
Tools for Virtual Reality Visualization of Highly Detailed Meshes

M. B. Jensen, E. I. Jacobsen, J. R. Frisvad, and J. A. Bærentzen

Technical University of Denmark

Abstract
The number of polygons in meshes acquired using 3D scanning or by computational methods for shape generation is rapidly
increasing. With this growing complexity of geometric models, new visualization modalities need to be explored for more
effortless and intuitive inspection and analysis. Virtual reality (VR) is a step in this direction but comes at the cost of a tighter
performance budget. In this paper, we explore different starting points for achieving high performance when visualizing large
meshes in virtual reality. We explore two rendering pipelines and mesh optimization algorithms and find that a mesh shading
pipeline shows great promise when compared to a normal vertex shading pipeline. We also test the VR performance of commonly
used visualization tools (ParaView and Unity) and ray tracing running on the graphics processing unit (GPU). Finally, we find
that mesh pre-processing is important to performance and that the specific type of pre-processing needed depends intricately
on the choice of rendering pipeline.

CCS Concepts
• Human-centered computing → Visualization toolkits;

1. Introduction

As of 2020, more than 2.5 quintillion (1018) bytes of data are gen-
erated daily [Bul21]. Thus, we have truly entered the Age of Big
Data, and we need good tools for analysis now more than ever.
In the field of visual analytics, interactive user interfaces assist
analytic reasoning [TC06] and Virtual Reality (VR) has been ex-
plored for better dealing with and analyzing big data [MGHK15].
The use of extended reality for visual analytics has led to the no-
tion of immersive analytics [CCC*15], where a head-mounted dis-
play (HMD) offers many exploration modes that can improve task
performance [WSN21]. However, this comes at the cost of signifi-
cant rendering performance requirements (80+ frames per second)
to avoid cybersickness issues [WSN21]. In many applications, a
modern graphics processing unit (GPU) will likely provide ade-
quate performance, but in areas like Earth science, where the main
concern is exploration of details in very large geospatial datasets,
rendering performance becomes highly important as it determines
whether or not the user can immersively inspect the details of inter-
est [ZWL*19].

Apart from use in visualization of geospatial data [KBB*06;
ZWL*19], it seems that VR is rarely employed for visualization
of large scale geometric data. We find this unfortunate since VR
simplifies data exploration and thereby arguably aids inductive rea-
soning. For visualization purposes, a crucial benefit of VR is that
the mapping from user movement to the virtual space is very in-
tuitive. Head motion maps directly to camera movement, and both
translation and rotation of an object can be achieved directly with
completely analogous hand gestures. Simply put, the user controls

both more degrees of freedom and does it in an more intuitive man-
ner than if interacting with a mouse and keyboard while looking
at a computer screen. Effectively, VR changes the role of the user
from passively inspecting images to actively investigating data.

Using VR is not without its challenges, however. In particular,
we are motivated by the concern that if frame rates drop or vary
significantly, it will negatively impact the motion-to-photon latency
(the time between a movement being registered by the HMD and
the corresponding frame being rendered [ZAVJ17]) and this carries
a real risk that users become cybersick [SNL20]. Clearly, this issue
puts a limit on the size of the datasets that we can visualize in VR
without a latency level that is too high.

In this regard, it is unfortunate that datasets grow rapidly in size
in many scientific fields. Topology optimization (albeit on a super-
computer) now allows for discretization of models into more than
1 billion voxels [AALS17]. In 3D scanning, object surfaces can be
scanned with a measurement sampling density (MSD) of 10,000
points per square millimeter [BSM11], and scanning a 39.3× 28
cm2 woodcut with a MSD at just 2500 points per square millimeter
resulted in 277 GB of data [BS14]. Smooth surfaces can be sim-
plified with little perceptual impact, but we often have unsmooth
data and a need to inspect the details. The mentioned woodcut is
an example of such data where lower MSD would make analysis
hard [BSM11]. Some examples of meshes with details at varying
scales are shown in Figure 1. The seal skull (1d–1f) is an example
of a 3D scanned surface that includes per vertex colour informa-
tion. A reduction in vertices therefore not only reduces the detail of
the mesh but also means the loss of colour information. Moreover,

The Gap between Visualization Research and Visualization Software (VisGap) (2021)
C. Gillmann, M. Krone, G. Reina, T. Wischgoll (Editors)

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

DOI: 10.2312/visgap.20211088 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/visgap.20211088


M. B. Jensen et al. / Tools for Virtual Reality Visualization of Highly Detailed Meshes

Figure 1: The rocking horse (a) consists of 2.2 million triangles. We reduce it to 10% of the original number of triangles (b) and further
to 1% (c). While this fairly large reduction has almost no effect on the silhouette, the fine scale geometric details are clearly impacted by
the reduction to 10% and almost completely erased at 1%. Below, a 3D scan of a seal skull is shown with vertex colours (d). Looking at a
close-up (e) and reducing to 1% (f), it is clear that the overall shape is completely unscathed, but the vertex colours are significantly blurred.

many types of data might have a complexity that makes it infeasi-
ble to perform significant reductions to the level of detail in the first
place (1a–1c). If we want the ability to interactively visualize the
small details of large meshes in VR, we have to ensure that our vi-
sualization tools deliver high rendering performance, which means
high and stable frame rates.

Our goal is to guide the choice of rendering technologies for
interactive VR-based visualization of highly detailed meshes. We
do this by comparing three visualization tools using a common
benchmark. The compared tools are: Jinsoku, our own VR visu-
alization engine based on C++/Vulkan; ParaView, which supports
VR and is one of the most popular visualization tools; and Unity,
which is a game engine and a popular tool for VR-based visualiza-
tion [DDC*14; SLC*19; CCB*19]. Our aim is not simply to find
out which of these three solutions is fastest but also to identify the
choices of rendering pipeline and geometry-preserving mesh opti-
mization that seem to have a big impact on performance. We dis-
cuss the underlying technologies in Section 2, the tested platforms
in Section 3, and we present and analyze our results in Section 4.

We use three different large and detailed 3D models for our in-
vestigation. The three models are examples from natural heritage
preservation (Seal Skull), topology optimization (Wing), and ad-
ditive manufacturing (Nobby). Table 1 provides some mesh com-
plexity info for the three models and example visualizations are in
Figure 2 (rightmost column). The Seal Skull has been 3D scanned
into a point cloud and digitally reconstructed as a triangle mesh.
The topology optimized airplane wing [AALS17; ASLA20] is
the largest model in our comparisons. The third mesh was cre-

Table 1: Test Meshes

Seal Skull Wing Nobby
no. triangles 14,504,882 38,629,758 32,905,214
no. vertices 21,757,335 92,010,363 16,970,666
model size 1.154GB 3.819 GB 1.723GB

ated with PrusaSlicer (https://www.prusa3d.com/) using a model
called Nobby (https://www.prusaprinters.org/prints/35338-nobby-
octopus-sculpt). The three models are interesting case studies as
they all have several orders of magnitude between the extent of the
model and the size of the details that would be of interest in a VR-
based inspection of the model.

In addition to the main study, we also investigated the use of
hardware accelerated ray-tracing for the purpose of visualization
of large scale geometry. This study and its results are presented in
Section 5. While all the results are discussed in Section 6.

2. The Graphics Pipeline

Traditionally, the graphics pipeline was easy to describe as a ma-
chine for processing and rasterizing triangles. Much of the perfor-
mance of the graphics pipeline was derived from the fact that it was
both data and task parallel, allowing processing of multiple vertices
in parallel with multiple fragments [Hai06]. During this period, it
was important to optimize meshes for the so-called post transform
and lighting (post-T&L) cache which is a global cache that stores
the transformed vertices, i.e. the output from the vertex shader

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

20

https://www.prusa3d.com/
https://www.prusaprinters.org/prints/35338-nobby-octopus-sculpt
https://www.prusaprinters.org/prints/35338-nobby-octopus-sculpt


M. B. Jensen et al. / Tools for Virtual Reality Visualization of Highly Detailed Meshes

[SNB07]. On average a vertex is shared by six triangles. Thus, if
a triangle needs a vertex that has already been transformed, it can
simply be picked from the post-T&L cache, assuming the mesh is
rendered with indexed primitives. Since the size of the cache might
not be known - for instance if the mesh is to be used on a variety of
graphics processors - meshes were often simply optimized to pro-
mote locality [For06]. If a vertex that is used by a given triangle is
also used soon after, it is likely to be in the cache, and the result of
vertex shading can be reused.

Modern graphics hardware has a different not-so-pipelined de-
sign: vertices and pixels are processed by the same streaming mul-
tiprocessors (SMs) imbued with local storage. If a modern GPU
were to have a shared post-T&L cache, it would have to be outside
the local storages of the SMs. In fact, it seems that modern GPUs
do not have a post-T&L cache [KKI*18]. Instead each SM pro-
cesses a small patch of the mesh at a time. Importantly, this means
that mesh optimization which promotes locality is still highly ben-
eficial but now for a different reason. If the triangles that share the
same vertex are close in the stream of triangles, they are also likely
to be in a patch processed at the same time on a given SM.

With the Turing architecture, NVIDIA also introduced a mech-
anism which directly exposes the way that meshes are processed
by the GPU, namely mesh shaders [Kub17; Kub20]. Mesh shaders
bring a programming model similar to that of compute shaders to
the graphics pipeline: a workgroup of individual threads on the
GPU are tasked with collaboratively producing both transformed
vertices and triangle connectivity. To exploit this feature, one needs
to break the mesh into smaller patches called meshlets. Essentially,
this is automatic if the traditional vertex shader pipeline is used, but
taking charge of meshlet generation affords additional freedom as
described below.

The mesh shader based pipeline is highly flexible. While a mesh-
let is usually associated with a group of triangles, it can be seen
simply as a descriptor that can carry any kind of information. Fur-
thermore, the inputs and outputs between the shader stages can be
decided by the programmer. A so-called task shader orchestrates
the work and can generate workgroups that process meshlets, or
decide that a meshlet is not visible and that resources should not
be spent on its processing. This is very important since it allows
the mesh shader to cull meshlets which are either outside the view
frustum or backfacing. A meshlet is considered backfacing if all
its faces are backfacing. This is easy to test if we store a cone that
contains all face normals for each meshlet.

The Turing architecture also saw the introduction of the so-called
RT cores which allow for much faster hardware accelerated ray
tracing on the GPU than previously [Bur20]. It has also recently be-
come possible to mix ray tracing and rasterization using the Vulkan
API [KHBW20]. While ray tracing makes it far easier to imple-
ment shadows, non-planar reflections, ambient occlusion and other
global effects, it is not likely to lead to faster rendering if only local
illumination (e.g. Phong shading) is required.

3. VR Visualization Tools

ParaView is a tool designed for visualization and analysis of ex-
tremely large datasets [AGL05]. Paraview is built on the Visualiza-

tion Toolkit (VTK), and it includes easy-to-use VR-based visual-
ization [MDJA18], making it a good choice for our purposes.

Unity is a game engine that includes VR support. In previous
work, it has been referred to as “a standard platform for develop-
ing immersive environments” [CCB*19]. However, in our initial
testing, we experienced surprisingly poor performance with Unity
when rendering our large meshes: average render times per frame
ranging from 20 to 140 milliseconds. To remedy this, we optimized
the application by switching to Unity’s Universal Render Pipeline
and by allowing Unity to optimize the mesh without decimating it.
This means that Unity is free to reorder the index buffer to increase
performance, but it is not allowed to change the number of ver-
tices. These optimizations led to significantly better render times.
However, Unity does not implement the new mesh shading pipeline
described above [Uni20].

We compare these two solutions to our own (bespoke) VR
visualization application implemented in C++ using the Vulkan
API [SK17]. We refer to our own application as Jinsoku. Since
Jinsoku is white box, it is easy to analyze and well-suited as a
benchmark when comparing the different tools. Jinsoku incorpo-
rates two pipelines: one based on vertex shading and one based on
mesh shading. This enables us to better analyze the practical im-
portance of mesh shaders.

As an additional experiment, we implemented a VR ray tracer.
While we found that GPU ray tracing scales well with an increas-
ing polygon count, the ray tracer was a factor of two slower than
Jinsoku and Unity. We therefore focus on rasterization techniques.
Ray Tracing is however becoming more viable and will continue to
do so as the recently introduced hardware acceleration matures.

3.1. Auxiliary Tools

We use SteamVR to interface with the headset for all the applica-
tions. SteamVR is a runtime API that interfaces with the backend of
OpenVR. As such, SteamVR enables developers to interface with
a broad range of different HMDs. SteamVR has several options
for analyzing the performance of an application and is capable of
recording frame data and saving it to a file. We use these data for
our comparisons (except in the case of ray tracing, see Section 5).
This means that applications are subject to the same asynchronous
time warping implementation.

The three test meshes have an increasing number of triangles and
vertices. The Seal Skull mesh and the Nobby mesh were optimized
using Tootle (https://github.com/GPUOpen-Archive/amd_tootle).
This program greedily reorganizes the mesh so that triangles us-
ing a given vertex are as close as possible in the list of triangles.
Tootle was created for the vertex shader pipeline where locality is
useful for vertex caching [NBS06], but it also makes the meshlets
more compact. Unfortunately, this software could not handle the
topology optimized Wing mesh, presumably because of its size.
For the skull, the optimized version has not only increased locality
but also reduced the overall number of meshlets needed to repre-
sent the mesh. For Nobby, the optimization has not changed the
number of cullable meshlets nor has it changed the total number of
meshlets. The optimized version is however still used since it might

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

21

https://github.com/GPUOpen-Archive/amd_tootle


M. B. Jensen et al. / Tools for Virtual Reality Visualization of Highly Detailed Meshes

Table 2: Meshlets

meshlets Skull Skull opt Wing Nobby Nobby opt
cullable 170,400 156,930 274,589 16 16

total 229,043 163,264 1,699,388 307,774 307,774

have changed the vertex order. Table 2 shows the total and cullable
number of meshlets for each mesh.

The ability to process only the parts of the mesh that can
be seen by the camera is often very powerful when dealing
with large amounts of data. We used the meshlet builder from
the official NVIDIA github (https://github.com/nvpro-samples/-
gl_vk_meshlet_cadscene) when implementing Jinsoku. Because
the mesh optimization in Unity is a black box, we also implement
a vertex shading pipeline in Jinsoku to directly compare the tradi-
tional vertex shading pipeline with the mesh shading pipeline.

4. Experiment Setup and Results

For our experiments, we set up the three visualization tools as fol-
lows.

• In Jinsoku, we used Phong shading with a fixed light position.
Texture mapping was not employed. Hence, each vertex carries
only one attribute in addition to its position, namely the surface
normal.
• In Unity (UnityURP in Figure 1), we also used Phong shading

with a fixed light position. The Phong shading is implemented
with a so-called unlit shader, meaning that no shadows are cast
from the light source. Texture mapping was not employed. The
out-of-the-box version of Unity (UnityNoop in Figure 1) uses a
deferred rendering pipeline and includes shadows.
• ParaView uses flat shading and has no options for changing this

in VR.

When measuring the render time with SteamVR we get the time
between each update to the HMD. Each update requires that two
frames are rendered and presented to the HMD. By using these
SteamVR render times, we obtain times that are comparable to
those that you would get during an actual inspection of the meshes.

Performance plots are in Figure 2. The bar charts are all plots of
average render times for each application. The whiskers show the
variance of the render time for each frame. For all plots, the vertical
axis is time in milliseconds. Each mesh has been visualized under
two different conditions, on two different hardware setups. In the
first condition, the entire mesh is visible, and in the second, the
mesh is inspected up close (this is exemplified in Figure 3).

The same transformations are applied to the meshes in both
Unity and Jinsoku. Since ParaView does not allow for the same pre-
cision in placing meshes the objects are inspects in approximately
the same positions. The first hardware platform uses an Oculus
Quest which has a pixel resolution of 1440×1600 for each eye and
runs with a refresh rate of 72 Hz. The Quest is tethered to a 2019
Razer Blade 15 with an NVIDIA GeForce RTX 2080 with Max-Q
Design and 8GB GDDR6 VRAM, a 9th Gen Intel Core i7-9750H
6-Core, 16GB of RAM and a 512GB SSD (NVMe). The second
hardware platform uses a Valve Index which has a pixel resolution

of 1440×1600 for each eye and can run with a refresh rate of up to
144 Hz. The Index is connected to a desktop that has an Intel Core
i9-9900k, 64GB of DDR4-2666 RAM, and one NVIDIA GeForce
RTX 2080 Ti Turbo OC with 11GB of GDDR6 RAM.

When converting the average render times to frames per second
(FPS) and comparing to a target of 80+ FPS [WSN21], we observe
that this is only achieved consistently for the Seal Skull. For the
Seal Skull we get low variance and average render times of 3.7–
5.0 ms (∼200–270 FPS) for UnityURP and 2.7–4.5 ms (∼222–
370 FPS) for Jinsoku with mesh shading and the Tootle-optimized
meshes. For the Wing, we see a different picture with UnityURP
timings in the range of 10.2–16.4 ms (∼61–98 FPS) on both plat-
forms. Here the mesh shading pipeline does really well when in-
specting the wing up close getting between 4.9–8.5 ms (∼118–
204 FPS). The variance on the Quest platform is however quite
high. For Nobby, we get good results for UnityURP and ParaView.
However, this is only on the Index platform with average render-
ing times around 8.1–10.2 ms (∼98–123 FPS) while inspecting
the mesh from afar. All other tests show average rendering times
from 16–223.9 ms (∼4.5–62.5 FPS) while exhibiting large vari-
ance across the board. Rendering performance is thus still a ma-
jor concern when it comes to visualization of some types of large
meshes. We suggest future development of better optimization of
meshes for the mesh shading pipeline to avoid discomfort in VR
visualization of such meshes.

4.1. Vertex Shading vs Mesh Shading

We can compare the vertex and mesh shading pipeline by inspect-
ing the blue and red bars in Figures 2a, 2b, 2d, 2e, 2g, 2h. When
we are inspecting the mesh up close the mesh shading pipeline per-
forms better in 5 out of 6 test cases. When inspecting the mesh from
afar the mesh shading pipeline performs better in 3 out 6 cases. We
see that the mesh shading pipeline exhibits larger variance in ren-
der time for the wing and Nobby but not the skull. For Nobby the
normal vertex shading pipeline performs better on the Index but
worse on the Quest. This can be seen in Figure 2g and 2h. Figure 4
shows the Nobby mesh up close with a visualization of the mesh-
lets. This gives some insight into why the mesh shading pipeline
exhibit these high render times. The mesh is comprised of elon-
gated cylinders, and since the meshlets are not generated so as to
combine faces with similar normals, it is likely that no meshlets can
ever be culled because they all contain faces that are visible from
almost any direction. On the other hand, the mesh shading pipeline
is extremely efficient on the largest data set. Figure 2e and 2d show
that the quest and index mesh shader pipeline produces the smallest
average render times across headsets when inspecting the mesh up
close.

4.2. Index Buffer order and Mesh shaders

Allowing Unity to optimize the mesh is in part what resulted in
the performance that can be seen in Figure 2. This motivated us to
try and see if the mesh shading pipeline would also benefit from
similar treatment. It is clear that meshlets also benefit from local-
ity optimizing the index buffer, not only does it produce more cul-
lable meshlets but it also decrease the total number of meshlets and

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

22

https://github.com/nvpro-samples/gl_vk_meshlet_cadscene
https://github.com/nvpro-samples/gl_vk_meshlet_cadscene


M. B. Jensen et al. / Tools for Virtual Reality Visualization of Highly Detailed Meshes

(a) Render times for Seal Skull on Quest. (b) Render times for Seal Skull on Index. (c) Seal Skull visualized in Jinsoku.

(d) Render times for Wing on Quest. (e) Render times for Wing on Index. (f) Wing visualized in Unity_noop.

(g) Render times for Nobby on Quest. (h) Render times for Nobby on Index. (i) Nobby visualized in ParaView.

Figure 2: Test results as bar plots (a,b,d,e,g,h). Each bar plot has render time in milliseconds on the vertical axis and shows two test cases
for one mesh on one platform. The crosshatched bar is for close-up inspection while the flat-coloured bar is for far-away inspection. The
whiskers show the variance of the render time. In the right column, we visualize the Seal Skull in Jinsoku (c), the Wing in Unity (f), and
Nobby in ParaView (i). Explanation of abbreviations: Jinsoku - Vulkan-based vertex shading pipeline; UnityNoop - none-optimized Unity;
UnityURP - Unity when using its Universal Render Pipeline and its mesh optimization; JinMesh - Jinsoku when using its mesh shading
pipeline; JinOpt - Jinsoku with mesh shading and mesh optimized by Tootle; ParaView - the VR support of ParaView.

the variance in the render time. This indicates that less vertices are
shared across meshlets. Figures 2a and 2b also reflect this by show-
ing improvements when comparing the mesh shading pipeline with
(purple bars) and without (red bars) the optimized mesh. The mesh
shading pipeline even edges out Unity when inspecting the skull up
close. Nobby on the other hand exhibits a case where the optimiza-
tion algorithm fails to optimize the mesh.

5. Ray tracing

Hardware rasterization of triangles is by far the more common ap-
proach when we are aiming at rendering of objects at the high frame
rates required by VR. Rasterization is the process of drawing a tri-
angle by first projecting it into the image plane and then shading
the pixels covered by the triangle. Instead of projecting triangles to
an image plane, we could trace a ray from a position in each pixel

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

23



M. B. Jensen et al. / Tools for Virtual Reality Visualization of Highly Detailed Meshes

Inspection from far away Inspection up close
Figure 3: The two test conditions.

Figure 4: Nobby meshlets.

into the scene and figure out what triangle the ray hit (if any). This
is the ray tracing paradigm.

Ray tracing eases rendering of shadows in general and rendering
of multiple reflections and refractions in specular surfaces. Since
we can place our triangle mesh in a spatial data structure, we can
find the closest triangle that a ray might intersect in logarithmic
time. If the number of triangles is very large, this is a great advan-
tage. However, it becomes more expensive if the digital object is
interactively modified, as the spatial data structure must then be up-
dated. This can be done in parallel on the GPU, but still incurs some
overhead. Conventional ray tracing also requires that we consider
all pixels, which means that performance depends more directly on
the screen resolution. In rasterization, we need only consider the
pixels where fragments end up, but then in return we have to pro-
cess each triangle.

Use of ray tracing for VR became tractable on consumer plat-
forms only with recently introduced hardware support. To employ
this hardware support, we used NVIDIA OptiX [PBD*10; WP19]:
a CUDA-based API that requires CUDA to Vulkan/OpenGL in-
teroperability to efficiently interact with OpenVR. The ray tracer
renders directly to textures that OpenVR can access. This unfortu-
nately has the effect that the HMD cannot directly measure render
times (as it can always use the texture whether it was updated or
not). For this reason, we did not include ray tracing in Figure 2.
Instead, we discuss the prospects of ray tracing for VR.

We designed our ray tracer to provide a frame for each verti-
cal synchronization (vsync) of the HMD. When measuring render
times, everything was kept unchanged except that we did not con-
nect an HMD to avoid this vsync lock. As in our results for raster-
ization, we tested our VR ray tracer using a GPU on a stationary
computer (Figure 5) and on two GPUs on laptop computers (Fig-
ure 6) with models of different complexity (numbers of triangles).

4: 300,603, t: 9.43 ms 4: 15,740,813, t: 9.80 ms
Figure 5: VR ray tracing with one sample ambient occlusion (rea-
son for the noise) rendered using an NVIDIA RTX 2080 graphics
card. Here,4 is number of triangles and t is render time.

Figure 6: Performance of our GPU VR ray tracer when rendering
the Blender monkey [Wik21] with increasing number of subdivi-
sions. We compare with the two shading pipelines in Jinsoku (left)
and with a GPU architecture from before RTX (right). The hori-
zontal axes are logarithmic, meaning that the development in per-
formance should be a straight line for logarithmic time complexity.
This is not quite obtained, but RTX is getting there.

We tested performance for GPUs with different hardware archi-
tectures. The ones called RTX have special RT cores dedicated to
hardware acceleration of ray tracing [Bur20].

The RTX graphics card almost achieves the logarithmic time
complexity with increasing number of triangles (Figure 6). The dif-
ference in performance as a function of the number of triangles is
very small across several orders of magnitude (Figures 5 and 6).
Even so, GPU ray tracing is still significantly slower than Jinsoku
when it comes to the visualization with local illumination that we
are testing in this work (Figure 6). RTX cards for stationary com-
puters are fast enough to support the frame rates needed for ray
traced virtual reality (Figure 5). We could even afford a so-called
ambient occlusion ray, which is a shadow ray traced in a random
direction. Ambient occlusion is a visual effect that is expensive to
compute in rasterization. In ray tracing, we can get a noisy ver-
sion of it at low cost. Since the RTX architecture has special ten-
sor cores dedicated to hardware acceleration of deep learning tech-
niques [Bur20], the future will see very efficient denoising that can
also exploit temporal correspondences between frames [HMS*20].
GPU accelerated denoising is however still too expensive for the
time budget allowed by VR.

Interestingly, ray tracing was recently made available as a core
extension in Vulkan [KHBW20] (released in December 2020). This
provides the first open, cross-vendor, cross-platform standard for
hardware accelerated ray tracing. In addition, Vulkan ray tracing
enables use of a hybrid between rasterization and ray tracing. Un-

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

24



M. B. Jensen et al. / Tools for Virtual Reality Visualization of Highly Detailed Meshes

real Engine 4 integrated the ray tracing functionality in DirectX
12 (which is similar to the one in Vulkan) in combination with
learning-based denoising into their rasterization-based framework
to enable real-time rendering of cinematic quality [LLCK19]. This
is an indicator that a hybrid of rasterization and ray tracing will
likely become an option in the VR graphics engines of the future.
Since Jinsoku is based on the Vulkan API, it directly supports ex-
tension to include ray traced shading effects that can potentially
enhance the inspection of geometric details.

6. Discussion and Conclusion

Unsurprisingly, our tests show that performance is very dependent
on mesh connectivity. This lends a great advantage to Unity in
comparison to Jinsoku when rendering an unoptimized mesh, since
Unity’s proprietary optimization step seems to greatly improve per-
formance. This is particularly true for the Nobby mesh.

Thus, while ParaView is the easiest way to get started on in-
spection of meshes in VR, ParaView only supports flat shading and
lacks the straight forward programmatic extensibility of Unity. Per-
haps the biggest limitation of Unity is the lack of support (so far) for
the latest features of graphics hardware. The mesh shading pipeline
has two vast advantages, namely frustum and backface culling on
the granularity of meshlets. Having the ability to only process the
parts of the mesh that can be seen by the camera can be really pow-
erful when dealing with large amounts of data and when zooming
in on models. Figure 2e shows this clearly. In fact, this indicates
that a mesh shading pipeline could very well be the best choice for
visualization of large and complex meshes in VR. For the skull, our
tests show that a largely unoptimized Jinsoku is capable of perform-
ing on par with an optimized version of Unity, and that optimizing
the mesh further increases performance while decreasing variance
in the render time.

Unfortunately, reaping the benefits of the mesh shading pipeline
is largely contingent on having cullable meshlets, and our tools for
mesh optimization (e.g. Tootle) are generally still aimed at the ver-
tex shading pipeline. This means that the methods for optimization
largely aim to structure the output such that it is suitable for a global
cache as opposed to a parallel architecture where vertex locality is
made explicit. Moreover, we face the problem that meshes are very
different. Given a naïve optimization, the Nobby mesh would con-
tain no meshlets cullable by backface culling for instance. Thus,
going forward, a key to good VR performance on arbitrary geome-
try seems to be mesh pre-processing algorithms which analyze and
adapt to the particular inputs.

In conclusion, our paper compared a minimal Vulkan render en-
gine (Jinsoku) with Unity and ParaView. Jinsoku used little opti-
mization but managed to keep up with an optimized Unity appli-
cation in some of the more interesting cases. Moreover, the mesh
shading pipeline is very flexible which can be utilized to gain per-
formance in some of the situations explored in this paper. We ad-
mit that this comes at the cost of some additional development time
compared to Unity, but the mesh shading pipeline is in itself a com-
pelling argument for building an engine when performance is an
overriding concern. More research is needed to quantify the poten-
tial performance gains from using mesh optimization algorithms
that are specifically tailored to the mesh shading pipeline.

Combining a well optimized engine with a mesh optimization
algorithm for a mesh shading pipeline holds a lot of promise for a
VR-based visualization platform. In fact, we have seen in our study
that it is possible to visualize a mesh containing more than 14.5
million triangles while still achieving render times of 222-370 FPS.
This is significantly more than the required 80+ FPS. Not only this,
but when investigating a mesh containing more than 38.6 million
triangles, we are just around the 80 FPS, and while investigating
details, the FPS climbs as high as 204 when using a mesh shading
pipeline. With numbers like these, it is safe to say that VR should
more often be considered a viable modality for visualization, even
of large datasets.

In this paper, our focus has been on rendering efficiency since ef-
ficiency limits what data sets we can effectively investigate in VR.
As discussed above, we are able to visualize geometric data sets on
the order of tens of millions of triangles with a frame rate sufficient
for VR if we make the right technical choices. With this in place,
we plan to turn our investigations to more application specific prob-
lems pertaining to the visualization of large geometric data sets.
Tools for explorative analysis of geometric data would appear to
benefit from a greater use of virtual reality platforms, but, in many
cases, these types of data are either hard to simplify effectively,
or important information would be lost by doing so. Thus, going
forward, we hope this investigation, and specifically the Jinsoku
engine, will be helpful in facilitating the use of VR as a tool for
visualization and exploration of these types of geometric data.

7. Acknowledgments

We would like to thank Michelle Strecker Svendsen who scanned
the seal skull and Luxion ApS for collaboration on VR ray tracing.
The rocking horse model is provided courtesy of INRIA by the
AIM@SHAPE-VISIONAIR Shape Repository. This research was
supported by Advokat Bent Thorbergs Fond (ref. 66.531).

References
[AALS17] AAGE, NIELS, ANDREASSEN, ERIK, LAZAROV, BOYAN S.,

and SIGMUND, OLE. “Giga-voxel computational morphogenesis for
structural design”. Nature 550.7674 (2017), 84–86. DOI: 10.1038/
nature23911 1, 2.

[AGL05] AHRENS, JAMES, GEVECI, BERK, and LAW, CHARLES. “Par-
aView: An end-user tool for large data visualization”. The Visualization
Handbook 717–731 (2005). DOI: 10.1016/B978- 012387582-
2/50038-1 3.

[ASLA20] AAGE, NIELS, SIGMUND, OLE, LAZAROV, BOYAN B., and
ANDREASSEN, ERIK. TopWingData. Dataset. Technical University of
Denmark, 2020. DOI: 10.11583/dtu.12581615.v1 2.

[BS14] BUNSCH, ERYK and SITNIK, ROBERT. “Method for visualization
and presentation of priceless old prints based on precise 3D scan”. Mea-
suring, Modeling, and Reproducing Material Appearance. Vol. 9018.
SPIE, 2014, 90180Q. DOI: 10.1117/12.2042635 1.

[BSM11] BUNSCH, ERYK, SITNIK, ROBERT, and MICHONSKI, JAKUB.
“Art documentation quality in function of 3D scanning resolution and
precision”. Computer Vision and Image Analysis of Art II. Vol. 7869.
Proceedings of SPIE. 2011, 78690D. DOI: 10.1117/12.876647 1.

[Bul21] BULAO, JACQUELYN. How Much Data Is Created Every Day in
2020? TechJury Blog. 2021. URL: https : / / techjury . net /
blog/how-much-data-is-created-every-day/ 1.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

25

https://doi.org/10.1038/nature23911
https://doi.org/10.1038/nature23911
https://doi.org/10.1016/B978-012387582-2/50038-1
https://doi.org/10.1016/B978-012387582-2/50038-1
https://doi.org/10.11583/dtu.12581615.v1
https://doi.org/10.1117/12.2042635
https://doi.org/10.1117/12.876647
https://techjury.net/blog/how-much-data-is-created-every-day/
https://techjury.net/blog/how-much-data-is-created-every-day/


M. B. Jensen et al. / Tools for Virtual Reality Visualization of Highly Detailed Meshes

[Bur20] BURGESS, JOHN. “RTX on–The NVIDIA Turing GPU”. IEEE
Micro 40.2 (2020), 36–44. DOI: 10.1109/MM.2020.2971677 3, 6.

[CCB*19] CORDEIL, MAXIME, CUNNINGHAM, ANDREW, BACH, BEN-
JAMIN, HURTER, CHRISTOPHE, THOMAS, BRUCE H, MARRIOTT,
KIM, and DWYER, TIM. “IATK: An immersive analytics toolkit”. IEEE
Conference on Virtual Reality and 3D User Interfaces (VR 2019).
2019, 200–209. DOI: 10.1109/VR.2019.8797978 2, 3.

[CCC*15] CHANDLER, TOM, CORDEIL, MAXIME, CZAUDERNA, TO-
BIAS, DWYER, TIM, GLOWACKI, JAROSLAW, GONCU, CAGATAY,
KLAPPERSTUECK, MATTHIAS, KLEIN, KARSTEN, MARRIOTT, KIM,
SCHREIBER, FALK, and WILSON, ELLIOT. “Immersive analytics”. Big
Data Visual Analytics (BDVA 2015). IEEE, 2015, 1–8. DOI: 10.1109/
BDVA.2015.7314296 1.

[DDC*14] DONALEK, CIRO, DJORGOVSKI, S. G., CIOC, ALEX, WANG,
ANWELL, ZHANG, JERRY, LAWLER, ELIZABETH, YEH, STACY, MA-
HABAL, ASHISH, GRAHAM, MATTHEW, DRAKE, ANDREW, DAVID-
OFF, SCOTT, NORRIS, JEFFREY S., and LONGO, GIUSEPPE. “Immer-
sive and collaborative data visualization using virtual reality platforms”.
IEEE International Conference on Big Data. 2014, 609–614. DOI: 10.
1109/BigData.2014.7004282 2.

[For06] FORSYTH, TOM. Linear-Speed Vertex Cache Optimisation. Sept.
2006. URL: https://tomforsyth1000.github.io/papers/
fast_vert_cache_opt.html 3.

[Hai06] HAINES, ERIC. “An introductory tour of interactive rendering”.
IEEE Computer Graphics and Applications 26.1 (2006), 76–87. DOI:
10.1109/MCG.2006.9 2.

[HMS*20] HASSELGREN, J., MUNKBERG, J., SALVI, M., PATNEY, A.,
and LEFOHN, A. “Neural temporal adaptive sampling and denoising”.
Computer Graphics Forum 39.2 (2020), 147–155. DOI: 10 . 1111 /
cgf.13919 6.

[KBB*06] KREYLOS, OLIVER, BAWDEN, GERALD, BERNARDIN,
TONY, BILLEN, MAGALI I., COWGILL, ERIC S., GOLD, RYAN D.,
HAMANN, BERND, JADAMEC, MARGARETE, KELLOGG, LOUISE H.,
STAADT, OLIVER G., and SUMNER, DAWN Y. “Enabling scientific
workflows in virtual reality”. International Conference on Virtual
Reality Continuum and Its Applications (VRCIA 2006). 2006, 155–162.
DOI: 10.1145/1128923.1128948 1.

[KHBW20] KOCH, DANIEL, HECTOR, TOBIAS, BARCZAK, JOSHUA, and
WERNESS, ERIC. Ray Tracing in Vulkan. Khronos Blog. Mar. 2020.
URL: https://www.khronos.org/blog/ray-tracing-
in-vulkan 3, 6.

[KKI*18] KERBL, BERNHARD, KENZEL, MICHAEL, IVANCHENKO,
ELENA, SCHMALSTIEG, DIETER, and STEINBERGER, MARKUS. “Re-
visiting the vertex cache: Understanding and optimizing vertex process-
ing on the modern GPU”. Proceedings of the ACM on Computer Graph-
ics and Interactive Techniques 1.2 (2018), 29:1–29:16. DOI: 10.1145/
3233302 3.

[Kub17] KUBISCH, CHRISTOPH. Introduction to Turing Mesh Shaders.
NVIDIA Developer Blog. Sept. 2017. URL: https://developer.
nvidia . com / blog / introduction - turing - mesh -
shaders/ 3.

[Kub20] KUBISCH, CHRISTOPH. Using Mesh Shaders for Professional
Graphics. Dec. 2020. URL: https : / / developer . nvidia .
com/blog/using-mesh-shaders-for-professional-
graphics/ 3.

[LLCK19] LIU, EDWARD, LLAMAS, IGNACIO, CAÑADA, JUAN, and
KELLY, PATRICK. “Cinematic rendering in UE4 with real-time ray
tracing and denoising”. Ray Tracing Gems: High-Quality and Real-
Time Rendering with DXR and Other APIs. Ed. by HAINES, ERIC and
AKENINE-MÖLLER, TOMAS. Apress, 2019, 289–319. DOI: 10.1007/
978-1-4842-4427-2_19 7.

[MDJA18] MARTIN, KEN, DEMARLE, DAVID, JHAVERI, SANKHESH,
and AYACHIT, UTKARSH. Taking ParaView into Virtual Reality. Kitware
Blog. 2016, updated 2018. URL: https://blog.kitware.com/
taking-paraview-into-virtual-reality/ 3.

[MGHK15] MORAN, A., GADEPALLY, V., HUBBELL, M., and KEPNER,
J. “Improving Big Data visual analytics with interactive virtual reality”.
IEEE High Performance Extreme Computing Conference (HPEC 2015).
2015, 1–6. DOI: 10.1109/HPEC.2015.7322473 1.

[NBS06] NEHAB, DIEGO, BARCZAK, JOSHUA, and SANDER, PEDRO
V. “Triangle order optimization for graphics hardware computation
culling”. Symposium on Interactive 3D Graphics and Games (I3D ’06).
ACM, 2006, 207–211. DOI: 10.1145/1111411.1111448 3.

[PBD*10] PARKER, STEVEN G., BIGLER, JAMES, DIETRICH, AN-
DREAS, FRIEDRICH, HEIKO, HOBEROCK, JARED, LUEBKE, DAVID,
MCALLISTER, DAVID, MCGUIRE, MORGAN, MORLEY, KEITH, RO-
BISON, AUSTIN, and STICH, MARTIN. “OptiX: A general purpose ray
tracing engine”. ACM Transactions on Graphics 29.4 (2010). DOI: 10.
1145/1778765.1778803 6.

[SK17] SELLERS, GRAHAM and KESSENICH, JOHN. Vulkan Program-
ming Guide: The Official Guide to Learning Vulkan. Addison-Wesley,
2017 3.

[SLC*19] SICAT, RONELL, LI, JIABAO, CHOI, JUNYOUNG, CORDEIL,
MAXIME, JEONG, WON KI, BACH, BENJAMIN, and PFISTER,
HANSPETER. “DXR: A toolkit for building immersive data visualiza-
tions”. IEEE Transactions on Visualization and Computer Graphics 25.1
(2019), 8440858. DOI: 10.1109/TVCG.2018.2865152 2.

[SNB07] SANDER, PEDRO V., NEHAB, DIEGO, and BARCZAK, JOSHUA.
“Fast triangle reordering for vertex locality and reduced overdraw”. ACM
Transactions on Graphics 26.3 (July 2007), 89:1–89:9. DOI: 10.1145/
1276377.1276489 3.

[SNL20] STAUFFERT, JAN-PHILIPP, NIEBLING, FLORIAN, and
LATOSCHIK, MARC ERICH. “Latency and cybersickness: Impact,
causes and measures. A review”. Frontiers in Virtual Reality 1
(2020), 31. DOI: 10.3389/frvir.2020.582204 1.

[TC06] THOMAS, J. J. and COOK, K. A. “A visual analytics agenda”.
IEEE Computer Graphics and Applications 26.1 (2006), 10–13. DOI:
10.1109/MCG.2006.5 1.

[Uni20] UNITY GRAPHICS TEAM. Personal communications. 2020 3.

[Wik21] WIKIPEDIA. Blender (Software) - Suzanne. 2021. URL: https:
/ / en . wikipedia . org / wiki / Blender _ (software )
#Suzanne 6.

[WP19] WALD, INGO and PARKER, STEVEN G. “RTX Accelerated Ray
Tracing with OptiX”. ACM SIGGRAPH 2019 Courses. 2019. URL:
https : / / sites . google . com / view / rtx - acc - ray -
tracing-with-optix 6.

[WSN21] WAGNER, JORGE, STUERZLINGER, WOLFGANG, and NEDEL,
LUCIANA. “The effect of exploration mode and frame of reference in
immersive analytics”. IEEE Transactions on Visualization and Com-
puter Graphics (2021). To appear. DOI: 10.1109/TVCG.2021.
3060666 1, 4.

[ZAVJ17] ZHAO, JINGBO, ALLISON, ROBERT S., VINNIKOV, MAR-
GARITA, and JENNINGS, SION. “Estimating the motion-to-photon la-
tency in head mounted displays”. IEEE Virtual Reality (VR 2017).
2017, 313–314. DOI: 10.1109/VR.2017.7892302 1.

[ZWL*19] ZHAO, JIAYAN, WALLGRÜN, JAN OLIVER, LAFEMINA, PE-
TER C., NORMANDEAU, JIM, and KLIPPEL, ALEXANDER. “Harness-
ing the power of immersive virtual reality-visualization and analysis
of 3D earth science data sets”. Geo-spatial Information Science 22.4
(2019), 237–250. DOI: 10.1080/10095020.2019.1621544 1.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

26

https://doi.org/10.1109/MM.2020.2971677
https://doi.org/10.1109/VR.2019.8797978
https://doi.org/10.1109/BDVA.2015.7314296
https://doi.org/10.1109/BDVA.2015.7314296
https://doi.org/10.1109/BigData.2014.7004282
https://doi.org/10.1109/BigData.2014.7004282
https://tomforsyth1000.github.io/papers/fast_vert_cache_opt.html
https://tomforsyth1000.github.io/papers/fast_vert_cache_opt.html
https://doi.org/10.1109/MCG.2006.9
https://doi.org/10.1111/cgf.13919
https://doi.org/10.1111/cgf.13919
https://doi.org/10.1145/1128923.1128948
https://www.khronos.org/blog/ray-tracing-in-vulkan
https://www.khronos.org/blog/ray-tracing-in-vulkan
https://doi.org/10.1145/3233302
https://doi.org/10.1145/3233302
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://developer.nvidia.com/blog/using-mesh-shaders-for-professional-graphics/
https://developer.nvidia.com/blog/using-mesh-shaders-for-professional-graphics/
https://developer.nvidia.com/blog/using-mesh-shaders-for-professional-graphics/
https://doi.org/10.1007/978-1-4842-4427-2_19
https://doi.org/10.1007/978-1-4842-4427-2_19
https://blog.kitware.com/taking-paraview-into-virtual-reality/
https://blog.kitware.com/taking-paraview-into-virtual-reality/
https://doi.org/10.1109/HPEC.2015.7322473
https://doi.org/10.1145/1111411.1111448
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1109/TVCG.2018.2865152
https://doi.org/10.1145/1276377.1276489
https://doi.org/10.1145/1276377.1276489
https://doi.org/10.3389/frvir.2020.582204
https://doi.org/10.1109/MCG.2006.5
https://en.wikipedia.org/wiki/Blender_(software)#Suzanne
https://en.wikipedia.org/wiki/Blender_(software)#Suzanne
https://en.wikipedia.org/wiki/Blender_(software)#Suzanne
https://sites.google.com/view/rtx-acc-ray-tracing-with-optix
https://sites.google.com/view/rtx-acc-ray-tracing-with-optix
https://doi.org/10.1109/TVCG.2021.3060666
https://doi.org/10.1109/TVCG.2021.3060666
https://doi.org/10.1109/VR.2017.7892302
https://doi.org/10.1080/10095020.2019.1621544

