
Eurographics Symposium on Rendering - Experimental Ideas & Implementations (2015)

J. Lehtinen and D. Nowrouzezahrai (Editors)

Interactive Global Illumination Effects Using
Deterministically Directed Layered Depth Maps

F. P. Aalund†, J. R. Frisvad, and J. A. Bærentzen

Technical University of Denmark

Figure 1: All images are generated using rasterization and layered depth maps. From left to right: Ambient obscurance, ambient

occlusion, single-bounce indirect lighting, and environment lighting combined with indirect lighting.

Abstract
A layered depth map is an extension of the well-known depth map used in rasterization. Multiple layered depth
maps can be used as a coarse scene representation. We develop two global illumination methods which use said
scene representation. The first is an interactive ambient occlusion method. The second is an interactive single-
bounce indirect lighting method based on photon differentials. All of this is implemented in a rasterization-based
pipeline.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Raytracing

1. Introduction

An efficient solution to the problem of rendering with global

illumination is perhaps the single problem that has received

most attention in real-time graphics recently. While great in-

roads have been made, most methods are still limited and re-

quire the combination of several elements — which in turn

are usually based on rasterization or ray tracing.

Despite the many similarities between rasterization and

ray-tracing, the traversal order is a distinctive difference.

Rasterization only requires local scene information (a single

primitive) each step. Ray-tracing, however, requires global

† e-mail: frederikaalund+ldm2015@gmail.com

scene information (all primitives) each step. Consequently,

rasterization has a smaller memory footprint for complex

scenes. This is a key advantage of rasterization that is piv-

otal to the way modern GPUs operate [AMHH08]. Simulta-

neously, this is a significant limitation of rasterization since

only local information can be used in shading.

Overcoming the local information limitation of raster-

ization in real-time rendering has been the focus of re-

cent research [RGS09, CNS∗11, NRS14, ZRD14]. Common

for these methods is the use of an auxiliary data structure

which contains a coarse representation of the scene geome-

try. Programmable GPU features such as fragment shaders

are adapted to construct said data structures in real-time.

During rasterization, a shader can then query the auxiliary

c© The Eurographics Association 2015.

F. P. Aalund, J. R. Frisvad, & J. A. Bærentzen / Interactive Global Illumination Using Layered Depth Maps

data structure for global scene information. The latter can be

used to implement global illumination and thus overcome

the local limitation of rasterization. This is an ideal com-

bination of the performance characteristics of rasterization

with the physical correctness of global illumination.

As in some previous work [KBW06, BHKW07, ZHS08,

NSS10, HHZ∗14], we use an auxiliary data structure based

on layered depth maps (LDMs). Layered, in the sense that

all depth values (not just a single one) are stored in the map.

The novelty in our approach is that each LDM is pre-sorted

which in turn allows for a fast tracing algorithm.

We also present two global illumination methods which

use rasterization in combination with our auxiliary data

structure: Ambient occlusion and single-bounce indirect

lighting. These methods are meant to demonstrate the appli-

cability of our auxiliary data structure. We use a path traced

reference to evaluate the image quality of our results. Fur-

thermore, we compare the ambient occlusion implementa-

tion with a screen-space approach.

2. Related Work

First, previous work on LDMs in the context of transparency

is presented. Second, related indirect lighting methods are

described.

2.1. LDMs

LDMs were invented to solve the issue of rendering trans-

parent objects in a rasterization pipeline [MCTB11]. Specif-

ically, to implement so-called order-independent trans-

parency (OIT). The primitives are sent through the pipeline

in any order and the LDM will automatically depth-sort

the corresponding fragments (Figure 2). Previous work on

LDMs in the context of OIT can be readily applied to our

use case.

Early Approaches. LDMs were introduced with the

anti-aliased, area-averaged, accumulation buffer (A-buffer)

[Car84]. The A-buffer is essentially a per-pixel singly linked

list of fragments sorted according to depth. The A-buffer

was introduced before the emergence of modern GPUs and

the proposed implementation is meant for offline use in the

REYES system. The Z3 data structure seeks to improve on

the anti-aliasing of the A-buffer by also storing image-space

derivatives of the depth value [JC99]. Furthermore, the au-

thors suggest to store a constant k fragments per pixel.

The recirculating fragment buffer (R-buffer) is a pointer-

less derivative of the A-buffer. [Wit01]. The R-buffer is es-

sentially a FIFO buffer of the incoming fragments. In other

words, the R-buffer provides unique storage for all frag-

ments. The fragment-stream buffer (F-buffer) is a new ren-

der target that stores all incoming fragments in a FIFO buffer

[MP01]. It is a general proposal meant to be used with a pro-

grammable pipeline (such as OpenGL 2.x and above).

Figure 2: A layered depth map (LDM). Each pixel stores

multiple depth values. Here, three view rays are shown. The

depth values are given in the colored squares along each

view ray. Both front and back faces are rasterized. Note that

multiple fragments may map to the same pixel.

A LDM with a constant, k, number of layers is called a

k-buffer [CICS05,BCL∗07,MB07]. Note that Z3 already in-

troduced this idea [JC99]. All k-buffers use multiple render

targets (MRT) to capture multiple fragments at a time. The

various implementations use different tricks to sort and store

multiple fragments per pixel. E.g., by using read-modify-

write operations [CICS05] or by exploiting multisample tex-

tures and stencil routing [MB07].

Modern Approaches. The previous implementations were

limited by the hardware of their time. On graphics cards,

LDMs were originally constructed using the so called depth

peeling method which employed the shadow map depth test

to "peel off" each layer of the LDM [Eve01]. Atomic op-

erations and shader storage buffer objects (SSBOs) intro-

duced with the OpenGL 4.3 Core Profile [SAF∗13] allow for

more advanced implementations. One example is the use of

an SSBO to store per-pixel fixed-length arrays (PPFLA) of

depth values [LHLW09, LHLW10, Cra10a]. This approach

is similar to Z3 and the k-buffer. That is, it has constant

constant memory requirements (up to a fixed k) but with

a different implementation that uses newer hardware fea-

tures. Depth-sorting is done as a post-processing pass on

the per-pixel arrays. The sorting pass can be skipped by

depth-sorting during construction in order to construct pre-

sorted per-pixel fixed-length arrays (PSPPFLA) [LHLW09,

LHLW10].

Inspired by the A-buffer, per-pixel singly linked lists (PP-

SLL) can be constructed using OpenGL 4.x [YHGT10,

c© The Eurographics Association 2015.

F. P. Aalund, J. R. Frisvad, & J. A. Bærentzen / Interactive Global Illumination Using Layered Depth Maps

YM10, GT10, Thi11]. Paged per-pixel singly linked lists

(PPPSLL) store multiple depth values per node which de-

creases the memory overhead [Cra10b]. Insertion sort can

be during construction of PPSLL to get pre-sorted per-pixel

singly linked lists (PSPPSLL) [LHL14].

The layered buffer or list buffer (l-buffer) is a pointer-

less A-buffer derivative [Lip10]. Depth values are stored

in per-pixel contiguous variable-length arrays thus not re-

quiring any pointer indirection. The downside of the l-

buffer is the complicated construction wich requires at

least seven passes [Lip10]. The l-buffer has been optimized

in several iterations. First, a simpler, 4-step construction

method with the dynamic fragment buffer (DF-buffer) us-

ing a parallel prefix-sum algorithm [CTBM12]. Second,

an alternative parallel prefix-sum implementation optimized

for pixel sparsity (when many pixels are without frag-

ments) called the sparsity-aware buffer (S-buffer) [VF12].

Third, the dequeue buffer (D-buffer) presents various micro-

optimizations [Lip13]. The D-buffer can be pre-sorted in or-

der to construct pre-sorted per-pixel variable-length arrays

(PSPPVLA) [Kub14].

The hashed A-buffer (HA-buffer) is a hash map of depth

values [LHL13]. The hash table itself is actually a simple

contiguous array of entries stored in an SSBO. It is the op-

erations on said array that define the hash map. One of the

key benefits of the HA-buffer is that the depth-sorting can

be combined with the hash function. As such, the HA-buffer

can be constructed in a single pass over the scene geometry.

2.2. Real-time Global Illumination

First, previous work on interactive ambient occlusion is pre-

sented. Second, general indirect lighting methods are de-

scribed.

Ambient Occlusion. Ambient occlusion (AO) [ZIK∗98,

Lan02] is a visibility term in the rendering equation used to

attenuate ambient lighting. In offline rendering, AO is often

computed using a Monte Carlo integration over directions in

the unit hemisphere [PH04]. In real-time rendering, the sim-

plest solution is to use a constant AO term [AMHH08]. This

approach avoids computing the integral altogether which is

the cheapest option performance-wise. However, the result is

flat-shaded surfaces since the constant model lacks any kind

of directionality.

Recently, screen-space (or image-space) AO methods

have been used in real-time rendering. Said methods typ-

ically use the depth map as a coarse scene representa-

tion from which global information can be queried [SA07,

Mit07]. These methods are known as SSAO methods. The

early SSAO approaches estimate AO by using a point sam-

pling strategy [SA07, Mit07]. Each point corresponds to a

depth buffer look-up which determines whether the point

is occluded or not. The average of all such queries is used

as the AO term. A later screen-space approach approxi-

mates AO as a function of the unoccluded horizon (HBAO)

[BSD08]. This is done by ray-marching the depth buffer in

screen-space. The ray-marching makes HBAO slower than

earlier SSAO methods but HBAO produces high quality re-

sults. Some SSAO methods use multi-view or layered depth

buffers to get more scene information [SA07, VPG13].

There are many other variations of SSAO [FM08, LS10,

MOBH11, Mit12]. Common for them all is that they fit

within a real-time rendering budget both in terms of per-

formance and memory use. We have similar requirements

for our AO model. We therefore implement a screen-space

method (HBAO) that we can compare with our method

based on LDMs.

Another approach is to compute a dynamic sparse voxel

octree during primitive traversal. The octree serves as a

coarse scene representation and can be queried efficiently

with voxel cone tracing to approximate AO [CNS∗11]. How-

ever, voxel cone tracing is limited to diffuse and glossy light

models. In contrast, LDMs can be used to trace specular re-

flections and refractions.

Indirect Lighting. Indirect lighting covers all lighting be-

yond the initial bounce. In offline rendering, path tracing

is often used to compute indirect lighting [PH04]. Reflec-

tive shadow maps (RSMs) is a real-time virtual point light

(VPL) approach that models single-bounce indirect light-

ing [DS05]. A RSM augments the shadow map by also stor-

ing the radiant flux, surface normal, and surface position. As

such, each pixel in the reflective shadow map is a VPL repre-

senting an LD path (using light transport notation [Hec90]).

Reflected radiance from the camera’s view is then integrated

in screen-space. That is, nearby pixels (nearby VPLs are

sampled in a fragment shader and the result is accumulated

(LDDE paths). Imperfect shadow maps (ISMs) are coarse

approximations of shadow maps [RGK∗08]. As such, ISMs

can be generated much faster. ISMs can be combined with

RSMs to compute the visibility term of each VPL. This re-

moves the light leak problem of RSMs. Imperfect reflective

shadow maps (IRSMs) [RGK∗08] are the ISM analogues to

RSM. By augmenting each of the ISM with light informa-

tion, multiple light bounces of indirect light can be computed

(LD+E paths). Of course, this adds additional complexity to

the method and thus degrades performance. LDMs can be

combined with RSMs in so-called layered reflective shadow

maps (LRSMs) [SRS14]. This allows light data to be decou-

pled from a voxel-based representation of the scene geome-

try.

Global ray-bundles can be used in a combined Monte

Carlo and finite element method to compute indirect lighting

[SS96]. This method introduced the idea of tracing bundles

of parallel rays. Later methods (including ours) use modern

hardware features to further improve the performance of the

global ray-bundle technique [SKP98, HHGM10].

c© The Eurographics Association 2015.

F. P. Aalund, J. R. Frisvad, & J. A. Bærentzen / Interactive Global Illumination Using Layered Depth Maps

A hybrid VPL and path tracing approach can be imple-

mented using LDMs [TO12b]. The idea is to combine the

two approaches into a single bidirectional algorithm. To do

so, a RSM is first used to generate the VPLs along with a reg-

ular shadow map for each VPL (forming LD paths). Then,

global ray-bundles are generated using LDMs (forming DD

paths). Lastly, DE paths are rendered from the camera into

a G-buffer. Any combination of the above-mentioned paths

can be connected. E.g., an LDDDE path by tracing from

the eye to the first surface (using the G-buffer), then re-

flecting towards another surface (using a LDM), and lastly

towards a VPL (using the corresponding shadow map for

visibility). This results in a two-bounce global illumination

method. Additional bounces can be added by tracing the

LDMs again for more DD paths. That is, LD*E paths are

possible though at the cost of performance for each addi-

tional bounce. The authors suggest to use PPSLL to imple-

ment the LDMs [TO12b].

The principle behind ISMs can also be applied to ray-

bundle tracing [TO12a]. In this approach, the LDMs are gen-

erated from coarse scene representation (using the ISM re-

duction technique). This results in faster LDM construction.

However, light leaks can now occur since the scene repre-

sentation is much coarser.

In the aforementioned methods, the LDMs have been used

to trace rays in the direction which the LDM is oriented.

This requires the construction of a LDM for each direction.

Another approach is to trace in arbitrary directions by ray-

marching through each LDM [LR98, BHKW07]. This ap-

proach is analogous to ray-marching a depth map (as done

in HBAO). This adds additional complexity to the tracing

algorithm. On the other hand, fewer LDMs need to be gen-

erated. In fact, only three LDMs in orthogonal directions

are necessary; a so-called layered depth cube [LR98]. When

tracing in direction, ω, the LDM which is oriented clos-

est to ω is chosen. Then the chosen LDM is ray-marched.

In practice, rays that are almost orthogonal to the chosen

LDM will be costly to ray-march. The more LDMs, the

less so-called pixel crossings (and the faster performance)

[NSS10]. As such, it is sometimes more performant to use

more than the theoretical minimum number of three orthog-

onal LDMs in practice. The optimal number depends on

the underlying implementation. The ray-marching scheme

is not perfect. Rays may miss intersections for steep depth

values. A tolerance threshold for the intersection test can

mitigate this issue [NSS10]. Applications include: Whitted

ray-tracing of reflections (offline) [BHKW07] and refrac-

tions (real-time) [UPSK07], glossy reflections and soft shad-

ows (offline) [NSS10], caustic photon tracing (interactive)

[KBW06], and path tracing (real-time) [HHZ∗14]. We do

not use ray-marching but trace in directions parallel to each

LDM. This way, no intersections are missed and no expen-

sive pixel crossings occur. However, a LDM must be gener-

ated for each sample direction which may be expensive.

Layered screen-space information can also be used

for global illumination with the so-called deep G-buffer

[MMNL14]. A two-layered G-buffer is used to approximate

both indirect lighting and ambient occlusion. Deep screen

space [NRS14] is another recent approach which extends

screen-space information. Here, each primitive is tessellated

into surface elements (surfels) and shading effects are ap-

plied by splatting said surfels.

3. Method

The idea is to compute all indirect lighting with ray tracing

based on LDMs. Direct lighting is computed using conven-

tional rasterization. As such, our methos is a rasterization

and ray tracing hybrid. We chose to implement our LDMs

as PSPPSLL. The latter can be constructed efficiently in a

single pass over the scene geometry (for each LDM). This

enables us to construct the LDMs each frame in order to

support dynamic scenes (no pre-computation requirements).

The LDM construction itself is identical to previous work on

PSPPSLL [LHL14]. We use multiple LDMs each oriented in

a different direction (Figure 3). The LDMs are then used as a

coarse scene approximation in which rays can be traced. The

tracing itself is a key component of all our indirect lighting

methods and is explained in the next section.

3.1. Tracing in a LDM

Given a ray, r = (x,d) with initial point x and direction d, a

trace should return the position of the first geometric inter-

section, x f , between r and the scene geometry,

x f = trace(r) = trace(x,d)

The trace(r) query can be broken down into four steps:

1. Find Map. Find the LDM corresponding to d.

2. Find Pixel. Find the pixel, p, which corresponds to x in

the LDM.

3. Find Depth Value. Find the depth value, zx, correspond-

ing to x in the depth value sequence of p.

4. Compute Intersection. Use zx−1 to construct x f .

With orthographic multi-view LDMs, there is direct map-

ping between the sample directions and the LDMs. As such,

the Find Map step is trivial. The Find Pixel step must

find the right p to sample from. The solution is to use re-

projection (as done in shadow mapping). That is, x is pro-

jected from world coordinates into normalized device coor-

dinates (NDC) by the LDM’s view-projection matrix. The

NDC directly give the position, p. In the Find Depth Value
step, the Lp = (z0,z1,z2, . . .) sequence is searched to find

the depth value, zx, which corresponds to x. The key to the

Compute Intersection step is to note that the previous depth

value, zx−1, belongs to the first intersection with the scene

geometry. From zx−1 and the LDM’s orientation, x f can be

reconstructed (Figure 4).

c© The Eurographics Association 2015.

F. P. Aalund, J. R. Frisvad, & J. A. Bærentzen / Interactive Global Illumination Using Layered Depth Maps

(a) Top view. (b) Side view. (c) Forward view.

Figure 3: Point cloud visualizations of LDMs. Each sub-

figure uses a different view direction. The scene is the Crytek

sponza. The point cloud rendering (white points) is overlaid

the flat-shaded geometry.

v2 v3

v1 = -d

x

xf

d

p

zx-2

zx-1

zx

Figure 4: Querying the multi-view LDMs along the ray

from x in direction d. First, the LDM corresponding to d
is found (v1 = −d). Second, x is projected into the LDM’s

view to find p. Third, the (. . . ,zx−2,zx−1,zx, . . .) sequence

is searched to find zx. Fourth, the first intersection along d is

at depth zx−1 from which x f can readily be constructed.

Note that a single LDM oriented in direction v can actu-

ally be queried both in the v and −v direction. The small

extra step is to also find zx+1 which will correspond to x f
in the −v direction. Algorithmically, only a single additional

step has to be added. Thus both directions can be tested si-

multaneously with practically no overhead.

3.2. Deterministic Directions

The ray directions are restricted to the available LDM ori-

entations. As such, it is important to construct representative

directions. We use a deterministic approach to avoid tempo-

ral flickering.

In the case of the unit hemisphere, one way to divide

the domain is by equal area. The sample directions are then

the centers of each subdomain. Equal-area subdivision, how-

ever, can be achieved using ring slices (and a spherical cap).

With such a subdivision, it is impossible to choose a proper

center for each subdomain (apart from the cap). Therefore,

Figure 5: Visualization of 128 samples generated using the

recursive zonal equal-area partition [Leo06]. Note that half

of the samples in the bottom ring have intentionally been

culled because parallel sample directions exist on the other

side of the sphere.

it is additionally required that each subdomain must have a

small diameter. The latter is defined as the maximum Eu-

clidean distance between two points in the domain. Com-

bined, the equal-area and small-diameter requirements re-

strict the subdivison to well-distributed patches from which

representative centers can be easily chosen.

Such a subdivision has been achieved for the sphere

through what is known as the recursive zonal equal-area

partition [Leo06]. Said algorithm recursively divides the

domain into equal-area small-diameter subdomains starting

with the entire sphere. It returns both the subdomains and

their centers (which we interpret as directions). Please refer

to Figure 5 for an example.

3.3. Ambient Occlusion

The formal definition of AO is

AO(x) =
1

π

∫
H

V (x,ωi)cosθidωi, (1)

where V is the visbility term and H is the unit hemisphere.

Using deterministic equal-area sample directions, the above

integral can be approximated with a sum

AO(x)≈ 2

N

N

∑
i=0

V (x,ωi)cosθi, (2)

where ωi is the ith sample direction out of the N total di-

rections (one for each LDM). Using the trace function de-

scribed above, the visibility term, V , can be trivially com-

puted

V (x,ωi) =

{
0 trace(x,ωi) returned a position

1 Otherwise.
(3)

Ambient Occlusion can be generalized to Ambient Obscu-

rance [ZIK∗98] where V (x,ωi,d) depends on d; the distance

to the first occluder.

c© The Eurographics Association 2015.

F. P. Aalund, J. R. Frisvad, & J. A. Bærentzen / Interactive Global Illumination Using Layered Depth Maps

3.4. Indirect Lighting

The indirect lighting method is explained in two parts. First,

we explain how photon differentials are traced. Second, we

explain how to split and diffusely reflect photon differentials.

Photon Differentials. We base our indirect lighting method

on photon differentials [SFES07]. We limit the method to

point light sources for which photons can be traced as cam-

era rays. As such, each pixel on the image plane corre-

sponds to a photon emission. Two differentially offset rays

are traced along with the primary ray

Dur = (Dux,Dud)

Dvr = (Dvx,Dvd) ,

where D is the differential operator taken with respect to the

screen-space uv-coordinates (Figure 6a). The ray differen-

tials are calculated using the derivative tracing functions by

Igehy [Ige99]. The positional differential spans a parallelo-

gram which is a measure of the ray footprint

Ar = |Duxp ×Dvxp| .
The area of the photon footprint, Ap, is the max-area ellipse

inscribed in the parallelogram [FSES14]

Ap =
π
4

Ar =
π
4
|Duxp ×Dvxp| .

Using this, the irradiance estimate for a single photon, Ep,

can be found directly as

Ep =
Φp

Ap
, (4)

where Φp is the radiant flux carried by the photon p. In con-

trast, a real-time estimate is usually found indirectly by gath-

ering nearby photons in a compute shader [MML13]. Like in

photon mapping [JC95], the irradiance can be directly used

to estimate the reflected radiance. The outgoing radiance be-

comes

Lo(x,ωo) = Le(x,ωo)+

N

∑
p=0

fs(x,ωo,ωp)EpπK(‖Mp(x− xp)‖), (5)

where the sum is over the N photons whose footprint over-

laps x. The kernel function, K, can be any kernel that applies

to a unit circle. We use Silvermann’s second order kernel (as

done in [FSES14])

K(l) =

⎧⎨
⎩

3
π

(
1− l2

)2
l < 1

0 Otherwise.
(6)

M is a 3×3 matrix that maps from world coordinates into

filter coordinates (the domain of the kernel)

Mp =
2

Duxp · (Dvxp ×np)

⎡
⎣Dvxp ×np

np ×Duxp
anp

⎤
⎦ , (7)

where n is the normal and a is a parameter which con-

trols topological bias due to differences in normal orienta-

tion [FSES14].

Conventionally, the position, x, would be used to index

into a map of photon differentials to find the overlapping

footprints [SFES07]. The sum in Equation 5 can then be

computed directly. This is the standard ray-tracing approach

(pixel→photon differentials). Another approach is to splat

the photon differential directly onto the image plane (photon

differential→pixels) [FSES14]. This has the added benefit

that no photon map needs to be stored and thus no costly

lookups into said map. With a rasterization-based pipeline,

primitive→pixels is the natural order. Therefore splatting is

an ideal approach in our use case.

Photon Splitting. The LDMs are used for the photon trac-

ing itself. Since the sample directions are chosen determin-

istically, we use photon splitting (Figure 6b) instead of Rus-

sian roulette. Specifically, a primary photon is split into N
secondary photons for each of the N LDMs. To limit the

number of generated photons, the photons are absorbed af-

ter the first bounce. Thus our method produces LDDE paths

(single bounce indirect diffuse lighting).

The photon differential must be updated accordingly. To

find a derivative diffuse reflection function, we first describe

regular diffuse reflection in terms of the above approach. Let

ωi be the incoming direction of the photon and let ωo be

one of the N outgoing directions in which a new photon is

traced. Upon diffuse reflection, the ray r = (x,d) results in

the r∗ = (x∗,d∗) where

x∗ = x

d∗ = α(ωi,ωo) ·d · ᾱ(ωi,ωo).

The α(ωi,ωo) term is the rotation quaternion which repre-

sents the rotation of vector ωi to vector ωo. ᾱ is the conjugate

of α. Note that d is implicitly converted to a pure quaternion

(and back). The · operator is the Hamilton product. Infor-

mally, the expression qdq̄ denotes the rotation of d by the

rotation quaternion q. Note that α does not depend on nei-

ther x or d. Thus α is also independent of the corresponding

uv-coordinates. This leads to the following straight-forward

derivative diffuse reflection functions

Dux∗ = Dux

Dud∗ = α(ωi,ωo) ·Dud · ᾱ(ωi,ωo).

The positional differential is unchanged and the directional

differential is rotated according to α. Analogous expressions

can be derived for the v-coordinate.

4. Implementation

The two methods share the previously-mentioned LDM-

based ray tracing. In the following, we explain the steps that

are unique to each method.

c© The Eurographics Association 2015.

F. P. Aalund, J. R. Frisvad, & J. A. Bærentzen / Interactive Global Illumination Using Layered Depth Maps

du

d
x

Dud

Dux

(a) (b)

Figure 6: (a) Ray differential. The black ray is the main ray

which we are currently tracing. The blue ray is the offset

ray (which is not actually traced). The solid and dashed red

vectors are the positional and directional ray differentials,

respectively. (b) Photon splitting. The primary photon is split

into multiple secondary photons. Each secondary photon is

weighed according to the BRDF at the surface intersection.

4.1. Ambient Occlusion

Solving Equation 2 requires the following steps:

1. Compute AO (screen-aligned quad). Choose a sample

direction wi.

a. Compute trace(x,ωi) where x is the position in world

coordinates corresponding to the current pixel.

b. V is calculated using Equation 3.

c. Weigh V by the cosine term using the normal from the

G-buffer and accumulate the result.

A sample direction, ωi is chosen for each of the N LDMs. In

practice, step (a) is computed by iterating over all the nodes

in the PSPPSLL corresponding to the current pixel position.

The search can be terminated as soon as a geometric inter-

section is found since the lists are pre-sorted (an optimzation

over previous approaches).

4.2. Indirect Lighting

The indirect lighting is computed in two steps. First, the pho-

tons are traced from the light and stored in a buffer. Second,

the photons are splatted to the frame buffer. Please refer to

Figure 7 for an overview of the implementation.

Photon Tracing. This pass is rendered over the scene ge-

ometry from each light’s point of view. The tracing pass is

divided into the following steps

1. Calculate Radiant Flux. Each photon’s radiant flux, Φp,

is based on the light’s total radiant flux, Φlight.

2. Initialize Photon Differential. This is done using the

pixel’s uv-coordinates and the light’s orientation. Let x0

be the photon’s position on the light source and let d0 be

its initial direction.

3. Transfer Photon Differential. Transfer from x0 to the

first intersected surface, x1. The direction is unchanged,

so d1 = d0.

4. Split Photon. Let N be the number of LDMs. Then a

photon is traced in both directions of each LDM (totaling

in 2N photons). For each corresponding direction d2:

a. Compute x2 = trace(x1,d2); the intersection with the

first diffuse surface.

b. Project x2 into the user’s view. Discard the photon if it

is not visible.

c. Diffusely reflect the photon differential from d1 to d2.

d. Transfer the photon differential from x1 to x2.

e. Store the photon differential in the photon buffer.

In the Split Photon step, the photon is first traced (a) before

the differential is updated (c,d). This is done so that occluded

photons can be rejected early (b). Note that the primary pho-

tons (from the light source) are not stored. Only indirect pho-

tons are stored. As such, the splats will only contribute with

indirect lighting. A third pass is needed to compute direct

lighting. This can be done using conventional rasterization.

Photon Splatting. The photon buffer generated in the pre-

vious pass is sent through the rasterization pipeline in the

next pass. This is simply a matter of rebinding the underly-

ing buffer object as a vertex array (instead of an SSBO) and

issuing a draw call (as points). The properties stored through

the previous SSBO binding can then be accessed as vertex

attributes directly in the vertex shader. This pass is rendered

over a full-screen quad. The scene information is available

through the G-buffer. The splatting itself is best explained in

terms of the three shader stages:

1. Vertex Shader. The irradiance estimate is made here

(Equation 4).

2. Geometry Shader. The positional differential is used to

expand the point into a quad corresponding to the ray

footprint.

3. Fragment Shader. The kernel function, K, is applied af-

ter transformation to filter space using Mp and the result

is written to the frame buffer. Additive blending is used

so that the sum in Equation 5 is computed.

5. Results

We have performed all tests on an Nvidia GeForce GTX 780

Ti at 800×800 resolution. The reference images are gener-

ated using an offline path-tracing renderer.

5.1. Ambient Occlusion

In Figure 8, we have rendered the AO term for the Crytek

Sponza with an attenuated visibility function. The latter de-

pends on an emperical parameter, dmax, which is the maxi-

mum tracing distance. This parameter is necessary in screen-

space approaches such as HBAO to limit the kernel size of

the AO filter. Our approach based on LDMs does not impose

such restrictions. From the figure, it is evident that for large

dmax the HBAO method fails to resemble the reference. This

c© The Eurographics Association 2015.

F. P. Aalund, J. R. Frisvad, & J. A. Bærentzen / Interactive Global Illumination Using Layered Depth Maps

Passes Storage

Photon Tracing
Light view

Screen-aligned Quad

Composition
Compute direct light
and get indirect light

from texture
Screen-aligned Quad

Photon Splatting
User view

Photon Buffer

Data Buffer
List nodes and
head indices

SSBO

Photon Buffer
SSBO

Indirect Light
Texture

G-buffering
User view

Scene Geometry

G-buffer
Depth, normals, and

BRDF properties
Textures

G-buffering
Light view

Scene Geometry

Light G-buffer
Depth, normals, and

BRDF properties
Textures

Figure 7: Overview of photon tracing and splatting. The data

buffer contains the PSPPSLL of all LDMs. This buffer is

generated in an unlisted pass prior to the indirect lighting

routine.

is due to the limited geometric information available in the

depth map. With LDMs, however, global geometric infor-

mation is available which is why our method better resem-

bles the reference. Performance-wise, LDMs are also faster

than HBAO for large dmax. Specifically, the performance of

HBAO drops due to the large kernel size. Note that these

conclusions are only valid for large dmax. As dmax → 0, the

reverse conclusion can be made. That is, for small dmax the

construction and tracing of LDMs takes much more time

than evaluating the filter kernel in HBAO.

It is possible to trade quality for performance by using

fewer low-resolution LDMs (Figure 9). The optimal config-

uration must be found emperically. Figure 9 also shows how

our LDM-based method can be implemented with an unat-

tenuated visibility function; something that is not possible

with the screen-space approaches.

5.2. Indirect Lighting

In Figure 10, we have rendered the Crytek Sponza using

our indirect lighting method. Note that the render times are

much longer compared to the simpler AO method. Some-

(a) LDMs (512.4 ms). (b) Reference. (c) HBAO (903.6 ms).

Figure 8: Ambient occlusion for dmax = 1280m. Our method

(a) resembles the reference (b) better than the screen-space

method (c). This is because the LDMs provide global scene

information whereas the screen-space method is limited by

the information available in the depth map without layers.

512 LDMs are used each with resolution 200×200 totalling

in 805.5 MB of memory.

(a) LDMs (373.0 ms). (b) Reference.

(c) LDMs (1174 ms). (d) Reference.

Figure 9: Ambient occlusion. These images are generated

using the unattenuated visbility function. Furthermore, 512

low-resolution LDMs (50×50) are used for improved per-

formance. The LDMs takes up 204.1 MB and 295.5 MB for

the sponza and the hairball, respectively.

what surprisingly, the bottleneck is the splatting pass which

accounts for a majority of the render time. The LDM trac-

ing itself is relatively cheap in comparison. The splatting

step depends on the additive blending operators of OpenGL’s

fixed-function pipeline which we cannot change. We did ex-

periment with an implementation that performed the tracing

and splatting in a single fragment shader pass using atomic

image load/store operations. Unfortunately, this turned out

c© The Eurographics Association 2015.

F. P. Aalund, J. R. Frisvad, & J. A. Bærentzen / Interactive Global Illumination Using Layered Depth Maps

(a) LDMs (2413 ms). (b) Reference.

(c) LDMs (1716 ms). (d) Reference.

Figure 10: Indirect Lighting. The Crytek Sponza rendered

using our approach based on photon differentials traced with

LDMs. 512 LDMs of 200×200 resolution are used totalling

in 805.5 MB of memory. Note that the total render time (in

parenthesis) also includes pipeline overhead. Photon tracing

takes 2062 ms and 1434 ms in (a) and (c), respectively.

to perform even worse than the fixed-function blending.

Quality-wise, our LDM-based method resembles the refer-

ence image but there are some key differences. The large

photon splats blur the indirect shadows in places where there

should be hard shadows (as seen in the reference). These

artifacts can be reduced by using a smaller splat size and

increasing the photon count accordingly. The optimal trade-

off between quality and performance must be found emperi-

cally.

In Figure 10, we render all direct light using conventional

rasterization. In principle, direct light could also be mod-

elled with photons and rendered in the same way as the indi-

rect light. That is, our LDM-based method can be used as a

unified lighting solution. In Figure 11, we show how LDMs

can be used to compute both direct environment lighting and

indirect lighting.

6. Discussion

In this section, we present various extensions to our LDM-

based indirect lighting method.

Multiple Bounces. Our method can be trivially extended to

support multiple light bounces. As it is now, we split the

Figure 11: Direct environment light, direct spot light, and

indirect spot light. The direct environment light and indirect

spot light is traced using LDMs. The direct light is compued

using conventional rasterization.

primary photon into multiple secondary photons. The very

same approach can be used to split the secondary photons

into tertiary photons and so on.

The first practical difficulty is to stop the recursion. We

propose to either fix the light bounces globally (like we did

with one bounce) or to use Russian roulette. The problem

with the latter is that it introduces temporal flickering. The

second practical difficulty is to control the splitting. A naive

extension of our approach would split photons exponentially

based on the number of light bounces. Alternatively, one can

choose a subset of the sample directions for the secondary

bounces. This subset can then be reduced further for the ter-

tiary bounces and so on. This scheme can be used to balance

out the exponential growth. Another alternative is to choose

sample directions randomly. Again, we chose not to do so

for temporal coherence.

Non-Lambertian BRDF. The problem with our current ap-

proach is that the outgoing directions are fixed. Therefore,

perfect specular reflections are impossible. An approximate

solution is to instead choose the outgoing direction which is

closest to the perfect specular reflection. For large N, the dif-

ference would be negligible. The same approach can be used

to implement glossy reflections.

In principle, any BRDF can be approximated this way. Of

course, the quality of the result heavily depends on how well

the hemisphere is sampled. That is, whether a truly repre-

sentative direction can be chosen. Assuming this is possible,

c© The Eurographics Association 2015.

F. P. Aalund, J. R. Frisvad, & J. A. Bærentzen / Interactive Global Illumination Using Layered Depth Maps

then the LDMs could in principle also be used to implement

path tracing. Though in this extreme, it is arguably more

practical to use one of the aforementioned ray-marching ap-

proaches.

Arbitrary Light Sources. Currently, photon emission is re-

stricted to point light sources. This is so that the photon dif-

ferentials can be easily traced via basic ray differential the-

ory. It is possible to emit photon differentials from arbitrary

light sources [FSES14]. Beyond the emission, the tracing it-

self is identical to tracing ray differentials. Therefore, the

Photon Tracing step can be replaced with a compute shader

that emits and traces photon differentials from arbitrary light

sources. The Photon Splatting step would not change. Note

that this not only enables area light sources such as disks and

squares but also arbitrary geometry light sources. As men-

tioned earlier, the tracing step is currently not a bottleneck.

Therefore, a more complex compute shader can easily be af-

forded.

Progressive Rendering. The scene can be rendered over

multiple frames to improve visual quality (inspired by

[HHZ∗14]). This is mostly relevant for interactive purposes.

A simple approach is to randomly rotate the LDMs each

frame so that new directions are sampled. The result is then

averaged over several frames to produce a more convinc-

ing image. This is similar to the approach used by many

path tracers. Of course, the random rotation would introduce

noise in the result and temporal coherence is lost.

7. Conclusion

We have presented two global illumination methods using

an auxiliary data structure based on LDMs. Specifically,

we presented an interactive AO method and an interac-

tive single-bounce indirect lighting method which both con-

vincingly resemble the path traced reference. Compared to

HBAO, our LDM-based AO method is more efficient for

large dmax both in terms of quality and performance. The in-

direct lighting method is novel in the way it handles the dif-

fuse reflection of photon differentials. The pre-sorted LDMs

allow us to quickly find the first occluder in both directions

with a novel trace algorithm.

The LDMs are constructed independently of one another.

In that sense, our auxiliary data structure is actually a collec-

tion of individual data structures that each stores a scene rep-

resentation. Contrast this to, say, a voxel grid which stores a

scene representation in a single data structure. The problem

with a collection of individual data structures is that scene in-

formation may be duplicated. That is, the same surface point

may be stored in multiple LDMs. This wastes space. There

has been research on optimizing the data storage by sharing

information between list nodes [KWBG13]. It would be in-

teresting to see if entire list nodes could be shared between

the LDMs in order to reduce data duplication.

We have striven to stay physically correct and only intro-

duced bias to gain reasonable performance. The bias can be

reduced by increasing the sampling density. We envision that

our LDM-based approach can ultimately be used as a unified

lighting solution.

References
[AMHH08] AKENINE-MÖLLER T., HAINES E., HOFFMAN N.:

Real-Time Rendering 3rd Edition. A. K. Peters, Ltd., Natick,
MA, USA, 2008. 1, 3

[BCL∗07] BAVOIL L., CALLAHAN S. P., LEFOHN A., COMBA

J. A. L. D., SILVA C. T.: Multi-fragment effects on the GPU
using the k-buffer. In Proceedings of i3D 2007 (2007), pp. 97–
104. 2

[BHKW07] BÜRGER K., HERTEL S., KRÜGER J., WESTER-
MANN R.: GPU rendering of secondary effects. In Vision, Mod-
eling and Visualization 2007 (2007). 2, 4

[BSD08] BAVOIL L., SAINZ M., DIMITROV R.: Image-space
horizon-based ambient occlusion. In ACM SIGGRAPH Talks
2008 (2008), pp. 22:1–22:1. 3

[Car84] CARPENTER L.: The a-buffer, an antialiased hidden sur-
face method. Computers and Graphics 18, 3 (1984), 103–108.
2

[CICS05] CALLAHAN S., IKITS M., COMBA J., SILVA C.:
Hardware-assisted visibility sorting for unstructured volume ren-
dering. IEEE Transactions on Visualization and Computer
Graphics (2005), 285–295. 2

[CNS∗11] CRASSIN C., NEYRET F., SAINZ M., GREEN S.,
EISEMANN E.: Interactive indirect illumination using voxel cone
tracing. In Proceedings of i3D 2011 (2011). 1, 3

[Cra10a] CRASSIN C.: Fast and accurate single-pass A-Buffer us-
ing OpenGL 4.0+. http://blog.icare3d.org/2010/
06/fast-and-accurate-single-pass-buffer.
html (2010). 2

[Cra10b] CRASSIN C.: OpenGL 4.0+ ABuffer v2.0: Linked lists
of fragment pages. http://blog.icare3d.org/2010/
07/opengl-40-abuffer-v20-linked-lists-of.
html (2010). 3

[CTBM12] COMBA J. L. D., TORCHELSEN R., BASTOS R.,
MAULE M.: Memory-efficient order-independent transparency
with dynamic fragment buffer. In Proceedings of SIBGRAPI
2012 (2012), pp. 134–141. 3

[DS05] DACHSBACHER C., STAMMINGER M.: Reflective
shadow maps. In Proceedings of i3D 2005 (2005), pp. 203–208.
3

[Eve01] EVERITT C.: Interactive order-independent trans-
parency. Technical Report, NVIDIA Corporation (2001). 2

[FM08] FILION D., MCNAUGHTON R.: Effects & techniques. In
ACM SIGGRAPH 2008 Games (2008), ACM, pp. 133–164. 3

[FSES14] FRISVAD J. R., SCHJØTH L., ERLEBEN K.,
SPORRING J.: Photon differential splatting for rendering
caustics. Computer Graphics Forum 33, 6 (2014), 252–263. 6,
10

[GT10] GRUEN H., THIBIEROZ N.: OIT and indirect illumina-
tion using DX11 linked lists. In Proceedings of the 2010 Game
Developers Conference (March 2010). 2

[Hec90] HECKBERT P. S.: Adaptive radiosity textures for bidi-
rectional ray tracing. Computer Graphics (Proceedings of ACM
SIGGRAPH 1990) 24, 4 (1990), 145–154. 3

c© The Eurographics Association 2015.

F. P. Aalund, J. R. Frisvad, & J. A. Bærentzen / Interactive Global Illumination Using Layered Depth Maps

[HHGM10] HERMES J., HENRICH N., GROSCH T., MUELLER

S.: Global illumination using parallel global ray-bundles. Vision,
Modeling and Visualization Workshop 2010 (2010), 65–72. 3

[HHZ∗14] HU W., HUANG Y., ZHANG F., YUAN G., LI W.:
Ray tracing via GPU rasterization. Visual Computer 30, 6-8
(2014), 697–706. 2, 4, 10

[Ige99] IGEHY H.: Tracing ray differentials. In Proceedings of
ACM SIGGRAPH 1999 (1999), pp. 179–186. 6

[JC95] JENSEN H. W., CHRISTENSEN N. J.: Photon maps in
bidirectional monte carlo ray tracing of complex objects. Com-
puters and Graphics 19, 2 (1995), 215–224. 6

[JC99] JOUPPI N. P., CHANG C.-F.: Z3: an economical hardware
technique for high-quality antialiasing and transparency. SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware
(1999), 85–93. 2

[KBW06] KRÜGER J., BÜRGER K., WESTERMANN R.: Interac-
tive screen-space accurate photon tracing on GPUs. In Proceed-
ings EGSR 2006 (2006), pp. 319–329. 2, 4

[Kub14] KUBISCH C.: Order independent transparency in
OpenGL 4.x. In Proceedings of the 2014 GPU Technology Con-
ference (2014). 3

[KWBG13] KERZNER E., WYMAN C., BUTLER L., GRIBBLE

C.: Toward efficient and accurate order-independent trans-
parency. ACM SIGGRAPH 2013 Posters (2013). 10

[Lan02] LANDIS H.: Production-Ready Global Illumination. In
ACM SIGGRAPH 2002 Course Notes (2002), vol. 16. 3

[Leo06] LEOPARDI P.: A partition of the unit sphere into regions
of equal area and small diameter. Electronic Transactions on
Numerical Analysis 25 (2006), 309–327. 5

[LHL13] LEFEBVRE S., HORNUS S., LASRAM A.: HA-Buffer:
Coherent Hashing for single-pass A-buffer. Rapport de recherche
RR-8282, INRIA, Apr. 2013. 3

[LHL14] LEFEBVRE S., HORNUS S., LASRAM A.: Per-pixel
lists for single pass a-buffer. In GPU Pro 5: Advanced Rendering
Techniques, Engel W., (Ed.). CRC Press, 2014, pp. 3–23. 3, 4

[LHLW09] LIU F., HUANG M.-C., LIU X.-H., WU E.-H.: Sin-
gle pass depth peeling via cuda rasterizer. ACM SIGGRAPH 2009
Talks (2009). 2

[LHLW10] LIU F., HUANG M.-C., LIU X.-H., WU E.-H.:
Freepipe: A programmable parallel rendering architecture for
efficient multi-fragment effects. In Proceedings of i3D 2010
(2010), pp. 75–82. 2

[Lip10] LIPOWSKI J. K.: Multi-layered framebuffer condensa-
tion: The l-buffer concept. Computer Vision And Graphics, Part
2 6375 (2010), 89–97. 3

[Lip13] LIPOWSKI J. K.: D-buffer: irregular image data storage
made practical. Opto-Electronics Review 21, 1 (2013), 103–125.
3

[LR98] LISCHINSKI D., RAPPOPORT A.: Image-based render-
ing for non-diffuse synthetic scenes. Rendering Techniques ’98
(Proceedings of EGWR 1998) (1998), 301–314. 4

[LS10] LOOS B. J., SLOAN P.-P.: Volumetric obscurance. In
Proceedings of i3D 2010 (New York, NY, USA, 2010), ACM,
pp. 151–156. 3

[MB07] MYERS K., BAVOIL L.: Stencil routed a-buffer. In ACM
SIGGRAPH 2007 Sketches (2007), ACM. 2

[MCTB11] MAULE M., COMBA J. L. D., TORCHELSEN R. P.,
BASTOS R.: A survey of raster-based transparency techniques.
Computers & Graphics 35, 6 (2011), 1023–1034. 2

[Mit07] MITTRING M.: Finding next gen: Cryengine 2 (course
notes). In ACM SIGGRAPH 2007 Courses (2007), pp. 97–121. 3

[Mit12] MITTRING M.: The technology behind the unreal engine
4 elemental demo. In ACM SIGGRAPH 2012 Talks (2012). 3

[MML13] MARA M., MCGUIRE M., LUEBKE D.: Toward prac-
tical real-time photon mapping: Efficient gpu density estimation.
In Interactive 3D Graphics and Games 2013 (2013). 6

[MMNL14] MARA M., MCGUIRE M., NOWROUZEZAHRAI D.,
LUEBKE D.: Fast Global Illumination Approximations on Deep
G-Buffers. Tech. Rep. NVR-2014-001, NVIDIA Corporation,
June 2014. 4

[MOBH11] MCGUIRE M., OSMAN B., BUKOWSKI M., HEN-
NESSY P.: The alchemy screen-space ambient obscurance algo-
rithm. In Proceedings of HPG 2011 (2011), pp. 25–32. 3

[MP01] MARK W., PROUDFOOT K.: The F-buffer: A
rasterization-order FIFO buffer for multi-pass rendering. In
Proceedings of ACM SIGGRAPH/Eurographics Workshop on
Graphics Hardware (2001), pp. 57–63. 2

[NRS14] NALBACH O., RITSCHEL T., SEIDEL H.-P.: Deep
screen space. In Proceedings of i3D 2014 (2014), pp. 79–86.
1, 4

[NSS10] NIESSNER M., SCHAEFER H., STAMMINGER M.: Fast
indirect illumination using layered depth images. Visual Com-
puter 26, 6–8 (2010), 679–686. 2, 4

[PH04] PHARR M., HUMPHREYS G.: Physically Based Render-
ing: From Theory to Implementation. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2004. 3

[RGK∗08] RITSCHEL T., GROSCH T., KIM M. H., SEIDEL H.-
P., DACHSBACHER C., KAUTZ J.: Imperfect shadow maps for
efficient computation of indirect illumination. ACM Transactions
on Graphics (Proceedings of ACM SIGGRAPH Asia 2008) 27, 5
(2008), 129. 3

[RGS09] RITSCHEL T., GROSCH T., SEIDEL H. P.: Approximat-
ing dynamic global illumination in image space. In Proceedings
of i3D 2009 (2009), pp. 75–82. 1

[SA07] SHANMUGAM P., ARIKAN O.: Hardware accelerated
ambient occlusion techniques on GPUs. In Proceedings of i3D
2007 (2007), pp. 73–80. 3

[SAF∗13] SEGAL M., AKELEY K., FRAZIER C., LEECH J.,
BROWN P.: The OpenGL graphics system: A specification (ver-
sion 4.3 core profile), 2013. 2

[SFES07] SCHJØTH L., FRISVAD J. R., ERLEBEN K.,
SPORRING J.: Photon differentials. In Proceedings of
GRAPHITE 2007 (2007), pp. 179–186. 6

[SKP98] SZIRMAY-KALOS L., PURGATHOFER W.: Global ray-
bundle tracing with hardware acceleration. In Rendering Tech-
niques ’98 (Proceedings of EGWR 1998) (1998), pp. 247–258.
3

[SRS14] SUGIHARA M., RAUWENDAAL R., SALVI M.: Lay-
ered reflective shadow maps for voxel-based indirect illumina-
tion. Proceedings of HPG 2014 (2014), 117–125. 3

[SS96] SBERT M., SÀNDEZ X.: The use of global random direc-
tions to compute radiosity. global monte carlo techniques. Ph.D.
Thesis. Universitat Politècnica de Catalunya (1996). 3

[Thi11] THIBIEROZ N.: Order-independent transparency using
per-pixel linked lists. In GPU Pro 2: Advanced Rendering Tech-
niques (2011), Engel W., (Ed.), A K Peters, pp. 409–431. 2

[TO12a] TOKUYOSHI Y., OGAKI S.: Imperfect ray-bundle trac-
ing for interactive multi-bounce global illumination. High Per-
formance Graphics 2012 Posters (2012). 4

c© The Eurographics Association 2015.

F. P. Aalund, J. R. Frisvad, & J. A. Bærentzen / Interactive Global Illumination Using Layered Depth Maps

[TO12b] TOKUYOSHI Y., OGAKI S.: Real-time bidirectional
path tracing via rasterization. In Proceedings of i3D 2012 (2012),
pp. 183–190. 4

[UPSK07] UMENHOFFER T., PATOW G., SZIRMAY-KALOS L.:
Robust multiple specular reflections and refractions. In GPU
Gems 3, Nguyen H., (Ed.). 2007, pp. 387–407. 4

[VF12] VASILAKIS A., FUDOS I.: S-buffer: Sparsity-aware
multi-fragment rendering. In Eurographics 2012 - Short Papers
Proceedings (2012), pp. 101–104. 3

[VPG13] VARDIS K., PAPAIOANNOU G., GAITATZES A.: Multi-
view ambient occlusion with importance sampling. Proceedings
of i3D 2013 (2013), 111–118. 3

[Wit01] WITTENBRINK C.: R-buffer: A pointerless A-
buffer hardware architecture. In Proceedings of ACM SIG-
GRAPH/Eurographics Workshop on Graphics Hardware (2001),
pp. 73–80. 2

[YHGT10] YANG J. C., HENSLEY J., GRUEN H., THIBIEROZ

N.: Real-time concurrent linked list construction on the GPU.
Computer Graphics Forum 29, 4 (2010), 1297–1304. 2

[YM10] YANG J., MCKEE J.: Real-time order independent trans-
parency and indirect illumination using Direct3D 11. In ACM
SIGGRAPH Courses (2010). 2

[ZHS08] ZHANG C., HSIEH H.-H., SHEN H.-W.: Real-time re-
flections on curved objects using layered depth textures. In Pro-
ceedings of MCCSIS’08 (2008), pp. 276–281. 2

[ZIK∗98] ZHUKOV S., IONES A., KRONIN G., DRETTAKIS G.,
MAX N.: An ambient light illumination model. Rendering Tech-
niques ’98 (Proceedings of EGWR 1998) (1998), 45–55. 3, 5

[ZRD14] ZIRR T., REHFELD H., DACHSBACHER C.: Object-
order ray tracing for fully dynamic scenes. In GPU Pro 5: Ad-
vanced Rendering Techniques, Engel W., (Ed.). CRC Press, 2014,
pp. 419–438. 1

c© The Eurographics Association 2015.

