Improving Curl Noise

J. ANDREAS BARENTZEN, Technical University of Denmark, Denmark
_]ONAS MARTIN EZ, Université de Lorraine, CNRS, Inria, Loria, France
JEPPE REVALL FRISVAD, Technical University of Denmark, Denmark
SYLVAIN LEFEBVRE, Université de Lorraine, CNRS, Inria, Loria, France

Fig. 1. The luminous filaments are stream curves integrated along a divergence-free vector noise field. From left to right, the curves are computed using (a)
plain Euler integration (300 steps), (b) Euler integration with our reprojection method (300 steps), and (c) fourth-order Runge-Kutta also with our reprojection
method (600 steps, half step length). The last method is far more precise, yet (b) and (c) are nearly indistinguishable.

We introduce a divergence-free nD vector noise defined as the n-dimensional
cross product of the gradients of n — 1 noise functions. We show that this vec-
tor noise function is divergence-free and hence volume preserving for any
dimension n. Our method enables precise integration and extends to new set-
tings by substituting noise functions with implicit surfaces, (hyper)surfaces,
or custom functions. We demonstrate applications including image warping,
surface texturing, noise bounded by implicit surfaces, anisotropic curl-noise,
and high-dimensional point jittering up to 7D.

CCS Concepts: « Computing methodologies — Procedural animation;
Texturing.

Additional Key Words and Phrases: procedural noise, curl noise, divergence-
free, vector fields

ACM Reference Format:

J. Andreas Beerentzen, Jonas Martinez, Jeppe Revall Frisvad, and Sylvain
Lefebvre. 2025. Improving Curl Noise. In SIGGRAPH Asia 2025 Conference
Papers (SA Conference Papers °25), December 15-18, 2025, Hong Kong, Hong
Kong. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3757377.
3763980

Authors’ Contact Information: J. Andreas Beerentzen, Technical University of Denmark,
Kongens Lyngby, Denmark, janba@dtu.dk; Jonas Martinez, Université de Lorraine,
CNRS, Inria, Loria, Nancy, France, jonas.martinez-bayona@inria.fr; Jeppe Revall Fris-
vad, Technical University of Denmark, Kongens Lyngby, Denmark, jerf@dtu.dk; Sylvain
Lefebvre, Université de Lorraine, CNRS, Inria, Loria, Nancy, France, sylvain.lefebvre@
inria.fr.

This work is licensed under a Creative Commons Attribution 4.0 International License.
SA Conference Papers °25, Hong Kong, Hong Kong

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2137-3/25/12

https://doi.org/10.1145/3757377.3763980

1 Introduction

Liquids are often considered to be incompressible and, while this
is only approximately true, it is an important difference between
liquids and, say, gases. Without physical simulation, we can mimic a
key aspect of liquid by generating incompressible flows, commonly
achieved using divergence-free vector fields, i.e., fields, ¢ : R — R",
such that V-c=0.

Advecting a geometric shape along a divergence-free vector field
preserves its volume, even if the shape becomes highly distorted.
Similarly, if particles are advected along a divergence-free vector
field, they will never get stuck or be repelled from specific regions,
as divergence-free vector fields contain neither sinks nor sources.

These properties can be used in a myriad of ways; for instance,
we can model leaves or other light objects that move on the surface
of a (somewhat) turbulent pond by moving them around using a 2D
divergence-free vector field. This type of modeling requires only
a vector field that is both noisy and divergence-free, and this has
led to the emergence of methods known as curl noise [Bridson et al.
2007], which leverage the fact that the curl of a smooth vector field
is itself divergence-free.

Bridson’s original curl noise formulation, ¢ = V X v, is tied to 3D
vector fields as the curl operator is only defined in 3D. However,
alternative approaches exist for defining divergence-free vector
noise (DFVN). Our method builds on an idea by Ivan DeWolf [2005],
who proposed generating 3D DFVN as the cross product of the
gradients of two noise functions. This approach is appealing for
several reasons: as DeWolf noted, it extends naturally to surfaces,
and as we show in this paper, the cross product’s generalization to
nD allows the same DFVN formulation to be used in nD.

We also show that the cross product formulation enables a re-
projection scheme that significantly improves integration accuracy

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

HTTPS://ORCID.ORG/0000-0003-2583-0660
HTTPS://ORCID.ORG/0000-0001-8443-9624
HTTPS://ORCID.ORG/0000-0002-0603-3669
HTTPS://ORCID.ORG/0000-0002-9182-3146
https://doi.org/10.1145/3757377.3763980
https://doi.org/10.1145/3757377.3763980
https://orcid.org/0000-0003-2583-0660
https://orcid.org/0000-0001-8443-9624
https://orcid.org/0000-0002-0603-3669
https://orcid.org/0000-0002-0603-3669
https://orcid.org/0000-0002-9182-3146
https://orcid.org/0000-0002-9182-3146
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3757377.3763980

2 « Berentzenetal.

along the DFVN field. The advection of a point along a vector field
corresponds to moving on an invisible track. The point will always
veer off-track due to numerical error. Our method makes this track
visible by aligning motion with iso-contours of the underlying noise
functions, allowing us to reproject the point onto these contours,
stay on track, and enhance precision.

Contributions. In summary, our contributions are:

o ageneralization of cross product-based divergence-free vector
noise to nD,

e a proof that the resulting vector field is divergence-free in
any dimension, and

e anovel reprojection method that significantly improves inte-
gration accuracy along the DFVN field.

2 Related Work

Procedural noise is widely used in computer graphics to generate
detailed textures efficiently, relying on compact algorithms with
constant time and space complexity [Perlin 1985; Lagae et al. 2010].
While noise typically refers to scalar fields, several methods extend
it to incompressible, noisy vector fields for simulating plausible
flows — our work falls within this line of research.

To the best of our knowledge, Ivan DeWolf [2005] first introduced
a method to generate divergence-free noisy vector fields by taking
the cross product of the gradients of two noisy scalar fields. He
also proposed replacing one gradient with a surface normal to pro-
duce a noisy vector field constrained to a surface. Although this
procedural method has been overlooked for some time, it was re-
cently rediscovered [Wu 2021]. Von Funck et al. [2006] constructed
a divergence-free vector field, considering the cross product of two
gradient fields for shape deformation. Bridson et al. [2007] intro-
duced the so-called curl noise given by the 3D curl operator, and
extended the formulation to handle boundaries — an approach fur-
ther improved by Chang et al. [2022] and Ding and Batty [2023].
We revisit and generalize the methods of both DeWolf [2005] and
Bridson et al. [2007] to nD, and introduce an enhanced advection
scheme using an nD reprojection operator.

Curl noise has been widely adopted in academic research, notably
for generating procedural turbulence in fluid, smoke, and fire simu-
lations [Kim et al. 2008; Narain et al. 2008; Schechter and Bridson
2008; Horvath and Geiger 2009; Pfaff et al. 2012; Bridson 2015], as
well as for interactive editing [Pan et al. 2013], sketching [Eroglu
et al. 2018], parameter optimization of animations [Brochu et al.
2010], initializing velocity fields in confined fluids [Yang et al. 2019],
and robust surface deformation [Brochu and Bridson 2009].

Beyond fluids, curl noise has been used to model noise-induced
movements of insects in a swarm [Wang et al. 2014a] and general
flocking behavior [Wang et al. 2014b]. It has enabled users to add
eddies or turbulence at prescribed locations in a desertscape [Paris
et al. 2019], acted as a vortex force acting on the thorax of simulated
butterflies [Chen et al. 2022], and been applied to jitter lattice points
for procedural blue noise sampling [Beerentzen et al. 2023].

Curl noise is also widely adopted in the industry, with native
support in major software platforms such as Houdini, Maya, Unity,
and Unreal Engine, as well as through third-party extensions.

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

Fig. 2. For a scalar function f, the contour corresponding to iso-value 7 is
shown along with a gradient vector, Vf, and V x [0,0, f]7

As demonstrated in prior work, curl noise is a powerful procedural
technique for generating noisy, divergence-free vector fields with
wide-ranging applications. Our approach unifies and extends exist-
ing methods through an improved advection integration scheme
and unlocks new possibilities via an n-dimensional generalization
of divergence-free vector fields, as illustrated in Section 5.

3 Background

In the following subsections, we define 2D and 3D curl noise and
then present an extension to nD. As our starting point, we assume
that we are in possession of a method for generating scalar noise
functions [Perlin 1985], and that we can generate vector noise either
by combining scalar noise functions or by taking the gradient of a
scalar noise function.

3.1 Curl Noise

Given, a 3D vector field, v = [00 0! UZ]T, the curl, V X v, is again a
vector field,

d/ox 0 v% - o}
c=Vxv=| a/ay |x]| o' |=| 2-02 |,
d/oz 0? ol —vg

where subscripts indicate partial derivatives. It is trivial to show
that c is divergence-free since

3/ dx v%—vi
Ve = afay |-| of 02
9]0z v}c—u%
_ 2 1 1 0 _
= vyx—vzx+vzy—vxy+vxz—vyz—0,

where the last equality is due to the symmetry of second derivatives
(i.e. fry = fyx) known as Schwarz’s Theorem or Clairaut’s theorem.
Thus, if v is a smooth and at least twice differentiable noise vector
field then c is a noisy but divergence-free vector field.

3.2 2D Specialization

Perhaps surprisingly, specializing curl noise to 2D is helpful in
showing how it can be generalized to nD. To generate 2D curl noise,
we need to find a vector field, v, whose curl, VXv, is perpendicular to
the z-axis. Given a twice differentiable noise function, f : R?2 >R,
this can be achieved by forming a vector field v = [0, 0, f]T, since
we observe that V x [0,0, f]7 = [fy, —fer 0]7 is precisely a vector

field perpendicular to the z-axis [Bridson et al. 2007]. It is also
worth noting that it is the gradient with respect to x and y rotated
clockwise by a right angle as shown in Figure 2.

Thus, for 2D curl noise, a single scalar noise function f suffices
since v only has a component in the z direction. Moreover, the 2D
curl noise construction indicates a way to generalize curl noise both
to the nD case and to (hyper)surfaces. Observe that V x [0,0, f]T =
Vf x [0,0, l]T. In other words, at least in 2D, curl noise can be
computed as the cross product between a gradient vector field and
another vector field (in this case, a constant field), and, as we shall
see, this generalizes to n dimensions.

3.3 A Different 3D Formulation

In 3D, we can define a divergence-free noise using two gradient
vector fields, say Vf and Vg [DeWolf 2005]. Our noise vector field is

fygz —fzgy
c:VfXVgI fz_(]x_fxgz
fxgy _fygx

Computing the divergence, we obtain

Ve = fyx9z = fexgy + fygzx — fz9yx
+ fzy9x = fry9z + fgxy — fx9zy
+ frzGy = fyz9x + c9yz — fygxz
= 0,
again, the last equality follows from the symmetry of second-order
derivatives, resulting in pairwise cancellation of all terms.

Note that we can replace either f or g with, for instance, a distance
function. In this case, ¢ will be tangent to the iso-contours of the
object represented by the distance field. However, f and g must be
at least twice differentiable; for distance fields, this condition fails
on the medial axis where the gradient is discontinuous. As DeWolf
[2005] suggests, smoothly transitioning one of the functions from a
distance field close to the surface to a pure noise function deep inside
an object can be used to create surface bounded divergence-free
vector noise.

As we have seen, divergence-free vector noise can be formulated
both in terms of the curl of a single vector field and as the cross
product of two gradient fields. The question naturally arises whether
the two formulations are fundamentally equivalent. Put differently,
can any vector field, v = VXw, also be expressed as the cross product
of two gradient fields? This turns out not to be the case. Given a
function f : R3 — R and a vector field, v, we seek a condition for
whether v lies in the tangent plane of iso-contours of f,i.e. v-Vf = 0.
Our proposition is that a necessary condition is

v-(VxXv)=0.

In order to prove this, we first observe that since v is perpendicular
to the gradient, we can always express v in terms of a cross product,
v=Vfxa,

for some vector field a. Plugging in this expression, we get
v-(Vxv)=v-(Vx(Vfxa)=v-((V-a)Vf—Afa)=0,
where the second equality follows from the well-known vector triple

product rule and the last equality follows from the fact that v is
perpendicular to both Vf and a.

Improving Curl Noise « 3

With this proposition (which is in no way novel but follows from
the Frobenius Theorem pertaining to differential topology) we can
construct a counter example. The vector field v = [y, z, x]T is the
curl of w = %[22, x2, yz]T, but v cannot arise as the cross product

of two gradient vector fields sincev- (VxXv) =—x—-y—z #0.

3.4 Dimensions Greater Than Three

While the notion of curl is inherently tied to 3D, our reformulation
relies only on the cross product, which generalizes to nD [Shaw
1987] as the product of n — 1 vectors defined by

cross(vy,...,vp—1) - v =det([v|vi]...|va-1]) , (1)

where v;,v € R" and det(-) is the determinant. It is clear from
this definition that the right-hand side (RHS) must be zero if v =
v;, and it follows that the nD cross product is orthogonal to its
arguments. For a broader discussion of how the properties of the
cross product generalize, the reader is referred to Shaw [1987]. In
practice, we can compute cross(vl, ey vn,1) as the determinant on
the right-hand side of Eq. (1) replacing v with a column of nD basis
vectors [Brahim Belhaouari et al. 2025].

The 4D Case. The above procedure clearly leads to the familiar
rule in 3D, and in 4D we obtain

i ab bl d!

i a® b® gl
cross(a,b,d) = f(S B

1 a* »* a4

where i, j, k, and 1 are the canonical 4D basis vectors. Continu-
ing with this example, we note that computing the divergence is
tantamount to replacing the basis vectors with partial derivatives,
ie.

afox ab bt dt
aloy a® b d
V - cross(a, b,d) = aéaz LIS I

dlow a* bt d*
Instead of a, b, and d, we can plug in the gradients of three noise
functions, f, g, and h. It is now clear that if we form the 4D vector
noise,
¢ =cross(Vf,Vg,Vh) ,

our check for whether c is divergence-free amounts to computing
the value of the following determinant:

d/ox 9df]ox dg/ox oh/ox
d/oy of/day 9g/dy oh/dy
d/dz df[dz dg/dz oh/oz
d/ow df[ow dg/ow Oh[ow

@

One could check manually that this expression always evaluates
to zero. Unfortunately, for n = 4, we have 24 terms in the determi-
nant, and after computing partial derivatives, we arrive at 72 terms,
making it tedious to do the example by hand.

The nD case. In the following, we analyze the structure of a single
term in Eq. (2) generalized to the nD case. Based on this, we will
demonstrate that, thanks to Schwarz’s Theorem, each term is always
matched by a term that is of opposite sign but otherwise identical —
exactly as in the 3D case.

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

4 + Bearentzenetal.

One way to compute the determinant is to sum the products of
all elements in the diagonal for all permutations of the rows. Thus,
we can write the determinant as follows

n-1

etV faD = Y o) 0 [| 2)
pEP i=1

where f; is the ith scalar field (i.e. in the 4D case, fi=f, f2=g and
f5 = h), P is the set of all permutations of tuples (1, ..., n), p; denotes
the i'" index in the permuted order starting from zero for practical
reasons, and o(p) is the sign of the permutation. The sign is 1 if p
is an even permutation and —1 if it is odd.

We note that the first factor in each term of Eq. (3) is the partial
derivative operator, and the remaining factors are partial derivatives
of the scalar field functions. By the product rule of differentiation,
we can replace each term by a sum of n — 1 products, each of which
has the form

o PR oo

o —_
() oxP1 OxPogxPi OxPn-1

In other words, the determinant is a sum of products and each
product contains a double derivative. Now, the crucial thing to
observe is that if we switch the two rows pg and p;, we obtain a new
permutation and the new permutation must have the opposite sign
of the previous one, since the permutation must change from even
to odd or the opposite. It follows that the two permutations lead
to two products which have the same factors but opposite signs.
Certainly, the order of the partial derivatives in the second-order
term is swapped, but again, the order of differentiation does not
matter. In other words, the determinant is a sum of products, all

of which come in pairs with opposite signs, hence sum to zero.

Consequently, our nD noise construct is indeed divergence-free.

Proof using exterior calculus. The formalism of exterior calculus
makes the proof even easier. We need to show that the divergence
of the vector noise is zero. In terms of the exterior derivative d
the gradient of a scalar function f is Vf = (df)ﬁ, where # is an
isomorphism that maps 1-forms to vectors.

Our nD vector noise is now defined as the wedge product of n—1
gradients of scalar noise functions,

c(x) = Ex)F | 4)
where
&(x) =x(dfi A+ Adfp-1) (5)

and f; are the n—1 scalar noise functions that we use as input, while

* denotes the Hodge dual which maps a k-form to an (n — k)-form.

To be clear, Eq. (5) is exactly the same as the nD cross product except
that £ is a 1-form, which is why the isomorphism in Eq. (4) is needed
to map it back to a vector.

Divergence (applied to &) can be expressed as xd* and to show
that c is divergence free, we need to show that

*dx &= (-1)"" T xd(dfi A---Adf_1) =0, (6)

since % = (=1)"~! when the degree of the form is n — 1 and the
space is Euclidean [Dray 1999]. The proof is now all but trivial. We

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

o
@
N =3
g @
&
filxy.2) = fo(x,y.2) = c2
5 N
¥
- N
2
N
*
o0 0.2 N
05
0.
Y Axis s 0%

Fig. 3. Given fi(x,y,2) = x> + y? + 2%, fa(x,y,2z) = x> — y? + 2, and
pPo = (0.5,0.5,0.5), we plot the isosurface corresponding to fi(x, y,z) =
c1 = fi(po) in orange, and to f2(x, y,z) = c3 = fo(po) in blue. At py we
plot three arrows. The orange and blue arrows correspond to V fi (po) and
Vf2(po) respectively. The black arrow corresponds to V fi (po) X Vf2(po).

apply the Leibniz rule to the derivative and obtain,

*kdx & = *kd(dfi Ao Adfu-1)
A XN DI[dfi A AR A Adf] ()
0,

where the last equality follows from the fact that each term in the
sum contains a (wedge) factor d?f; = 0.

4 Method

Our method requires the definition of n — 1 scalar functions, f :
R™ — R, which are generally noise functions. In the region of
interest, the f; have to be at least C? continuous.

The divergence free vector noise is

c(x) = cross(Vfi(x), ... Vfi-1(x)) . 8)

Given a starting point, xg, a point, x, is propagated along the vector
field by integration. The simplest possible method is Euler stepping,

X « de(x) +x , ()]

where § is the step length, but in many of our experiments, we use
the more precise and very popular fourth-order Runge-Kutta (RK4)
scheme [Butcher 1996].

Improving precision. Of course, even more precise and sophisti-
cated schemes for integration than RK4 could be used. However,
since the specific vector field that we integrate is formed as the cross
product of gradients, another option presents itself. It is well-known
that for a smooth scalar field, f, the gradient, Vf, at any point, x,
is perpendicular to the iso-contour, {y|f(y) = f(x)}, that passes

through x. Since c is formed as the cross product of gradients, it
follows that c lies in the tangent plane of iso-contours of all f; (see
Figure 3). It further follows that if we advect a point along c it will
never leave the intersection of the iso-contours at its starting point
if the integration is exact. In other words, the integral curves of ¢
(its streamlines) are the intersections of the iso-contours of f;. This
suggests that we should constrain x to lie in the iso-contours given
by the iso-values, 7 = f(x¢) = [fi(X0), ..., fa—1(X0)], of the initial
point x¢.

To this end, we introduce a reprojection step that iteratively
moves x back onto all the isocontours. To solve this efficiently, we
construct a first order Taylor approximation to f around x and form
the linear system:

Jv+f(x) =17, (10)

where J is the Jacobian of f(x) and we solve for v. Consistent with
the fact that we are projecting onto a linear approximation of a
curve, the problem is underdetermined. This means that we have to
find v as the minimum norm solution which we use to update x

X X+V . (11)

This process can be repeated until ||[f(x) — f(x¢)|| is as small as
desired or another stopping criterion is met.

As a simple alternative, reprojection can be performed by taking
a Newton-Raphson step towards each iso-contour,

fix) -
IVAIE

In the 2D case where there is only a single function, f, the two
approaches are equivalent. Refer to Section 5.2 and Figure 5 for
an example of how this reprojection can dramatically increase the
precision when DFVN is used as a tool for warping an image. In
this example, we also compare Euler and RK4.

X —x-Vf (12)

Algorithm 1 Divergence-Free Vector Noise Tracing in nD where
fi are the noise functions. The function takes starting point xo,
integration time ¢, and number of steps, N, as arguments.

Require: n, fi,..., fu-1
function DFVN_TRACE(Xq, t, N)
X < Xg
6 —t/N
for k =1to N do
c=cross(Vfi,...,Vfu_1)
X «— dc+x
X ¢ REPROJECT(X, Xq)
end for
return x
end function

Algorithm 1 combines integration and reprojection in a procedure
for tracing along a DFVN field. For simplicity, the algorithm uses
an Euler step for integration, but this could be replaced with RK4 or
something else. In Section 5.1 we explain how this algorithm can be
applied to jittering of points in 3D through 7D.

Improving Curl Noise « 5

DFVN on (hyper)surfaces. The functions f; can be any twice-
differentiable functions and are, thus, not required to be noise func-
tions. This enables the construction of divergence-free vector noise
on implicit (hyper)surfaces in nD using Algorithm 1. Specifically,
one of the noise functions can be replaced with a function defining
the (hyper)geometry. For instance, in 3D, curl noise can be gener-
ated on a surface by using a noise function as f; and a distance
field (or any other implicit representation) defining the surface as
f2. This works because ¢ = Vf; X Vf; lies in the tangent plane of
the surface, hence the integral curves of the vector field lie in the
surface. This application is discussed in Section 5.3 and an example
is shown in Figure 6. It is important to note that f, must be twice
differentiable on the surface. For a distance field this entails that
the surface must have bounded curvature since the medial axis is
otherwise arbitrarily close to the surface, and a distance field is not
differentiable at points on the medial axis.

DFVN bounded by (hyper)surfaces. In an extension of the above
scheme, we can generate divergence-free vector noise in a region
bounded by a hypersurface. Again, we exemplify in 3D. Say, we
have a noise function fz We now define

L) =(1-ax)dx) +ax)f2(x) , (13)
where a(x) is a function that goes smoothly from a value of 1 inside
the surface and at a suitable distance from the boundary to 0 at
the boundary and d is the signed distance to the boundary. Note
that « in Eq. (13) must be a twice differentiable function of position
and 1 at any point on the medial axis. Again, the surface must have
bounded curvature to avoid that the medial axis is too close.

As x approaches the surface, f; approaches the distance field and
far from the surface, it is simply a noise function. See Section 5.4
for applications of this.

Anisotropic DFVN through high-dimensional projection. An intrigu-
ing capability of our method is the ability to lift the problem to a
higher-dimensional space, define a DFVN in that space, and then
project it back to a lower dimension, thereby implicitly encoding
properties such as anisotropy of the resulting vector field. For in-
stance, to control anisotropy in 2D, one could lift to 3D by introduc-
ing a heightfield, construct the DFVN in this space, and then apply
a simple 2D projection (see the result Section 5.5). While this is a
straightforward example, more sophisticated variants, such as lift-
ings to higher dimensions or more complex projection schemes to
lower dimensions, are also possible. Overall, our method provides a
way to introduce additional layers of control over the resulting vec-
tor field without requiring the construction of complex anisotropic
procedural noise functions.

5 Experiments

Our DFVN formulation generalizes to higher dimensions, makes
it straight forward to create vector noise on surfaces, and lends
itself to precise integration, thanks to the reprojection scheme. In
the following, we report on our experiments aimed at elucidating
whether these properties lead to practical benefits. The experiments
in Section 5.1 and Figure 1 employ the more precise reprojection
scheme based on Eq. (10). In the remaining experiments, we use the
simpler scheme based on Eq. (12).

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

6 « Berentzenetal.

Please find GLSL codes (suitable for ShaderToy) to replicate the
results in Sections 5.2, 5.3, and 5.4 in the supplemental material
associated with this paper. We also include a supplemental video
containing animated comparisons. For the timings performed, we
used a MacBook Pro with an Apple M1 Max SoC. The shader timings
were computed as the median of 100 frames.

5.1 Point Sampling in nD

To test our DFVN formulation beyond 3D, we implemented curl
noise jittering [Beerentzen et al. 2023] in a dimension-independent
fashion. The core idea is to locally perturb points on a regular grid
by advecting them along the noise vector field using a short time
step. This disrupts the grid structure while avoiding clusters and
gaps, as the divergence-free vector field contains neither sources
nor sinks.

As the noise function, we use the simplex algorithm due to Perlin
[2002] since its run-time complexity for a single lookup is poly-
nomial rather than exponential in the number of dimensions (i.e.,
O(n?) rather than O(2")). Our implementation is a slightly modi-
fied version of the Python code by Craig Macomber! inspired by
Gustavson [2005].

We implemented the following three point generation methods.

e Starting from a regular lattice of k" points in the nD unit hy-
percube, points were jittered using Algorithm 1. We employed
a single fourth-order Runge-Kutta step. Since the average dis-
tance to neighboring grid points increases with dimension,
we used a time step proportional to the average distance,
d=3X", 2(7)Vi/(3" - 1), from a point to its 3" — 1 neigh-
bors.

e The same grid was used, but points were jittered randomly
by sampling an offset vector from a uniform distribution over

the interval [—%u, %u]" where u = 0.1 is the grid spacing.

o A collection of points was generated using Poisson Disk Sam-
pling. This was done with SciPy, which employs the efficient
implementation presented by Bridson [2007]. The original
grid was not used for this experiment, but the grid spacing
(u) was used as the disk radius.

o A collection of points was generated using the Sobol sequence
generator in SciPy. For this experiment, the original grid was
not used, and we rounded the number of points to the nearest
power of two.

For all four methods, we generated point collections in 3D through
7D. For 3D, 4D, and 5D, we generated 10" points. In 6D and 7D, we
scaled back to 7¢ and 67, respectively.

Table 1 summarizes the main statistics from this experiment.
For each dimension, we report the number of points used and the
step length for integration, and we show the minimum and median
distance between pairs of closest points, highlighting the greatest
distance. To provide a more detailed comparison, we plot the radial
distribution functions in Figure 4.

Curl noise jittering aims to generate point sets where no two
points are too close, a characteristic of blue noise. Closest-point
distances are thus a meaningful metric, and both radial distribution
functions and median distances suggest that our method performs

Uhttps://github.com/Craig-Macomber/N- dimensional-simplex-noise

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

Table 1. This table summarizes statistics from the point collection gener-
ation experiment. Each entry contains the median distance followed by
the minimum distance in parentheses and the wallclock time in seconds
(after the colon). The largest values of median and minimum distance are
highlighted in bold. Note that for the Sobol sequence, the actual number of
points is rounded to the nearest power of 2.

n| CNJ Jittering PDS Sobol

3]0.083 (0.044):1 0.069 (0.015):1 0.104 (0.100):0 _ 0.071 (0.031):0
4]0.081(0.034):2 0.069 (0.010):1 0.104 (0.100):3 0.074 (0.030):0
510.083 (0.023):21 0.073 (0.011):8 0.103 (0.092):104 0.071 (0.019):10
6] 0.136 (0.039):31 0.118 (0.057):7 0.103 (0.084):651 0.078 (0.025):23
71 0.176 (0.071):105 0.146 (0.087):20 0.102 (0.080):11k 0.081 (0.030):501

Table 2. This table compares the results of image warping using curl noise
according to integration method and number of steps, whether reprojection
was used (and the number of reprojection steps), the resulting frame rate
(@1024x576), and RMSE between the images (@3840x2160).

Euler RK4
steps reprojection | FPS RMSE | FPS RMSE

64 no | 158.262 8.671 70.388 6.625

64 1step | 105.269 7.685 | 53.717 3.861

64 10 steps | 33.836 7.444 | 28.397 3.882
512 no | 46.464 7.968 16.129 0.504
512 1 step | 26.615 3.617 11.976 0.1
512 10 steps | 4.241 2.777 3.558 0.098

well even beyond three dimensions. Interestingly, in 7D, random
jittering yields the highest minimum distance, despite allowing
arbitrarily close pairs. This is expected, as in high dimensions, such
close encounters become increasingly rare.

In 3D-5D, Poisson Disk Sampling (PDS) outperforms all methods,
with its median distance directly controlled by the disk radius (set to
1in our experiments). However, more effective blue noise techniques
exist in low dimensions, and PDS becomes increasingly inefficient in
higher dimensions. As shown in Table 1, the runtime of PDS was over
three hours for the 7D experiment whereas our method completed
in less than two minutes. Note that the timings are ballpark numbers
from a single run of these methods. Moreover, Jittering and CNJ
are embarrasingly parallel — unlike PDS and Sobol - and were
parallelized using joblib.

Finally, the influence of the gradients used in simplex noise [Gus-
tavson 2005] is diluted in higher dimensions, leading to noise values
closer to the function average (zero). This loss of magnitude is com-
pounded by the nD cross product. To mitigate this, one could scale
the noise function with a dimension-dependent factor. For our exper-
iments (up to dimension 7) this compensation does not significantly
change the results, but for higher dimensions it must be taken into
account.

5.2 Image Warping

We can warp an image by applying Algorithm 1 to advect pixel
coordinates along the vector field before looking up the value of
the image. Results of this deformation on a simple wave image are

https://github.com/Craig-Macomber/N-dimensional-simplex-noise

Improving Curl Noise « 7

Curl Noise Jittering (using DFVN)

/—\/\\A’\m

N

Jittering

M

|

il
) K/L

Poisson Disk Sampling

T~
T T—
(U [N
AN,

N

/\/\\

-

Sobol

-

3D 4D 5D 6D

Fig. 4. Generation of point clouds in 3D through 7D. For each of the four methods (Curl Noise Jittering with DFVN, Jittering, Poisson Disk Sampling, and
Sobol), we show the radial distribution function (RDF) (blue curve) and the median distance between a pair of closest points (stippled red line).

Sawtooth pattern t =0.005 t=0.05 t=0.5
64 steps, Euler, no reprojection 64 steps, Euler, reprojection 64 steps, RK4, no reprojection 64 steps, RK4, reprojection
512 steps, Euler, no reprojection 512 steps, Euler, reprojection 512 steps, RK4, no reprojection 512 steps, RK4, reprojection

Fig. 5. Image warping using DFVN. The top row shows first the original wave pattern, and then the pattern after warping by flowing the image coordinates
along the DFVN field for the indicated time ¢. The second and third rows show the image warped for time ¢ = 0.5 using 64 and 512 integration steps, respectively.
As indicated by the labels, the images were generated either with Euler integration or fourth-order Runge-Kutta and with or without Newton-Raphson based
reprojection (12) onto the iso-contour of the noise.

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

8 « Berentzenetal.

Reference t = 0 Reference ¢ = 0.05

Reference ¢t = 0.25 Reference t = 1.25

Euler integration 32 steps, no projection Euler integration 32 steps, with projection Euler integration 128 steps, no projection Euler integration 128 steps, with projection

RMSE = 6.299 RMSE = 6.164

RMSE = 6.246 RMSE = 4.974

Fig. 6. On-surface texture warping with DFVN. Top row: reference results (2048 steps) for increasing time step t. Bottom row: results with fewer steps (32 or
128), with and without projection. Projection yields lower RMSE for the same number of steps, and the error decreases more rapidly as the step count increases.

shown in Figure 5. Our objective with this experiment is to show
the importance of the reprojection scheme in the case of extreme
warping using DFVN. Intuitively there should be well-defined swirls
and no fold-overs. Since this is the 2D case, we reproject using
Eq. (12).

Statistics for the experiment, including the root mean square error
(RMSE) between each image and the reference image (top right in
the figure), are summarized in Table 2. Note that in this table, we
show the results for both a single reprojection step and ten steps of
reprojection.

The first row of Figure 5 shows the effect of increasing integration
time, using 1000 steps for the reference images. The second and
third rows illustrate the impact of the integration scheme (Euler
stepping versus fourth-order Runge-Kutta), varying the number of
steps, and whether reprojection is used. We only show the result
of a single step of reprojection since the images produced using
one and ten steps are almost indistinguishable to the naked eye.
Integration time t = 0.5 was used for all images in the second and
third rows, and it is clear that many steps are needed to perform
this warp.

The results are very unsurprising. All choices that should improve
quality (RK4 instead of Euler, more steps, and using reprojection)
have a clear positive impact on RMSE and a negative impact on
frame rate. Notably, with our reprojection method, just 64 RK4 steps
yield an image that is visually close to the reference.

5.3 Warping on a 3D Surface

Implicitly defined textures on surfaces can also be deformed, as
shown in Figure 6. Similar to what was observed in Section 5.2, the
reprojection variant consistently improves quality, yielding lower
RMSE with minimal additional computational cost and lowering the

RMSE at a higher rate as the number of integration steps increases.

5.4 DFVN Inside an Area or a Volume

Our method enables defining a DFVN confined within a smooth
(hyper)surface. Figure 7 illustrates examples of manipulating the

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

Fig. 7. Top: A radial pattern is warped by a noise progressively going from
2D (center) to constrained along a curve (circle indicated by the arrow).
Beyond this circle, the noise is constrained along circular iso-contours, thus
preserving the radii, only impacting the angles. Bottom: The same effect
is applied to a ray-marched sphere. The noise on the sphere’s surface is
constrained, ensuring the blue outline is warped by a surface curl noise
while the interior undergoes full 3D warping.

vectors in the cross product to contain the noise inside an area
(Figure 7, top) or volume (Figure 7, bottom). In both cases, the first
vector is a 3D noise gradient. To go from 2D to a contour (Figure 7,
top), the second vector is interpolated from (0,0,1) inside to the
normal of the contour. To go from 3D to a surface (Figure 7, bottom),
the vector is interpolated from another noise gradient inside to the
surface normal.

frame 0 frame 100 frame 285

Fig. 8. Starting from particles on an octahedral lattice, we apply curl noise
jittering [Baerentzen et al. 2023] in the top row and our boundary-conformant
version in the bottom row. In both cases, the jittering does its job of achieving
an irregular distribution, but note how particles in the encircled areas of
the top row pop in and out of the domain (purple, brown, and blue particles
on the left side of the image) or suddenly appear (pink particle in the center
at frame 285). Since this popping is a temporal effect, it is seen much more
clearly in the part of the supplemental video corresponding to this figure.

An interesting application of this ability of our method to do
boundary-conformant DFVN is that we can do curl noise jittering
without particles popping in and out of the domain of interest. As
mentioned before, the purpose of curl noise jittering is to jitter
particles away from initial vertices in a lattice to obtain an irregular
distribution with blue-noise-like properties. If we use this concept
to animate motion of particles, it is much preferred that the particles
consistently stay within the domain of interest. This is illustrated
in Figure 8 and the supplemental video. The curl noise jittering by
Beerentzen et al. [2023] will keep the number of particles in the
domain of interest close to a constant number, but the method has
no tool for keeping the jittered particles within a boundary. With
our method, this is simply achieved by replacing one of the noise
functions (f;) with the signed distance field of the (hyper)surface,
or even better using Eq. 13.

5.5 Advection and Anisotropy Through Surface Design

Our method introduces anisotropy by lifting to a higher-dimensional
space and then by projection back to the original domain. Figure 9
and Figure 10 illustrate how noises obtained from higher dimensions
can be used to control effects in lower dimensions.

In Figure 9, particles are advected by a DFVN. Viewed from above
- orthographic view in xy - the particles move from top to bottom
in a motion perturbed by noise and a vortex in the center. This
behavior results from defining the first vector in the cross-product
as the gradient of a 3D scalar field, where the field has a vertical (z)
ramp. The view looks down at a surface, which normally is used
as the second vector in the cross-product. When the surface is a
horizontal plane, the vertical ramp has no influence, and only the
noise impacts the result. However, when the surface is sloped, the

Improving Curl Noise « 9

Fig. 9. Top: Traces of particles advected by a divergence free vector field.
Bottom: Surface generating the advection; the slope normal induces motion
in interaction with the gradient of the first field. The particle motion is
orthogonal to the slope, and speed increases with slope.

Fig. 10. Left: Traces of particles advected by a divergence free vector field.
Note the overall anisotropic aspect of the vortices. Right: Surface generating
the anisotropy.

gradient in z interacts with the xy components of the surface normal.
This introduces auxiliary motions, with the particles moving across
the slope. This provides an intuitive and efficient way to control
advection through surface design.

Figure 10 demonstrates how the same technique can introduce
anisotropy in the stream pattern. In this case, the field has no verti-
cal ramp, and thus, the surface slope produces anisotropy without
auxiliary motion. Both effects can be freely combined. Note that this
is an application of DVEN rather than a way to form DFVN fields,
and the result is only guaranteed divergence free before projection
to the lower dimensional space (i.e. 2D in this case).

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

10 « Berentzen et al.

6 Discussion

We have shown that the formulation of divergence-free noise in
terms of cross products of gradients of noise functions generalizes
to nD and that it is indeed divergence-free in any dimension.

As we have also seen, 2D and 3D divergence free vector noise
can be formulated both in terms of curl as Bridson [2007] did, as
well as in terms of a cross product as DeWolf [2005] and we do, but
the formulations are not equivalent. Some curl vector fields (in 3D)
cannot be generated as the cross product of two gradient vector
fields.

While this can be seen as a limitation of our method in the sense
that we loose some expressivity, we get significant benefits in return
for constraining the integral curves of the noise vector field to be
intersections of iso-contours. Besides the fact that the cross prod-
uct formulation generalizes to arbitrary dimensions, the proposed
reprojection scheme provides much better precision and, in some
cases, better trade-offs between performance and precision. For in-
stance, we note from Table 2 how 64 steps of RK4 with reprojection
beats 512 steps of Euler integration both in terms of performance
and RMSE error. Moreover, in practice, 3D curl noise vector fields
are constructed by computing the curl of a vector field obtained by
conjoining three independent noise functions. Theoretically this is
more expressive, but we are unsure how to exploit this expressivity.
Finally, in 2D our method has the same expressivity as curl noise —
while being more precise thanks to reprojection.

6.1 Future Work

Our nD curl-noise formulation opens up a wide range of unexplored
possibilities, including new ways to define projection operators in
2D, 3D, and higher dimensions. This article merely scratches the
surface. For instance, one could induce anisotropy in 3D via a (3+k)D
projection operator (with k > 0), analogous to our 2D example of
Section 5.5. We have also demonstrated that using our DFVN fields
to jitter points in arbitrary dimensions is possible. One of the most
apparent next steps is to investigate the application of this method to
concrete problems such as integrating high-dimensional functions
or sampling problems.

Acknowledgments

We wish to thank the LORIA laboratory for supporting our collab-
oration and Jens Gravesen for elucidating aspects of the exterior
derivative. This project has received funding from Innovation Fund
Denmark (0223-00041B).

References

J Andreas Beerentzen, Jeppe Revall Frisvad, and Jonas Martinez. 2023. Curl noise
jittering. In SIGGRAPH Asia 2023 Conference Papers. ACM, 88:1-88:11. doi:10.1145/
3610548.3618163

Samir Brahim Belhaouari, Yunis Carreon Kahalan, Ilyasse Aksikas, Abdelouahed Hamdi,
Ismael Belhaouari, Elias Nabel Haoudi, and Halima Bensmail. 2025. Generalizing
the cross product to N dimensions: A novel approach for multidimensional analysis
and applications. Mathematics 13, 3 (2025), Article 514. doi:10.3390/math13030514

Robert Bridson. 2007. Fast Poisson disk sampling in arbitrary dimensions. In SSGGRAPH
2007 Sketches. ACM, 22. doi:10.1145/1278780.1278807

Robert Bridson. 2015. Fluid Simulation for Computer Graphics. A K Peters/CRC Press.
do0i:10.1201/b10635

Robert Bridson, Jim Houriham, and Marcus Nordenstam. 2007. Curl-noise for procedural
fluid flow. ACM Transactions on Graphics 26, 3 (2007), 46:1-46:3. doi:10.1145/1275808.
1276435

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

Eric Brochu, Tyson Brochu, and Nando De Freitas. 2010. A Bayesian interactive
optimization approach to procedural animation design. In Proceedings of ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (SCA °10).

Tyson Brochu and Robert Bridson. 2009. Robust topological operations for dynamic
explicit surfaces. SIAM Journal on Scientific Computing 31, 4 (2009). doi:10.1137/
080737617

John Charles Butcher. 1996. A history of Runge-Kutta methods. Applied numerical
mathematics 20, 3 (1996), 247-260. doi:10.1016/0168-9274(95)00108-5

Jumyung Chang, Ruben Partono, Vinicius C. Azevedo, and Christopher Batty. 2022.
Curl-Flow: boundary-respecting pointwise incompressible velocity interpolation
for grid-based fluids. ACM Transactions on Graphics 41, 6 (2022), 243:1-243:21.
doi:10.1145/3550454.3555498

Qiang Chen, Tingsong Lu, Yang Tong, Guoliang Luo, Xiaogang Jin, and Zhigang Deng.
2022. A practical model for realistic butterfly flight simulation. ACM Transactions
on Graphics 41, 3 (2022). doi:10.1145/3510459

Ivan DeWolf. 2005. Divergence-free noise. https://www.academia.edu/download/
50013242/DFnoiseR.pdf

Xinwen Ding and Christopher Batty. 2023. Differentiable curl-noise: boundary-
respecting procedural incompressible flows without discontinuities. Proceedings of
the ACM on Computer Graphics and Interactive Techniques 6, 1 (2023), 16:1-16:16.
doi:10.1145/3585511

Tevian Dray. 1999. The hodge dual operator. Oregon State University report (1999), 1-6.

Sevinc Eroglu, Sascha Gebhardt, Patric Schmitz, Dominik Rausch, and Torsten Wolfgang
Kuhlen. 2018. Fluid sketching - Immersive sketching based on fluid flow. In Virtual
Reality and 3D User Interfaces (VR). IEEE, 475-482. doi:10.1109/vr.2018.8446595

Stefan Gustavson. 2005. Simplex noise demystified. https://itn-web.it.liu.se/~stegu76/
simplexnoise/simplexnoise.pdf

Christopher Horvath and Willi Geiger. 2009. Directable, high-resolution simulation of
fire on the GPU. ACM Transactions on Graphics 28, 3 (2009), 41:1-41:8. doi:10.1145/
1576246.1531347

Theodore Kim, Nils Thiirey, Doug James, and Markus Gross. 2008. Wavelet turbulence
for fluid simulation. ACM Transactions on Graphics 27, 3 (2008), 50:1-50:6. doi:10.
1145/1399504.1360649

Ares Lagae, Sylvain Lefebvre, Rob Cook, Tony DeRose, George Drettakis, David S. Ebert,
John P. Lewis, Ken Perlin, and Matthias Zwicker. 2010. A survey of procedural noise
functions. Computer Graphics Forum 29, 8 (2010), 2579-2600. doi:10.1111/j.1467-
8659.2010.01827.x

Rahul Narain, Jason Sewall, Mark Carlson, and Ming C. Lin. 2008. Fast animation of
turbulence using energy transport and procedural synthesis. ACM Transactions on
Graphics 27,5 (2008), 166:1-166:8. d0i:10.1145/1457515.1409119

Zherong Pan, Jin Huang, Yiying Tong, Changxi Zheng, and Hujun Bao. 2013. Interactive
localized liquid motion editing. ACM Transactions on Graphics 32, 6 (2013), 184:1—
184:10. doi:10.1145/2508363.2508429

Axel Paris, Adrien Peytavie, Eric Guérin, Oscar Argudo, and Eric Galin. 2019.
Desertscape simulation. Computer Graphics Forum 38, 7 (2019), 47-55. doi:10.
1111/cgf.13815

Ken Perlin. 1985. An image synthesizer. Computer Graphics (SSGGRAPH ’85) 19, 3
(1985), 287-296. doi:10.1145/325165.325247

Ken Perlin. 2002. Noise Hardware. In Real-Time Shading Languages. Chapter 2,
SIGGRAPH 2002 Course Notes, Article 36. https://www.csee.umbc.edu/~olano/
$2002¢36/ch02.pdf

Tobias Pfaff, Nils Thuerey, and Markus Gross. 2012. Lagrangian vortex sheets for
animating fluids. ACM Transactions on Graphics 31, 4 (2012), 112:1-112:8. doi:10.
1145/2185520.2335463

Hagit Schechter and Robert Bridson. 2008. Evolving sub-grid turbulence for smoke
animation. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (SCA ’08).

Ronald Shaw. 1987. Vector cross products in n dimensions. International Journal of
Mathematical Education in Science and Technology 18, 6 (1987), 803-816. doi:10.1080/
0020739870180606

Wolfram Von Funck, Holger Theisel, and Hans-Peter Seidel. 2006. Vector field based
shape deformations. ACM Transactions on Graphics 25, 3 (2006), 1118-1125. doi:10.
1145/1179352.1142002

Xinjie Wang, Xiaogang Jin, Zhigang Deng, and Linling Zhou. 2014a. Inherent noise-
aware insect swarm simulation. Computer Graphics Forum 33, 6 (2014), 51-62.
doi:10.1111/cgf.12277

Xinjie Wang, Linling Zhou, Zhigang Deng, and Xiaogang Jin. 2014b. Flock morphing
animation. Computer Animation and Virtual Worlds 25, 3-4 (2014), 351-360. doi:10.
1002/cav.1580

Yuwen Wu. 2021. Bitangent noise. https://github.com/atyuwen/bitangent_noise

Bowen Yang, William Corse, Jiecong Lu, Joshuah Wolper, and Chen-Fanfu Jiang. 2019.
Real-time fluid simulation on the surface of a sphere. Proceedings of the ACM on
Computer Graphics and Interactive Techniques 2, 1 (2019), 4:1-4:17. doi:10.1145/
3320285

https://doi.org/10.1145/3610548.3618163
https://doi.org/10.1145/3610548.3618163
https://doi.org/10.3390/math13030514
https://doi.org/10.1145/1278780.1278807
https://doi.org/10.1201/b10635
https://doi.org/10.1145/1275808.1276435
https://doi.org/10.1145/1275808.1276435
https://doi.org/10.1137/080737617
https://doi.org/10.1137/080737617
https://doi.org/10.1016/0168-9274(95)00108-5
https://doi.org/10.1145/3550454.3555498
https://doi.org/10.1145/3510459
https://www.academia.edu/download/50013242/DFnoiseR.pdf
https://www.academia.edu/download/50013242/DFnoiseR.pdf
https://doi.org/10.1145/3585511
https://doi.org/10.1109/vr.2018.8446595
https://itn-web.it.liu.se/~stegu76/simplexnoise/simplexnoise.pdf
https://itn-web.it.liu.se/~stegu76/simplexnoise/simplexnoise.pdf
https://doi.org/10.1145/1576246.1531347
https://doi.org/10.1145/1576246.1531347
https://doi.org/10.1145/1399504.1360649
https://doi.org/10.1145/1399504.1360649
https://doi.org/10.1111/j.1467-8659.2010.01827.x
https://doi.org/10.1111/j.1467-8659.2010.01827.x
https://doi.org/10.1145/1457515.1409119
https://doi.org/10.1145/2508363.2508429
https://doi.org/10.1111/cgf.13815
https://doi.org/10.1111/cgf.13815
https://doi.org/10.1145/325165.325247
https://www.csee.umbc.edu/~olano/s2002c36/ch02.pdf
https://www.csee.umbc.edu/~olano/s2002c36/ch02.pdf
https://doi.org/10.1145/2185520.2335463
https://doi.org/10.1145/2185520.2335463
https://doi.org/10.1080/0020739870180606
https://doi.org/10.1080/0020739870180606
https://doi.org/10.1145/1179352.1142002
https://doi.org/10.1145/1179352.1142002
https://doi.org/10.1111/cgf.12277
https://doi.org/10.1002/cav.1580
https://doi.org/10.1002/cav.1580
https://github.com/atyuwen/bitangent_noise
https://doi.org/10.1145/3320285
https://doi.org/10.1145/3320285

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Curl Noise
	3.2 2D Specialization
	3.3 A Different 3D Formulation
	3.4 Dimensions Greater Than Three

	4 Method
	5 Experiments
	5.1 Point Sampling in nD
	5.2 Image Warping
	5.3 Warping on a 3D Surface
	5.4 DFVN Inside an Area or a Volume
	5.5 Advection and Anisotropy Through Surface Design

	6 Discussion
	6.1 Future Work

	Acknowledgments
	References

