
The Visual Computer
The final publication is available at Springer via http://dx.doi.org/10.1007/s00371-016-1207-2

Interactive Directional Subsurface Scattering and Transport of
Emergent Light

Alessandro Dal Corso · Jeppe Revall Frisvad · Jesper Mosegaard ·
J. Andreas Bærentzen

Received: date / Accepted: date

Abstract Existing techniques for interactive rendering

of deformable translucent objects can accurately com-

pute diffuse but not directional subsurface scattering

effects. It is currently common practice to gain effi-

ciency by storing maps of transmitted irradiance. This

is however not efficient if we need to store elements of

irradiance from specific directions. To include changes

in subsurface scattering due to changes in the direc-

tion of the incident light, we instead sample incident

radiance and store scattered radiosity. This enables us

to accommodate not only the common distance-based

analytical models for subsurface scattering but also di-

rectional models. In addition, our method enables easy

extraction of virtual point lights for transporting emer-

gent light to the rest of the scene. Our method requires

neither preprocessing nor texture parameterization of
the translucent objects. To build our maps of scattered

radiosity, we progressively render the model from dif-

ferent directions using an importance sampling pattern

based on the optical properties of the material. We ob-

tain interactive frame rates, our subsurface scattering

results are close to ground truth, and our technique is

the first to include interactive transport of emergent

light from deformable translucent objects.

Keywords subsurface scattering · global illumination ·
interactive rendering · translucent objects · turbid

media

A. Dal Corso (�) · J. R. Frisvad · J. A. Bærentzen
Technical University of Denmark, Kgs. Lyngby, Denmark
E-mail: alcor@dtu.dk

J. Mosegaard
The Alexandra Institute, Aarhus, Denmark

1 Introduction

Subsurface scattering of light is a physical phenomenon

that occurs in translucent materials. Milk, honey, skin,

marble, and candle wax are just a few examples of

translucent materials. It is possible to produce the qual-

itative appearance of translucency using interactive vol-

ume rendering techniques [32], but such techniques are

not quantitatively accurate. With the advent of analyt-

ical models for subsurface scattering [26], it became fea-

sible to build more accurate techniques for interactive

rendering of translucent objects. The first technique of

this kind [33], and more recent ones that also work for

deformable objects (see Section 2), consider diffuse sub-

surface scattering only. In practice, this means that sub-

surface scattering is computed by evaluating an integral

over the object surface of an analytic dipole model [26]

that only depends on the distance between the points

of incidence and emergence. Single scattering and other

dependencies of the subsurface scattering on the direc-

tion of the incident light are neglected. Recent work

in offline rendering however shows that the directional

effects are not negligible [50,20,10,14].

We present an interactive technique that supports

directional subsurface scattering without relying on pre-

computation or a grid for volumetric light propagation.

To the best of our knowledge, our method is the first

of its kind. Since the method does not rely on texture

parameterization, it works for deformable and even pro-

cedurally generated geometry.

Due to reciprocity of light transport, we would ide-

ally treat the directions of incident and emergent light

equally. This is however too costly for an interactive

technique. To achieve interactivity, we need caching

of subsurface scattering computations. Existing tech-

niques typically cache transmitted irradiance [25,33]

2 Alessandro Dal Corso et al.

diffuse subsurface scattering transport of emergent light directional subsurface scattering

Fig. 1 Deforming translucent candle rendered interactively as with existing techniques (left block), with our transport of
emergent light (middle block), and including directional subsurface scattering (right block). Our method is the first to support
interactive rendering of the results in the right block (6 frames per second). For this scene, we use 28 scattered radiosity maps,
45 samples per direction, and 80 virtual point lights.

(total incoming light in a surface point) and use a pre-

computed filter to evaluate the subsurface scattering [33,

5,29]. These techniques require that the subsurface scat-

tering depends on distance only, whereas we need to use

the direction of the incoming light. To cache another

quantity, we note that subsurface scattering partly dif-

fuses the light even if the incident light and the scatter-

ing are highly directional. Every ray of incoming light

gives rise to a (non-diffuse) lobe of emergent light at

all surface points. Adding up these lobes, the emergent

light is in practice nearly diffuse. We therefore store

scattered radiosity (outgoing light) instead of transmit-

ted irradiance. Some of the directional subsurface scat-

tering models also neglect dependency on the direction

of emergence but still achieve improved accuracy [50,

20,14]. Out of these, we can directly use the ones that

do not rely on precomputation [20,14].

In some existing techniques [33,36,4,42], scattered

radiosity is stored per vertex. To accommodate more

detailed directional effects, we use more detailed maps

of the scattered radiosity. We obtain these maps with-

out requiring texture parameterization of the translu-

cent object by rendering the object from multiple views

using orthographic cameras. For each of these views, we

compute a map of scattered radiosity. We can then effi-

ciently render the translucent object from any view by

look-ups into the scattered radiosity maps.

The scattered radiosity maps have two other im-

portant advantages. As long as the light source and the

object are stationary, we can blend scattered radios-

ity maps and thereby progressively improve the render-

ing. Moreover, we can compute the transport of emer-

gent light to the surrounding scene [40,42]. To include

these light paths while keeping the translucent object

deformable, we generate a distribution of virtual point

lights on the surface of the translucent object and set

their intensity according to the scattered radiosity. These

virtual point lights enable us to render the transported

light using a many-light method [8]. Since we include

transport of emergent light, our method is very useful

for interactive rendering of scenes with the light source

hidden behind a translucent object. Indirect illumina-

tion of a scene by light that has scattered through can-

dle wax is one use case (Fig. 1). Another interesting

example is light scattering through translucent lamp

shades or light bulbs. To the best of our knowledge, we

present the first interactive technique for transport of

light emerging from deformable translucent objects.

2 Related Work

One way to obtain interactive subsurface scattering is

by means of precomputation. Several early techniques

rely on precomputed scattering factors that enable sub-

surface light transport between surface patches or from

patch to vertex [33,23,4,24]. These factors resemble

form factors in radiosity algorithms and specify trans-

port of transmitted irradiance to scattered radiosity.

An extension of these radiosity-like techniques is to in-

clude transport of emergent light [42]. Other work is

based on precomputed radiance transfer [43,47,49,46],

and some of this includes directional effects such as sin-

gle scattering in the rendered result [43,47,49]. Another

approach is to precompute a grid that can be used with

a fast diffusion computation to render subsurface scat-

tering in real-time [45,48]. As opposed to our work,

Interactive Directional Subsurface Scattering and Transport of Emergent Light 3

all these precomputation-based methods cannot inter-

actively render deformable translucent objects.

Some finite element methods are fast enough to en-

able interactive rendering of deformable translucent ob-

jects [36,34]. However, as these methods rely on diffuse

incoming light (transmitted irradiance) and a multi-

resolution mesh (triangular or tetrahedral), they are not

easily adapted for directional subsurface scattering and

would typically require some mesh preprocessing.

Volume rendering techniques can quite convincingly

produce the qualitative appearance of translucency at

high frame rates [32,3,2,13]. While such methods are

inspired by the volume rendering equation [30], they

only provide a rather rough approximation of its solu-

tion. In addition, the accuracy of the subsurface scatter-

ing is limited by the resolution of the volume or the grid.

Some of the more advanced methods [3,13] also propa-

gate light using low-order spherical harmonics that ef-

fectively diffuse the subsurface scattering contribution.

Other techniques, which are based on separable filter-

ing and a depth map, also achieve real-time subsurface

scattering by aiming at the qualitative appearance and

sacrificing quantitative accuracy [19,18].

Fast filtering techniques can be constructed so that

they approximate diffuse subsurface scattering more ac-

curately [12,5,21,29]. The filtering is done in texture

space and thus requires texture parametrization of the

object surface. To avoid texture space problems, simi-

lar filtering techniques are available for light space [9]

and screen space [35,27,28,29]. The performance of all

these filtering techniques, however, depends heavily on

the assumption that the subsurface scattering is dif-

fuse so that the convolution kernel is only a function of

the distance between the points of incidence and emer-

gence. Our work uses light space sampling [9], but re-

moves the assumption that subsurface scattering is dif-

fuse. If we were to remove this assumption from texture

or screen space filtering techniques and adapt them for

directional subsurface scattering, they would become

texture space or screen space variations of the tech-

nique that we propose. The former variation would re-

quire texture parametrization of the object surface, the

latter would be view-dependent.

Another interesting approach to interactive render-

ing of deformable translucent objects is based on splat-

ting [41,6]. In this approach, surface points seen from

the light source are splatted as screen-aligned quads.

These splats contribute according to the subsurface scat-

tering model where they overlap surface points in the

geometry buffer of the camera. On first inspection, this

seems an ideal approach for interactive rendering of

directional subsurface scattering. However, the direc-

tional model requires larger splats as it varies not only

Fig. 2 BSSRDF configuration on an object surface A. The
diagram illustrates the notation we use: bold font as in xo
denotes a point, while arrow overline as in ~ωi denotes a nor-
malized direction vector.

with distance, and it is more expensive to evaluate as

tabulation is impractical. We therefore found the splat-

ting approach too expensive.

3 Method

We render translucent objects using a bidirectional scat-

tering-surface reflectance distribution function (BSS-

RDF). In most BSSRDFs, a translucent material is de-

fined by the following spectral optical properties: re-

fractive index η, absorption coefficient σa, scattering

coefficient σs, and asymmetry parameter g. As is com-

mon in graphics, we use trichromatic optical properties

(rgb). In addition, the BSSRDF depends on the posi-

tion xi and the direction ~ωi of the incident light as well

as the position xo and the direction ~ωo of the emergent

light. The configuration is illustrated in Fig. 2. When

rendering a translucent object, we obtain the outgoing

radiance Lo by evaluating the following integral over all

xi in the surface area A and over all ~ωi in the hemi-

sphere around the surface normal ~ni at xi [26]:

Lo(xo, ~ωo) = Le(xo, ~ωo)

+

∫
A

∫
2π

S(xi, ~ωi;xo, ~ωo)Li(xi, ~ωi) cos θi dωi dAi , (1)

where cos θi = ~ωi ·~ni, Li is incident radiance, Le is emit-

ted radiance, and S is a BSSRDF. Disregarding surface

reflection, as this can be incorporated using well-known

techniques, the analytical BSSRDF can be written in

the form:

S(xi, ~ωi;xo, ~ωo)=Ft(~ωo)(Sd(xi, ~ωi;xo)+S∗)Ft(~ωi) , (2)

where Ft is Fresnel transmittance, Sd is the diffusive

part, which is typically modeled by a dipole, and S∗ (de-

pendencies omitted) is the remaining light transport,

that is, the part not included with Sd.

As in other interactive subsurface scattering tech-

niques that are not based on precomputation, we now

4 Alessandro Dal Corso et al.

assume that S∗ is insignificant. For most BSSRDF mod-

els [26,11,20], this means that single scattering is ex-

cluded entirely. However, if we use the directional dipole

model [14], most single scattering is included with Sd.

We therefore get a more accurate result with this model

as the neglected S∗ contains a significantly smaller part

of the scattered light.

In existing interactive techniques, it is common prac-

tice to move the BSSRDF outside the integration over

directions of incidence ~ωi (in Equation 1) and define

transmitted irradiance by [33,9,36,35,5,41,6,34,29]

E(xi) =

∫
2π

Li(xi, ~ωi)Ft(~ωi) cos θi dωi . (3)

We would however like to support BSSRDFs that in-

clude directional effects [20,14]. Since such BSSRDFs

depend on ~ωi, we cannot perform this separation, but

we can define scattered radiosity by

B(xo) = π

∫
A

∫
2π

Sd(xi, ~ωi;xo)Li(xi, ~ωi)

Ft(~ωi) cos θi dωi dAi . (4)

This is an important quantity as the rendering equation

(1) becomes

Lo(xo, ~ωo) = Le(xo, ~ωo) +
1

π
Ft(~ωo)B(xo) , (5)

which enables view-independent rendering of translu-

cent objects if we store scattered radiosity B. We note

that Lo is not fully view independent because of the

Fresnel term Ft, but this is an inexpensive term that

we can evaluate per pixel per frame at very little cost.

For simplicity, our initial assumption is of a scene

consisting of a single object illuminated by a single di-
rectional light. In Section 3.3, we extend to point lights,

and in Section 4, we show an example of using multiple

lights. For surface points lit by a directional light with

radiance L` and direction ~ω`, we have

Li(xi, ~ωi) = L` V(xi,−~ω`) δ(~ωi + ~ω`) , (6)

where V is visibility and δ is a Dirac delta function that

makes the inner integral disappear, yielding

B(xo) = πL`

∫
Alit

Sd(xi,−~ω`;xo)Ft(−~ω`) cos θ` dAi , (7)

where cos θ` = −~ω` · ~ni and Alit is the directly lit area

of the surface (for unlit areas Li = V = 0). Since we

only need to integrate over the directly lit part of the

surface area, we perform the integration in a geometry

buffer (G-buffer) rendered from the point of view of the

light source (a translucent shadow map [9]). Since we

have a directional light, our G-buffer is an orthographic

projection of the scene into the light’s view plane, which

has ~ω` as its normal.

In order to distribute samples in the G-buffer ac-

cording to a distance r and an angle α, we assume a

planar surface normal to the light direction and rewrite

the integral in polar coordinates with origin xo:

B(xo) = πL`

∫ 2π

0

∫ ∞
0

Sd(xi,−~ω`;xo)

Ft(−~ω`) cos θ` r dr dα , (8)

where r = ‖xo−xi‖ and α is the angle between xo−xi
and the first basis vector of the light’s view plane. This

assumption is clearly often violated, but it is commonly

used in derivation of BSSRDF models [26,11].

We evaluate the integral in Equation 8 by Monte

Carlo integration. Our estimator for scattered radiosity

is

BN (xo) =
πL`
N

N∑
j=1

Sd(xi,−~ω`;xo)Ft(−~ω`) cos θ` rj
p(rj , αj)

, (9)

where p(r, α) is the joint probability density function

from which we draw the sample pairs (rj , αj). Starting

from xo transformed to the texture space of the light’s

camera, each sample pair corresponds to a texture space

offset for looking up xi and ~ni in the light’s G-buffer.

3.1 Sampling Distribution

BSSRDFs decay exponentially with the distance r =

‖xo − xi‖. In particular, the asymptotic exponential

falloff of the standard and directional dipoles [26,14] is

exp(−σtrd), where d → r for r → ∞ and σtr is the

effective transport coefficient defined by

σtr =
√

3σa(σa + (1− g)σs) . (10)

It is therefore highly beneficial to importance sample

according to this exponential decay. We do importance

sampling by choosing

pexp(r, α) = p(r)p(α) = σtre
−σtrr

1

2π
, (11)

which is easily sampled by

(rj , αj) =

(
− log ξ1
σtr

, 2πξ2

)
. (12)

The symbols ξ1, ξ2 ∈ [0, 1] denote canonical uniform

random variables, which we obtain on the fly using a

linear congruential pseudorandom number generator.

It is important to note that the effective transport

coefficient σtr is different for different color bands. As a

consequence, we use a separate set of position samples

for each color band. In this way, we avoid color shifts,

especially for materials with very different scattering

coefficients in the different color bands (ketchup, for

example).

Interactive Directional Subsurface Scattering and Transport of Emergent Light 5

Generate light maps

Final Composi�on

Compute sca�ered radiosity maps

Fig. 3 Our three-step multipass technique for interactive
rendering of directional subsurface scattering in deformable
translucent objects. The scattered radiosity maps enable
view-independence and transport of emergent light.

3.2 Rendering Technique

The diffusive part of the standard dipole BSSRDF de-

pends only on r = ‖xo − xi‖ and is therefore easily

tabulated and used at runtime at nearly no expense.

In directional subsurface scattering, on the other hand,

the diffusive part of the BSSRDF depends on both xo,

~no, xi, ~ni, and ~ωi. This means that it is impractical to

tabulate it and thus expensive to evaluate it. To limit

the number of times that we need to evaluate the BSS-

RDF at runtime, we chose to exploit the opportunity to

have view-independence by storing scattered radiosity

in maps. In fact, as we noted in Equation 5, the scat-

tered radiosity does not depend on the view direction

~ωo. With view-independence, it is convenient to also

make the update of the scattered radiosity maps pro-

gressive. By doing so, the rendered result improves over

time if we are only moving the camera. Our technique

is easily made progressive by adding more samples for

each frame. This means that we have two render modes:

(a) converged translucency with real-time fly-through

and (b) fully flexible translucency rendered at interac-

tive frame rates.

Our rendering technique is based on the rasteriza-

tion pipeline of the graphics processing unit (GPU).

In fully flexible mode, we use the three-step multipass

algorithm illustrated in Fig. 3. In the first step, we cre-

ate a G-buffer for each light source. In the second step,

we compute scattered radiosity maps using these light

G-buffers. In the third step, we sample the scattered

radiosity maps and combine the look-ups. If nothing

changed except the camera position, we also accumu-

late radiosity map results with the ones from the pre-

vious frames. When convergence is reached, we switch

to converged mode and perform the third step only. In

the following, we provide the details of the three steps.

In the first step, as in translucent shadow map-

ping [9], we render a G-buffer from the point of view

of the light. For each pixel, we store positions and nor-

mals, as well as a material index (for global illumination

purposes, Section 3.4). Each directional light has an or-

thographic camera and an associated G-buffer stored in

a layered 2D texture. We compute all the light G-buffers

in a single rendering pass, where each triangle is fed to

each layer of a 2D layered texture in a geometry shader.

In the second step, we render the translucent ob-

ject from K directions using orthographic cameras. The

number of directions is chosen so that the surface of the

model is covered well. We place the cameras randomly

on the bounding sphere of the object using a quasi-

random Halton sequence [22]. We then configure the

cameras to look at the center of the bounding sphere

with a frustum that encapsulates the sphere. Also in

this step, we use layered rendering in order to efficiently

render scattered radiosity into the different maps in a

single pass. For each fragment of the translucent object

observed by an orthographic camera, we compute the

scattered radiosity by generating N samples per color

band on-the-go (Equation 12), looking up into the light

G-buffers with those samples to get xi and ~ni, and using

those to evaluate Equation 9. To avoid pattern repeti-

tion artifacts, we choose a seed for the random points

using the pixel index in the scattered radiosity map as

well as the current map and frame numbers.

To progressively update the scattered radiosity maps,

we first perform a depth-only pass and then we render

the model with writing into the depth buffer disabled.

During the second step of the algorithm (except when

the light condition is changing or the object is deform-

ing), blending is enabled to allow accumulation in the

scattered radiosity maps. We also generate mipmaps for

the scattered radiosity maps so that we have the oppor-

6 Alessandro Dal Corso et al.

Algorithm 1: Estimating the scattered radiosity

in xo using K maps (step 3 of Fig. 3). Each map

has a direction ~dk and a world-to-texture conversion

matrix Pk. The variable F counts the number of

accumulated frames, which is needed to average the

blending in step 2 of Fig. 3.

Data: xo, εbias, εcomb, F , K
Result: B
n = 0
color = (0, 0, 0)
for k ∈ [0,K) do

cos θ = clamp(~no · ~dk,0,1)

x̄o = xo − εcomb(~no − cos θ ~dk)
x̄o,tex = Pk x̄o
v = multisampleVisibilityMapk(x̄o,tex, εbias)
color =
color + v·sampleRadiosityMapk(x̄o,tex, εbias)
n = n+ v

end

B = color
Fn

tunity to apply a cheap high-pass filter that smoothes

high frequency noise.

In the third and final pass, we sample the scattered

radiosity maps for each fragment of the translucent ob-

ject observed by the actual camera. This process is de-

scribed in the pseudo-code in Algorithm 1. We average

the contributions from the various directions with the

visibility of the point as a binary weight. In the third

step of Fig. 3, the green and the red dots represent the

visible and not visible contributions from the point xo,

respectively. Storing depth with the scattered radios-
ity maps, we use shadow mapping to obtain a visibil-

ity function. To avoid artifacts, we choose a constant

shadow bias εbias for the visibility function. Moreover,

to avoid errors when sampling close to the borders of

a scattered radiosity map, we multi-sample the shadow

map and introduce an additional bias εcomb that trans-

lates the sample position towards the negative normal

direction −~no. After composition of the scattered ra-

diosity B, we obtain outgoing radiance from Equation 5

and perform tone mapping to finalize the result.

Considering the procedure described in this section,

we can get a better understanding of the parameter N .

The total number of Monte Carlo samples used for com-

puting the outgoing radiance (Lo) in a surface point ob-

served by the camera is 3N times K times the number

of frames used for progressive updates. From the point

of view of a surface point, N can thus be thought of as

the number of samples per frame per map direction per

color band.

(a)

(b)

Fig. 4 Effect of stereographic correction when a translucent
object surrounds a point light. With planar sampling (a), we
look up into the light’s cube map G-buffer using xj−x`. With
stereographic correction (b), we use xstereo−x` instead. The
insets (a and b) show how the correction improves the final
result (torus, potato material).

3.3 Point Lighting

A point light at some distance from the translucent ob-

ject works much in the same way as a directional light.

The light’s camera simply uses perspective instead of

orthographic projection and intensity falls off with the

distance squared. One particularly important applica-

tion of our work is however simulation of the light com-

ing through candles, candleholders, and lamp shades

(Fig. 1, for example). In these cases, the point light is

surrounded by the translucent object and we then use

omnidirectional shadow mapping [15] with a cube map

G-buffer for the light.

With a cube map captured for a point light at x`,

one would first get a sampled point xj by using (rj , αj)

to offset xo in its tangent plane. A look-up into the cube

map with xj − x` would then provide the sampled xi
and ~ni. However, when observing a translucent object

surrounding the light source, this planar sampling of

the light’s G-buffer is no longer a good approximation.

To have a better approximation that enables sampling

of the entire cube map for each xo (instead of only a

hemisphere), we use an inverse stereoscopic projection.

With this stereoscopic correction, the direction used for

look-up into the cube map becomes

xstereo − x` = (x` − xo)− 2
[
(x` − xo) · ~̀

]
~̀ , (13)

Interactive Directional Subsurface Scattering and Transport of Emergent Light 7

Fig. 5 Transport of emergent light from a translucent object
(blue) to a diffuse object (red). We distribute VPLs (gray
dots) on the outer surface of the translucent object, and use
them to indirectly illuminate the remaining scene.

where

~̀=
(xj − x`)− (x` − xo)

‖(xj − x`)− (x` − xo)‖
, (14)

as illustrated in Fig. 4. The top right image (a) in Fig. 4

is an example of the sampling noise we get if we use

xj − x`. The middle right image (b) shows how the

stereoscopic correction betters this problem.

3.4 Transport of Emergent Light

We further extend our method to account for transport

of emergent light using virtual point lights (VPLs) [31].

We distribute a set of Nvpl points on the surface of the

translucent object. Then, for each observed point xo,

we add the contribution from all VPLs using

Lo(xo, ~ωo) =

Nvpl∑
v=1

fr(xo,−~ωv, ~ωo)

Gb(xo,xv)V (xo,xv)Iv (15)

with VPL intensity

Iv =
1

π
Ft(ωv)B(xv)A/Nvpl , (16)

where A is the surface area across which the VPLs

were distributed, Gb is the standard bounded geometry

term [8], and B is obtained from the scattered radiosity

maps using Algorithm 1.

As in the previous section, we now take special steps

to accommodate our key use case of a point light sur-

rounded by a translucent material. Our approach is il-

lustrated in Fig. 5. In this particular case, the scene illu-

minated by emergent light will most commonly be shad-

owed from surface points of the translucent object that

are directly lit (as the source is surrounded). We there-

fore approximate the visibility term V by distributing

VPLs on backlit surfaces only. With this distribution

of VPLs, we use the area of the bounding volume of

the translucent object as an approximation of A. This

is computed for each frame on the CPU.

Unfortunately, for a deformable object and a rela-

tively small set of VPLs, the method is prone to flick-

ering unless we ensure that the VPL positions are sta-

ble over time. Our solution is to render the outermost

surface of the translucent object to a cube map whose

center c coincides with the object’s bounding box cen-

ter. Each pixel in the cube map now contains the co-

ordinates of a point on the surface of the translucent

object. By sampling the cube map at a constant set

of random directions, we obtain a stable set of surface

positions that we use as VPL locations (Fig. 5).

4 Results

The implementation of our method interactively ren-

ders directional subsurface scattering in deformable ob-

jects and requires no preprocessing nor texture param-

eterization of the object surface. We use the diffusive

part of the directional dipole [14] as Sd or the photon

beam diffusion model [20] when evaluating Equation 9.

The directional dipole is significantly faster, so we use

this one unless noted otherwise. We define the translu-

cent objects in our scenes using measured optical prop-

erties from different sources [26,37,17].

To validate our results, we compare with Monte

Carlo ray tracing implemented on the GPU using Op-

tiX [38]. In this reference method, we render direc-

tional subsurface scattering using the progressive direct

Monte Carlo integration technique described by Fris-

vad et al. [14]. As prescribed, we use a Russian roulette

based on the asymptotic exponential falloff of the model

to accept or reject samples. However, we do not equidis-

tribute the samples using a dart throwing technique as a

more brute force uniform sampling of the object surface

is more well-suited for a GPU ray tracer. This imple-

mentation gave us a ground truth for comparison both

in terms of quality and performance. However, when

comparing performance, one should keep in mind that

unlike our method the reference method is view depen-

dent.

In all the following examples, performance is at in-

teractive rates. If nothing changes except the camera,

our method will converge over a number of frames and

then run in real-time. The implementation switches back

to interactive rates when something other than the cam-

era changes. By ‘interactive’ we mean a rendering time

below 166 milliseconds per frame (6 frames per second,

fps), as specified by Akenine-Möller et al. [1]. All the

tests were performed on an NVIDIA GeForce GTX 780

Ti graphics card (2880 cores). Unless otherwise indi-

8 Alessandro Dal Corso et al.

o
u

rs
,

6
fp

s
o
u

rs
re

fe
re

n
ce

st
a
n

d
a
rd

marble white strawberry
grapefruit shampoo

Fig. 6 Comparison of our method (rows 1 and 2) with the
reference method (row 3) and diffuse subsurface scattering
(row 4) for different materials. Row 1 is our results for a
single frame at 6 fps, while row 2 is our view-independent
result after convergence. All results use 31 maps.

directional dipole, 6 fps standard dipole and VPLs

o
u

r
m

et
h

o
d

ra
y

tr
a
ce

r

directional dipole, 6 fps directional dipole, reference

Fig. 7 Equal time comparison (left column) of our method
with the reference method and qualitative comparison with
diffuse subsurface scattering (upper right) and the converged
reference solution (lower right). The scene is lit by a point
light in a white grapefruit candle holder.

cated, our results use a 512 × 512 frame resolution for

both radiosity and light maps.

Fig. 6 allows a visual comparison with ground truth

(results obtained with the reference method). We chose

one highly scattering material with isotropic phase func-

tion (g = 0), namely marble, and two forward scatter-

ing materials (g > 0), namely white grapefruit juice and

strawberry shampoo. At convergence (second row), our

method compares favorably to the directional dipole

reference (third row). Our method improves the details

our method reference difference

0 0.1 0.2 0.3 0.4 0.5

Fig. 8 Zoom-ins and differences from Figures 6 and 7. Root-

mean-squared error of the color bands
√
∆r2 +∆g2 +∆b2

is used as error metric in the difference images.

of the subsurface scattering when compared with diffuse

subsurface scattering, that is, the standard dipole [26]

(fourth row), especially for white grapefruit juice and

strawberry shampoo. We also show the results of our

method after one frame rendered at interactive frame

rates (first row). These results are similar to our con-

verged solution except that there is a slight bit of sam-

pling noise, which we reduce using mipmap filtering.

Fig. 7 compares the transport of emergent light ob-

tained with our method to that obtained with the ref-

erence method. While the 200 VPLs used here do not

provide a highly accurate result, they do provide some-

thing better than a constant ambient term. At 6 fps,

our solution is similar to the reference and converges

very quickly to a better result, while the OptiX solu-

tion has both high-frequency and low frequency noise,

is view dependent, and converges very slowly.

Fig. 8 provides zoom-ins and difference images from

Figs. 6 and 7. Our results in general seem to be missing

a part of the light transport. As revealed by the differ-

ence images, the missing contribution is due to under-

sampling of the surface at grazing incidence and missing

interreflections. This undersampling is the reason why

Interactive Directional Subsurface Scattering and Transport of Emergent Light 9

our method ray tracer reference

Fig. 9 Stanford bunny with marble material at different
scales (from top to bottom the scale is: 0.01, 0.1, and 1 me-
ter). The left and middle columns show equal time results for
our method and the ray tracer (1 frame at 6 fps). The right
column shows the ray traced results after convergence. Here
we use 16 maps and a 1024× 1024 light map.

Mertens et al. [35] chose to sample in screen space in-

stead of light space. However, sampling in screen space

has other problems, as not all samples are lit. When

considering transport of emergent light, the zoom-ins

and difference images show missing shadows and inac-

curacies due to the small number of VPLs. However,

as graphics hardware improves, we will be able to use

more VPLs and one of several fast VPL visibility tech-

niques [8] to get better accuracy while retaining inter-

active frame rates.

In Fig. 9, we compare the quality reached by our

solution with the quality reached by the ray traced so-

lution in equal time. We perform this comparison for a

marble bunny at three different scales. Generally, our

method has a uniform behavior for different scales. For

materials that are not optically thin (not at low scale),

our method converges faster. The highly scattering ma-

terials (mid and high scale) are the more important

cases to render well, as these are inside the range of

materials for which the analytic subsurface scattering

models are valid. At high scales, scattering effects be-

come more localized, so our method is better at captur-

ing the effect than the ray traced solution. At low scales,

fewer G-buffer samples hit the object, which leads to a

more noisy result with our solution.

Fig. 10 Rendering with our method and a dynamically gen-
erated 3D surface (‘blob’) and transport of emergent light for
three materials. The blob renders at 6 fps with 50 VPLs and
1500 samples per map in 6 maps. Materials from left to right:
white grapefruit juice, soy milk, and glycerine soap.

In order to test the method using dynamically gen-

erated geometry, we created an implicit 3D surface [44]

as the sum, Φt = Σiφi,t(~p), of 4 blobs,

φi,t(~p) = exp(−σ‖~p− ~pi(t)‖2) ,

where the position of each blob, ~pi(t), is a periodic

function. Since the periods are different, the period of

the aggregate implicit Φt is potentially very large, and

precomputation of the light transport inside the object

would not be practical. Our method however applies, as

it does not rely on precomputation, but we do need to

rasterize the object. To do this, we compute a triangle

mesh for an isosurface of Φt using dual contouring [16]

implemented in a geometry shader. This is done in a

pre-pass to each frame where the geometry shader eval-

uates Φt and its gradient directly based on the current

time. The output triangle strips are streamed back to a

vertex buffer object using transform feedback. Fig. 10

presents a rendered blob using different materials.

To justify our claimed need for scattered radiosity

maps, we compare our method with an implementa-

tion without caching of subsurface scattering compu-

tations (as in translucent shadow mapping [9]). Note

that this approach as opposed to ours is view depen-

dent and pixel bound, and that unobserved VPLs would

be more expensive to evaluate. Fig. 11 compares perfor-

mance without considering view dependency and VPLs.

Caching of scattered radiosity in maps is more efficient

as soon as the translucent object occupies more than

5.8% of a 1024× 1024 image.

The candle scene in Fig. 1 demonstrates the useful-

ness of our method. We scaled the optical properties

of glycerine soap to approximate the scattering prop-

erties of candle wax. Our method creates a soft ‘caus-

tic’ on the ground with varying intensity depending on

the shape of the candle model. We thus enable a more

realistic lighting of the scene than is obtainable with

existing interactive techniques.

10 Alessandro Dal Corso et al.

64% 5.8% 1.9%

o
u

rs
,

1
2

fp
s

n
o

ca
ch

e,
x

fp
s

x = 1.5 fps x = 12 fps x = 30 fps

Fig. 11 Chocolate milk blob occupying different percentages
of the image (noted at the top). We compare our method
(ours) with a view-dependent, caching-free implementation
(no cache, meaning no scattered radiosity maps). We use 1000
samples per map in 10 maps when caching, per pixel when not
caching. Equal frame rates (12 fps) occur when occupancy is
5.8% of the image.

Milliseconds
0 20 40 60 80 100 120 140 160

Fig. 1

Fig. 6

Fig. 9

Fig. 10

Fig. 11

Fig. 7

Fig. 14

Procedural geometry

VPLs

Fig. 3, Step 1

Fig. 3, Step 3
Fig. 3, Step 2

Fig. 12 Timing breakdowns for some of our renderings. Ini-
tialization times were negligible and were thus included with
step 1 of Fig. 3. The evaluation of the BSSRDF and the VPLs
(when present) dominate the rendering times.

To provide a performance breakdown of our tech-

nique, Fig. 12 lists render times dedicated to the differ-

ent steps of our algorithm in our various results. BSS-

RDF evaluation (step 2 of Fig. 3) dominates all the

timings, with the exception of Figs. 1 and 7, where the

transport of emergent light dominates. Fig. 13 provides

timings and coverage improvement of a bunny render-

ing with increasing K. The first seven directions cover

most of the surface, while the remaining directions are

necessary to cover small holes in the shading.

2: 22.1 ms 3: 32.14 ms 4: 41.3 ms 5: 51.1 ms 6: 61.6 ms

7: 71.2 ms 8: 79.2.2 ms 9: 88.0 ms 10: 99.3 ms 11: 116.0 ms

Fig. 13 Converged renderings of a potato bunny (N = 30)
and timings for increasing number of scattered radiosity maps
K. We list K followed by rendering time in milliseconds (ms)
for each result. The first 7 maps cover most of the surface,
while the following 4 cover small details (the small area just
to the left of the bunny’s hind leg, for example).

white grapefruit marble potato

2.7× 2.3× 3.2×

Fig. 14 Converged results with scenes and parameters as in
other figures, but this time rendered using the photon beam
diffusion model [20]. For each rendering, we provide the factor
that this model is slower than if we use the directional dipole.

To underline the versatility of our approach, Fig. 14

has a set of results rendered using the photon beam dif-

fusion model [20]. The weak singularities in this model

lead to fireflies (overly bright pixels) with our sampling

approach. We avoid this problem by clamping the dis-

tance dr to a minimum of 0.25/(σa+σt) when it is used

in a denominator. Factors that photon beam diffusion

is slower than the directional dipole are included in the

figure. These factors double if we use a graphics card

with 512 cores (GTX 580) instead of 2880 cores.

Finally, Fig. 15 presents results with multiple di-

rectional lights. To approximate an environment light,

we sample a number of representative directional light

sources from the environment map using the method

described by Pharr and Humphreys [39]. Contributions

from all the directional lights are cached in the same

scattered radiosity maps. In this example, we add spec-

ularly reflected light by looking up into the environment

map using the direction of the reflected ray and multi-

plying by Fresnel reflectance.

5 Discussion

The resolution of a light’s G-buffer (a light map) should

be chosen carefully. If the range of the scattering ef-

Interactive Directional Subsurface Scattering and Transport of Emergent Light 11

Fig. 15 Stanford Bunny illuminated by an environment
map. The map was importance sampled and converted to
eight different directional lights. Potato material, 16 maps.

fects (roughly 1/σtr) is smaller than the size of one

pixel in the light map, the contributions from the di-

rectional dipole tend to cluster and form ‘pearling’ ar-

tifacts. A possible solution would be a variation of cas-

caded shadow maps [51] to provide a higher resolu-

tion light map when needed. Generally, a light map

of 512 × 512 pixels is an acceptable size that can be

brought to 1024× 1024 in problematic cases.

User parameters of our method include the resolu-

tions of the light map and the scattered radiosity maps,

the two biases εcomb and εbias, the number of samples

N , the number of scattered radiosity maps K, and the

number of VPLs Nvpl. We now provide some guidelines

for setting parameters. The size of the light map was

already discussed in the previous paragraph. For the

scattered radiosity maps, a size of 512× 512 is fine for

most application, and K = 16 directions generally pro-

vide enough coverage for simple models (the dragon,

with its complicated geometry, required K = 31 direc-
tions). Performance scales linearly with K (Fig. 13),

as we spend most of the time evaluating the BSSRDF

(Fig. 12). The two biases εcomb and εbias need to be

tweaked manually. The numbers N and Nvpl are usu-

ally set manually to get the desired performance once

the other parameters have been settled.

For most of our results, we choose the directions
~dk of the scattered radiosity maps automatically. This

works well for objects that are roughly convex, but for

more oddly shaped concave objects some part may be

left uncovered. Tearing artifacts caused by insufficient

coverage appear in the mouth of the dragon in Fig. 6

and in the supplementary video. Fig. 13 also illustrates

the problem, and shows that increasing the number of

directions or manually choosing them can often ease

this problem.

The memory consumption of our technique is com-

parable to that of the texture space filtering techniques

[12,5,21,29]. As such, the maps and buffers that we

use easily fit in the memory of modern GPUs. We sur-

prisingly use more memory than the volumetric tech-

niques [32,3,2,13]. The reason is that they make do

with very low resolution volumes (323 or 643). It is

however important to note that the added direction-

ality and quality of details that we achieve cannot be

achieved with such low resolution volumes. High reso-

lution volumes would be needed with these techniques,

which would lead to performance and memory issues.

Since we cache scattered radiosity, we cannot di-

rectly use a BSSRDF that fully depends on the direc-

tion of emergence ~ωo (the dual-beam model [10], for

example). For such a BSSRDF, we would have to rely

on the assumption that the emergent radiance inte-

grates to a nearly diffuse distribution. We would then

carry out a cosine-weighted integral over ~ωo when com-

puting the scattered radiosity maps and otherwise use

the same method. On the other hand, our concept of

caching scattered radiosity instead of transmitted ir-

radiance might be of interest in offline rendering tech-

niques such as multiresolution radiosity caching [7]. This

would enable use of directional subsurface scattering

and inexpensive transport of emergent light in a movie

production rendering solution.

6 Conclusion

We have presented a novel technique for interactive ren-

dering of directional subsurface scattering. The method

is view independent and applicable to deformable 3D

models without requiring a texture parameterization of

the object surface. While our method takes the direc-

tion of incident light into account, it also relies on the

assumption that emergent light is not directional. This

enables us to cache emergent light in so-called scat-

tered radiosity maps. These maps enable us to control

the output quality, to render progressively, and to illu-

minate the scene with light that has scattered through

a translucent object.

Acknowledgements We would like to thank Christian Esbo
Agergaard, Technical Director, Sunday Studios for the melt-
ing candle model. The Stanford Bunny and the Stanford
Dragon models are courtesy of the Stanford University Com-
puter Graphics Laboratory (http://graphics.stanford.edu/da-
ta/3Dscanrep/). The HDR environment map in Fig. 15 is
courtesy of Tobias Grønbeck Andersen.

References

1. Akenine-Möller, T., Haines, E., Hoffman, N.: Real-Time
Rendering, 3rd edn. A K Peters (2008)

2. Bernabei, D., Hakke-Patil, A., Banterle, F., Benedetto,
M.D., Ganovelli, F., Pattanaik, S., Scopigno, R.: A paral-
lel architecture for interactively rendering scattering and

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/

12 Alessandro Dal Corso et al.

refraction effects. IEEE Computer Graphics and Appli-
cations 32(2), 34–43 (2012)

3. Børlum, J., Christensen, B.B., Kjeldsen, T.K., Mikkelsen,
P.T., Noe, K.Ø., Rimestad, J., Mosegaard, J.: SSLPV:
Subsurface light propagation volumes. In: Proceedings
of ACM SIGGRAPH Symposium on High Performance
Graphics (HPG ’11), pp. 7–14 (2011)

4. Carr, N.A., Hall, J.D., Hart, J.C.: GPU algorithms for
radiosity and subsurface scattering. In: Proceedings of
Graphics Hardware 2003, pp. 51–59 (2003)

5. Chang, C.W., Lin, W.C., Ho, T.C., Huang, T.S., Chuang,
J.H.: Real-time translucent rendering using GPU-based
texture space importance sampling. Computer Graphics
Forum (Proceedings of Eurographics 2008) 27(2), 517–
526 (2008)

6. Chen, G., Peers, P., Zhang, J., Tong, X.: Real-time ren-
dering of deformable heterogeneous translucent objects
using multiresolution splatting. The Visual Computer
28(6–8), 701–711 (2012)

7. Christensen, P.H., Harker, G., Shade, J., Schubert, B.,
Batali, D.: Multiresolution radiosity caching for efficient
preview and final quality global illumination in movies.
Tech. Rep. Pixar Technical Memo #12-06, Pixar (2012)

8. Dachsbacher, C., Krivánek, J., Hašan, M., Arbree, A.,
Walter, B., Novák, J.: Scalable realistic rendering with
many-light methods. Computer Graphics Forum 33(1),
88–104 (2014)

9. Dachsbacher, C., Stamminger, M.: Translucent shadow
maps. In: Proceedings of Eurographics Symposium on
Rendering (EGSR 2003), pp. 197–201 (2003)

10. d’Eon, E.: A dual-beam 3D searchlight BSSRDF. In:
ACM SIGGRAPH 2014 Talks, p. 65 (2014)

11. d’Eon, E., Irving, G.: A quantized-diffusion model for
rendering translucent materials. ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH 2011) 30(4),
56:1–56:13 (2011)

12. d’Eon, E., Luebke, D., Enderton, E.: Efficient rendering
of human skin. In: Proceedings of Eurographics Sympo-
sium on Rendering (EGSR 2007), pp. 147–157 (2007)

13. Di Koa, M., Johan, H.: ESLPV: enhanced subsurface
light propagation volumes. The Visual Computer 30(6–
8), 821–831 (2014)

14. Frisvad, J.R., Hachisuka, T., Kjeldsen, T.K.: Directional
dipole model for subsurface scattering. ACM Transac-
tions on Graphics 34(1), 5:1–5:12 (2014)

15. Gerasimov, P.S.: Omnidirectional shadow mapping. In:
R. Fernando (ed.) GPU Gems: Programming Techniques,
Tips, and Tricks for Real-time Graphics, chap. 12, pp.
193–203. Addison Wesley (2004)

16. Gibson, S.F.F.: Constrained elastic surface nets: Gener-
ating smooth surfaces from binary segmented data. In:
Medical Image Computing and Computer-Assisted Inter-
ventation – MICCAI’98, Lecture Notes in Computer Sci-
ence, vol. 1496, pp. 888–898. Springer (1998)

17. Gkioulekas, I., Zhao, S., Bala, K., Zickler, T., Levin,
A.: Inverse volume rendering with material dictionar-
ies. ACM Transactions on Graphics 32(6), 162:1–162:13
(2013)

18. Gosselin, D.R., Sander, P.V., Mitchell, J.L.: Real-
time texture-space skin rendering. In: W. Engel
(ed.) ShaderX3: Advanced Rendering with DirectX and
OpenGL, chap. 2.8, pp. 171–184. Charles River Media
(2004)

19. Green, S.: Real-time approximations to subsurface scat-
tering. In: R. Fernando (ed.) GPU Gems: Program-
ming Techniques, Tips, and Tricks for Real-time Graph-
ics, chap. 16, pp. 263–278. Addison Wesley (2004)

20. Habel, R., Christensen, P.H., Jarosz, W.: Photon beam
diffusion: A hybrid Monte Carlo method for subsurface
scattering. Computer Graphics Forum (Proceedings of
EGSR 2013) 32(4), 27–37 (2013)

21. Hable, J., Borshakov, G., Heil, J.: Fast skin shading. In:
W. Engel (ed.) ShaderX7: Advanced Rendering Tech-
niques, chap. 2.4, pp. 161–173. Charles River Media
(2009)

22. Halton, J.H.: Algorithm 247: Radical-inverse quasi-
random point sequence. Communications of the ACM
7(12), 701–702 (1964)

23. Hao, X., Baby, T., Varshney, A.: Interactive subsurface
scattering for translucent meshes. In: Proceedings of
ACM SIGGRAPH Symposium on Interactive 3D Graph-
ics (i3D 2003), pp. 75–82 (2003)

24. Hao, X., Varshney, A.: Real-time rendering of translucent
meshes. ACM Transactions on Graphics 23(2), 120–142
(2004)

25. Jensen, H.W., Buhler, J.: A rapid hierarchical rendering
technique for translucent materials. ACM Transactions
on Graphics (Proceedings of ACM SIGGRAPH 2002)
21(3), 576–581 (2002)

26. Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.:
A practical model for subsurface light transport. In: Pro-
ceedings of ACM SIGGRAPH 2001, pp. 511–518 (2001)

27. Jimenez, J., Sundstedt, V., Gutierrez, D.: Screen-space
perceptual rendering of human skin. ACM Transactions
on Applied Perception 6(4), 23:1–23:15 (2009)

28. Jimenez, J., Whelan, D., Sundstedt, V., Gutierrez, D.:
Real-time realistic skin translucency. IEEE Computer
Graphics and Applications 30(4), 32–41 (2010)

29. Jimenez, J., Zsolnai, K., Jarabo, A., Freude, C.,
Auzinger, T., Wu, X.C., von der Pahlen, J., Wimmer, M.,
Gutierrez, D.: Separable subsurface scattering. Computer
Graphics Forum (2015). To appear

30. Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume den-
sities. Computer Graphics (Proceedings of ACM SIG-
GRAPH 84) 18(3), 165–174 (1984)

31. Keller, A.: Instant radiosity. In: Proceedings of ACM
SIGGRAPH 97, pp. 49–56 (1997)

32. Kniss, J., Premože, S., Hansen, C., Ebert, D.: Interactive
translucent volume rendering and procedural modeling.
In: Proceedings of IEEE Visualization 2002, pp. 109–116
(2002)

33. Lensch, H.P.A., Goesele, M., Bekaert, P., Kautz, J., Mag-
nor, M.A., Lang, J., Seidel, H.P.: Interactive rendering of
translucent objects. In: Proceedings of Pacific Graphics
(PG 2002), pp. 214–224 (2002)

34. Li, D., Sun, X., Ren, Z., Lin, S., Tong, Y., Guo, B.,
Zhou, K.: TransCut: Interactive rendering of translucent
cutouts. IEEE Transactions on Visualization and Com-
puter Graphics 19(3), 484–494 (2013)

35. Mertens, T., Kautz, J., Bekaert, P., Reeth, F.V., Seidel,
H.P.: Efficient rendering of local subsurface scattering.
In: Proceedings of Pacific Graphics (PG 2003), pp. 51–58
(2003)

36. Mertens, T., Kautz, J., Bekaert, P., Seidel, H.P., Reeth,
F.V.: Interactive rendering of translucent deformable ob-
jects. In: Proceedings of Eurographics Symposium on
Rendering (EGSR 2003), pp. 130–140 (2003)

37. Narasimhan, S.G., Gupta, M., Donner, C., Ramamoor-
thi, R., Nayar, S.K., Jensen, H.W.: Acquiring scatter-
ing properties of participating media by dilution. ACM
Transactions on Graphics (Proceedings of ACM SIG-
GRAPH 2006) 25(3), 1003–1012 (2006)

Interactive Directional Subsurface Scattering and Transport of Emergent Light 13

2C1 ≈


0.919317− 3.4793η + 6.75335η2 − 7.80989η3

+ 4.98554η4 − 1.36881η5, η < 1

−9.23372 + 22.2272η − 20.9292η2 + 10.2291η3

− 2.54396η4 + 0.254913η5, η ≥ 1

3C2 ≈


0.828421− 2.62051η + 3.36231η2 − 1.95284η3

+ 0.236494η4 + 0.145787η5, η < 1

−1641.1 + 135.926
η3 − 656.175

η2 + 1376.53
η

+ 1213.67η

−568.556η2 + 164.798η3 − 27.0181η4 + 1.91826η5, η ≥ 1

Fig. 16 Approximate fits for 2C1 and 3C2 by d’Eon and Irving [11].

38. Parker, S.G., Bigler, J., Dietrich, A., Friedrich, H., Hobe-
rock, J., Luebke, D., McAllister, D., McGuire, M., Mor-
ley, K., Robison, A., Stich, M.: OptiX: a general purpose
ray tracing engine. ACM Transactions on Graphics (Pro-
ceedings of ACM SIGGRAPH 2010) 29(4), 66:1–66:13
(2010)

39. Pharr, M., Humphreys, G.: Physically Based Rendering:
From Theory to Implementation, second edn. Morgan
Kaufmann/Elsevier (2010)

40. Rushmeier, H.E., Torrance, K.E.: Extending the radiosity
method to include specularly reflecting and translucent
materials. ACM Transactions on Graphics 9(1), 1–27
(1990)

41. Shah, M.A., Konttinen, J., Pattanaik, S.: Image-space
subsurface scattering for interactive rendering of de-
formable translucent objects. IEEE Computer Graphics
and Applications 29(1), 66–78 (2009)

42. Sheng, Y., Shi, Y., Wang, L., Narasimhan, S.G.: A practi-
cal analytic model for the radiosity of translucent scenes.
In: Proceedings of ACM SIGGRAPH Symposium on In-
teractive 3D Graphics and Games (i3D 2013), pp. 63–70
(2013)

43. Sloan, P.P., Hall, J., Hart, J., Snyder, J.: Clustered princi-
pal components for precomputed radiance transfer. ACM
Transactions on Graphics (Proceedings of ACM SIG-
GRAPH 2003) 22(3), 382–391 (2003)

44. Velho, L., Gomes, J., de Figueiredo, L.H.: Implicit objects
in computer graphics. Springer (2002)

45. Wang, J., Zhao, S., Tong, X., Lin, S., Lin, Z., Dong, Y.,
Guo, B., Shum, H.Y.: Modeling and rendering of hetero-
geneous translucent materials using the diffusion equa-
tion. ACM Transactions on Graphics 27(1), 9:1–9:18
(2008)

46. Wang, R., Cheslack-Postava, E., Wang, R., Luebke, D.,
Chen, Q., Hua, W., Peng, Q., Bao, H.: Real-time editing
and relighting of homogeneous translucent materials. The
Visual Computer 24(7), 565–575 (2008)

47. Wang, R., Tran, J., Luebke, D.: All-frequency interactive
relighting of translucent objects with single and multiple
scattering. ACM Transactions on Graphics (Proceedings
of ACM SIGGRAPH 2005) 24(3), 1202–1207 (2005)

48. Wang, Y., Wang, J., Holzschuch, N., Subr, K., Yong, J.H.,
Guo, B.: Real-time rendering of heterogeneous translu-
cent objects with arbitrary shapes. Computer Graphics
Forum (Proceedings of Eurographics 2010) 29(2), 497–
506 (2010)

49. Xu, K., Gao, Y., Li, Y., Ju, T., Hu, S.M.: Real-time
homogenous translucent material editing. Computer
Graphics Forum 26(3), 545–552 (2007)

50. Yan, L.Q., Zhou, Y., Xu, K., Wang, R.: Accurate translu-
cent material rendering under spherical Gaussian lights.
Computer Graphics Forum 31(7), 2267–2276 (2012)

51. Zhang, F., Sun, H., Nyman, O.: Parallel-split shadow
maps on programmable GPUs. In: GPU Gems 3,
chap. 10. Addison-Wesley (2007)

A The Directional Dipole Model

[This appendix is not in the final publication.]

As other BSSRDF models, the directional dipole uses a num-
ber of inputs that are based on the optical properties of the
translucent material (η, σs, σa, g):

σt = σs + σa , σ′s = (1− g)σs , σ′t = σ′s + σa ,

D = 1/(3σ′t) , de = 2.131D
√
σ′t/σ

′
s , σtr =

√
σa/D ,

A = 1−CE

2Cφ
, Cφ = 1

4
(1− 2C1) , CE = 1

2
(1− 3C2) ,

where C1 and C2 are functions of η listed in Fig. 16. The
directional dipole formulas for Sd are [14]:

Sd(xi, ~ωi;xo) = S′d(xo − xi, ~ω12, dr)− S′d(xo − xv, ~ωv, dv)

and

S′d(x, ~ω12, r) =

1
4Cφ(1/η)

1
4π2

e−σtrr

r3

[
Cφ(η)

(
r2

D
+ 3(1 + σtrr)x · ~ω12

)
− CE(η)

(
3D(1 + σtrr) ~ω12 · ~no

−
(
(1 + σtrr) + 3D 3(1+σtrr)+(σtrr)

2

r2 x · ~ω12

)
x · ~no

)]
,

where the various S′d arguments are based on positions (xi,
xo), direction of incidence (~ωi), and normals (~ni, ~no). For
the real source, we have

~ω12 =
1

η
((~ωi · ~ni)~ni − ~ωi)− ~ni

√
1−

1

η2
(1− (~ωi · ~ni)2)

d2r =

{
|xo − xi|2 +Dµ0(Dµ0 − 2de cosβ), for µ0 > 0

|xo − xi|2 + 1/(3σt)2 , otherwise

µ0 = −~no · ~ω12

cosβ = −
√
|xo − xi|2 − (x · ~ω12)2

|xo − xi|2 + d2e
,

and for the virtual source,

xv = xi + 2Ade~n
∗
i

~ωv = ~ω12 − 2(~ω12 · ~n∗i)~n∗i

~n∗i =


~ni , for xo = xi

xo − xi

|xo − xi|
×

~ni × (xo − xi)

|~ni × (xo − xi)|
, otherwise

while dv is as dr but using xv instead of xi.

