
Curl Noise Jittering
J. Andreas Bærentzen

Technical University of Denmark
Lyngby, Denmark
janba@dtu.dk

Jeppe Revall Frisvad
Technical University of Denmark

Lyngby, Denmark
jerf@dtu.dk

Jonàs Martínez
Université de Lorraine, CNRS, Inria,

Loria
Nancy, France

jonas.martinez-bayona@inria.fr

CNJ s: 2.862, t: 0.000, Q: 0.000636 CNJ s: 2.862, t: 1.059, Q: 0.0209Lattice Points Curl Noise Jittered Points 2D

3D 3D closeup

Figure 1: Points on a lattice are displaced by advecting them along a curl noise vector field. It is possible to efficiently find the
closest jittered point to a given query point, and the jittered points have blue noise properties. The jittered points can be used
for sampling, procedural texturing, or defining cellular materials (in 2D or 3D). The images on the right show a procedural
texture based on Worley noise and a copper foam generated from our curl noise jittered points.

ABSTRACT
We propose a method for implicitly generating blue noise point
sets. Our method is based on the observations that curl noise vector
fields are volume-preserving and that jittering can be construed as
moving points along the streamlines of a vector field. We demon-
strate that the volume preservation keeps the points well separated
when jittered using a curl noise vector field. At the same time, the
anisotropy that stems from regular lattices is significantly reduced
by such jittering. In combination, these properties entail that jit-
tering by curl noise effectively transforms a regular lattice into
a point set with blue noise properties. Our implicit method does
not require computing the point set in advance. This makes our
technique valuable when an arbitrarily large set of points with blue
noise properties is needed. We compare our method to several other
methods based on jittering as well as other methods for blue noise
point set generation. Finally, we show several applications of curl
noise jittering in two and three dimensions.

CCS CONCEPTS
• Computing methodologies→ Computer graphics.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0315-7/23/12. . . $15.00
https://doi.org/10.1145/3610548.3618163

KEYWORDS
jittered grid, curl noise, blue noise

ACM Reference Format:
J. Andreas Bærentzen, Jeppe Revall Frisvad, and Jonàs Martínez. 2023. Curl
Noise Jittering. In SIGGRAPH Asia 2023 Conference Papers (SA Conference
Papers ’23), December 12–15, 2023, Sydney, NSW, Australia. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3610548.3618163

1 INTRODUCTION
Sampling points in a 2D or a 3D domain is a common task in
computer graphics. Several applications favor so-called blue noise
sampling [Ulichney 1988]. Since colors of noise are defined in anal-
ogy with colors of light, blue means that the spectrum of the noise
predominantly contains high frequencies. Spatially, this translates
to point samples spread isotropically and evenly over the domain
so that no two points are too close together. When using point
collections for applications such as procedural generation of cellu-
lar materials or foams, distributing scattered objects, or sampling,
broadly, blueness is an important property.

Poisson disk sampling [Cook 1986], also known as random se-
quential adsorption [Feder 1980], is a classical algorithm for com-
puting a blue noise sampling. The principle is to generate random
points but reject anyone too close to a previously added point.
Figure 4 (rightmost column) shows an example of a Poisson disk
sampling. Compared to jittering points on a regular grid, the corre-
sponding frequency spectrum is “bluer”, i.e., there is a wider gap
between the central peak and the halo of noise surrounding it.

The rejection scheme used in the original Poisson disk sampling
is slow - especially as the domain starts filling up, and more sam-
pled points are likely to be rejected. Subsequent works have signifi-
cantly improved computational efficiency and blue noise sampling

https://orcid.org/0000-0003-2583-0660
https://orcid.org/0000-0002-0603-3669
https://orcid.org/0000-0001-8443-9624
https://doi.org/10.1145/3610548.3618163
https://doi.org/10.1145/3610548.3618163

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia J. Andreas Bærentzen, Jeppe Revall Frisvad, and Jonàs Martínez

quality. However, almost all approaches require the entire point
set to be computed and stored. This is unsuitable for applications
where we only seek to determine a small subset of sample points
or where storing the entire point set is infeasible. Applications that
require this property usually resort to approaches based on jittering,
where points within a grid are randomly perturbed within each grid
cell [Cook 1986]. This makes it possible to find the closest sample
by inspecting only the jittered positions of lattice points within a
certain distance of the query point, and the positions of the rest of
the points do not need to be computed.

In this paper, we refer to a method for generating a point col-
lection as implicit when it provides the point closest to a query
point without generating the entire collection and independently
of the size of the collection. Our key insight is that displacing the
points of a regular lattice along a curl noise [Bridson et al. 2007]
vector field enhances the blue noise sampling quality (Figure 1).
Since the displacements are small, our method can be considered a
jittering approach, and it is possible to define an implicit method
for generating point collections jittered by curl noise.

Curl noise is a divergence-free vector noise designed to emulate
the velocity field of incompressible, turbulent fluids. Because curl
noise is divergence-free, it contains neither sources nor sinks, which
is important for our purposes. We carefully choose the curl noise
parameters to achieve a balanced tradeoff between point set quality
and computational efficiency. Notably, our method significantly
improves the blue noise quality compared to prior works based on
jittered grid sampling (see Figure 4).

An implementation of our method can be found at https://github.
com/jonasmb/curlnoisejittering.

In summary, we provide the following contributions:
• Curl Noise Jittering (CNJ): an implicit method for computing
2D and 3D blue noise point distributions.

• A study of the suitable parameters of CNJ to improve sam-
pling quality while preserving computational efficiency.

• An evaluation of the benefits of CNJ for implicit material
modeling and rendering.

1.1 Related Work
In this section, we review and compare prior methods and applica-
tions for point sampling in the context of computer graphics.

Poisson disk sampling. Awidely used method considers a Poisson
disk sampling in which any two points are separated by a minimum
distance [Cook 1986] that results in a blue noise sampling. The
standard dart-throwing algorithm consists of iteratively placing
points that are separated from each other by a minimum distance.
Several works have studied efficient algorithms for Poisson disk
sampling [Dunbar and Humphreys 2006; Bridson 2007; Wei 2008;
Ebeida et al. 2011; Corsini et al. 2012; Yuksel 2015], andmost of them
are summarized in surveys [Lagae and Dutré 2008; Yan et al. 2015].
Poisson disk sampling algorithms are typically iterative processes
that do not lend themselves to efficiently determining a subset of
points lying in a given subspace.

Optimization-based methods. A broad class of sampling methods
seek to optimize the position of a set of points to obtain blue noise.
A popular method is Lloyd’s algorithm [Lloyd 1982], in which the

points are iteratively moved to the centroid of their corresponding
Voronoi cells. Lloyd’s algorithm was enhanced with the capacity-
constrained point distribution method [Balzer et al. 2009] and sub-
sequently improved through the lens of optimal transport [De Goes
et al. 2012; Qin et al. 2017]. Fattal [2011] introduced an interact-
ing particles model based on statistical mechanics. Similarly, Jiang
et al. [2015] proposed a sampling algorithm based on smoothed
particle hydrodynamics. Heck et al. [2013] proposed constructing
sampling patterns with prescribed spectral properties by iteratively
updating the point positions. Recently, Ahmed et al. [2022] pre-
sented an optimization method based on placing a set of Gaussian
kernels on the sample points and defining an objective function
that can be minimized with gradient-descent and that leads to
a blue noise distribution. While delivering high-quality results,
optimization-based methods eventually become inefficient as the
number of samples increases and do not allow efficient retrieval of
the points in a given subspace.

Tile-based methods. Another set of methods partitions the 2D
space with tiles to sample points. For instance, by subdividing a
Penrose tiling [Ostromoukhov et al. 2004], by precomputing and
optimizing a set of tiles containing points [Hiller et al. 2001; Lagae
and Dutré 2005; Kopf et al. 2006; Ahmed et al. 2017], by tiling with
polyominos [Ostromoukhov 2007], hexagons [Wachtel et al. 2014],
or AA optimized patterns [Ahmed et al. 2015]. To the best of our
knowledge, tiling approaches only considered the 2D case since its
most typical application is digital half-toning and rendering.

Low-discrepancy sequences. Another class of efficient methods is
based on generating so-called low discrepancy sequences, which
are of interest for Monte Carlo integration [Pilleboue et al. 2015].
Classical examples are the Halton [1964], Hammersley [1964] or
Sobol [1967] sequences. Recent work considered scrambled Morton
ordering [Ahmed and Wonka 2020], improving Sobol in lower di-
mensions [Paulin et al. 2021], or optimizing and exploring a space
of sequences named dyadic nets [Ahmed and Wonka 2021; Ahmed
et al. 2023]. It is possible to find the coordinates of a point in a given
stratum of a (0,𝑚, 2) dyadic net containing 2𝑚 points in𝑂 (𝑚) time.
This entails that a logarithmic time algorithm for locating the clos-
est point in a dyadic net is feasible, provided that the binary flags
that determine the net can be computed in constant time. Unfor-
tunately, this means that an optimized dyadic net, e.g. a Blue Net
[Ahmed and Wonka 2021], does not seem to admit an efficient
query for the closest lattice point.

Error-diffusion methods. Blue noise is intimately related to the
application of digital halftoning [Ulichney 1988], which seeks to
depict a grayscale image by varying the size or the distribution of
tiny black dots arranged in a regular pattern. Different techniques
based on error diffusion [Floyd and Steinberg 1976], in which a
quantization error is distributed among pixels, have considered
blue noise samplings [Lau et al. 2003; Ostromoukhov 2001]. Again,
such algorithms are inherently iterative and do not allow for the
implicit identification of points in a subset of the space.

Jittered-grid methods. Some approaches have explored how to
enhance the original jittering method. For instance, to modify the
jittering in order to improve the projected sampling onto the vertical
or horizontal line with multi-jittering methods [Chiu et al. 1994;

https://github.com/jonasmb/curlnoisejittering
https://github.com/jonasmb/curlnoisejittering

Curl Noise Jittering SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Christensen et al. 2018]. Similarly, Kensler [2013] used correlated
jittering of rows and columns. Klassen [2000] proposed to smooth
the result by considering the average perturbation between the
neighbors of a grid cell. Dammertz [2009] considered jittering rank-
1 lattices with Lloyd’s algorithm. Our method is also an improved
jittering method, but it significantly improves the blue noise quality
compared to Klassen [2000] and Kensler [2013], see Figure 4.

Jittered grid and procedural noises. Jittered grids have endured
the test of time thanks to their efficient, implicit, and simple formu-
lation, and numerous procedural texturing methods use jittering
to implicitly retrieve a local neighborhood of samples around a
query point. For instance, Worley noise [Worley 1996] and its de-
scendants [Martínez et al. 2016] are examples of procedural cellular
structures relying on a jittered grid. Our technique improves the
quality of Worley noise, leading to better visual results while incur-
ring a slight loss of efficiency (see Figure 5). Worley noise is one
example among many other procedural methods based on jittering
that may directly benefit from our method.

2 CURL NOISE JITTERING IN 2D
We define jittering as the process of displacing the points, 𝑃 , of
a regular lattice by a small amount to obtain a less regular set of
points, 𝑃∗. Regular lattices are typically formed as the vertices of
tilings of the plane. While quadrangular tilings are often used, we
observe that the densest packing of circles [Fejes 1942] is obtained
by associating a circle with each vertex of a triangular tiling, which
also has six-fold symmetry rather than four-fold. Moreover, initial
experiments gave better results for this type of lattice. Hence, we
use lattices formed as the vertices of triangular tiling, as shown in
Figure 1 (left).

We can obtain the jittered points in two ways. We can generate
𝑃∗ directly by computing the displacement for each point p ∈ 𝑃

and storing the jittered point p∗ ∈ 𝑃∗. This is the most efficient
option if 𝑃 is known in advance and of acceptable size. However,
the benefit of methods based on jittering is that we can generate
𝑃∗ implicitly. Namely, we can find the point p∗ ∈ 𝑃∗ closest to a
given query point x without generating 𝑃∗.

For implicit evaluation, the portion of the lattice that we need to
inspect depends on the largest possible jitter displacement, which
we will denote the jitter radius, 𝑟 𝑗 . Say, p ∈ 𝑃 is the lattice point
closest to the query point x. The distance to the corresponding
jittered point, p∗, is at most 𝑟 𝑗 + ∥x − p∥. Thus, the closest jittered
point must lie within a disk of radius 𝑟 𝑗 + ∥x− p∥ centered at x (see
Figure 2). We need to inspect all lattice points whose disks of radius
𝑟 𝑗 intersect the disk at x. In practice, this set includes neighbors
(i.e., adjacent lattice points), second-order neighbors, and, in rare
cases, third-order neighbors of p.

Jittering can be construed as moving the points of the initial
lattice along a vector field. Expressed in this fashion, p∗ is obtained
by tracing a streamline starting at p from time 𝑡 = 0 till 𝑡 = 1,

p∗ = Cp (1) , (1)

Closest lattice point in blue. The
first-order neighbors are light grey,
and the second-order neighbors
are dark grey. The closest jittered
point must lie within the disk cen-
tered on the closest lattice point.

Figure 2: A query point shown (red) in a triangular lattice.

where the curve Cp is the streamline defined in terms of the differ-
ential equation

Cp (0) = p (2)
d
d𝑡

Cp (𝑡) = V(Cp (𝑡)) , (3)

and V is the vector field determining how points are displaced. In
the case of traditional random jittering, we can consider V constant
within each subdomain. The subdomain would typically be the
pixel or, more generally, the Voronoi region around the point. As
the streamline tracing method, we choose a 4th order Runge-Kutta
method (RK4) [Runge 1895] which improved on taking an Euler
step (see Figure 7); a deeper investigation into streamline tracing
methods could yield further improvements.

The advantage of interpreting jittering as streamline tracing is
that we can now consider ways to obtain vector fields that lead
to better blue noise quality. We posit that divergence free vector
fields would be advantageous since such vector fields do not con-
tain sources or sinks which, respectively, repel and attract the
points, leading to uneven distributions of points. In addition to
being divergence-free, the vector field we seek must be noisy in
the sense that it has no manifest anisotropy, since this would likely
show in the jittered points. In other words, we claim that a noisy but
divergence-free vector field can lead to jittered point sets where the
points are regularly distributed while the anisotropy of the original
grid is greatly reduced. See Section 2.4 for further discussion.

Unfortunately, the requirement that the vector field be divergence-
free rules out some apparent candidates. For instance, neither the
gradient field of a noise function, nor smoothly interpolating ran-
dom vectors would produce a divergence-free vector field.

2.1 Curl Noise
There is, however, a method for generating noisy yet divergence-
free vector fields. This method, due to Bridson et al. [2007], is known
as curl noise. The curl, ∇×, of a 3D vector field, Φ = [𝜙𝑥 , 𝜙𝑦, 𝜙𝑧], is

∇ × Φ =

[
𝜕𝜙𝑧

𝜕𝑦
−

𝜕𝜙𝑦

𝜕𝑧
,
𝜕𝜙𝑥

𝜕𝑧
− 𝜕𝜙𝑧

𝜕𝑥
,
𝜕𝜙𝑦

𝜕𝑥
− 𝜕𝜙𝑥

𝜕𝑦

]
.

For 2D curl noise, we will assume that Φ = [0, 0, 𝑓] for some noise
function 𝑓 : R3 → R. This means that

∇ × Φ =

[
𝜕𝜙𝑧

𝜕𝑦
,− 𝜕𝜙𝑧

𝜕𝑥
, 0
]
=

[
𝜕𝑓

𝜕𝑦
,− 𝜕𝑓

𝜕𝑥
, 0
]

.

In other words, since Φ is orthogonal to the 𝑥𝑦-plane, the curl,∇×Φ,
lies in the 𝑥𝑦-plane. Moreover, ∇ × Φ, is known to be divergence-
free because of the equality of mixed partial derivatives (Clairaut’s

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia J. Andreas Bærentzen, Jeppe Revall Frisvad, and Jonàs Martínez

Theorem). Due to this property, flows that follow ∇×Φ are volume-
preserving, and for our purposes, this ensures that the vector field
is free of sinks and sources.

As an aside, we note that in 2D, the streamlines of∇×Φ are simply
the iso-contours of 𝑓 , which means that any particle following such
a trajectory, with sufficient numerical precision, will eventually
return to its starting point.

2.2 Curl Noise Jittering
We can now formulate curl noise jittering operationally,

cnj[𝑁, 𝑠, 𝑡] (x) = Cx (𝑡) , (4)

where

Cx (0) = x , (5)
d
d𝑡

Cx =

[
𝜕𝑁 (𝑥/𝑠,𝑦/𝑠)

𝜕𝑦
,− 𝜕𝑁 (𝑥/𝑠,𝑦/𝑠)

𝜕𝑥

]
. (6)

Thus, cnj is governed by three parameters: the noise function 𝑁 ,
the noise scale 𝑠 , and finally the time 𝑡 for which we trace along
the streamline.

2.3 Noise Functions
The choice of underlying noise function is essential when imple-
menting curl noise and, by extension, curl noise jittering. It is
important that the noise function is band limited, stationary, and
isotropic [Perlin 1985; Lagae et al. 2010]; it is also a requirement
that we can efficiently compute derivatives of the noise function.

We have tested three different noise functions that adhere to
these requirements:

• Sparse convolution noise (SC) [Lewis 1984, 1989].
• Sum of sines noise (SoS) [Schachter 1981; Max 1981].
• Perlin noise [Perlin 1985, 2002].

For Perlin noise, we adapt an implementation by Iñigo Quilez1
that includes computation of derivatives. Our implementation of
sparse convolution noise is based on a version that can be evaluated
locally [Frisvad and Wyvill 2007], and that has been described in
a closed formula [Luongo et al. 2020] for which it is easy to find
derivatives. Sine functions are easily differentiable. The principle
of SoS is to construct an 𝑛D function by superposing 𝑛D waves.
Max [1981] discusses how this can be used to construct models of
water waves, and Schachter [1981] describes a similar model for
narrow-band noise. In our formulation, SoS noise is based on waves
of the form

𝑤 [𝑎, d, 𝜙] (x) = 𝑎 sin
(
d𝑇 x + 𝜙

)
, (7)

where 𝑎 is the amplitude and 𝜙 is the phase of the wave, while
d = 2𝜋

𝜆
n is a frequency vector in which 𝜆 is the wavelength and n

is the unit length direction of the wave. SoS noise is defined by

𝑁 (x) =
∑︁

(𝑎,d,𝜙) ∈𝑊
𝑤 [𝑎, d, 𝜙] (x) , (8)

where𝑊 is the set of parameter tuples. For each tuple, we generate
the parameters by first sampling the random variables, 𝑠 ∼ N(0, 𝜎)
from a normal distribution and 𝛼, 𝜙 ∼ U(0, 2𝜋) from a uniform
distribution. Next, we compute d = (𝜎 + 𝑠) [cos(𝛼), sin(𝛼)] and
𝑎 = exp(−𝑠2/𝜎2). Thus, the amplitude is largest for waves with a
1https://iquilezles.org/articles/gradientnoise/

frequency vector close to the mean. For the 2D experiments in this
paper, we use |𝑊 | = 256 and 𝜎 = 7.

2.4 Quality Measures and Parameter Selection
Curl noise jittering is motivated by the premise that displacing the
points of a lattice along a curl noise vector fieldwill imbue the points
with blue noise properties. This hypothesis is based on the observa-
tion that flow along a curl noise vector field is volume-preserving
because the field is divergence-free. While volume preservation
does not imply preservation of point distances, it does guarantee
that there are no sinks or sources which, respectively, attract or
repel the points when transported along the field for a short time.
This leads us to assume that the point spacing of the lattice would
be preserved to some extent for (short) flows along the vector field.
Yet, the regularity of the lattice, and hence anisotropy, is diminished
because the vector field is a noise function.

However, it appears hard to provide a formal argument. Instead,
we offer a quantitative metric for blue noise properties. This metric
is used to assess the quality of CNJ as well as competing meth-
ods and to tune the parameters of our method. Specifically, it is
important to select an appropriate time step (as discussed above)
and noise scale. If the noise scale is extremely coarse, the lattice
is locally translated, and the lattice structure remains visible. In
contrast, if the scale is too fine (i.e., the frequency is too high), the
method devolves to random jittering.

Our quantitative analysis is based on the point set analysis frame-
work (PSA) [Schlömer and Deussen 2011; Heck et al. 2013], which
is commonly used in related work, e.g. [Ahmed et al. 2022]. We
briefly recall the different metrics in the following. We refer the
reader to Heck et al. [2013] for further details.

The power spectrum of a signal, such as a point process, is the
Fourier transform of the autocorrelation function of the signal,
and it can also be computed directly as the absolute square of the
Fourier transform of the signal. Useful statistics can be derived by
partitioning the power spectrum into concentric annuli of width Δ,
and then averaging the spectrum samples within each annulus 𝜉𝑟 of
central radius 𝑟 [Schlömer and Deussen 2011]. The radially averaged
power spectrum 𝑃 (𝜉𝑟) measures the average of the power spectrum
in some annulus 𝜉𝑟 . The anisotropy is defined by 𝑎(𝜉𝑟) = 𝑉 2 (𝜉𝑟)

𝑃 (𝜉𝑟) ,
where 𝑉 2 (𝜉𝑟) is the sample variance of the power spectrum in
some annulus 𝜉𝑟 . Lower anisotropy values indicate that the power
spectrum is close to being radially symmetric; thus, the resulting
point process is close to isotropic. We define the power-weighted
mean anisotropy,

𝑎 =
∑︁
𝑟>0

𝑎(𝜉𝑟)𝑃2 (𝜉𝑟) =
∑︁
𝑟>0

𝑉 2 (𝜉𝑟)𝑃 (𝜉𝑟) , (9)

where the first annulus 𝑟 = 0 containing the zero frequency is
excluded. The largest frequency 𝑣 so that the average energy in
the power spectrum up to 𝑣 stays below 0.1 is called the effective
Nyquist frequency and denoted 𝑣eff . Intuitively, frequencies below
𝑣eff can be sampled and reconstructed with little error, while fre-
quencies above lead to aliasing. Now, we define the quality of a
point set as the ratio of the effective Nyquist frequency to mean

https://iquilezles.org/articles/gradientnoise/

Curl Noise Jittering SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

0.6 0.8 1.0 1.2 1.4
time step [t]

1

2

3

4

5

6

7

8

9

10

no
ise

 sc
al

e
[s

]

Effective Nyquist [exp(effNy)]

0.6 0.8 1.0 1.2 1.4
time step [t]

1

2

3

4

5

6

7

8

9

10

no
ise

 sc
al

e
[s

]

Mean anisotropy [log(aniso)]

0.6 0.8 1.0 1.2 1.4
time step [t]

1

2

3

4

5

6

7

8

9

10

no
ise

 sc
al

e
[s

]

Quality [effNy/aniso]

1.0 1.5 2.0 2.5 3.0 3.5 4.0
time step [t]

1

2

3

4

5

6

7

8

9

10

no
ise

 sc
al

e
[s

]

Effective Nyquist [exp(effNy)]

1.0 1.5 2.0 2.5 3.0 3.5 4.0
time step [t]

1

2

3

4

5

6

7

8

9

10

no
ise

 sc
al

e
[s

]

Mean anisotropy [log(aniso)]

1.0 1.5 2.0 2.5 3.0 3.5 4.0
time step [t]

1

2

3

4

5

6

7

8

9

10

no
ise

 sc
al

e
[s

]

Quality [effNy/aniso]

0.5 1.0 1.5 2.0
time step [t]

1

2

3

4

5

6

7

8

9

10

no
ise

 sc
al

e
[s

]

Effective Nyquist [exp(effNy)]

0.5 1.0 1.5 2.0
time step [t]

1

2

3

4

5

6

7

8

9

10

no
ise

 sc
al

e
[s

]

Mean anisotropy [log(aniso)]

0.5 1.0 1.5 2.0
time step [t]

1

2

3

4

5

6

7

8

9

10

no
ise

 sc
al

e
[s

]

Quality [effNy/aniso]

Figure 3: From left to right, each row shows the effective
Nyquist frequency, the anisotropy, and the derived quality
measure, which is simply their ratio, for curl noise jittering
based on sparse convolution noise (top), sum-of-sines noise
(middle), and Perlin noise (bottom).

anisotropy,

𝑞 =

{ 𝑣eff
𝑎 𝑟 𝑗 < 𝛿

0 𝑟 𝑗 ≥ 𝛿
, (10)

where 𝛿 is the edge length of the regular lattice, i.e., the distance
between two neighboring points. Thus, 𝑞 is proportional to the
effective Nyquist frequency and inversely proportional to the aver-
age anisotropy – unless the maximum displacement due to jittering
exceeds the edge length of the lattice. Assigning 𝑞 = 0 for 𝑟 𝑗 ≥ 𝛿

is important for the implicit generation of 𝑃∗: the greater 𝑟 𝑗 , the
more grid points could beget the closest jittered point. If 𝑟 𝑗 < 𝛿 ,
𝑞 balances the two requirements that the jittered points are well
separated (𝑣eff large) and isotropy (𝑎 small).

In Figure 3, 𝑣eff , 𝑎, and 𝑞 are plotted as a function of time step 𝑡
and noise scale 𝑠 for the three noise functions considered. Based on
the underlying (30 × 30) grids of quality values, the maximum was
found for each function, and the results are presented in Table 1.
Perlin noise has the highest quality and is less computationally
demanding than the other noise functions. Hence, it was selected
for our 2D experiments. Note that the scale 𝑠 is the ratio of the side
length of the Perlin noise grid to the distance between lattice points.

Table 1: Effective Nyquist limit (𝑣eff), anisotropy (𝑎), and qual-
ity (𝑞) for different noise functions and selected pairs of pa-
rameters, time step 𝑡 and noise scale 𝑠. The best values are in
boldface.

Noise type 𝑡 𝑠 𝑣eff 𝑎 𝑞

SC 1.25862 5.65517 0.745 81.8 0.0091
SoS 3.58621 6.27586 0.7 72.6 0.0096
Perlin 1.05862 2.86207 0.705 71.9 0.0098

2.5 Implementation
The direct 2D method for curl noise jittering was implemented in
Python for all three noise functions. Our code interfaces to the
PSA library2, which is used for the quality metric. Our code also
interfaces to the CCVT library3 and the dyadic nets4 library, both
of which were used for comparison. The performance of the direct
methods was evaluated on a single Apple M1 core.

The implicit 2D curl noise jittering method is implemented in
GLSL on the ShaderToy platform. This implementation employs
only Perlin noise and runs at 2.04 ms per frame in 1080p resolution
when using an NVIDIA RTX 3090 GPU. We found that in practice,
we do not need to check the distances between lattice points and
query points if we jitter all neighbors up to the second order.

2.6 Comparisons
Like all methods based on jittering, CNJ places each point without
considering the positions of nearby points and can hence be evalu-
ated implicitly. We compare CNJ to two other methods based on
jittering and three methods that consider the local neighborhood.
The jittering-based methods are clearly the most similar to ours,
while methods that consider neighboring points can provide very
high quality. We also included iterative curl noise jittering ICNJ in
this comparison. The iterative method applies jittering with a time
step that is halved in each iteration (and we used 64 iterations). The
noise scale is the same for all iterations, but the noise is different
each iteration (since we add an offset).

From the category of jittering basedmethods, we compare against
Kensler’s correlatedmulti-jittered (CMJ) sampling approach [Kensler
2013]. The principle is that each row and each column is jittered
with a sequence of perpendicular displacements. Since the displace-
ments are identical for all rows (columns), neighbors along each
row (column) are never closer than the edge length of the grid. We
also compare against the smoothed jittering (SJ) of a triangular
lattice proposed by Klassen et al. [2000].

From the category of non jittering-based methods, we compare
against the Blue Nets (BN) method [Ahmed and Wonka 2021],
capacity-constrained Voronoi tessellations (CCVT) [Balzer et al.
2009] and the fast Poisson disk sampling (PDS) method proposed
by Robert Bridson [2007].

For each of these seven methods, we show the point clouds and
their associated power and radial spectra in Figure 4. We also com-
puted our quality measure, 𝐷∗, the L2 norm of star-discrepancy
[Wang and Sloan 2008], and timings, all averaged over 100 runs.

2https://github.com/nodag/psa
3https://github.com/michaelbalzer/ccvt
4http://abdallagafar.com/publications/dyadic-nets/

https://github.com/nodag/psa
https://github.com/michaelbalzer/ccvt
http://abdallagafar.com/publications/dyadic-nets/

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia J. Andreas Bærentzen, Jeppe Revall Frisvad, and Jonàs Martínez

Table 2: Average results for 100 runs of the tested methods.
The statistics shown are: effective Nyquist, 𝑣eff , anisotropy,
𝑎, quality, 𝑞, discrepancy, 𝐷∗, and time. Methods above the
double line can be evaluated implicitly, and methods below
cannot. The best values within each of these two categories
are in boldface.

Method 𝑣eff ↑ 𝑎 ↓ 𝑞 ↑ D* ↓ time(s) ↓ language
CNJ 0.7 71.81 0.0097 0.002 0.0621 Python
ICNJ 0.74 72.81 0.01 0.0021 2.22 Python
CMJ 0.82 960.6 0.00086 0.0023 0.00218 Python
SJ 0.44 442.7 0.001 0.0034 0.00788 Python
BN 0.83 88.27 0.0095 0.00083 47.9 C++

CCVT 0.83 78.85 0.011 0.002 20.8 C++
PDS 0.26 70.63 0.0036 0.0047 0.332 Python

These results are shown in Table 2, which also includes the pro-
gramming language used.

CCVT attains the highest quality. This is unsurprising since this
method uses information about the neighborhood to optimize posi-
tions. ICNJ and regular CNJ are second and third, respectively. In
most cases, the slightly increased quality of ICNJ would not justify
the increased computational cost. Blue Nets is only in fourth place
due to a comparatively high anisotropy. However, the discrepancy
of the Blue Nets method is less than half that of its closest competi-
tor. Low discrepancy is a trait that appears to be shared by (0,𝑚, 2)
nets in general; such nets can be generated very quickly using the
Netshuffle algorithm of Ahmed and Wonka [2021], albeit dyadic
nets do not have blue noise properties unless they are optimized.

CNJ and ICNJ are the only methods that can be evaluated im-
plicitly (all based on jittering) with a low anisotropy. In general,
isotropy is challenging to achieve with jittering since a regular
lattice exhibits high anisotropy. It is perhaps more surprising that
while Poisson disk sampling has the lowest anisotropy of all meth-
ods, its 𝑣eff is also very low, and the overall quality is inferior to
CNJ.

2.7 Applications and Extensions
Steven Worley [1996] proposed a method for texturing based on
distances to randomly scattered points, which can be used to model
the appearance of objects with cracked or segmented surfaces. In
Worley’s original formulation, points were computed on the fly by
hashing the value of a grid cell to a random point within each cell.
With curl noise jittering, we can produce a more even distribution
of points leading, in turn, to a more regular cellular structure than
in the original method, as shown in Figure 5. All images in Figure 5
were generated in ShaderToy using the implicit method. In the top
row, the color is based purely on the distance to the closest point. In
the bottom row, the difference between the distance to the closest
and second closest point is used to generate the line color. The
position of the closest jittered point is hashed to cell color.

We implemented the directmethod in a Blender script to generate
a distribution of boxes, see Figure 6 (right). A similar distribution
generated by using Blender’s built-in Poisson disk sampling is
shown on the left. While the differences are subtle, our method
seems to produce a slightly more even distribution.

3 CURL NOISE JITTERING IN 3D
An important difference in 3D is that we need a vector-valued noise
(a 3D vector field is needed to take the curl in 3D). In the case of
Perlin noise, this means evaluating the function three times with
different offsets. For the sum of sines, the three evaluations with
different offsets are easily performed in the same sum. Finally, since
sparse convolution noise is based on the convolution of randomly
placed random impulses, we just need to use random vector-valued
impulses, which entails little extra cost.

The initial grid to use for curl noise jittering depends on the
desired packing density of the point distribution. If we start from a
regular octahedral grid (body centered cubic lattice [Theußl et al.
2001], obtained by inserting a point at the center of each voxel of a
cubic grid and using the faces of the cells in the cubic grid as the
bases of regular octahedra), we get a denser point distribution than
if we start from a cubic grid. The properties of the noise functions
also come into play when we work in 3D. We ran a parameter study
by rendering out 3D point distributions as collections of spheres.
We visually inspected the results to qualitatively assess whether
the findings in 2D generalize to 3D. The behavior with different
parameters is a bit different in 3D. Perlin noise and SoS seem tomore
strictly require using the RK4 method to avoid regularities. SoS can
occasionally exhibit ripples in the point distribution, but this seems
avoidable with well-chosen parameters. Sparse convolution noise
is, in that sense, easier to find suitable parameters for in 3D, and it
seems to perform reasonably well with an Euler step. If combined
with RK4, sparse convolution noise becomes more expensive to
evaluate than the other methods.

3.1 Implementation
We implemented 3D curl noise jittering in CUDA for NVIDIA OptiX
(v7.6) [Parker et al. 2010] and render metals by path tracing of
specular materials with a complex index of refraction [Pharr et al.
2023]. Sphere tracing [Hart 1996] is used for ray-surface intersection
in a signed distance field (SDF). We rendered images using the
previously mentioned RTX 3090 GPU. The rendering time for a one
sample per pixel (1spp) frame of resolution 720 × 720 is provided
for different examples in Figures 8 and 9.

3.2 Applications
The ability of our method to produce a point set with blue noise
propertiesmakes it suitable for approximatemodeling of the jammed
hard-particle packings observed in granular materials [Torquato
and Stillinger 2010; Meng et al. 2015]. As an example, we made
a bunny out of tiny spheres and rendered it with the camera at
different distances from the object, see Figure 8. We used a regular
octahedral lattice as our initial grid, with a total of around 1.3 billion
spheres in the entire volume of the bunny. Our implicit method was
used with the sum of sines (and RK4) to get an SDF for a stochastic
sphere packing with little overlapping of the spheres.

The production of stochastic foam by a random bubble-forming
chemical process results in material structures represented well
by Voronoi cells [Bogunia et al. 2022]. Based on our discussion
of the Worley method (see Section 2.7), we believe our method
can be used advantageously for the 3D modeling of foams. As an
example, we modeled the structure of open-cell aluminum and

Curl Noise Jittering SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

CNJ Iterative CNJ Correlated Multi-Jittering Smoothed Jittering Blue Nets CCVT Poisson Disk Sampling

Figure 4: Comparison of our method (far left) to the methods discussed in Section 2.6. We show point sets (top) as well as the
power spectrum (zoomed in ×10, middle) and the radial spectrum for each point set (bottom).

copper foams (see Figure 9). For the rendering of the metals, we
use available measured complex indices of refraction of oxidized
aluminum [Querry 1985] and copper [Glassner 1995]. We use the
Worley method and find the distances to the nearest points in our
point distribution by inspecting the positions of the grid nodes
in the first-order neighborhood after being curl noise jittered. Let
𝑑𝑖 , 𝑖 = 1, . . . , 4, denote distances from the point of interest x in
the volume with 𝑑1 being the distance to the closest point and
𝑑1 < 𝑑2 < 𝑑3 < 𝑑4. For the more porous aluminum foam, we
use a regular grid and the following formula for conversion to a
non-Euclidean signed distance field:

sdf (x) = (𝑑2 (x) − 𝑑1 (x))𝛼 + (𝑑3 (x) − 𝑑2 (x))𝛼

+ (𝑑3 (x) − 𝑑1 (x))𝛼 − 𝜀 . (11)

The parameters in this model are 𝛼 , which is related to the enclosed-
ness of the cavities, and 𝜀, which is the thickness of the geometric
features. We used 𝛼 = 1.55 and 𝜀 = 0.1 for the aluminum foam. In
the curl noise jittering, we used sparse convolution noise with an
Euler step for this material.

For the copper foam, we use a trabeculum formula by Fabrice
Neyret5. The non-Euclidean signed distance field is then

sdf (x) =
(

1
𝑑3 (x) − 𝑑1 (x)

+ 1
𝑑4 (x) − 𝑑1 (x)

)−1
− 𝜀 . (12)

In this case, we used 𝜀 = 0.06 and CNJ with the octahedral grid
as the initial grid (as for the bunny). Figure 10 compares the CNJ
of the cubic grid versus the octahedral grid. Visual inspection of
the foams as compared with foams obtained using random jitter
sampling of one point per voxel in the grid (Figure 9) confirms that
our curl noise jittering effectively reduces clustering of points and
thus achieves a better model of the real metal foams.

5https://www.shadertoy.com/view/MlB3Wt

4 DISCUSSION AND LIMITATIONS
We have demonstrated that creating point sets with blue noise
properties is possible using a simple jittering approach. Going for-
ward, this type of point set can more readily be used in real-time
applications or where large domains need to be sampled. Of course,
applications that need a blue noise sampling large enough that
either generating or storing the points would be a limiting factor
will benefit the most. However, we note that our method is sim-
ple to implement and can be used as a drop-in replacement for
applications that already employ jittering.

CNJ works in both 2D and 3D, and while we have focused on
the 2D case in our analysis, our 3D results indicate that CNJ can be
useful for procedural materials with very fine granularity where
precomputing blue noise point sets would lead to prohibitive mem-
ory consumption. In the future, we are also interested in extending
curl noise jittering to other domains. For instance, time-varying
noise functions could be useful in certain scenarios.

Our work presupposes that a lattice is given. This does not pre-
clude adaptive curl noise jittering, where the point density depends
on, for instance, an underlying image’s intensity. However, this
would require that the lattice adapts to the intensity, which is not a
part of our investigation but might be an avenue for future work. Fi-
nally, we would also like to explore the use of other noise functions
and streamline tracing methods.

ACKNOWLEDGMENTS
This project was partially supported by the Villum Foundation
through the Villum Investigator Project InnoTop.

REFERENCES
Abdalla G. M. Ahmed, Markus Hadwiger, Mikhail Skopenkov, and Peter Wonka. 2023.

Analysis and synthesis of digital dyadic sequences. https://doi.org/10.48550/arXiv.
2306.06925 arXiv:2306.06925 [cs.GR]

https://www.shadertoy.com/view/MlB3Wt
https://doi.org/10.48550/arXiv.2306.06925
https://doi.org/10.48550/arXiv.2306.06925
https://arxiv.org/abs/2306.06925

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia J. Andreas Bærentzen, Jeppe Revall Frisvad, and Jonàs Martínez

Abdalla G. M. Ahmed, Hui Huang, and Oliver Deussen. 2015. AA patterns for point
sets with controlled spectral properties. ACM transactions on graphics 34, 6 (2015),
212:1–212:8. https://doi.org/10.1145/2816795.2818139

Abdalla G. M. Ahmed, Till Niese, Hui Huang, and Oliver Deussen. 2017. An adaptive
point sampler on a regular lattice. ACM Transactions on Graphics 36, 4 (2017),
138:1–138:13. https://doi.org/10.1145/3072959.3073588

Abdalla G. M. Ahmed, Jing Ren, and Peter Wonka. 2022. Gaussian blue noise. ACM
Transactions on Graphics 41, 6 (2022), 260:1–260:15. https://doi.org/10.1145/3550454.
3555519

Abdalla G. M. Ahmed and Peter Wonka. 2020. Screen-space blue-noise diffusion of
Monte Carlo sampling error via hierarchical ordering of pixels. ACM Transactions
on Graphics 39, 6 (2020), 244:1–244:15. https://doi.org/10.1145/3414685.3417881

Abdalla G. M. Ahmed and Peter Wonka. 2021. Optimizing dyadic nets. ACM Transac-
tions on Graphics 40, 4 (2021), 141:1–141:17. https://doi.org/10.1145/3450626.3459880

Michael Balzer, Thomas Schlömer, and Oliver Deussen. 2009. Capacity-constrained
point distributions: A variant of Lloyd’s method. ACM Transactions on Graphics 28,
3 (2009), 86:1–86:8. https://doi.org/10.1145/1531326.1531392

Lukas Bogunia, Stefan Buchen, and Kerstin Weinberg. 2022. Microstructure character-
ization and stochastic modeling of open-cell foam based on 𝜇CT-image analysis.
GAMM-Mitteilungen 45, 3-4 (2022), e202200018. https://doi.org/10.1002/gamm.
202200018

Robert Bridson. 2007. Fast Poisson disk sampling in arbitrary dimensions. In SIGGRAPH
2007 Sketches. 22. https://doi.org/10.1145/1278780.1278807

Robert Bridson, Jim Houriham, and Marcus Nordenstam. 2007. Curl-noise for
procedural fluid flow. ACM Transactions on Graphics 26, 3 (2007), 46:1–46:3.
https://doi.org/10.1145/1276377.1276435

Kenneth Chiu, Changyaw Wang, and Peter Shirley. 1994. Multi-jittered sampling. In
Graphics Gems. Elsevier, 370–374.

Per Christensen, Andrew Kensler, and Charlie Kilpatrick. 2018. Progressive multi-
jittered sample sequences. Computer Graphics Forum 37, 4 (2018), 21–33. https:
//doi.org/10.1111/cgf.13472

Robert L Cook. 1986. Stochastic sampling in computer graphics. ACM Transactions on
Graphics 5, 1 (1986), 51–72. https://doi.org/10.1145/7529.8927

Massimiliano Corsini, Paolo Cignoni, and Roberto Scopigno. 2012. Efficient and flexible
sampling with blue noise properties of triangular meshes. IEEE Transactions on
Visualization and Computer Graphics 18, 6 (2012), 914–924. https://doi.org/10.1109/
TVCG.2012.34

Sabrina Dammertz. 2009. Rank-1 Lattices in Computer Graphics. Ph. D. Dissertation.
Universität Ulm. https://doi.org/10.18725/OPARU-1068

Fernando De Goes, Katherine Breeden, Victor Ostromoukhov, and Mathieu Desbrun.
2012. Blue noise through optimal transport. ACM Transactions on Graphics 31, 6
(2012), 171:1–171:11. https://doi.org/10.1145/2366145.2366190

Daniel Dunbar and Greg Humphreys. 2006. A spatial data structure for fast Poisson-
disk sample generation. ACM Transactions on Graphics 25, 3 (2006), 503–508.
https://doi.org/10.1145/1141911.1141915

Mohamed S. Ebeida, Andrew A. Davidson, Anjul Patney, Patrick M. Knupp, Scott A.
Mitchell, and John D. Owens. 2011. Efficient maximal Poisson-disk sampling. ACM
Transactions on Graphics 30, 4 (2011), 49:1–49:12. https://doi.org/10.1145/2010324.
1964944

Raanan Fattal. 2011. Blue-noise point sampling using kernel density model. ACM
Transactions on Graphics 30, 4 (2011), 48:1–48:12. https://doi.org/10.1145/2010324.
1964943

Jens Feder. 1980. Random sequential adsorption. Journal of Theoretical Biology 87, 2
(1980), 237–254. https://doi.org/10.1016/0022-5193(80)90358-6

L. Fejes. 1942. Über die dichteste Kugellagerung. Mathematische Zeitschrift 48, 1 (1942),
676–684. https://doi.org/10.1007/BF01180035

RobertW. Floyd and Louis Steinberg. 1976. An adaptive algorithm for spatial gray-scale.
Proceedings of the Society of Information Display 17, 2 (1976), 75–77.

Jeppe Revall Frisvad and Geoff Wyvill. 2007. Fast high-quality noise. In GRAPHITE
2007. 243–248. https://doi.org/10.1145/1321261.1321305

Andrew S. Glassner. 1995. Principles of Digital Image Synthesis. Morgan Kaufmann.
Two volumes.

John H. Halton. 1964. Algorithm 247: Radical-inverse quasi-random point sequence.
Commun. ACM 7, 12 (1964), 701–702. https://doi.org/10.1145/355588.365104

J. M. Hammersley and D. C. Handscomb. 1964. Monte Carlo Methods. Chapman and
Hall.

John C. Hart. 1996. Sphere tracing: A geometric method for the antialiased ray
tracing of implicit surfaces. The Visual Computer 12, 10 (1996), 527–545. https:
//doi.org/10.1007/s003710050084

Daniel Heck, Thomas Schlömer, and Oliver Deussen. 2013. Blue noise sampling
with controlled aliasing. ACM Transactions on Graphics 32, 3 (2013), 25:1–25:12.
https://doi.org/10.1145/2487228.2487233

Stefan Hiller, Oliver Deussen, and Alexander Keller. 2001. Tiled blue noise samples. In
Vision, Modeling, and Visualization (VMV).

Min Jiang, Yahan Zhou, Rui Wang, Richard Southern, and Jian Jun Zhang. 2015. Blue
noise sampling using an SPH-based method. ACM Transactions on Graphics 34, 6
(2015), 211:1–211:11. https://doi.org/10.1145/2816795.2818102

Andrew Kensler. 2013. Correlated Multi-Jittered Sampling. Technical Memo 13-01.
Pixar. https://graphics.pixar.com/library/MultiJitteredSampling/paper.pdf

R Victor Klassen. 2000. Filtered jitter. Computer Graphics Forum 19, 4 (2000), 223–230.
https://doi.org/10.1111/1467-8659.00459

Johannes Kopf, Daniel Cohen-Or, Oliver Deussen, and Dani Lischinski. 2006. Recursive
Wang tiles for real-time blue noise. ACM Transactions on Graphics 25, 3 (2006),
509–518. https://doi.org/10.1145/1179352.1141916

Ares Lagae and Philip Dutré. 2005. A procedural object distribution function. ACM
Transactions on Graphics 24, 4 (2005), 1442–1461. https://doi.org/10.1145/1095878.
1095888

Ares Lagae and Philip Dutré. 2008. A comparison of methods for generating Poisson
disk distributions. Computer Graphics Forum 27, 1 (2008), 114–129. https://doi.org/
10.1111/j.1467-8659.2007.01100.x

Ares Lagae, Sylvain Lefebvre, Rob Cook, Tony DeRose, George Drettakis, David S
Ebert, John P Lewis, Ken Perlin, and Matthias Zwicker. 2010. A survey of procedural
noise functions. Computer Graphics Forum 29, 8 (2010), 2579–2600. https://doi.org/
10.1111/j.1467-8659.2010.01827.x

Daniel L. Lau, Robert Ulichney, and Gonzalo R. Arce. 2003. Blue and green noise
halftoning models. IEEE Signal Processing Magazine 20, 4 (2003), 28–38. https:
//doi.org/10.1109/MSP.2003.1215229

John-Peter Lewis. 1984. Texture synthesis for digital painting. Computer Graphics
(SIGGRAPh ’84) 18, 3 (1984), 245–252. https://doi.org/10.1145/800031.808605

John-Peter Lewis. 1989. Algorithms for solid noise synthesis. Computer Graphics
(SIGGRAPH ’89) 23, 3 (1989), 263–270. https://doi.org/10.1145/74333.74360

Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE Transactions on Information
Theory 28, 2 (1982), 129–137. https://doi.org/10.1109/TIT.1982.1056489

Andrea Luongo, Viggo Falster, Mads Brix Doest, Macarena Mendez Ribo, Eyþór Rúnar
Eiríksson, David B Pedersen, and Jeppe Revall Frisvad. 2020. Microstructure control
in 3D printing with digital light processing. Computer Graphics Forum 39, 1 (2020),
347–359. https://doi.org/10.1111/cgf.13807

Jonàs Martínez, Jérémie Dumas, and Sylvain Lefebvre. 2016. Procedural Voronoi foams
for additive manufacturing. ACM Transactions on Graphics 35, 4 (2016), 44:1–44:12.
https://doi.org/10.1145/2897824.2925922

Nelson L Max. 1981. Vectorized procedural models for natural terrain: Waves and
islands in the sunset. Computer Graphics (SIGGRAPH ’81) 15, 3 (1981), 317–324.
https://doi.org/10.1145/965161.806820

Johannes Meng, Marios Papas, Ralf Habel, Carsten Dachsbacher, Steve Marschner,
Markus Gross, and Wojciech Jarosz. 2015. Multi-scale modeling and rendering
of granular materials. ACM Transactions on Graphics 34, 4 (2015), 49:1–49:13.
https://doi.org/10.1145/2766949

Victor Ostromoukhov. 2001. A simple and efficient error-diffusion algorithm. In
SIGGRAPH 2001. 567–572. https://doi.org/10.1145/383259.383326

Victor Ostromoukhov. 2007. Sampling with polyominoes. ACM Transactions on
Graphics 26, 3 (2007), 78:1–78:6. https://doi.org/10.1145/1276377.1276475

Victor Ostromoukhov, Charles Donohue, and Pierre-Marc Jodoin. 2004. Fast hierarchi-
cal importance sampling with blue noise properties. ACM Transactions on Graphics
23, 3 (2004), 488–495. https://doi.org/10.1145/1015706.1015750

Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,
David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison,
and Martin Stich. 2010. OptiX: a general purpose ray tracing engine. ACM Transac-
tions on Graphics 29, 4 (2010), 66:1–66:13. https://doi.org/10.1145/1778765.1778803

Loïs Paulin, David Coeurjolly, Jean-Claude Iehl, Nicolas Bonneel, Alexander Keller,
and Victor Ostromoukhov. 2021. Cascaded Sobol’ sampling. ACM Transactions on
Graphics 40, 6 (2021), 275:1–275:13. https://doi.org/10.1145/3478513.3480482

Ken Perlin. 1985. An image synthesizer. Computer Graphics (SIGGRAPH ’85) 19, 3
(1985), 287–296. https://doi.org/10.1145/325165.325247

Ken Perlin. 2002. Improving noise. In SIGGRAPH 2002. 681–682. https://doi.org/10.
1145/566570.566636

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2023. Physically Based Rendering:
From Theory to Implementation (fourth ed.). MIT Press.

Adrien Pilleboue, Gurprit Singh, David Coeurjolly, Michael Kazhdan, and Victor Ostro-
moukhov. 2015. Variance analysis for Monte Carlo integration. ACM Transactions
on Graphics 34, 4 (2015), 1–14. https://doi.org/10.1145/2766930

Hongxing Qin, Yi Chen, Jinlong He, and Baoquan Chen. 2017. Wasserstein blue
noise sampling. ACM Transactions on Graphics 36, 5 (2017), 168:1–168:13. https:
//doi.org/10.1145/3119910

Marvin R. Querry. 1985. Optical Constants. Technical Report CRDC-CR-85034. Univer-
sity of Missouri.

Carl Runge. 1895. Über die numerische Auflösung von Differentialgleichungen. Math.
Ann. 46, 2 (1895), 167–178. https://doi.org/10.1007/BF01446807

Bruce Schachter. 1981. Long crested wave models. In Image Modeling. Elsevier, 327–341.
https://doi.org/10.1016/B978-0-12-597320-5.50024-3

Thomas Schlömer and Oliver Deussen. 2011. Accurate spectral analysis of two-
dimensional point sets. Journal of Graphics, GPU, and Game Tools 15, 3 (2011),
152–160. https://doi.org/10.1080/2151237X.2011.609773

Il’yaMeerovich Sobol’. 1967. On the distribution of points in a cube and the approximate
evaluation of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki
7, 4 (1967), 784–802. https://doi.org/10.1016/0041-5553(67)90144-9

https://doi.org/10.1145/2816795.2818139
https://doi.org/10.1145/3072959.3073588
https://doi.org/10.1145/3550454.3555519
https://doi.org/10.1145/3550454.3555519
https://doi.org/10.1145/3414685.3417881
https://doi.org/10.1145/3450626.3459880
https://doi.org/10.1145/1531326.1531392
https://doi.org/10.1002/gamm.202200018
https://doi.org/10.1002/gamm.202200018
https://doi.org/10.1145/1278780.1278807
https://doi.org/10.1145/1276377.1276435
https://doi.org/10.1111/cgf.13472
https://doi.org/10.1111/cgf.13472
https://doi.org/10.1145/7529.8927
https://doi.org/10.1109/TVCG.2012.34
https://doi.org/10.1109/TVCG.2012.34
https://doi.org/10.18725/OPARU-1068
https://doi.org/10.1145/2366145.2366190
https://doi.org/10.1145/1141911.1141915
https://doi.org/10.1145/2010324.1964944
https://doi.org/10.1145/2010324.1964944
https://doi.org/10.1145/2010324.1964943
https://doi.org/10.1145/2010324.1964943
https://doi.org/10.1016/0022-5193(80)90358-6
https://doi.org/10.1007/BF01180035
https://doi.org/10.1145/1321261.1321305
https://doi.org/10.1145/355588.365104
https://doi.org/10.1007/s003710050084
https://doi.org/10.1007/s003710050084
https://doi.org/10.1145/2487228.2487233
https://doi.org/10.1145/2816795.2818102
https://graphics.pixar.com/library/MultiJitteredSampling/paper.pdf
https://doi.org/10.1111/1467-8659.00459
https://doi.org/10.1145/1179352.1141916
https://doi.org/10.1145/1095878.1095888
https://doi.org/10.1145/1095878.1095888
https://doi.org/10.1111/j.1467-8659.2007.01100.x
https://doi.org/10.1111/j.1467-8659.2007.01100.x
https://doi.org/10.1111/j.1467-8659.2010.01827.x
https://doi.org/10.1111/j.1467-8659.2010.01827.x
https://doi.org/10.1109/MSP.2003.1215229
https://doi.org/10.1109/MSP.2003.1215229
https://doi.org/10.1145/800031.808605
https://doi.org/10.1145/74333.74360
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1111/cgf.13807
https://doi.org/10.1145/2897824.2925922
https://doi.org/10.1145/965161.806820
https://doi.org/10.1145/2766949
https://doi.org/10.1145/383259.383326
https://doi.org/10.1145/1276377.1276475
https://doi.org/10.1145/1015706.1015750
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1145/3478513.3480482
https://doi.org/10.1145/325165.325247
https://doi.org/10.1145/566570.566636
https://doi.org/10.1145/566570.566636
https://doi.org/10.1145/2766930
https://doi.org/10.1145/3119910
https://doi.org/10.1145/3119910
https://doi.org/10.1007/BF01446807
https://doi.org/10.1016/B978-0-12-597320-5.50024-3
https://doi.org/10.1080/2151237X.2011.609773
https://doi.org/10.1016/0041-5553(67)90144-9

Curl Noise Jittering SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Thomas Theußl, Torsten Möller, and Meister Eduard Gröller. 2001. Optimal regular
volume sampling. In Proceedings of Visualization 2001 (VIS’01). IEEE, 91–98 + 546.
https://doi.org/10.1109/VISUAL.2001.964498

Salvatore Torquato and Frank H. Stillinger. 2010. Jammed hard-particle packings: From
Kepler to Bernal and beyond. Reviews of Modern Physics 82, 3 (2010), 2633–2672.
https://doi.org/10.1103/RevModPhys.82.2633

Robert A Ulichney. 1988. Dithering with blue noise. Proc. IEEE 76, 1 (1988), 56–79.
https://doi.org/10.1109/5.3288

Florent Wachtel, Adrien Pilleboue, David Coeurjolly, Katherine Breeden, Gurprit Singh,
Gaël Cathelin, Fernando De Goes, Mathieu Desbrun, and Victor Ostromoukhov.
2014. Fast tile-based adaptive sampling with user-specified Fourier spectra. ACM
Transactions on Graphics 33, 4 (2014), 56:1–56:11. https://doi.org/10.1145/2601097.
2601107

Xiaoqun Wang and Ian H. Sloan. 2008. Low discrepancy sequences in high dimensions:
How well are their projections distributed? J. Comput. Appl. Math. 213, 2 (2008),
366–386. https://doi.org/10.1016/j.cam.2007.01.005

Li-Yi Wei. 2008. Parallel Poisson disk sampling. ACM Transactions on Graphics 27, 3
(2008), 20:1–20:9. https://doi.org/10.1145/1360612.1360619

Steven Worley. 1996. A cellular texture basis function. In SIGGRAPH ’96. 291–294.
https://doi.org/10.1145/237170.237267

Dong-Ming Yan, Jian-Wei Guo, Bin Wang, Xiao-Peng Zhang, and Peter Wonka. 2015.
A survey of blue-noise sampling and its applications. Journal of Computer Science
and Technology 30, 3 (2015), 439–452. https://doi.org/10.1007/s11390-015-1535-0

Cem Yuksel. 2015. Sample elimination for generating Poisson disk sample sets. Com-
puter Graphics Forum 34, 2 (2015), 25–32. https://doi.org/10.1111/cgf.12538

https://doi.org/10.1109/VISUAL.2001.964498
https://doi.org/10.1103/RevModPhys.82.2633
https://doi.org/10.1109/5.3288
https://doi.org/10.1145/2601097.2601107
https://doi.org/10.1145/2601097.2601107
https://doi.org/10.1016/j.cam.2007.01.005
https://doi.org/10.1145/1360612.1360619
https://doi.org/10.1145/237170.237267
https://doi.org/10.1007/s11390-015-1535-0
https://doi.org/10.1111/cgf.12538

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia J. Andreas Bærentzen, Jeppe Revall Frisvad, and Jonàs Martínez

Figure 5: Two different Worley noise textures generated using random displacements (left) and CNJ (right).

Figure 6: In this example, randomly oriented and scaled boxes were placed on a square using Blender’s built-in Poisson disk
sampling (left) and our CNJ method (right).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
CNJ s: 5.655, t: 1.259, Q: 0.0091

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
CNJ s: 5.655, t: 1.259, Q: 0.00902

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t: 3.59, s: 6.28, q:0.00964

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t: 3.59, s: 6.28, q:0.00946

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t: 1.06, s: 2.86, q:0.0098

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
t: 1.06, s: 2.86, q:0.00941

Figure 7: CNJ realizations corresponding to SC noise (left), SoS noise (middle), and Perlin noise (right) for the 𝑠 and 𝑡 values
shown. For each pair, the left is with RK4 tracing and the right with Euler stepping.

Curl Noise Jittering SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Figure 8: Moving closer and closer to a seemingly dusty version of the Stanford bunny (http://graphics.stanford.edu/data/3D-
scanrep/). This illustrates our ability to distribute a very large number of points using CNJ w. SoS and RK4. Rendering time for
a 1spp frame (left to right): 2.5 s, 4.5 s, 5.4 s, 6.4 s. Rendered here with 3000 samples per pixel.

re
gu

la
rg

rid

0.27 s 0.29 s 6.3 s

oc
ta
he
dr
al
gr
id

0.26 s 0.27 s 2.3 s

initial grid random jitter curl noise jitter (ours) metalfoamweb.com

Figure 9: Modeling open cell aluminum foam (top) and copper foam (bottom). We used a cubic grid for the aluminum foam due
to its higher porosity and an octahedral grid for the copper foam. The time in the corner is for a 1spp frame. The blue noise
properties of our method helps it better avoid point clustering issues. The photos in the rightmost column, courtesy of Beihai
Composite Materials (https://www.metalfoamweb.com/), provide some intuition on the appearance of real metal foams.

8Δ CNJ of 8Δ CNJ of 8Δ closeup CNJ of □ closeup CNJ of □ □

Figure 10: To indicate the difference between the cubic grid (□) and the octahedral grid (8Δ), we here show the point distributions
for the copper foam scene when using the two different types of initial grid. We tried to obtain a similar result with both
grids. Due to the larger distance between the nodes in the cubic grid, we made the grid smaller, applied a larger time step, and
decreased the scale in CNJ. The distribution of points is more uneven for the cubic grid.

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://www.metalfoamweb.com/
https://www.metalfoamweb.com/

	Abstract
	1 Introduction
	1.1 Related Work

	2 Curl Noise Jittering in 2D
	2.1 Curl Noise
	2.2 Curl Noise Jittering
	2.3 Noise Functions
	2.4 Quality Measures and Parameter Selection
	2.5 Implementation
	2.6 Comparisons
	2.7 Applications and Extensions

	3 Curl Noise Jittering in 3D
	3.1 Implementation
	3.2 Applications

	4 Discussion and Limitations
	Acknowledgments
	References

