Heinrich F. Weber, August Kundt and, in France, the later Nobel Prize
laureate Gabriel Lippmann. He sent regularly off-prints of his papers to these and
other physicists abroad, including notables such as Anders Ångström, Marcel Bril-
louin, Henri Poincaré, Janne Rydberg and Hermann von Helmholtz. On the other
hand, he had practically no contact to British physicists, most conspicuously not to
James Clerk Maxwell and Lord Rayleigh.

While quite satisfied with his position at the Military High School, in early 1887
Lorenz received a generous offer that he could not decline. The Carlsberg Foundation
established by the wealthy brewer Jacob C. Jacobsen in 1876 offered him a life-long
salary as an independent scientist who could cultivate whatever field of study he found
suitable. Lorenz happily accepted the offer, which meant that he had to resign his
position at the Military High School and therefore also quit experimental research.
During the brief span of years in which he worked as a “free scientist” he completed
his ambitious analysis of the scattering of plane waves by spherical bodies about
which more below. After this tour de force he focused on a work in pure mathematics
dealing with prime numbers, which was to be his last publication.

Lorenz contemplated a future work on the famous three-body problem which at
the time attracted much mathematical attention. However, he did not come very far
in his study of the intricate problem. On 9 June 1891 he died unexpectedly of a heart
attack, at the age of 62. While the memory of Lorenz soon faded, internationally as
well as in his native country, a few years after his death the Carlsberg Foundation
decided to honour him with a French edition of his collected papers. The result was
Oeuvres Scientifiques de L. Lorenz edited by the mathematician Herman Valentiner
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and published in two volumes around the turn of the century [Lorenz 1904]. The
first of the volumes, today readily available online on https://archive.org/details/
oeuvresscientifi01lore, includes the 1890 memoir.

3 An electrical theory of light

Whereas Lorenz’s early optical theories were within the established tradition of the
elastic theory of light, in 1867 he proposed a new theory in which light waves were con-
sidered to be oscillating electrical currents and not vibrations in an ethereal medium.
As he wrote, there was “scarcely any reason for adhering to the hypothesis of an
ether, for it may well be assumed that in the so-called vacuum there is sufficient
matter to form an adequate substratum for the motion” [Lorenz 1867]. The theory
was in part inspired by the dynamical ideas of Ørsted, his former teacher, which he
developed into a concise mathematical theory. Building on an earlier theory of the
propagation of electricity in conducting media proposed by Gustav Robert Kirchhoff
[1857], but unaware of Maxwell’s recent electromagnetic theory of light, Lorenz ar-
rived at equations for the variation of the current density j. In a condensed form and
with σ denoting the electrical conductivity, his wave equation for j can be expressed
as

−∇× (∇× j) =
1

a2
∂2j

∂t2
+

16π

a2
σ
∂j

∂t
,

where a is the velocity of the electrical wave (or light wave). Lorenz identified the
last term with the absorption of light which would increase with the conductivity. It
is to be noted that there were no electrical or magnetic fields in the 1867 theory and
nor were there any displacement currents. All electrical currents and hence also light
were conduction currents.

Although Lorenz’s electrodynamic theory of light has long ago been abandoned,
two of the important results of the 1867 paper are still parts of modern physics. Lorenz
emphasized that the action of electrical disturbances requires time to propagate cor-
responding to a finite velocity as given by retarded potentials. Although the general
idea of retarded electrical action had previously been suggested (by C. Friedrich Gauss
and Bernhard Riemann, see Kaiser [1981]), Lorenz was the first to incorporate the
idea into a coherent theory of light and electricity. For a point x = (x, y, z) in a
volume V , his formula for the scalar potential due to a charge density ρ was

ϕ(x, t) =

∫
ρ(x′, t− r

a )

r
dV,

where r = |x − x′| and dV = dx′ dy′ dz′. Similarly, Lorenz’s formula for the vector
potential A was

A(x, t) =

∫
j(x′, t− r

a )

r
dV .

The other technical innovation appearing in Lorenz’s paper concerned the relationship
between the retarded potentials. Following Kirchhoff’s notation, he originally used Ω
for the scalar potential and (α, β, γ) for the vector potential, arguing that they had
to satisfy the constraint

∂Ω

∂t
= −2

(
∂α

∂x
+
∂β

∂x
+
∂γ

∂x

)
.

In modern notation and Gaussian units, the factor 2 disappears and the constraint
becomes

∇ ·A +
1

c

∂ϕ

∂t
= 0 .
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This is the famous Lorenz condition, by far the most useful of the various gauges
used in electrodynamics. Until recently the gauge stated in 1867 was predominantly
named the “Lorentz gauge” because Hendrik A. Lorentz used it in his important
work on electromagnetic theory in the early years of the twentieth century. Contrary
to the Coulomb gauge ∇·A = 0, this gauge is manifestly Lorentz invariant. Although
“Lorentz gauge” is still widely used, paternity belongs to Lorenz of Copenhagen [Jack-
son and Okun 2001].

Lorenz’s electrical theory of light was well known to contemporary physicists
and referred to by, for example, Maxwell, Heinrich Hertz, Éleuthère Mascart, Carl
Friedrich Zöllner, and Oliver Lodge. In the early part of the twentieth century it was
critically discussed by Pierre Duhem. However, by that time it had largely fallen into
oblivion. We shall not here examine the fate of Lorenz’s electrical oscillation theory of
light, for which we refer to the recent literature [Keller 2002; Kragh 2018b,c]. An im-
portant reason for the cool reception and later neglect was undoubtedly that Lorenz
did not follow up upon it or refer to it in his later works. Nor did he ever refer to
Maxwell’s field theory of light and its relationship to his own. It is remarkable that
there is no trace of electromagnetism in Lorenz’s great work on the scattering of light
by spheres. The memoir of 1890 contains no reference to his earlier theory and words
such as “electrical” and “magnetic” do nowhere appear significantly.

4 Optical theories, ca. 1860–1883

Influenced by his research stay in Paris, Lorenz’s first scientific papers were based on
the elastic or mechanical theory of light which still in the early 1860s constituted the
generally accepted theoretical framework in optics. According to this framework or
paradigm, light consisted of transverse waves made up of deformations in an incom-
pressible ethereal medium [Whittaker 1958, pp. 128–170; Darrigol 2012, pp. 225–239].
About 1860, when Lorenz entered the field, the incompressibility of the solid ether and
the transverse nature of the vibrations therein were subjects of debate which Lorenz’s
early works in optics helped to clarify. Most of these works appeared in Annalen and
were reviewed in Fortschritte der Physik, the abstract journal published since 1845
by the German Physical Society. They were thus well known to the international
community of physicists.

With the purpose of understanding the ether vibrations in the reflection and re-
fraction of light, Lorenz [1861] assumed that the two optical media were separated
by a boundary or transition layer. This layer he imagined to be divided in an infinite
number of infinitesimally thin sheets, each of the sheets having a constant density.
He estimated that the thickness of a typical layer was between 1 and 10 per cent of
the wavelength of visible light or roughly between 5 nm and 50 nm. Lorenz’s concept
of an optical transition layer was original and later recognized to be an important
innovation, but at the time it was either criticized or ignored [Schuster 1909, p. 241;
see also Keller 2002]. The notion of a continuum of transition layers reappeared in
Lorenz’s later scattering theory, now adapted to spherical surfaces. With ω denoting
the velocity of the light, the hypothesis entered as follows: “This discontinuous transi-
tion is considered to be produced by a surface layer of finite thickness and continuous
change of ω . . . that approaches a layer of thickness zero” [Lorenz 1890, pp. 4–5].

After less than two years of work within the mechanical-elastic paradigm, Lorenz
realized that the laws of optics could not be fully deduced from the theory of elasticity.
Adopting an alternative non-mechanical methodology, he now concluded that the
fundamental theory of light must rest solely on abstract conceptions in agreement with
observed phenomena. The “phenomenological” approach implied that the physical
nature of light was disregarded and also that the ether was given less attention.
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Although the ether still figured in Lorenz’s papers until 1865, it was merely as a
name without physical characteristics. In a paper of 1863, he introduced an abstract
light vector u = (ux, uy, uz) on the basis of which he formulated three differential
equations [Lorenz 1863]. He claimed that in heterogeneous, non-absorbing media all
phenomena of light can be deduced from these equations, which in modern notation
can be written as

−∇× (∇× u) =
1

a2
∂2u

∂t2
. (1)

Lorenz had a = ω/k, where ω is the angular frequency and k is the wave number. This
is equivalent to a = c/n, where c is the speed of light in vacuo and n is the index of
refraction. The same differential equations entered into Lorenz’s 1867 electrical theory
of light, except for the added absorption term in the latter theory. The equations also
formed the basis of his 1890 scattering theory. “The differential equations from which
the present investigation takes its starting point,” Lorenz stated in his memoir (p. 3),
“differ from the theory of elasticity by the fact that they rule out the possibility of
longitudinal oscillations, and, since they are valid for every point in any transparent
heterogeneous medium, the boundary conditions at the transition from one body
to another can be derived from the differential equations themselves.” It should be
mentioned that much earlier the Irish physicist James MacCullagh had derived a wave
equation similar to Lorenz’s, but MacCullagh’s theory rested on the assumption of
an elastic solid ether [Darrigol 2010].

In a paper of 1869, Lorenz derived on the basis of experiments and his optical
wave theory a relationship between a transparent body’s refractivity index N and its
specific volume v as given by v = 1/d, where d is the density. He concluded that

N2 − 1

N2 + 2
v = constant .

For reasons of simplicity, he assumed the refractive medium to be composed of opti-
cally homogeneous spherical molecules with Ni being their internal refractive index.
With vi being the specific proper volume of the molecules, Lorenz could then state
the law as

N2 − 1

N2 + 2
v =

N2
i − 1

N2
i + 2

vi .

Nine years later, 25-year-old H. A. Lorentz, who had recently been appointed pro-
fessor at the University of Leiden, derived the same refractivity formula but on the
basis of the electromagnetic theories of Maxwell and Helmholtz. Since Lorentz’s pa-
per was in Dutch, and Lorenz’s in Danish, the “Lorentz-Lorenz law” became widely
known only after 1880, when revised versions of the two memoirs appeared in German
translations [Lorentz 1880; Lorenz 1880]. As to Lorenz, he used his refraction-density
theory to estimate a lower limit to the size of molecules. For what he called “the
radius of the molecular sphere of action,” a quantity greater than the actual radius of
the molecule, he found its lower limit to be 15 nm. Lorenz returned to the question of
the size of molecules in the last sections of his 1890 memoir. More information about
the early history of what is known as either the Lorentz-Lorenz or the Lorenz-Lorentz
law can be found in Kragh [2018a].

Finally, among the sources for Lorenz’s scattering theory of 1890 was also an
extensive paper on chromatic dispersion published in Annalen [Lorenz 1883; Keller
2002, pp. 283-285]. As Lorenz [1890, p. 3] pointed out in his introduction, this pa-
per served as the direct inspiration for his more elaborate theory of the scattering of
plane light waves by a transparent and isotropic sphere. Moreover, it contained math-
ematical concepts and methods that would appear in his memoir seven years later.
Although the basic equations of the 1890 treatise were the same as those employed
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in his dispersion theory of 1883, Lorenz [1890, p. 3] now “preferred a different and
simpler way of presentation where I, also to ease the reading, shall avoid assuming
knowledge of my previous work.”

The 1883 dispersion theory assumed a collection of randomly ordered point atoms
surrounded by concentric shells. Each shell was characterised by a constant refractive
index, which diminished with its distance from the atom, corresponding to a variation
of the effective velocity of light. Based on this model Lorenz derived a dispersion
relation, but unfortunately it was unable to account for anomalous dispersion. For
this and other reasons his dispersion relation was considered to be unsatisfactory.

5 From Clebsch to Mie

Lorenz presented his new scattering theory to the Royal Danish Academy in an ad-
dress of 18 October 1889 in which he called attention to an earlier work by the German
mathematician and physicist Adolf Clebsch:

I need to mention a single attempt to determine the reflection of light from a
perfectly bright spherical surface . . . been made by Clebsch but with the deter-
rent results, as he puts it in the explanations to his great work (Crelles Journal
of 1863), that the results of the entire investigation are terribly complex. . . . On
the other hand, he has succeeded in the case of very small reflecting spheres.
The mentioned author proceeds from the differential equations of elasticity
theory, [while] . . . I have myself based the theory on different equations, the
same which I proposed for approximately 25 years ago. [Kragh 2018b, p. 104]

Clebsch died in 1872, only 46 years old. As assistant professor at Karlsruhe Poly-
technic College he played an active role in the German mathematical community,
contributing with innovative ideas in both pure mathematics and theoretical physics.
For example, in 1866 he wrote a mathematical treatise on Abelian functions jointly
with Paul Gordan. The Clebsch-Gordan coefficients used extensively in quantum me-
chanics and elementary particle physics have their roots in this treatise. More to
the point, what caught Lorenz’s attention was a mathematically challenging 68-page
memoir on the reflection of elastic waves by a spherical obstacle [Clebsch 1863; Tod-
hunter 1893, Part 2, pp. 168–180; Logan 1965]. Although published in one of the pe-
riod’s most important mathematical journals, Crelles Journal, Clebsch’s pre-Maxwell
memoir exerted almost no interest at all on either the mathematicians or the physi-
cists. In fact, during the late nineteenth century Lorenz was alone in recognizing its
importance and receiving inspiration from it. However, since Lorenz’s Danish treatise
remained practically unknown, its highlighting of Clebsch’s work made no difference.

Apart from Clebsch’s 1863 memoir, Lorenz also cited earlier works by George
Stokes, George Airy, Lord Rayleigh (or John William Strutt) and a few other authors.
Of Rayleigh’s extensive writings on the scattering of waves he only cited an early set
of papers based on the equations of elastic waves in which Rayleigh [1871a,b,c] had
derived the scattering law for small particles. Although Lorenz was presumably aware
of Rayleigh’s work of 1881 [Kerker 1969], which offered an electromagnetic derivation
of the scattering law, he did not refer to this work and also not to other works based
on Maxwell’s theory of light. At the end of his memoir, Lorenz considered the case of
small spheres of molecular dimensions. He proved that the scattering cross section of
a single sphere of radius R very small compared to the wavelength λ is

Cs =
128

3

π5R6

λ4

(
N2 − 1

N2 + 2

)2
.
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This equation provides both the scattering cross section of a small particle and its link
to the polarizability of a spherical particle as given by the Lorentz-Lorenz relation.
Since the refractive index for air and other transparent bodies only varies slightly
in the wavelength range of visible light, this expression for Cs is dominated by the
λ−4 term. As Lorenz pointed out, this result agreed with what Rayleigh had found
in 1871. For N close to 1, it gives approximately the same expression as found by
Rayleigh, namely

Cs =
128

27

π5R6

λ4
(N2 − 1)2 .

In his later theory of scattering, Rayleigh [1899] explains that his original scattering
cross section is only valid for N close to 1 as the shape of the particle must be taken
into account in the preferred electric theory [Rayleigh 1881]. He continues to say that
N2 − 1 should be replaced by 3(N2 − 1)/(N2 + 2) in the case of spheres. The two
theories then agree very well. The remaining difference between them is Rayleigh’s
[1871a] simple expression for the distribution of the scattered light (the Rayleigh
phase function), where Lorenz has the fully general solution for a sphere. Rayleigh’s
theory is in other words for particles significantly smaller than the wavelength with
spheres as a special case, whereas Lorenz’s theory is for spheres of arbitrary size with
small spheres as a special case.

Rayleigh [1899] also derived an expression for the number density of scattering
particles Np in terms of the refractive index N of the gas in question:

Np =
32π3

3hλ4
(N − 1)2 ,

Here, h is the extinction coefficient (scattering plus absorption), which is an observable
quantity. For non-absorbing particles, the extinction coefficient is only a measure of
the amount of scattering per unit of distance as light travels through the medium, and
then h = CsNp. Lorenz referred to h as the absorption coefficient. For an ideal gas
under standard conditions, the molecules become the scatterers andNp corresponds to
Loschmidt’s number NL. Loschmidt’s number relates to Avogadro’s number through

NA = 6.022 · 1023 mol−1 ≈ NL · 22.4 · 103 cm3 mol−1 .

Lorenz’s formula as given in the 1890 memoir was

Np =
24π3

hλ4

(
N2 − 1

N2 + 2

)2
.

If N is only slightly larger than one, which is certainly the case for a gas, Lorenz’s
expression is fairly similar to the one stated by Rayleigh nine years later. Lorenz
illustrated his theory by considering a concrete example where plane waves of light
of wavelength λ = 580 nm pass through atmospheric air. In this case, he found
the value Np = 1.63 · 1019 cm−3, which is more than half of NL. For the case of
spherical particles, several of the results communicated by Rayleigh in 1899 can be
found in Lorenz’s earlier work. Considering the historical development of the theory
of scattering by a sphere, Milton Kerker [1969, p. 59] concludes that “certainly if
this theory is to be associated with the name or names of individuals, at least that
of Lorenz, in whose paper are to be found the practical formulas so commonly used
today, should not be omitted.” Rayleigh only referred to Lorenz’s theory in 1918, in
the autumn of his life, and then only briefly.

Contrary to Lorenz, when Gustav Mie in 1908 published his now very famous
treatise on the scattering by conducting spheres, he did not refer to Clebsch’s memoir.
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Fig. 2. Number of citations to G. Mie’s 1908 paper as a function of time according to Web
of Science.

Nor did he cite Lorenz’s paper in either its Danish original or the French translation
available since 1898. Mie’s theory has recently been the subject of historical attention
and in the present context there is no need to go into details, as these can be found
in the literature [Horvath 2009; Hergert 2012; Wriedt 2012]. At the time professor
at the University of Greifswald, Mie was an expert in Maxwellian electrodynamics
and a leading figure in the ill-fated, pre-Einsteinian attempts to establish this theory
as the foundation of all of physics [Vizgin 1994]. Today he may best be known for
his 1908 scattering theory, which more specifically was a theory of colour effects
of colloidal metal solutions, but he did not himself consider it to be particularly
important. Nor did most other physicists, for originally it only attracted modest
attention such as indicated by the very few references to it until about 1970 (Figure 2).
What matters here is the relation of Mie’s paper to Lorenz’s, which today is widely
seen as an anticipation of it or even an equivalent but physically different version of
Mie’s electromagnetic theory.

Although Mie did not formally cite Lorenz’s paper on scattering by a sphere, he
cited Lorenz [1880] on the refractivity-density law and may even have known of his
1890 memoir if without studying it in any detail [Kragh 2018b, pp. 115–116]. What-
ever the historical connection between the two papers, today it is widely recognized
that they are empirically equivalent. As part of his Munich doctoral dissertation Pe-
ter Debye [1909a] wrote an important paper on the scattering problem, including an
analysis of the light pressure exerted on a sphere, in which he cited the earlier papers
of Clebsch and Mie. Although he did not refer to Lorenz’s memoir, he was aware of
it and had studied it in its French translation. This is evidenced by another paper
of a predominantly mathematical nature in which Debye [1909b] referred to formulae
first stated by Lorenz.

While Lorenz’s theory was abstract and formulated without a physical interpre-
tation of light and its propagation through space, Mie’s was solidly founded on the
Maxwell-Lorentz theory of electromagnetism. According to Gouesbet [2012, p. 74],
Lorenz’s scattering theory rested on the assumption of the ether, while Mie’s did
not. Horvath [2009] likewise states that “Lorenz completely solved for the scattering
of light by small particles theoretically using the ether theory.” However, this is a
misunderstanding. It was Mie’s electromagnetic theory, not Lorenz’s, which relied on
the ether, and it did so because it was based on the Maxwell-Lorentz ether theory.
The ether played no role at all in Lorenz’s memoir, where the word “ether” simply
did not appear.

Lorenz made his theory of light “free from all physical hypotheses” to prevent
that the mathematical model would be nullified by “further progress of a future
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time” [Lorenz 1867]. This turned out to be a good decision as his solution for the
scattering of light by a sphere from 1890 is mathematically equivalent to those of Mie
and Debye. The reason is that, for a non-magnetic substance (permeability equal to
unity), the exact same wave equation as the one used by Lorenz (1) can be derived
for the electric vector using Maxwell’s equations [Born and Wolf 1999, p. 11]. More-
over, for a plane wave and a spherical wave, the magnetic vector is not required. We
only need the electric vector and the direction of wave propagation to determine the
Poynting vector and thus the distribution of radiant energy. In other words, Lorenz
selected the exactly right phenomenological model for his theoretical investigations,
and we can therefore directly use his results even today.

The term Lorenz-Mie theory as a substitute for Mie theory first turned up in
the early 1960s [Wait 1962; Logan 1962]. As stated by Wait [1962], “The theory of
scattering of electromagnetic waves from a homogeneous sphere was first given in
explicit form by Lorenz and some time later by Mie.” Strictly speaking this is of
course incorrect, since Lorenz’s theory was not about electromagnetic waves. Despite
the increased recognition of Lorenz’s contribution, it is still more common to speak of
the Mie theory, whereas Mie-Lorenz theory is rarely used. According to Google Scholar
a total of ca. 92,300 papers refer to Mie theory and ca. 4,930 to Lorenz-Mie theory.
For the period 1980–2018 the corresponding numbers are ca. 42,700 and ca. 4,780.
Out of these 4,780 scientific articles, around one third are referring to generalized
Lorenz-Mie theory (GLMT, more on this theory later). GLMT has thus been quite
influential with respect to inclusion of Lorenz’s name.

6 Contents of Lorenz’s memoir in brief

Lorenz started his 1890 memoir by referring to Clebsch [1863] and to his own previous
work [Lorenz 1883]. He also set the scene by considering the differential equations (1)
of his previous work the model of light propagation (the variable we denote by a is
denoted by ω in Lorenz’s papers). All his results were derived from this model of light
propagation. Throughout the memoir, Lorenz specifically considered the interaction of
a plane wave with a spherical surface. Like Mie [1908] and Debye [1909a] after him, he
solved the differential equations describing the light propagation by reformulating the
problem in spherical coordinates. The incident plane wave was expanded in spherical
harmonics (using a formula first found by Bauer [1826]), and the boundary conditions
were used to obtain the spherical harmonics expansion coefficients of the scattered
wave. Numerical evaluation of the solution was difficult, so Lorenz spent many pages
developing a theory for approximate evaluation of special cases.

The size parameters for a particle of radius R and relative index of refraction N
are

x =
2πR

λ
and y =

2πRN

λ
,

where λ is the wavelength in vacuo. Lorenz used α and α′ to denote x and y and
considered the special cases of α very large and α very small, that is, large and
small particles as compared with the wavelength. He also included a section on the
special case of light getting trapped in a thin layer inside the sphere due to total
internal reflection (when N < 1). Lorenz used the case of α very large to discuss the
appearance of rainbows and the case of α very small to discuss absorption lines in
systems of particle and similarities of his theory with that of Rayleigh.

Lorenz considered the right mathematical model (as explained in the previous
section) and was therefore able to derive accurate formulae for the amount and the
intensity of the scattered light. However, since he did not offer a physical hypothesis,
he could not draw electric and magnetic field lines of partial waves like Mie did. Mie
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[1908] solved the differential equations separately for the electric and magnetic vectors.
Then, based on Poynting’s theorem [Poynting 1884], he found that the solution for the
electric vector was sufficient “to obtain a clear representation of the radiation.” Based
on Mie’s observations, Debye [1909a] showed that we only need to solve differential
equations for a pair of scalar potentials. From these, we can calculate the full solution
for the electric and magnetic vectors outside the sphere. Although Lorenz considered
the wave vector corresponding to the electric vector only, he found the same pair of
scalar potentials. In addition, he had a pair of potentials relating to the scattered
wave inside the sphere.

Interestingly, Mie [1908] mentioned that his theory could be used for the rainbow
problem. However, he found that this would require taking into account a rather
large number of partial waves, which would result in “considerable difficulties in
calculation.” This explains Lorenz’s need for lengthy calculations to approximate the
case of α very large.

7 Context and reception of the 1890 theory

Lorenz’s great work was published in Danish in the not widely circulated transactions
of the Royal Danish academy and for this reason alone it remained unknown or at
least inaccessible to the international community of physicists. At the turn of the
century it was available in French translation, but Oeuvres Scientifiques de L. Lorenz
was rarely read and failed to make the theory more generally known. Although the
language barrier was undoubtedly a major reason for its lack of visibility, it was no
less important that the theory ignored what at the time was considered modern field
electrodynamics. By the late 1890s Maxwell’s ether-based theory of electromagnetism
completely dominated physicists’ thinking about optics, so why pay attention to a
complex and obscure theory of the past that failed to take into account electromag-
netic fields and the associated ether? Kerker [1969, p. 56] ascribes the neglect of
Lorenz’s theory to be in part that “His solution is based upon his own theory of elec-
tromagnetism rather than on that of Maxwell.” The word “electromagnetism” should
probably have been “light propagation” in this sentence since it was Lorenz’s 1863
theory of light propagation rather than his 1867 electrical theory of light that played
a role in his later scattering theory.

In spite of the language barrier and the non-electromagnetic framework of Lorenz’s
scattering theory, it was not entirely neglected. For the few early references to the
theory, see Logan [1965] and Kragh [2018b, pp. 112–115]. It is worth noting that the
British physicist J. C. Maxwell Garnett [1904] in an important paper on the colour
of metals cited Lorenz’s Danish memoir and that Mie four years later cited Maxwell
Garnett. By the way, Maxwell Garnett (1880-1958) was not related to the famous J.
C. Maxwell although he was named after him. Also worth noting is that H. A. Lorentz
never mentioned Lorenz’s 1890 theory or worked on the optical scattering problem.
Nonetheless, in a textbook of atmospheric optics we read that Mie’s theory “was
anticipated by Lorentz during the period 1890 to 1900” [McCartney 1976, p. 217].
The author possibly had Lorenz in mind but may have confused him with the famous
Dutch physicist, such as was commonly done (and is still done) in connection with
other of Lorenz’s contributions and with the Loren(t)z gauge condition in particular.
It is more than a little disturbing to find in the physics literature about 740 references
to the non-existing “Lorentz-Mie theory.”

Throughout his life Lorenz nourished a burning interest in mathematics whether
of the pure form or as applied to problems of physics [Kragh 2018b, pp. 207–215].
Indeed, to the limited extent that Lorenz’s work of 1890 was known in the early part
of the twentieth century it was more because of its mathematical rather than its
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physical content. When Debye in 1909 cited Lorenz’s memoir it was because of the
mathematical formulae it contained, and the same was the case with several other
citing authors. Harry Bateman, a talented mathematician and theoretical physicist,
was aware of Lorenz’s memoir to which he referred in a book on electrical and optical
waves. As Bateman [1915, p. 79] noted, for the case of a spherical body Lorenz had
“long ago” studied the diffraction problem in relation to the rainbow. Some years ear-
lier Bateman’s compatriot, the mathematical physicist John Nicholson [1910], studied
exact solutions of how waves are scattered by a sphere, and in this connection he dis-
cussed asymptotic formulae for Bessel functions with reference to results found in
Lorenz’s 1890 memoir. In this paper, Lorenz had derived a formula for the asymp-
totic expansion of products of Bessel functions of the form J2

α + Y 2
α , where the two

symbols refer to Bessel functions of the first and the second kind. The result attracted
the attention of the Cambridge mathematician George N. Watson, who in his mon-
umental treatise on Bessel functions credited Lorenz with the discovery of a formula
which previously had been thought to date from 1906 [Watson 1922, p. 22 and p. 29].
Lorenz’s expansion formula appears as Eq. (66) in his 1890 memoir and the quanti-
ties introduced by him are currently known under the name Lorenz-Mie coefficients.
Logan [1965], Kerker [1969], and Wait [1998] refer to other mathematical innovations
appearing in Lorenz’s “lost memoir.”

8 Lorenz-Mie theory then and now

The usefulness of an analytic solution for an idealized special case like the scattering
of a plane wave by a perfect sphere is remarkable. When developing more general
scattering theory, it is good practice to validate against limiting cases such as a perfect
sphere or a plane wave. This is one of the key reasons why Lorenz’s work of 1890 has
remarkable longevity and is still being cited more than five quarter-centuries after
its publication. Another key reason behind the longevity of the Lorenz-Mie theory
is its ability to predict scattering effects when particles are somewhat like spheres.
Prediction of rainbow effects [Lorenz 1890] and the brilliant colours of colloidal metal
solutions [Mie 1908] are just examples. A review by Kerker [1982] illustrates the
richness of the Lorenz-Mie theory in explaining scattering phenomena. At this point
in time (1982), almost a century after Lorenz published his work, Kerker points out
that “within the lode of the Lorenz-Mie equations [. . . ] most of the treasures still
to be mined have not yet been brought to view.” Even now, the Lorenz-Mie theory
seems to hold hidden treasures.

In various parts of Lorenz’s 1890 treatise, his conclusive equations are surprisingly
close to the equations appearing in modern articles and textbooks on scattering of
electromagnetic radiation (or light). Let us consider Lorenz’s exposition of the Lorenz-
Mie coefficients, which reappear again and again in generalized versions of the theory.
Naming conventions for special functions were of course not quite as firmly settled
in the late 19th century, so Lorenz provided mathematical definitions. For example,
Lorenz defined Legendre polynomials (Pn) using a recurrence relation (last equation
of page 8) and used them for expansion just like in a modern text book [see Arfken
et al. 2013, for example]. As in most later expositions of Lorenz-Mie theory, Lorenz
expanded the complex exponential appearing in the wave equations and found that a
variation of Bessel functions provides a solution for the scattered wave. The variation
is today called Riccati-Bessel functions ψn and ζn, and these are typically defined in
terms of spherical Bessel functions jn and yn. Lorenz used vn and wn, which we can
connect to the Riccati-Bessel and spherical Bessel functions as follows:

vn(z) = ψn(z) = zjn(z) and vn(z) + wn(z) i = ζn(z) = zjn(z)− i zyn(z) .
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Lorenz’s equations (33) for the Lorenz-Mie coefficients are

2kn = −1− (vn(α)− wn(α) i) v′n(α′)−N (v′n(α)− w′n(α) i) vn(α′)

(vn(α) + wn(α) i) v′n(α′)−N (v′n(α) + w′n(α) i) vn(α′)
,

2sn = −1− N (vn(α)− wn(α) i) v′n(α′)− (v′n(α)− w′n(α) i) vn(α′)

N (vn(α) + wn(α) i) v′n(α′)− (v′n(α) + w′n(α) i) vn(α′)
.

Using the more common symbols for the Riccati-Bessel functions and through sim-
ple rearrangement of the equations, we arrive at the Lorenz-Mie coefficients as they
appear in classic textbooks [van de Hulst 1957; Kerker 1969]:

−kn =
ψn(α)ψ′n(α′)−Nψ′n(α)ψn(α′)

ζn(α)ψ′n(α′)−Nζ ′n(α)ψn(α′)
= an ,

−sn =
Nψn(α)ψ′n(α′)− ψ′n(α)ψn(α′)

Nζn(α)ψ′n(α′)− ζ ′n(α)ψn(α′)
= bn ,

where the prime ′ denotes derivative when applied to one of the spherical functions,
N is the relative index of refraction, and α and α′ are the size parameters (often
denoted x and y, as mentioned in Section 6). The only differences between Lorenz’s
coefficients and the modern ones an and bn are choice of symbols and choice of sign.
Lorenz probably extracted −1 from the fractions to ease approximation in a time
without computers.

Debye [1909a] reproduced the theory of Mie [1908] using scalar potentials, which
is now the method of choice in such derivations. These scalar potentials are today
called Debye potentials, but the same scalar potentials were used by Lorenz in 1890
(as also mentioned by Kerker [1969] and in Section 6). Debye’s purpose was different
from Lorenz’s and Mie’s. He wanted to investigate the radiation pressure on small
spheres due to the momentum generated when an incident field is scattered or ab-
sorbed. However, like Mie [1908], Debye only derived the expansion coefficients for
the scattered wave and neglected effects due to heat distribution inside the spherical
particle. His theory therefore cannot explain photophoresis, which is the motion of
absorbing particles in a fluid medium [Kerker 1982]. To consider the heat distribution
inside a spherical particle and its influence on photophoretic force [Kerker and Cooke
1973, 1982], the interior wave suddenly becomes of interest.

Some of the first generalizations of the Lorenz-Mie theory were to explain scat-
tering by coated or multilayered (concentric) spheres [Aden and Kerker 1951; Kerker
1969]. In such generalizations, the expansion coefficients change while the rest of the
scattering theory remains more or less unchanged. The Lorenz-Mie coefficients then
serve as a limiting case where the coating and the particle have the same index of
refraction. On the other hand, if we consider other heterogeneities inside the sphere,
the interior wave again becomes of interest. This is the case, for example, if we would
like to study cell biology and consider molecular scattering [Chew et al. 1976] or a
distribution of absorption centers [Dusel et al. 1979] within an irradiated sphere. The
expansion coefficients of the interior wave (cn and dn) were derived by Kerker and
Cooke [1973] and in later work by other authors, often with an unnecessarily com-
plicated numerator. Chew et al. [1976] found the simpler version of the numerator
(Ni), but it is worth noting that these expansion coefficient were given by Lorenz
in 1890 including the simple numerator [Lorenz 1890, Eqs. (34)]. Thus the complete
treatment of the interior wave together with the scattered wave distinguishes Lorenz’s
work from other early work on the scattering of a plane wave by a sphere.

An important generalization of the Lorenz-Mie theory is to consider an arbitrary
position of the scattering sphere in an arbitrarily shaped electromagnetic beam [Goues-
bet and Gréhan 2017]. The first version of this generalized Lorenz-Mie theory was
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developed in the 1980s by Gouesbet and colleagues [Gouesbet and Gréhan 1982;
Gouesbet et al. 1988]. In this more general setting, one would use the original Lorenz-
Mie coefficients multiplied by correction factors (same factors for an and cn and for bn
and dn). Citing Dusel et al. [1979], the interior wave was introduced (without simplifi-
cation) into the generalized theory by Barton et al. [1988]. The intensity distribution
of the interior wave is required for explaining explosion characteristics of droplets
exposed to a very narrow laser beam [Schaub et al. 1989]. As another example, this
internal intensity distribution is needed for reconstruction of the 3D temperature
field within a combusting droplet [Castanet et al. 2005]. Gouesbet and Gréhan [2017,
Sec. 8.2] provide an overview of research employing generalized Lorenz-Mie theory
to calculate resonances in the internal field of a particle situated in a laser beam.
They also explain (in Sec. 3.6) that it is possible to derive the simple numerator for
the Lorenz-Mie coefficients of the interior wave using a Wronskian relation. A fact
discovered by Lorenz in his work of 1890, but largely overlooked even today.

Another generalization of the Lorenz-Mie theory is to consider an absorbing host
medium. As described by Mie [1908], Maxwell’s equations reveal that a nonzero con-
ductivity leads directly to an imaginary part in the refractive index of the material,
and this makes the material an absorbing medium. Early on, a derivation of the
Lorenz-Mie theory by Stratton [1941] showed that the Lorenz-Mie coefficients have
the same mathematical expressions regardless of the absorption/conduction prop-
erties of the sphere and the medium. The only difference is whether the refractive
indices are real or complex numbers. This means that, regardless of the absorption
properties of the particle and the host, the mathematical equations for computing
the Lorenz-Mie coefficients are as described by Lorenz in 1890. The output from the
Lorenz-Mie theory, however, can be quite different depending on whether the refrac-
tive index of the host or the sphere is real-valued or complex-valued. The net effect
of light scattering by particles thus changes depending on the absorption properties
of the host medium and the particles.

Lorenz [1890] considered a transparent sphere in a transparent medium, which is
very useful for explaining atmospheric light scattering phenomena like sky, rainbows,
and clouds. In this case, the refractive index of both particle and host are real numbers.
Mie [1908] investigated an absorbing sphere in a transparent host to explain the
colourful scattering by colloidal metal solutions. An absorbing host is needed for
explaining the appearance of media like milk, icebergs, and natural waters [Frisvad
et al. 2007b]. Milk serum and water and ice are all weakly absorbing host media in
these examples, like in many others. Light scattering by the atmosphere and by sea ice
and seawater (and soot) are all highly important factors in climate models [Hansen
and Nazarenko 2004] and modelling of global warming effects [Pitari et al. 2015].
Wiscombe [1980] even wrote that “Mie scattering calculations pervade the entire
field of atmospheric optics.”

While the equations for the Lorenz-Mie coefficients are theoretically unaffected
by the absorption properties of the host medium, the distribution of the scattered
light is not. This is not so important for polydisperse systems of particles in a weakly
absorbing host [Frisvad et al. 2007b; Ma et al. 2019]. However, in cases like random
lasers [Luan et al. 2015] and solar cells [Kim et al. 2015], where the host is strongly
absorbing and scattering by particles is used to improve efficiency, differences in the
distribution of the scattered light could be very important. Imagine for instance that
your objective is to direct light into a photovoltaic cell using particle scattering.

The distribution of the scattered light changes when the incident wave becomes
inhomogeneous [Frisvad 2018]. Interestingly, a plane wave becomes inhomogeneous
upon refraction into an absorbing medium except in the unusual case of incidence
along the direction of the surface normal [Fry 1927]. Stratton did not consider an
inhomogeneous wave. Early work on scattering by a sphere in an absorbing medium
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follows Stratton [Galejs 1962; Mundy et al. 1974; Chýlek 1977] and is thus limited
to the very rare case of a homogeneous wave in an absorbing medium. More recent
work [Belokopytov and Vasil’ev 2006], considers the case of an inhomogeneous wave
in a transparent medium. The evanescent wave produced by the phenomenon of total
internal reflection is an example of such a case. These waves are particularly important
in total internal reflectance microscopy [Prieve and Walz 1993], where the scattering
by small particles of an evanescent wave traveling along a flat surface is used to
dynamically detect and track the particles. The Lorenz-Mie coefficients (an, bn, cn,
dn) are still the same as the ones found by Lorenz [1890], but it turns out that
an inhomogeneous wave is particularly effective at exciting the so-called whispering
gallery modes leading to microsphere resonators [Belokopytov and Vasil’ev 2006]. In
general, the theory of scattering of an inhomogeneous wave by a sphere in an absorbing
or a transparent host is not so far from the original Lorenz-Mie theory [Frisvad 2018].
However, the rotational symmetry of the distribution of the scattered light around
the direction of the incident light is broken by the wave inhomogeneity.

Microsphere resonators have a surprising number of interesting applications in
biosensing, optical signal processing, and development of microlasers [Rakovich and
Donegan 2010; Ward and Benson 2011]. The Lorenz-Mie coefficients are directly used
to calculate the conditions for an optical resonance [Rakovich and Donegan 2010].
Particles may even be trapped in a resonant cavity. This phenomenon of a radia-
tion pressure laser trap with the ability to levitate a particle is referred to as optical
tweezers. In this context, the internal field distribution is again important, and we
can calculate this for a particle in a laser beam using generalized Lorenz-Mie the-
ory [Gouesbet 2019]. Optical tweezers have a host of applications and even spurred
the rise of single-molecule biophysics [Killian et al. 2018; Polimeno et al. 2018]. The fa-
ther of optical tweezers, Arthur Ashkin, was awarded the 2018 Nobel prize in physics.

It is interesting to ponder whether Lorenz’s unique theoretical analysis of the in-
ternal field carries some useful insights just waiting to be collected. In particular,
Lorenz’s practical approximate formulae for the part of the interior wave due to total
internal reflection seem highly interesting [Lorenz 1890, p. 52]. In a geometrical optics
explanation, these resonances referred to as whispering gallery modes are due to light
being trapped inside the particle by total internal reflection. An approximate empir-
ical formula is often used in the analysis of such whispering gallery modes [Rakovich
and Donegan 2010]. Lorenz’s formulae are self-contained without series expansions,
and like the empirical formula they involve an inverse tangent function (in the vari-
ables δ and ∆). Thus, they could perhaps lead to a new practical but theoretically
founded formula for analyzing the structure of whispering gallery modes.

9 Lorenz-Mie theory and appearance prediction

The Lorenz-Mie theory is particularly useful for computing the macroscopic scattering
properties of a medium containing a random distribution of scattering particles, a
so-called random medium. The seminal textbook in the area of wave propagation
in random media is that of Ishimaru [1978]. We note that Ishimaru in his latest
book describes “the Mie scattering of a dielectric sphere” in more detail and now
mentions that “Lorenz gave essentially the same results before Mie’s work” [Ishimaru
2017, p. 382]. This means that Lorenz’s contribution in all fairness is becoming more
widely recognized. The case of dielectric spheres is also precisely the one addressed by
Lorenz, while Mie had his focus on conducting spheres. The macroscopic scattering
properties would be the phase function p and the scattering coefficient µs (which is
the same as h for non-absorbing host and particles). The phase function is the far
field distribution of the scattered light, while the scattering coefficient is the amount
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of scattering per unit of distance that light has travelled through the medium. Once
such properties are available, we can use them as parameters in the radiative transfer
equation [Chandrasekhar 1950; Ishimaru 1978], which together with a theory of light
propagation (often geometrical optics and thus ray tracing) forms the basis of material
appearance prediction [Frisvad et al. 2007b, 2012].

The link provided by Lorenz-Mie theory between the particle composition of a
random medium and its scattering properties and appearance in an image has a
broad range of applications. These are not only in atmospheric optics (as mentioned
above), but also in biomedical optics [Wang and Wu 2007; Tuchin 2015], hydrological
optics [Mobley 1994], heat transfer [Howell et al. 2016], and computer graphics [Callet
1996; Frisvad et al. 2007b]. The Lorenz-Mie theory is prominently featured in seminal
textbooks of all these areas except the last. The link from particle composition to
appearance becomes important as soon as we are interested in analysis based on
imaging modalities. As an example, we can with a noninvasive hyperspectral image
of a laser spot reflected from a random medium use Lorenz-Mie theory to estimate size
distributions of one or two particle inclusions [Abildgaard et al. 2016]. This inverse
use of Lorenz-Mie theory has been around at least since the mid-90s [Box et al. 1992;
Mourant et al. 1997], and a recently conducted sensitivity analysis found a good
potential for particle sizing in this approach [Postelmans et al. 2018].

Lorenz [1890, p. 56] provides the equations used today for calculating the phase
function and the scattering cross section of a spherical particle. The phase function
is provided in terms of the transversal components of the wave vector:

Eφ = −Hθ = ζe =
i sinφ

kr
ei(ωt−kr)

∞∑
n=1

2n+ 1

n(n+ 1)

(
kn

dPn
sin θ dθ

+ sn
d2Pn
dθ2

)

Eθ = Hφ = ηe = − i cosφ

kr
ei(ωt−kr)

∞∑
n=1

2n+ 1

n(n+ 1)

(
kn
d2Pn
dθ2

+ sn
dPn

sin θ dθ

)
.

Lorenz’s result is equivalent to the transversal components of the scattered field vec-
tors as found in textbooks deriving the theory based on Maxwell’s equations [van de
Hulst 1957; Kerker 1969]. The previously mentioned sign difference in Lorenz’s expan-
sion coefficients is canceled by Lorenz not using the first order associated Legendre
polynomials, since P 1

n = −dPn

dθ . For the scattering cross section, Lorenz found

Cs =
λ2

2π

∞∑
n=1

(2n+ 1)(|kn|2 + |sn|2) ,

which is also exactly the same as in modern textbooks given that kn = −an and
sn = −bn. Based on Lorenz’s exposition, the macroscopic scattering properties of a
monodisperse medium with one type of particle of one size are then

p(θ) =
|S1(θ)|2 + |S2(θ)|2

2|k|2Cs

S1(θ) =

∞∑
n=1

2n+ 1

n(n+ 1)

(
kn

dPn
sin θ dθ

+ sn
d2Pn
dθ2

)

S2(θ) =

∞∑
n=1

2n+ 1

n(n+ 1)

(
kn
d2Pn
dθ2

+ sn
dPn

sin θ dθ

)
µs = h = NpCs .

Remarkably, Lorenz uses these macroscopic scattering properties for precisely the
inverse problem discussed above. Toward the end of his memoir, he states the follow-
ing [Lorenz 1890, pp. 60–61]:
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If one has determined wavelengths of a series of absorption lines for a sys-
tem, these can be ascribed to the reciprocals of the roots in vn(β) = 0,
n = 0, 1, 2, . . ., through multiplication by a single constant factor. As this
factor is equal to N

2πR , it will thus be possible from the refractive index of
the system and from its ordinary absorption coefficient to determine all the
constants of the system, namely the number of spheres in a unit of volume,
the size of the spheres and their refractive index.

Lorenz’s suggested approach, which is described in more detail in the concluding
pages of the memoir, could easily carry some advantages over the more uninformed
data fitting approaches employed in more recent papers.

According to Christiansen [1896] who wrote about Lorenz only a few years after
the 1890 treatise, Lorenz had set himself the goal to fully solve the old famous rainbow
problem. Thus, Lorenz spent a number of pages on appearance predictions regarding
the rainbow (especially pp. 38–42 of the original publication). As an example, Lorenz
provided the following formula [Lorenz 1890, p. 42]:

Max. of apparent brightness = 0.06728
1

π

(
R

λ

) 1
3

.

Suppose we observe a rainbow, then given the relation between wavelengths and
perceived colours [Helmholtz 1867], the brightness of the observed colours over the
background would reveal the mean radius of the raindrops forming the rainbow.
Lorenz cited Helmholtz in his work on dispersion [Lorenz 1883] and was certainly
aware of the link between wavelength and perceived colour. The Young-Helmholtz
theory of trichromatic colour vision defines three curves that specify the perception
of a primary colour as a function of wavelength. The three primary colours are red,
green, and blue, and they roughly correspond to the three colour sensitive cones in the
human eye. Using psychophysical measurements of these curves [Stiles and Burche
1959; Stockman and Sharpe 2000], we can produce a table of the colours corresponding
to different wavelengths. This can then be used together with Lorenz’s theory.

Figure 3 is an example of an inverse method where we use Lorenz’s rainbow
theory for analysis of waterdrop size distributions in rainbows. In addition, Lorenz
provided equations for calculating the apparent brightness of the individual spectral
colours [Lorenz 1890, Eqs. (a), (b’), and (c’)]. This corresponds to appearance pre-
diction. Interestingly, computer graphics today enables us to test the visual quality
of historical theories by rendering images based on a given theory [Frisvad et al.
2007a]. We can for example test Aristotle’s rainbow theory, which is based on re-
flecting spherical particles. This can produce a primary rainbow effect at very low
computational expense [Frisvad et al. 2007a], but the theory accounts for no specifics
in the appearance of rainbows. The visual output of Lorenz’s theory has been tested
for atmospheric phenomena (sky and rainbow) by Jackèl and Walter [1997] and in
detail for rainbows by Sadeghi et al. [2012]. In this detailed investigation, the au-
thors found that Lorenz’s theory explains most visual rainbow effects. However, for
larger waterdrops (R > 0.4 mm), modification is required to account for some visual
phenomena as the perfect sphere is no longer as good an approximation.

The ability of the Lorenz-Mie theory to serve as a tool for appearance predic-
tion has surprising quantitative accuracy despite the fact that many particles are not
perfect spheres. Surface tension, which forces small liquid particles toward a more
spherical shape, is probably one of the reasons behind the success of the theory.
When particles are not quite spheres, it mostly affects the accuracy of the directional
distribution of the scattered light (the phase function p). However, in a polydisperse
colloid with particles of many different sizes, this is not quite as important as when
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Fig. 3. Two photographs of rainbows and the spectral colours corresponding to visible
wavelengths. The background shines through for the wavelengths where the human eye is
not very sensitive. We pick pixel samples (dots in images) along a line crossing the rainbow
and estimate wavelength and apparent brightness of the scattered light for each pixel by
comparing with the spectral colours. Using Lorenz’s theory, we find mean waterdrop radius
of µ = 0.26 mm (σ = 0.12 mm) for the left photo and µ = 0.35 mm (σ = 0.35 mm) for the
right photo. These are plausible values corresponding well with the fact that the brightest
rainbow pixels in the left image are green while they are red in the right image.

we consider an engineered material like a solar cell. In polydisperse colloids, an ap-
proximate phase function based on the asymmetry parameter g (the mean cosine
of the scattering angle) is often sufficient. In case of non-spherical particles, we can
obtain fairly accurate scattering coefficient (µs) and asymmetry parameter (g) using
Lorenz-Mie theory on a collection of spheres with volume-to-surface-area ratio that
is equivalent to that of the non-spherical particles [Grenfell and Warren 1999]. These
two scattering properties, including their wavelength dependence, are critical for the
quantitative accuracy of appearance predictions.

Conclusively, we illustrate the quantitative accuracy of the Lorenz-Mie theory
when predicting the appearance of a cloudy beverage in Figure 4. As seen in the com-
parison of the photographed image and the predicted image, appearance differences
are mostly a consequence of slight deviations in the glass geometry and reflectance,
and in the reflectance of the background made of white cardboard. The colour and
translucency of the cloudy beverage are predicted quite convincingly. The advantage
of such a model is that we can modify particle size distributions and absorption spec-
tra based on production parameters. In this way, the Lorenz-Mie theory can help
predicting the consequences of modified production parameters with respect to prod-
uct appearance. In addition, we can use calibrated photography (computer vision) to
check whether product samples are likely to be according to specification. Lorenz-Mie
theory could thus become an important tool in the digitalization of quality assurance
and fault detection that we see in industry these years.

10 Conclusion

We firmly believe that the Lorenz-Mie theory will persist for many years to come. In
many ways, Lorenz’s memoir seems a lost treasure. It is certainly a mathematically
dense text, but on the other hand it explains mathematical details that it could take
a long time to unearth for the uninitiated. We believe that closer scrutiny of the equa-
tions presented by Lorenz could be a fruitful endeavour. In the preceding sections,
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Fig. 4. Let us consider the physical experiment of acquiring a photograph of a polydisperse
colloid with a digital camera. The experimental setup is sketched in the upper left corner.
We choose cloudy apple juice as our colloid and use an available appearance model based
on Lorenz-Mie theory [Dal Corso et al. 2016]. The model produces a bimodal particle size
distribution based on the weight-% of colloidal apple flesh particles (lower left plot, D is
particle diameter) and index of refraction (IOR) for the apple juice host and the particles
(lower right plot). The appearance predicted by this model is presented in the upper right
image. Below photograph and rendering, we have extracted a small part of each image and
present a third image: the absolute difference in each colour band multiplied by 10.

we have tried to hint at different parts of the text that might be of interest. Lorenz’s
detailed theoretical investigation of the internal field might be useful with respect
to formulation of new practical ways of finding internal resonances in the scattering.
The many pages dedicated to approximations could perhaps lead to ingenious inverse
methods that we might not otherwise have thought of. In any case, we find it perti-
nent that Lorenz’s 1890 treatise with our translation to English is now more broadly
available to the scientific community.
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