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Light propagation in and outside a sphere
illuminated by plane waves of light?,??

L. Lorenza

Royal Danish Academy of Sciences and Letters, Copenhagen, Denmark

As long as we consider light to be rays that mutually interfere, refract, and reflect in
the surfaces of bodies according to certain laws, our understanding of light propaga-
tion is still only elementary and piecewise. The issue being that we decompose the
general fundamental law of the entire light propagation into individual laws and sepa-
rate phenomena although they essentially belong together. This elementary approach
has and will always have its own great importance, but as long as we were unable to
go beyond it many problems in optics would be left unsolved and indissoluble.

The general fundamental law of light propagation is like the laws for transmis-
sion of electricity and elastic forces of simple form, since it is expressible by three
concurrent partial linear differential equations of the second order in which the three
oscillatory components are the dependent while the coordinates of space and time
are the independent variables. All the problems in formal optics must be subject to
integration of these equations.

In a treatise “Ueber die Reflexion an einer Kugelfläche” [1], A. Clebsch1 tried to
determine the reflection of light from perfectly reflective spherical surfaces by taking
the differential equations of the theory of elasticity as a starting point, but this skilled
mathematician did not succeed in surmounting the actual main difficulty. The author
expresses this in the introduction using the words: “Die Resultate der ganzen Un-
tersuchung sind sehr verwickelt, und namentlich für den in der Optik wichtigen Fall
einer sehr kleinen Wellenlänge scheint es sehr schwer dieselben einfach in passender
Form darzustellen” [2]. Whereas the following is added: “Der entgegengesetzte Fall
eines gegen die Wellenlänge sehr kleinen Radius der reflectirenden Kugel ist dagegen
für eine Annäherung sehr geeignet” [3].

? Originally published in Danish as “Lysbevægelser i og uden for en af plane Lysbølger
belyst Kugle” in Det kongelige danske Videnskabernes Selskabs Skrifter 6(6): 1–62, 1890.
?? Translated by Jeppe Revall Frisvad, Technical University of Denmark, Kongens Lyngby,
Denmark, e-mail: jerf@dtu.dk, and Helge Kragh, University of Copenhagen, Copenhagen,
Denmark, e-mail: helge.kragh@nbi.ku.dk. We use square brackets with numbers in bold to
refer to the pages of the original paper. References to the translators’ comments, which are
placed after the translation, are marked by regular (non-bold) numbers in square brackets.

a Deceased 9 June 1891.
1 Crelles Journal, Vol. 61, p. 195. 1863.
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The differential equations from which the present investigation takes its starting
point have been presented and substantiated in several of my previous works. They
differ from the theory of elasticity by the fact that they rule out the possibility of
longitudinal oscillations, and, since they are valid [4] for every point in any transparent
heterogeneous medium, the boundary conditions at the transition from one body to
another can be derived from the differential equations themselves.

In a previous work “Farvespredningens Theori”2 [4], I have from the same differ-
ential equations derived formulae that serve to compute the light propagation in a
medium consisting of concentric spherical layers. The computation was here applied
to a system of small spheres mutually separated by large distances of “empty” space,
with the goal in mind to determine the dependency of light refraction on the density
of the system. Later I have employed the same series expansions to solve the problem
I here have in mind, namely the computation of light propagation which appears
when a homogeneous, transparent, and isotropic sphere is illuminated by plane, paral-
lel waves of light, and I have in this way also succeeded in arriving at the same results
which should be reported here. But, in the following, I have preferred a different and
simpler way of presentation where I, also to ease the reading, shall avoid assuming
knowledge of my previous work.

1 Boundary conditions.

Let ξ, η, ζ denote the components of the light oscillations, corresponding to the time
and space coordinates t, x, y, z. Moreover, introducing the notation [5]

∆2 =
d2

dx2
+

d2

dy2
+

d2

dz2
, θ =

dξ

dx
+
dη

dy
+
dζ

dz
,

the laws of light propagation in any transparent medium can be expressed by the
three differential equations

∆2ξ −
dθ

dx
=

1

ω2

d2ξ

dt2
, ∆2η −

dθ

dy
=

1

ω2

d2η

dt2
, ∆2ζ −

dθ

dz
=

1

ω2

d2ζ

dt2
. (1)

This is true since ω is in general a variable dependent of x, y, z, and it corresponds
to the velocity of light in the point x, y, z, in so far as you can consider this constant
within a very small volume.

The present task is to integrate these equations under the assumption that ω has
a constant value inside the surface of a given sphere and a different constant value
outside the said surface with a discontinuous transition in the spherical surface itself.
This discontinuous transition is considered to be produced by a surface layer of finite
[5] thickness and continuous change of ω, considered to be a function of the distance
r from the centre of the sphere, that approaches a layer of thickness zero. At this
transition, the oscillatory components must here as everywhere stay finite, whereas
the differential coefficients with respect to r might become infinite. The components
and their differential coefficients therefore, in general in the boundary surface when
the thickness of the boundary layer is reduced to 0, go discontinuously from one value
to another, while some combinations of these might really keep their value unchanged.

Since I shall seek these out, I prefer instead of the components with respect to a
fixed axial system to employ the projection of the oscillatory deflection on the radius,
the projection orthogonal to this and positioned in the plane through the radius and

2 Vidensk. Selsk. Skr. 6. Række, p. 167. 1883.
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the x-axis, and the projection orthogonal to the two preceding and thus orthogonal
to the x-axis.

Defining in polar coordinates [6]

x = r cosϕ , y = r sinϕ cosφ , z = r sinϕ sinφ ,

and letting ξ, η, ζ denote the new components, these are given by

ξ = cosϕ ξ + sinϕ cosφ η+ sinϕ sinφ ζ ,
η = − sinϕ ξ + cosϕ cosφ η+ cosϕ sinφ ζ ,
ζ = − sinφ η+ cosφ ζ .

 (2)

When the equations (1) are multiplied by x, y, and z, respectively, and added
together, one obtains

∆2rξ −
dr2θ

rdr
=

1

ω2

d2rξ

dt2
.

From this we see, when ∆2 is expressed in polar coordinates, that

d2r2 ξ

dr2
− dr2θ

dr

is expressible by quantities that remain finite, even when the thickness of the boundary
layer is reduced to zero.

Hence, it follows that
dr2 ξ

dr
− r2θ

is a continuous function which thus also remains finite in the boundary layer as it is
finite on both sides outside this layer. Consequently,

d ξ

dr
− θ

is also everywhere a finite quantity.
Furthermore, multiplying the equations (1) by − sinϕ, cosϕ cosφ, cosϕ sinφ, re-

spectively, and adding them together, one obtains [6]

d2r η

dr2
− dθ

dϕ

expressed by quantities that remain finite everywhere. Similarly, we find by multipli-
cation of the equations (1) by 0, − sinφ, cosφ, and addition,

d2r ζ

dr2
− dθ

sinϕdφ

expressed by finite quantities everywhere.
In this way, we have found three combinations that are everywhere finite. Elimi-

nating θ from these, it is seen that the quantities

d2r η

dr2
− d2 ξ

dϕdr
and

d2r ζ

dr2
− d2 ξ

sinϕdφdr

are everywhere finite, from which it follows that

dr η

dr
− d ξ

dϕ
and

dr ζ

dr
− d ξ

sinϕdφ
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are continuous functions that thus remain unchanged at the transition from one side
of the boundary surface of the sphere to the other. I will express this by[

dr η

dr
− d ξ

dϕ

]
= 0 ,

[
dr ζ

dr
− d ξ

sinϕdφ

]
= 0 . (3)

In addition, note that the same quantities, as continuous functions and finite ev-
erywhere outside the boundary surface, must also be finite in the boundary surface.
Hence, it follows that r η and r ζ must be continuous so that, using the same notation
as above, one has [

η
]

= 0 ,
[
ζ
]

= 0 . (4)

The boundary conditions corresponding to r = 0 and r =∞ are given by the fact
that light propagation is everywhere finite, thus also for r = 0, and that at an infinite
distance from the sphere we only find, besides the given incident light, light that is
propagated from the sphere, but none that propagates toward it.

2 Expansion in terms of spherical functions.

The light incident on the sphere is taken to consist of plane, parallel waves of light. In
general, these waves could contain a collection of oscillations, different with respect
to amplitude, direction inside the wave plane, period of oscillation, and phase. This
general case is however easily derived from the simple one in which the oscillatory
components that we shall denote by ξ0, η0, ζ0, are given outside the sphere by

ξ0 = 0 , η0 = e(kt−lx) i , ζ0 = 0 . (5)

[7] Here the exponential form is chosen as the simplest, the oscillations with amplitude
1 occur along the y-axis and propagate along the x-axis with the constant velocity
k
l = Ω, with wavelength 2π

l = λ, and period of oscillation 2π
k = T .

Since we, outside the sphere, in this way separate the incident light from the other
light generated by the change of velocity in the spherical surface, we here set

ξ = ξ0 + ξe , η = η0 + ηe , ζ = ζ0 + ζe . (6)

On the other hand, inside the spherical surface, we set

ξ = ξ′ , η = η′ , ζ = ζ ′ , (7)

where also l′, Ω′, λ′ replace the corresponding unmarked quantities outside the sphere.
Furthermore, letting N (the refractive index of the sphere) denote the ratio between
the two velocities Ω and Ω′, one has

Ω = NΩ′ , l′ = Nl , λ = Nλ′ . (8)

The components ξ, η, ζ are mutually connected outside as well as inside the spherical
surface by the equation θ = 0, which for constant ω appears from the equations (1),
and thus they could be represented as depending on two quantities alone: Q and S
outside the sphere, or Q′ and S′ inside the sphere. That is, one would be able to set

ξe =
dC

dy
− dB

dz
, ηe =

dA

dz
− dC

dx
, ζe =

dB

dx
− dA

dy
,

A = z
dQ

dy
− y dQ

dz
+ xS , B = x

dQ

dz
− z dQ

dx
+ yS , C = y

dQ

dx
− xdQ

dy
+ zS ,

 (9)
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just as also ξ′, η′, ζ ′ could be expressed in the same way. The equations (1) would
then be satisfied under the assumption that one has

∆2Q+ l2Q = 0 , ∆2S + l2S = 0 , (10)

∆2Q
′ + l′2Q′ = 0 , ∆2S

′ + l′2S′ = 0 . (11)

It can be noticed here that the two radial projections

xξe + yηe + zζe

and x

(
dζe
dy
− dηe

dz

)
+ y

(
dξe
dz
− dζe
dx

)
+ z

(
dηe
dx
− dξe
dy

)
by means of equations (9) could be transformed into

−r2∆2Q+ r
d2rQ

dr2
= − 1

sinϕ

d

dϕ
sinϕ

dQ

dϕ
− d2Q

sin2 ϕdφ2

and −r2∆2S + r
d2rS

dr2
= − 1

sinϕ

1

dϕ
sinϕ

dS

dϕ
− d2S

sin2 ϕdφ2
.

Hence, it is seen that when Q and S are expanded in series in terms of spherical
functions Qn and Sn, namely

Q =
∑

Qn , S =
∑

Sn ,

[8] then the above-mentioned radial projections would be given, respectively, by∑
n(n+ 1)Qn and

∑
n(n+ 1)Sn .

The same holds true in the space inside the sphere.
In analogy with (6) for points outside the sphere, we express the components ξ,

η, ζ introduced in the preceding section by

ξ = ξ0 + ξe , η = η0 + ηe , ζ = ζ0 + ζe , (12)

as these new components are given by

ξ0 = sinϕ cosφ e(kt−lx) i , η0 = cosϕ cosφ e(kt−lx) i , ζ0 = − sinφ e(kt−lx) i , (13)

ξe = cosϕ ξe + sinϕ cosφ ηe + sinϕ sinφ ζe ,
ηe = − sinϕ ξe + cosϕ cosφ ηe + cosϕ sinφζe ,
ζe = − sinφ ηe + cosφ ζe .

 (14)

Now, introducing for the sake of brevity the following notation

lr = a , l′r = a′ , lQ = K , l′Q′ = K ′ (15)

and, as R is the radius of the given sphere,

lR = α , l′R = α′ . (16)

Then, by the equations (9) and by using the equations (10), one obtains [7]

ξe =
d2aK

da2
+ aK ,

ηe =
d2aK

adϕda
+

dS

sinϕdφ
,

ζe =
d2aK

a sinϕdφda
− dS

dϕ
,


(17)
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just as, for an interior point, one correspondingly has

ξ′ =
d2a′K ′

da′2
+ a′K ′ ,

η′ =
d2a′K ′

a′ dϕ da′
+

dS′

sinϕdφ
,

ζ ′ =
d2a′K ′

a′ sinϕdφda′
− dS′

dϕ
.


(18)

The task is now to develop these components in series in terms of spherical func-
tions. If it is at all possible to expand a function f(x) in terms of spherical functions,
the expansion is, as is well-known, the following:

f(x) =

∞∑
0

2n+ 1

2
Pn(x)

∫ 1

−1
f(u)Pn(u) du ,

where the sum is taken for all integers n from n = 0 to n =∞, and

Pn(x) =
1 . 3 . . . 2n− 1

1 . 2 . . . n

(
xn − n(n− 1)

2(2n− 1)
xn−2 +

n(n− 1)(n− 2)(n− 3)

2 . 4(2n− 1)(2n− 3)
xn−4 − . . .

)
.

[9] If we now first seek to expand the expressions for ξ0, η0, ζ0 given in the
equations (13), where we set lx = a cosϕ, then according to the above-mentioned we
have

e−a cosϕ i =

∞∑
0

2n+ 1

2
Pn(cosϕ)

∫ 1

−1
e−auiPn(u) du .

The definite integral appearing here can be expressed in terms of the Bessel function
Jn+ 1

2
(a), or, as I shall here prefer, in terms of another function denoted vn(a). This

differs from the Bessel function by only a factor since we set

vn(a) =

√
πa

2
Jn+ 1

2
(a) .

One will then, as is well-known from the theory of Bessel functions, be able to define
vn(a) by

vn(a) =
an+1

2n+1[n]

∫ 1

−1
e−aui(1− u2)n du .

This integral transforms through n-fold integration by parts to

vn(a) =
a

2n+1[n]in

∫ 1

−1
e−aui

dn(1− u2)n

dun
du ,

which by using another familiar expression for Pn, namely

Pn(u) =
(−1)n

2n[n]

dn(1− u2)n

dun
,

can also be given the form

vn(a) =
a

2
in
∫ 1

−1
e−auiPn(u) du . (19)
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In this way, we obtain

e−a cosϕ i =
1

a

∞∑
0

(2n+ 1)Pn(cosϕ)e−
nπ
2 i vn(a) . (20)

It is noted that the function vn(a) satisfies the differential equation

d2vn(a)

da2
=

(
n(n+ 1)

a2
− 1

)
vn(a) , (21)

and that it, expanded in powers of a, gives the series

vn(a) =
an+1

1 . 3 . . . 2n+ 1

(
1− a2

2(2n+ 3)
+

a4

2 . 4(2n+ 3)(2n+ 5)
− . . .

)
. (22)

Another series expansion well-known from the theory of Bessel functions, where the
number of terms is finite, is

vn(a) = gn(a) sin
(
a− nπ

2

)
+ hn(a) cos

(
a− nπ

2

)
,

gn(a) = 1− (n− 1)n(n+ 1)(n+ 2)

2 . 4 a2
+

(n− 3)(n− 2) . . . (n+ 4)

2 . 4 . 6 . 8 a4
− . . . ,

hn(a) =
n(n+ 1)

2 a
− (n− 2)(n− 1) . . . (n+ 3)

2 . 4 . 6 a3
+ . . . .


(23)

[10] Furthermore, denoting by wn(a) another particular integral of Equation (21),
and defining this integral more specifically by the series expansion

wn(a) =
1 . 3 . . . 2n− 1

an

(
1 +

a2

2(2n− 1)
+

a4

2 . 4(2n− 1)(2n− 3)
+ . . .

)
, (24)

this function will likewise differ only by a factor from a Bessel function, namely
J−n− 1

2
(a), and with the series for gn and hn given above it will also be expressible

by

wn(a) = gn(a) cos
(
a− nπ

2

)
− hn(a) sin

(
a− nπ

2

)
. (25)

From the expansion (20), the expressions given in the equations (13) can now be
determined in the following way. We extract from the series (20) the term correspond-
ing to n = 0 and set

Pn(cosϕ) = − 1

n(n+ 1)
· 1

sinϕ

d

dϕ
sinϕ

dPn(cosϕ)

dϕ
.

From this follows

e−a cosϕ i =
sin a

a
− 1

a

∞∑
1

2n+ 1

n(n+ 1)

1

sinϕ

d

dϕ
sinϕ

Pn(cosϕ)

dϕ
e−

nπ
2 i vn(a) .

For brevity, we now introduce the terms

K0 = −icosφ

a

d

dϕ

∞∑
1

2n+ 1

n(n+ 1)
Pn(cosϕ)e(kt−

nπ
2 ) i vn(a) ,

S0 = − sinφ

a

d

dϕ

∞∑
1

2n+ 1

n(n+ 1)
Pn(cosϕ)e(kt−

nπ
2 ) i vn(a) .

 (26)
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Through multiplication of the equation by cosφ ekti sinϕdϕ or by − sinφ ekti sinϕdϕ,
and by integration from ϕ = 0 to ϕ = ϕ of the two equations obtained in this way,
we obtain

K0 =
cosφ

a sinϕ
(i sin a cosϕ− cos a+ e−a cosϕ i) ekti ,

S0 = − sinφ

a sinϕ
(− sin a cosϕ− i cos a+ i e−a cosϕ i) ekti .

 (27)

From this we find in conclusion

d2aK0

da2
+ aK0 = sinϕ cosφ e(kt−a cosϕ) i = ξ0 ,

d2aK0

a dϕda
+

dS0

sinϕdφ
= cosϕ cosφ e(kt−a cosϕ) i = η0 ,

d2aK0

a sinϕdφda
− dS0

dϕ
= − sinφ e(kt−a cosϕ) i = ζ0 .


(28)

These expressions for the components ξ0, η0, ζ0 correspond to the expressions pre-
sented in (17) for the components ξe, ηe, ζe, as K0 and S0 take the place of K and S in
the equations (17). For K0 and S0, we have in (26) the expansions in terms of spheri-
cal functions, and these must, as one can [11] also easily convince oneself, satisfy the
same differential equations as K and S, namely according to (10) ∆2K0 + l2K0 = 0
and ∆2S0 + l2S0 = 0. The expansions of K and S in terms of spherical functions
must consequently be analogous with the expansions (26), as one would here instead
of the particular integral vn(a) of the equation (21) insert the ordinary integral ex-
pressed linearly by vn(a) and wn(a). Thus, one obtains with the as yet undetermined
constants kn, χn, sn, σn,

K = −i cosφ

a

d

dϕ

∞∑
1

2n+ 1

n(n+ 1)
Pne

(kt−nπ2 ) i (knvn(a) + χnwn(a)) ,

S = − sinφ

a

d

dϕ

∞∑
1

2n+ 1

n(n+ 1)
Pne

(kt−nπ2 ) i (snvn(a) + σnwn(a)) ,

 (29)

and correspondingly for an interior point

K ′ = −i cosφ

a′
d

dϕ

∞∑
1

2n+ 1

n(n+ 1)
Pne

(kt−nπ2 ) i (k′nvn(a′) + χ′nwn(a′)) ,

S′ = − sinφ

a′
d

dϕ

∞∑
1

2n+ 1

n(n+ 1)
Pne

(kt−nπ2 ) i (s′nvn(a′) + σ′nwn(a′)) .

 (30)

Here, Pn(cosϕ) is shortened to Pn.
If we now first use the boundary condition corresponding to a′ = 0, it is seen from

(24) that wn(a′) becomes ∞ for a′ = 0 and n > 0, and that the finiteness condition
therefore requires

χ′n = 0 , σ′n = 0 .

According to (23) and (25), a =∞ corresponds to vn(a) = sin
(
a− nπ

2

)
, wn(a) =

cos
(
a− nπ

2

)
. At an infinite distance from the sphere one therefore has

2(knvn(a) + χnwn(a))e(kt−
nπ
2 ) i = (−kn i+ χn)e(kt+a−nπ) i + (kn i+ χn)e(kt−a) i .
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From this it is seen that the light propagation in general at this distance appears
to be a periodic function of kt + a and kt − a, corresponding to two opposite wave
propagations, one propagating toward the centre of the sphere, the other in the di-
rection away from the centre. Since now only the latter, according to the assumed
conditions, is really permitted, one must have

−kn i+ χn = 0 , as also correspondingly − sn i+ σn = 0 .

In this way, the series (29) and (30) are reduced to [8]

K = −i cosφ

a

d

dϕ

∞∑
1

2n+ 1

n(n+ 1)
Pne

(kt−nπ2 ) ikn(vn(a) + wn(a) i) ,

S = − sinφ

a

d

dϕ

∞∑
1

2n+ 1

n(n+ 1)
Pne

(kt−nπ2 ) isn(vn(a) + wn(a) i) ,

K ′ = −i cosφ

a′
d

dϕ

∞∑
1

2n+ 1

n(n+ 1)
Pne

(kt−nπ2 ) ik′nvn(a′) ,

S′ = − sinφ

a′
d

dϕ

∞∑
1

2n+ 1

n(n+ 1)
Pne

(kt−nπ2 ) is′nvn(a′) .


(31)

[12] Finally, we also have the boundary conditions presented in (3) and (4), which
can be expressed by

η = η′ , ζ = ζ ′

daη

da
− dξ

dϕ
=
da′η′

da′
− dξ′

dϕ
daζ

da
− dξ

sinϕdφ
=
da′ζ ′

da′
− dξ′

sinϕdφ


a = α
a′ = α′ .

Inserting in these conditions the expressions for ξ, η, ζ given by the equations (12),
(17), and (28), and for ξ′, η′, ζ ′ the expressions (18), they transform into

a(K0 +K) = a′K ′ , S0 + S = S′

da(K0 +K)

a da
=
da′K ′

a′ da′
,

da(S0 + S)

da
=
da′S

da′

 a = α
a′ = α′ .

(32)

Here, K0, S0, K, S, K ′, S′ are expanded by the series given in (26) and (31). In this
way, four equations between the coefficients are obtained. Denoting for the sake of

brevity the derivative functions dvn(α)
da , dwn(α)da , dvn(α

′)
da′ by v′n(α), w′n(α), v′n(α′), these

equations become

N (v′n(α) + kn(v′n(α) + w′n(α) i)) = k′nv
′
n(α′)

N (vn(α) + sn(vn(α) + wn(α) i)) = s′nvn(α′)

vn(α) + kn(vn(α) + wn(α) i) = k′nvn(α′)

v′n(α) + sn(v′n(α) + w′n(α) i) = s′nv
′
n(α′) .

From this we can determine the four coefficients. By introducing a small reduction
by means of the equation

wn(α)v′n(α)− w′n(α)vn(α) = 1 ,
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one will thus obtain

2kn = −1− (vn(α)− wn(α) i) v′n(α′)−N (v′n(α)− w′n(α) i) vn(α′)

(vn(α) + wn(α) i) v′n(α′)−N (v′n(α) + w′n(α) i) vn(α′)
,

2sn = −1− N (vn(α)− wn(α) i) v′n(α′)− (v′n(α)− w′n(α) i) vn(α′)

N (vn(α) + wn(α) i) v′n(α′)− (v′n(α) + w′n(α) i) vn(α′)
,

 (33)

k′n =
Ni

(vn(α) + wn(α) i) v′n(α′)−N (v′n(α) + w′n(α) i) vn(α′)
,

s′n =
Ni

N (vn(α) + wn(α) i) v′n(α′)− (v′n(α) + w′n(α) i) vn(α′)
.

 (34)

The posed task is thus solved in so far as the oscillatory components have been
determined everywhere in space by infinite series with known coefficients. It turns out
that the series in the given form are well-suited for calculation when either α, which
corresponds to the circumference of the sphere measured in units of the wavelength
λ, is a small number, or when the point of interest is close to the centre. On the other
hand, when α is a very large number, which [13] could be said is almost the case for all
spheres that are visible to the naked eye, it will in general be necessary to transform
the series so that the summations can be done with sufficient approximation. I shall
now first produce the summation formulae that would here be brought into play.

3 Summation formulae.

In the following section, sums will be produced that can be referred to the form

n2∑
n1

Ane
Fn i , (35)

where n runs through the sequence from n = n1 to n = n2.
The two functions An and Fn are constituted in such a way that when inserting

n = ν + z, where both the new variables are also considered to be integers, one will
obtain the following series, convergent within the given bounds,

An = A+B
z

α
+ C

z2

α2
+ . . . , Fn = Fα+Gz +H

z2

α
+ I

z3

α2
+ . . . . (36)

The terms have here been ordered according to increasing powers of z and decreasing
powers of the quantity α. The latter is considered to be a very large but not infinitely
large number. All quantities will in the following be ordered according to powers of α
so that the quantity which contains the larger power of α is considered to be a quantity
of higher order. Here, the coefficients A,B, . . . , F,G, . . . are at most quantities of the
same order as unity (α0). The calculation will now aim at producing results with
such an accuracy that only quantities of order lower than unity are considered small
enough to be discarded.

The number of terms in the series (35) is itself a very large number, of the same
order as α. The bounds n1 and n2 are indeterminate and to a certain degree arbitrary,
that is, they are only constrained on the one hand by the convergence conditions for
the series (36), on the other hand by the demand that n2 − n1 must be a very
large number. In the following, I will use the common symbol ω for the kind of
indeterminate, arbitrary quantities introduced here. This is defined so that a function
of such a quantity denotes a limit: the mean value that the same function but of a
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definite quantity x converges to as we let x run through a gradually larger and larger
sequence of values within the bounds given by ω.

We now take our starting point in the well-known integrals∫ ∞
0

e−xxµ−1 dx = Γ (µ) , . . . (37)

∫ ∞
0

exixµ−1 dx = Γ (µ)e
µπ
2 i , . . . (38)

[14] The first one is valid for all positive values of µ, the second one only for the
positive values that are smaller than 1. It is then seen that one must have, also in the
case of µ < 1, ∫ ω

0

exixµ−1 dx = Γ (µ)e
µπ
2 i , (39)

since ∫ ω

0

exixµ−1 dx =

∫ ∞
0

exixµ−1 dx−
∫ ∞
ω

exixµ−1 dx .

Here, the latter integral can be expanded by integration by parts into a semi-convergent
series whose mean value, as corresponding to different values of ω, converges to 0 when
the mean value is taken between wider and wider bounds in the way stated above.
Furthermore, if µ > 1 in the integral (39), the exponent can be reduced by integration
by parts to become smaller than 1, and the mean value of the periodical terms ap-
pearing outside the integral will likewise converge to 0. Consequently, Equation (39)
with the agreed meaning of the upper bound ω is valid for all positive values of µ.

As another example that will be of use in the following, we take the sum (35)
reduced to the simplest form

n2∑
n1

eani =
ean1i − ea(n2+1)i

1− eai

Here, the right-hand side must also disappear, assuming that a is not 0 or a multiple of
2π since in this case the sum becomes n2−n1 +1 which presumably is indeterminate,
but in any case cannot be equal to zero. Furthermore, if a is very small or very close
to a multiple of 2π, one dare not consider the sum to be zero since the number of
terms is assumed very large, but not infinitely large.

If the sum is zero, it will continue to be so when differentiated an arbitrary number
of times with respect to a. Hence, more generally, one has

n2∑
n1

nmeani = 0 , (40)

when m is an integer or 0, and when a is not equal to or lying very close to 0 or a
multiple of 2π.

Now, considering the sum given by the expansions (35) and (36), it is seen that
it can be changed into a convergent series with terms that, when omitting constant
factors, have the form

n2−ν∑
n1−ν

zmeGzi

That is, if one does not have
G = 2pπ , (41)

for p = 0 or an integer, and neither G− 2pπ very close to 0, then the entire sum (35)
will disappear.

[15] Conversely, if we are able to find a value of ν that enables us to satisfy the
above-mentioned condition (41), then Gz can be omitted from the exponent, and the
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summation can now be changed to integration without appreciable error. Hence, the
sum (35) can be given the form∫ n2−ν

−(ν−n1)

dz
(
A+B

z

α
+ . . .

)
e

(
Fα+H z2

α +I z
3

α2 + ...
)
i
, (42)

where we restrict ourselves to the assumption that ν is situated between n1 and n2
and, thus, that both ν−n1 and n2−ν will have to belong to the kind of indeterminate
quantities defined above. Changing in this integral the sign of z for z < 0, and
afterwards setting Hz2 = αx, the bounds of x, assuming that H is not 0 or very
small, belongs to the kind of quantities denoted above by the common symbol ω, and
the integral will by series expansion become∫ ω

0

dx

2

(
A

√
α

Hx
+
B

H
...+

AIxi

H2
+...

)
e(Fα+x)i+

∫ ω

0

dx

2

(
A

√
α

Hx
−B
H
...−AIxi

H2
+...

)
e(Fα+x)i .

These integrals will according to (39), as Γ
(
1
2

)
=
√
π, together become

A

√
απ

H
e(Fα+

π
4 )i , (43)

since the terms of order α−
1
2 and of lower order are discarded. This result is also valid

for negative values of H when taking into account that, in this case, one must set

1√
−1

= −i = e−
π
2 i .

The result becomes invalid for
H = 0 . (44)

For further generalisation, we can in this case assume that G − 2pπ is a very small
quantity. Also in this case, the summation can be changed into integration, and
instead of (42) one will obtain the integral∫ n2−ν

−(ν−n1)

dz

(
A+B

z

α
+ C

z2

α2
+ . . .

)
e

(
Fα+(G−2pπ)z+I z3

α2 +K z4

α3 +L z5

α4 ...
)
i
. (45)

In this integral, we change the sign of z for z < 0 and then set ±Iz3 = α2x, where
the double sign is determined so that ±I becomes positive. Introducing for the sake
of brevity the notation

G− 2pπ = −ε 3

√
I

α2
, (46)

∫ ω

0

x−
2
3 cos(−ε x 1

3 + x) dx = Q , (47)

[16] as well as

A = A1I , B = B1I , C = C1I , K = K1I , L = L1I , (48)

one will without difficulty be able to give the integral (45) the form

± 2
3e
Fαi

[
(αI)

2
3A1Q+ (αI)

1
3 i

(
B1

dQ

dε
+A1K1

d4Q

dε4

)
− C1

d2Q

dε2

−(A1L1 +B1K1)
d5Q

dε5
− 1

2A1K
2
1

d8Q

dε8

]
, (49)
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as the terms of the order α−
1
2 or less are discarded.

In the case of ε = 0, one obtains by means of (39)

Γ

(
1

3

)
cos

π

6
= Q = −3

d3Q

dε3
, Γ

(
2

3

)
cos

π

6
=
dQ

dε
= −3

2

d4Q

dε4
,

0 =
d2Q

dε2
=
d5Q

dε5
=
d8Q

dε8
,

where

Γ

(
1

3

)
= 2.67894 . . . , Γ

(
2

3

)
= 1.35412 . . . ,

or by the common logarithms

Log Γ

(
1

3

)
= 0.4279627 . . . , Log Γ

(
2

3

)
= 0.1316565 . . . .

With this, (49) passes into

± 1√
3
eFαi

[
(αI)

2
3A1 Γ

(
1

3

)
+ (αI)

1
3 i

(
B1 −

2

3
A1K1

)
Γ

(
2

3

)]
. (50)

The integral Q (47) has under a somewhat different form been calculated numer-
ically by Airy3, who for the integral∫ ∞

0

dω cos
π

2
(ω3 −mω) = W

has provided the following table

m W m W
−5 0.00041 0 0.66527
−4 0.00298 1 1.00041
−3 0.01730 2 0.56490
−2 0.07908 3 −0.56322
−1 0.27283 4 −0.47446

5 0.68182.

[17] Based on this, we can also calculate Q, as we have [10]

ε =
(π

2

) 2
3

m, Q = 3
(π

2

) 1
3

W .

Going from m = 0 to the negative side, W keeps decreasing until 0. Going to the
positive side, W is first increasing, reaching a maximum at m = 1.08, and hereafter
also approaches 0 through a periodic motion around the zero point. The first and
largest maximum of W is 1.504 times larger than the value of W for m = 0.

Stokes4 has extended the calculation of Airy to the first 50 roots of the equation
W = 0 and the first 10 roots of dW

dm = 0. Thus, the sequence corresponding to W = 0
is

m = 2.4955; 4.3631; 5.8922; 7.2436; 8.4788; . . .

3 On the intensity of Light in the neighbourhood of a Caustic. Trans. of the Cambr. Soc.
t. VI, p. 379, t. VIII, p. 595. [9]

4 Trans. of the Cambr. Phil. Soc. t. 9. p. 166.
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in which the qth root for growing q converges to 3

(
q − 1

4

) 2
3

. Likewise, for dW
dm = 0,

m = 1.0845; 3.4669; 5.1446; 6.5782; 7.8685; . . .

where the qth root converges to 3

(
q − 3

4

) 2
3

.

The different derivatives of Q with respect to ε, which enter into the expression
(49), can all be expressed easily by Q and dQ

dε by noting that one has

d2Q

dε2
= −ε

3
Q

from which yet higher derivatives can be derived, for example

d4Q

dε4
=
ε2

9
Q− 2

3

dQ

dε
, etc.

Hence, the maximum and the minimum points of dQ
dε correspond to Q = 0 from

which we see that the first maximum does not set in here until m = 2.4955 . . . . The
modulus (or the amplitude) of the expression given in (49) changes with growing
ε in a way corresponding to the integral W if one only has to take the first term,
which is of highest order, into consideration. However, if the subsequent terms in the
expression are also of significance, the modulus will contain both Q and dQ

dε . From
this it follows that the maximum points will be displaced, and that the modulus in
general cannot become 0 as a consequence of the periodic changes. The periodicity
will in this way become more blurred.

By comparison of the two expressions given in (43) and (49) for the integral (42),

it is seen that the former is of the magnitude α
1
2 , the latter is of the order α

2
3 . How

the transition takes place from one expression to the other can be seen if one imagines
H decreasing to a very small quantity while one keeps G−2pπ = 0. One [18] will then
in the integral (42) be able to set z = z′ + δ and determine δ so that the coefficient
for z′2 in the exponent becomes 0. In this way, we arrive at the form assumed in (45),

where G− 2pπ becomes equal to −H
2

3I
, and consequently

3ε = H2 3

√
α2

I4
.

From this, we see that ε necessarily remains positive at this transition from the integral
(42) to the integral (45). The transition from (43) to (49) thus takes place through the
periodic motion described above with a positive decrease of m or ε. In this way, the
last and largest maximum is reached before ε becomes 0, while the modulus quickly
decreases from here to 0 as ε at the same time goes through 0 to lower and lower
negative values.

Lastly, we will in the following section also meet sums that may be rewritten as
an integral of the form∫ z1

0

dz

(
A
z

α
+B

z3

α3
+ . . .

)
e

(
Fα+G z2

α +H z4

α3 +I z
6

α5 +...
)
i
. (51)

When we here set Gz2 = αx, and when G is not 0 or very small, the upper bound of
x will belong to the kind of quantities denoted ω above, and since the terms of order
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lower than unity are discarded, the result of the integration becomes

A

2G
e(Fα+

π
2 )i . (52)

On the other hand, if G is very small, we set Hz4 = α3x2. The upper bound of x is
as before denoted by ω, and for brevity we set

G = ±ε
√
H

α
, (53)

where the upper sign corresponds to G being positive, the lower sign to G being
negative. The integral then becomes

1

2H

∫ ω

0

dx

(
(αH)

1
2A+Bx+

AIi

H
x3
)
e(Fα±εx+x

2)i . (54)

For ε = 0, we obtain from this by integration

A

4

√
απ

H
e(Fα+

π
4 )i +

1

4H2
(BH −AI)e(Fα+

π
2 )i , (55)

while the ordinary integral (54) may be expressed by

eFαi

2H

(
(αH)

1
2AQ∓ iB dQ

dε
∓ AI

H

d3Q

dε3

)
, (56)

as

Q =

∫ ω

0

dx e(±εx+x
2)i . (57)

[19] From this last integral, we obtain by taking the derivative with respect to ε and
by partial integration

dQ

dε
= ∓1

2
− ε i

2
Q (58)

from which we further find

d3Q

dε3
= ±

(
i

2
+
ε2

8

)
+

(
−3ε

4
+
ε3i

8

)
Q . (59)

By insertion of these values in (56), this expression for the integral that we seek
will be determined by known qunatities and by the integral Q.

This last integral has often been dealt with in different forms, in particular in
the computation of diffraction phenomena by Fresnel, Cauchy, Knochenhauer, Quet,
and others. Ph. Gilbert5 has computed a larger table of the two functions N and M
determined by √

π

2

∫ ω

0

dx e(εx+x
2)i = N +Mi , ε =

√
2πµ ,

The table comprises all values from µ2 = 0.00 to µ2 = 30.00.
Thus, with the upper sign in the integral Q, the integral can be computed directly

from the table. With the lower sign, and setting√
π

2

∫ ω

0

dx e(−εx+x
2)i = N1 +M1i ,

5 Recherches anal. sur la diffraction de la lumière. Mém. cour. de l’Acad. de Bruxelles,
t. XXXI, p. 1, 1862–63.



16 The European Physical Journal H

one will have

N +N1 + (M +M1)i =

√
π

2

∫ ω

−ω
dx e(εx+x

2)i =
√

2

(
cos

π − ε2

4
+ i sin

π − ε2

4

)
,

from which N1 and M1 are determined by

N1 =
√

2 cos
π − ε2

4
−N , M1 =

√
2 sin

π − ε2

4
−M .

Both quantities N and M decline rapidly and continually with increasing ε, from
which follows that N1 and M1 are periodic functions. From (58) with the lower sign
follows

dN1

dε
=

1√
2π

+
ε

2
M1 ,

dM1

dε
= −ε

2
N1 ,

and then

N1
dN1

dε
+M1

dM1

dε
=

N1√
2π

.

From this, we see that the maximum and the minimum of N2
1 + M2

1 correspond to

N1 = 0, which in turn, for large values of ε, corresponds approximately to cos π−ε
2

4 ,

that is, to ε2 = (4p− 1)π or µ =
√

4p−1
2 , since p is an integer.

[20] According to Gilbert, we have

N2
1 +M2

1 = 2.7407 at µ = 1.2172 ,

(√
3

2
= 1.2247

)
, 1st max.

1.5562 at µ = 1.8725 ,

(√
7

2
= 1.8708

)
, 1st min.

2.3985 at µ = 2.3445 ,

(√
11

2
= 2.3452

)
, 2nd max.

1.6864 at µ = 2.7390 ,

(√
15

2
= 2.7386

)
, 2nd min.

Furthermore, N2
1 +M2

1 =
1

2
corresponds to µ = 0, and N2

1 +M2
1 = 2 corresponds to

µ =∞.

If we only consider the term of the highest order (α
1
2 ) in (56), the theory developed

above reveals that the modulus of this expression increases from 0 at G = +∞ up
to A

4

√
απ
H at G = 0. It further increases with decreasing G up to 2.3412 · A4

√
απ
H at

G = −1.2172
√

2πH
α , and, finally, through a series of decreasing oscillations, it reaches

twice the value of the one corresponding to G = 0.

4 α very large. Propagation along the main axis.

Like in the previous section, α is here considered a very large number, and we should
seek to determine the light propagation so that only quantities of order lower than
unity are discarded.
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We first seek to determine the propagation close to the centre of the sphere, since

a′, which is the distance from the centre to the observed point, measured with λ′

2π
as unit of length, is considered a very small number as compared with α and α′.
Under this condition vn(a′), as given by the series (22), becomes very small when the
magnitude of n approaches that of α, why the terms in the series (31) for K ′ and S′

become significant only for the lower values of n. In the expressions for k′n and s′n
given in (34), one will by means of (23) and (25) be able to set

vn(α) = sin
(
α− nπ

2

)
, vn(α′) = sin

(
α′ − nπ

2

)
, wn(α) = cos

(
α− nπ

2

)
.

Thus, we obtain

s′2n+1 = k′2n = k′0 = eαi
N

cosα′ + iN sinα′
,

s′2n = k′2n+1 = s′0 = eαi
N

N cosα′ + i sinα′
.

 (60)

[21] The series (31) then become

K ′=−i cosφ

2a′
d

dϕ

∞∑
1

2n+ 1

n(n+ 1)
e(kt−

nπ
2 )i [(Pn(cosϕ) + Pn(− cosϕ))k′0 + (Pn(cosϕ)− Pn(− cosϕ))s′0] vn(a′),

S′ =− sinφ

2a′
d

dϕ

∞∑
1

2n+ 1

n(n+ 1)
e(kt−

nπ
2 )i [(Pn(cosϕ) + Pn(− cosϕ))s′0 + (Pn(cosϕ)− Pn(− cosϕ))k′0] vn(a′).

These series can be summed by means of the equations (26) and (27), and we find

K ′=−i cosφ

a′ sinϕ
ekti [(− sin a′ cosϕ+ sin(a′ cosϕ)) k′0 + i (− cos a′ + cos(a′ cosϕ)) s′0] ,

S′ =− sinφ

a′ sinϕ
ekti [(− sin a′ cosϕ+ sin(a′ cosϕ)) s′0 + i (− cos a′ + cos(a′ cosϕ)) k′0] .

Now, inserting these values in the equations (18) and abbreviating

ekti (−i sin(a′ cosϕ)k′0 + cos(a′ cosϕ)s′0) = Q ,

we have [11]

ξ′ = sinϕ cosφQ , η′ = cosϕ cosφQ , ζ ′ = − sinφQ .

From this, we further find the components with respect to the fixed axes

ξ′ = 0 , η′ = Q , ζ ′ = 0 .

Inserting the value of Q given above, we obtain by a minor rearrangement

η′ = e(kt−a
′ cosϕ)i k

′
0 + s′0

2
− e(kt+a

′ cosϕ)i k
′
0 − s′0

2
. (61)

The physical meaning of this result is most easily seen when the values of k′0 and s′0
are expanded in series, with cosα′ and sinα′ expressed in exponential form, namely

k′0 =
2N

N + 1

∞∑
0

(
N − 1

N + 1

)m
e(α−(2m+1)α′)i , s′0 =

2N

N + 1

∞∑
0

(
1−N
1 +N

)m
e(α−(2m+1)α′)i ,
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where m runs through the numbers from 0 to ∞. Thus, we obtain

η′ =
2N

N + 1

∞∑
0

(
N − 1

N + 1

)2m
e(kt−a

′ cosϕ+α−(4m+1)α′)i− 2N

N + 1

∞∑
0

(
N − 1

N + 1

)2m+1

e(kt+a
′ cosϕ+α−(4m+3)α′)i .

(62)
In this way, the light propagation in the vicinity of the centre is represented by a
sum of oscillations that are parallel with the oscillations of the incident rays. These
belong to two sets of rays: one set going in the direction of the incident rays, reflected
an even number of times or not at all from the inner spherical surfaces; the other
set going in the opposite direction after an odd number of reflections. When the rays
enter the sphere, the out-scattering changes according to the ratio 1 +N to 2N and
at each reflection according to the ratio 1 +N to 1−N , while the phase corresponds
to the optical distance travelled. This is all in agreement with the results that one
would reach by using the more elementary approach, as long as the two refractive
surfaces are considered planar and orthogonal to the incident rays.

[22] When the point of interest is not very close to the centre, one must take into
account those terms of the series that correspond to very large values of n. For this
case, it will therefore be necessary first to look for appropriate expansions for the
functions vn and wn.

We have identically [12]

vn =
√
v2n + w2

n sin arctan
vn
wn

, wn =
√
v2n + w2

n cos arctan
vn
wn

,

or, when we set

v2n + w2
n = qn , arctan

vn
wn

= λn ,

we have
vn =

√
qn sinλn , wn =

√
qn cosλn . (63)

Moreover, by means of the equation

wnv
′
n − w′nvn = 1

we have, when a denotes the variable,

dλn
da

=
1

qn
(64)

from which we have by integration, as a =∞ corresponds to λn = a− nπ
2 ,

λn = a− nπ

2
−
∫ ∞
a

da

(
1

qn
− 1

)
. (65)

From the series for vn and wn given in (23) and (25), we find

qn = 1 +
n(n+ 1)

a2
· 1

2
+

(n− 1)n(n+ 1)(n+ 2)

a4
· 1 . 3

2 . 4
+ . . . . (66)

Now, assume that a is a very large number with the order of magnitude α and that
all quantities of the order α−1 or lower order can be neglected as compared with the
order of unity. Then, for all values of n until a certain limit, which is lower than a,
and where the difference a−

(
n+ 1

2

)
can still be considered of the order of magnitude

α, one obtains from the summation of the series (66) that

qn =
a√

a2 −
(
n+ 1

2

)2 , a > n+ 1
2 . (67)
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Inserting this expression for qn in (65), where it must be valid for all the elements of
the integral, we have by integration

λn =

√
a2 −

(
n+ 1

2

)2 − nπ

2
+
(
n+ 1

2

)
arcsin

n+ 1
2

a
. (68)

The functional expressions qn and λn will in the following include the variable that
has here been omitted for the sake of brevity.

Insofar as Equation (68) is valid, the derivatives of qn(α) and qn(α′) with respect
to α and α′ can be neglected as compared with magnitudes of the order α0, [23] such
as qn(α) and qn(α′). Let us return to the coefficient equations (33) and (34) and for
the sake of brevity introduce the following notation

Nqn(α′)− qn(α)

Nqn(α′) + qn(α)
= bn ,

2Nqn(α) qn(α′) (Nqn(α′)− qn(α))
m

(Nqn(α′) + qn(α))
m+2 = bn,m ,

qn(α′)−Nqn(α)

qn(α′) +Nqn(α)
= cn ,

2Nqn(α) qn(α′) (qn(α′)−Nqn(α))
m

(qn(α′) +Nqn(α))
m+2 = cn,m ,

2N
√
qn(α)qn(α′) (Nqn(α′)− qn(α))

m

(Nqn(α′) + qn(α))
m+1 = βn,m ,

2N
√
qn(α)qn(α′) (qn(α′)−Nqn(α))

m

(qn(α′) +Nqn(α))
m+1 = γn,m ,

then the coefficients can be expressed by fractions to be expanded in the following
convergent series:

2 kn = −1− bne2λn(α) i +

m=∞∑
m=0

2 bn,me
2(λn(α)−(m+1)λ(α′)) i ,

2 sn = −1− cne2λn(α) i +

m=∞∑
m=0

2 cn,me
2(λn(α)−(m+1)λ(α′)) i ,

k′n =

m=∞∑
m=0

βn,me
2(λn(α)−(2m+1)λ(α′)) i , s′n =

m=∞∑
m=0

γn,me
2(λn(α)−(2m+1)λ(α′)) i .


(69)

Let us next proceed to the summation of the series (31) and in this section restrict
ourselves to the case where the point of interest lies on the x-axis (the main axis). It
should be noticed that one has

for cosϕ = 1 ,
dPn(cosϕ)

sinϕdϕ
=

d2Pn(cosϕ)

dϕ2
=−n(n+ 1)

2
,

for cosϕ = −1 ,
dPn(cosϕ)

sinϕdϕ
=−d

2Pn(cosϕ)

dϕ2
= (−1)

n n(n+ 1)

2
.

The given series for K and S are now inserted in (17), and those for K ′ and S′ in (18).
When we then determine the components with respect to the fixed axes by means of
the equations

ξ = cosϕ ξ − sinϕη ,

η = sinϕ cosφ ξ + cosϕ cosφ η − sinφ ζ ,

ζ = sinϕ sinφ ξ + cosϕ sinφ η + cosφ ζ ,

and the corresponding equations for an interior point, we find that the oscillations
everywhere along the main axis are in the direction of the y-axis. This also follows im-
mediately from the fact that the entire light propagation is symmetrical with respect
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to the xy-plane, and that the oscillatory deflections outside and inside the sphere
would be determined by

η = e(kt∓a)i +

∞∑
1

n+ 1
2

a
e(kt∓

nπ
2 )i (±i kn(v′n(a) + w′n(a) i) + sn(vn(a) + wn(a) i)) ,

η′ =

∞∑
1

n+ 1
2

a′
e(kt∓

nπ
2 )i (±i k′nv′n(a′) + s′nvn(a′)) ,

 (70)

where the upper sign applies to the positive side of the x-axis, and the lower sign to
its negative side.

[24] The functions of n that enter here can be expanded in powers of n+ 1
2 . The

series remain convergent up to a certain limit n = n1. We will then first perform the
mentioned summations up to this limit. Thus, the expression given in (68) for λn(a)
can be expanded in the following series

λn(a) = a− nπ

2
+

(
n+ 1

2

)2
a

· 1
2

+

(
n+ 1

2

)4
3a3

· 1

2 . 4
+

(
n+ 1

2

)6
5a5

· 1 . 3

2 . 4 . 6
+ . . . . (71)

For qn, we have the series expansion (66), and from the equations (63), we obtain

vn(a) + wn(a) i = i
√
qn(a)e−λn(a) i ,

and according to (64) if discarding q′n(a)

v′n(a) + w′n(a) i =
1√
qn(a)

e−λn(a) i .

We will now single out the individual terms that constitute the equations (69) for
the coefficients, and we first set

2 kn = −1 , 2 sn = −1 .

With these prerequisites, the first of the equations (70) gives

η = e(kt∓a) i − i
n1∑
1

n+ 1
2

2 a

(
±1√
qn(a)

+
√
qn(a)

)
e(kt∓

nπ
2 −λn(a)) i .

When inserting in this expression the series for λn(a) given in (71), it is seen that the
exponent will include the term nπ

2 (∓1 + 1). When reading the lower sign, the term
becomes nπ, and according to the expansion of the previous section, the sum will be
0. Consequently, for the negative side of the x-axis, we have

η = e(kt+a)i .

On the other hand, when reading the upper sign and setting n + 1
2 = z, the sum

changes to an integral of the form (51). By comparison, we obtain

A =
α

a
, Fα = kt− a , G = − α

2a
,

while according to (52) the integral becomes equal to

−e(kt−a+
π
2 )i .
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Consequently, for the positive side of the x-axis, we have

η = e(kt−a) i + i e(kt−a+
π
2 )i = 0 .

The part of the propagation described here is thus nothing but the incident central
ray up to the point where it hits the sphere.

[25] Further singling out the second term of the first two equations (69) and setting

2 kn = −bne2λn(α) i , 2 sn = −cne2λn(α) i ,

the sum of the expression (70) for η will include the exponent(
kt− a+ 2α+

nπ

2
(∓1− 1) +

(n+ 1
2 )2

2

(
−1

a
+

2

α

)
+ . . .

)
i .

Here, when reading the upper sign, the sum must be 0. On the other hand, the sum
with the lower sign can be converted, as before, to an integral of the form (51), and
by comparison we obtain

A =
N − 1

N + 1

α

a
i , Fα = kt− a+ 2α , G =

α

2

(
−1

a
+

2

α

)
.

Thus, according to (52), the integral will become equal to

−N − 1

N + 1
· 1

a
(
− 1
a + 2

α

)e(kt−a+2α)i . (72)

This part of the propagation corresponds to the central ray reflected from the front
part of the spherical surface. The result is the same as what one could derive from
an elementary approach. This follows since the phase is determined by the optical
distance travelled, and the amplitude after reflection is −N−1N+1 in the spherical surface

itself, that is, in the distance 1
2α (distances measured with λ

2π as unit of length) from
the virtual focal point of the central rays. The amplitude must then decrease with
the same ratio as the point of interest moves away from this focal point.

Finally, picking out the term of the equations (69) corresponding to

kn = bn,m e
2(λn(α)−(m+1)λn(α

′)) i , sn = cn,m e
2(λn(α)−(m+1)λn(α

′)) i ,

the deflection will be determined by

n1∑
1

i
n+ 1

2

a
√
qn(a)

(±bn,m + cn,mqn(a)) e(kt∓
nπ
2 −λn(a)+2λn(α)−(2m+2)λn(α

′)) i .

Expanded in powers of n+ 1
2 , the exponent becomes(

kt− a+ 2α− (2m+ 2)α′ +
nπ

2
(∓1 + 2m+ 1) +

(
n+ 1

2

)2
2

(
−1

a
+

2

α
− 2m+ 2

α′

)
+ . . .

)
i .

The sum vanishes unless we have

∓1 + 2m+ 1 = 4p ,

that is, unless m is an even number when the point is on the positive side of the x-axis
(upper sign), or m is odd when the point is on the negative side. Assuming this, the
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sum can be transformed to an integral of the form (51), which yields by comparison
[26]

A = i
α

a

4N(1−N)m

(1 +N)m+2
, B = 0 ,

Fα = kt− a+ 2α− (2m+ 2)α′ , G =
α

2

(
−1

a
+

2

α
− 2m+ 2

α′

)
,

H =
α3

24

(
− 1

a3
+

2

α3
− 2m+ 2

α′3

)
, I =

α5

80

(
− 1

a5
+

2

α5
− 2m+ 2

α′5

)
.

According to (52), which assumes that G is not very small, the result of the integration
becomes

−4N(1−N)m

(1 +N)m+2
· 1

a
(
− 1
a + 2

α −
2m+2
α′

)e(kt−a+2α−(2m+2)α′)i . (73)

This result can also be deduced through an elementary approach. Imagine a cylin-
drical bundle of central rays with the diameter 1 entering the sphere. After m internal

reflections, this bundle will leave the sphere with the diameter (2m+2)α−α′
α′ and sub-

sequently unite in a real or virtual focal point. If the distance of this point from the

centre is a1, then the diameter of the ray bundle will be a1−a
a1−α ·

(2m+2)α−α′
α′ . Now, the

focal length a1 is determined by − 1
a1

+ 2
α −

2m+2
α′ = 0, and after m reflections and

two refractions the amplitude of oscillation has changed to
(

1−N
1+N

)m
4N

(1+N)2 and will

increase at the same ratio as the diameter of the ray bundle decreases. Furthermore,
when the phase is determined by the optical distance travelled, it is seen that the
result will be exactly the same as the one found above.

On the other hand, one cannot in this way determine the propagation in the focal
points themselves. These are determined by the equation G = 0, and tied to this is
0 < 1

a ≤
1
α corresponding to the condition 2N > 2m + 2 ≥ N . From this, we see

that for N ≤ 1 there is no corresponding real focal point, for 1 < N < 2 only one
focal point, etc. The expression (55) corresponds to G = 0, which with the values for
A, B, H, and I given above, results in out-scattering in the considered focal point
determined by

−2N(1−N)m

(1 +N)m+2

(√
6π

a2
(
− 1
a3 + 2

α3 − 2m+2
α′3

)e(Fα−π4 ) i − 18

5

− 1
a5 + 2

α5 − 2m+2
α′5

a
(
− 1
a3 + 2

α3 − 2m+2
α′3

)2 eFα i
)
.

(74)
It is apparent from the expression for G that, when we along the main axis approach
the sphere from an external point and pass a focal point, then G will go from a
positive value through 0 and onto a negative value. From this, we see that, according
to what was pointed out at the end of the previous section, the amplitude during
this propagation rapidly grows from a very small quantity in the vicinity of the focal
point to the value of magnitude α

1
2 determined above for the focal point and [27]

then grows yet further to reach, through oscillations, twice the amplitude of the focal
point. After this, the axis is hit by other rays that lie outside the central rays and
whose effect will be determined in the following. A closer determination of the light
propagation in the vicinity of a focal point is given by (56) and the following overview
of the value of the integral Q (57).

As an example, I will assume m = 0, the radius of the sphere equal to 1 cm, the
refractive index 1.5, and the wavelength of the incident light equal to 0.0005 mm. We
will then have

α = 40000π , α′ = 1.5α , a = 1.5α , N = 1.5 .
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Inserted in (74), these numerical values give the result

−467.23 e(Fα−
π
4 ) i + 1.50 eFα i .

From this, we see that the second term is of little significance, and that the in-
tensity, which we take to be proportional to the square of the amplitude, is very
considerable in this focal point, namely 217311 times the intensity of the incident
light. For a sphere with the same refractive index and twice the radius, the intensity
would very nearly be doubled.

Within a small distance δ (measured with λ
2π as the unit of length) from the focal

point, we have G = − αδ
2a2 , and if the intensity has reached its first maximum in this

point, one will find from the value of G given at the end of the previous section that
d = 1047, corresponding to 0.0833 mm. In this point, the intensity will have increased
to 1191200 as it is 5.4814 times larger than in the focal point.

The computation of the part of the light propagation along the axis within the
sphere, which is due to the central rays, can be done in quite the same way by
proceeding from the second equation (70). The sum that we are to compute, when
extracting the general term of the sums given in (69) for k′n and s′n, will be

n1∑
1

n+ 1
2

a′
√
qn(a′)

(±i cosλn(a′)βn,m + sinλn(a′)γn,m) e(kt∓
nπ
2 +λn(α)−(2m+1)λn(α

′)) i .

Giving cosλn(a′) and sinλn(a′) their exponential form in this sum and then expand-
ing all the functions λn according to the formula (71), the coefficients in the exponents
of nπ

2 i will be
∓1 + 2m+ 1 and ∓ 1 + 2m− 1 .

The sum will vanish except when these coefficients are 0 or a multiple of 4, and this
is only the case when they can be written in the form

∓(1− (−1)m) + 2m.

In this case, we can give the sum the form of the integral (51), and by comparison
we get [28]

A = ±i α
a′

2N(N − 1)m

(N + 1)m+1
, B = 0 ,

Fα = kt∓ (−1)ma′ + α− (2m+ 1)α′ , G =
α

2

(
∓ (−1)m

a′
+

1

α
− 2m+ 1

α′

)
,

H =
α3

24

(
∓ (−1)m

a′ 3
+

1

α3
− 2m+ 1

α′ 3

)
, I =

α5

80

(
∓ (−1)m

a′ 5
+

1

α5
− 2m+ 1

α′ 5

)
.

For G not very small, it follows from (52) that the result of the integration becomes

∓2N(N − 1)m

(N + 1)m+1
· 1

a′
(
∓ (−1)m

a′ + 1
α −

2m+1
α′

)e(kt∓(−1)ma′+α−(2m+1)α′) i . (75)

If we on the other hand have G = 0, it follows from (55) that we have

∓N(N − 1)m

(N + 1)m+1

√√√√ 6π

a′ 2
(
∓ (−1)m

a′ 3 + 1
α3 − 2m+1

α′ 3

) e(Fα−π4 )i − 18

5

∓ (−1)m
a′ 5 + 1

α5 − 2m+1
α′ 5

a′
(
∓ (−1)m

a′ 3 + 1
α3 − 2m+1

α′ 3

)2 eFα i
.

(76)
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As we need to have a′ < α′, we see that the equation G = 0 is not possible for
N − 1 < 2m+ 1 < N + 1, while conversely for all other values of m the equation can
be satisfied either by one or the other of the two signs entering into G.

If we in (75) consider a′ infinitely small and then replace m by 2m and 2m + 1,
the result will immediately fit the one found in (62) where the out-scattering near
the centre is determined in another way.

We now continue the summations of the series (70) from n = n1 to n = n2, where
n2 is the highest possible limit for n when the functions qn and λn are to be expressed
by the formulae (67) and (68). The series then take the form given in (35). Here too,
we insert n = ν+z, where ν and z are considered to be integers. We further introduce
the following notation

ν +
1

2
= α sin θ = α′ sin θ′ = a sinϑ = a′ sinϑ′ , (77)

where the four angles θ, θ′, ϑ, and ϑ′ are between 0 and π
2 and for the moment

assumed not to be very close to these two limits.
It follows from (67) that

1 = cos θ qν(α) = cos θ′ qν(α′) = cosϑ qν(a) = cosϑ′ qν(a′) , (78)

after which the coefficients bν , bν,m etc. are determined by

bν =
N cos θ − cos θ′

N cos θ + cos θ′
, bν,m = 2N cos θ cos θ′

(N cos θ − cos θ′)m

(N cos θ + cos θ′)m+2
,

cν =
cos θ −N cos θ′

cos θ +N cos θ′
, cν,m = 2N cos θ cos θ′

(cos θ −N cos θ′)m

(cos θ +N cos θ′)m+2
,

βν,m = 2N
√

cos θ cos θ′
(N cos θ − cos θ′)m

(N cos θ + cos θ′)m+1
, γν,m = 2N

√
cos θ cos θ′

(cos θ −N cos θ′)m

(cos θ +N cos θ′)m+1
.

[29] The corresponding coefficients bn, bn,m, etc. could be expanded in series in powers
of z, such as for example

bn = bν +

(
1

α cos θ

dbν
dθ

+
1

α′ cos θ′
dbν
dθ′

)
z + . . . .

In the same way, it follows from (68) that

λν(α) = α cos θ − νπ

2
+ (ν + 1

2 )θ ,

λn(α) = λν(α) +
(
θ − π

2

)
z +

z2

2α cos θ
+

sin θ z3

6α2 cos3 θ
+

(1 + 2 sin2 θ)z4

24α3 cos5 θ
+ . . . ,

and we have corresponding expansions for λn(α′) , λn(a) , λn(a′) .
As we did earlier, we now pick out the individual terms from the series (69) for

kn and sn and start with the assumption that

2kn = −1 , 2sn = −1 .

With this prerequisite, the sum for η given in (70) and taken from n = n1 to n = n2
will include the exponential argument(

kt∓ nπ

2
− λn(a)

)
i =

(
kt∓ νπ

2
− λν(a) +

(
∓π

2
− ϑ+

π

2

)
z + . . .

)
i .

Since the coefficient for z here cannot become 0 or very small, the sum will in this
case vanish.
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Next, assuming that

2kn = −bne2λn(α) i , 2sn = −cne2λn(α) i ,

the sum will include the exponent

(
kt∓ nπ

2
− λn(a) + 2λn(α)

)
i

in which the coefficient for zi will be ∓π2 −
(
ϑ− π

2

)
+ 2

(
θ − π

2

)
. This coefficient also

cannot be 0 or very small since 2θ − ϑ must be both smaller than π and larger than
0 as one must have θ ≥ ϑ. Thus, in this case too, the sum must become 0.

Finally, setting

kn = bn,m e
2 (λn(α)−(m+1)λn(α

′)) i , sn = cn,m e
2 (λn(α)−(m+1)λn(α

′)) i ,

the sum will include the exponent

(
kt∓ nπ

2
− λn(a) + 2λn(α)− (2m+ 2)λn(α′)

)
i

in which the coefficient for zi will be

π

2
(2m+ 1∓ 1)− ϑ+ 2θ − (2m+ 2)θ′ = G .

[30] Assuming now as in (41) that G = 2pπ, the sum passes to an integral of the
form (42), where the coefficients will be

A = i
sinϑ√
cosϑ

(± cosϑ bν,m + cν,m) , B = α
dA

dν
,

Fα = kt+ (ν + 1
2 )G− π

4
(2m+ 1∓ 1)− a cosϑ+ 2α cos θ − (2m+ 2)α′ cos θ′ ,

H =
α

2

(
− 1

a cosϑ
+

2

α cos θ
− 2m+ 2

α′ cos θ′

)
=

1

2 sin θ
(− tanϑ+ tan θ − (2m+ 2) tan θ′) ,

I =
1

6 sin2 θ
(− tan3 ϑ+ 2 tan3 θ − (2m+ 2) tan3 θ′) ,

K =
I

4 sin θ
+

1

8 sin3 θ
(− tan5 ϑ+ 2 tan5 θ − (2m+ 2) tan5 θ′) .

Instead of using the term (ν + 1
2 )G entering into Fα, one can also, since ν is an

integer, use pπ when the condition G = 2pπ is satisfied.

The result of the integration will then be given by the formula (43) and by (50)
if one has H = 0, or more commonly by (49) when G− 2pπ is not 0 but very small.

The results with respect to an interior point can also be determined from the same
formulae, as we would then proceed from the second equation (70), which leads to
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the following values for the coefficients

A = i
sinϑ′√
cosϑ′

(± cosϑ′ βν,m − (±)γν,m) , B = α
dA

dν
,

G =
π

2
(2m− (±)1∓ 1) + (±)ϑ′ + θ − (2m+ 1)θ′ ,

Fα = kt+

(
ν +

1

2

)
G− π

4
(2m− (±)1∓ 1) + (±)a′ cosϑ′ + α cos θ − (2m+ 1)α′ cos θ′ ,

H =
1

2 sin θ
((±) tanϑ′ + tan θ − (2m+ 1) tan θ′) ,

I =
1

6 sin2 θ
((±) tan3 ϑ′ + tan3 θ − (2m+ 1) tan3 θ′) ,

K =
I

4 sin θ
+

1

8 sin3 θ
((±) tan5 ϑ′ + tan5 θ − (2m+ 1) tan5 θ′) .

The sign in parenthesis (±) is taken to be everywhere the same and either + or −,
and it is determined more specifically by the condition that G − 2pπ must be 0 or
very small.

If we consider the thus computed light propagation along the main axis generated
by refraction and internal reflections of light rays, these correspond to all the light
rays hitting the sphere in the distance ν+ 1

2 from the main axis. The angle of incidence
corresponds to θ, [31] the angle of refraction to θ′, while ϑ and ϑ′ become the acute
angles under which the rays meet the main axis in the point a outside the sphere
or in the point a′ inside the sphere. After m internal reflections an incident ray has
rotated the angle

∆m = mπ + 2θ − (2m+ 2)θ′ ,

when the ray leaves the sphere, and the angle

∆′m = mπ + θ − (2m+ 1)θ′ ,

when the ray has not left the sphere.
For an exterior point, the condition G = 2pπ can thus be expressed according to

the value of G given above by

∆m = ϑ+ (2p− 1
2 ±

1
2 )π .

This equation expresses that the rays have rotated the angle ϑ and either an integral
number of revolutions or an odd number of half revolutions. The former is the case
when reading the upper sign for which the intersection with the x-axis takes place
on the positive side. The latter is the case when reading the lower sign for which the
intersection happens on the negative side of the x-axis.

For an interior point, the condition G = 2pπ corresponds to either

∆′m = −ϑ′ + (2p+ 1
2 ±

1
2 )π or ∆′m = ϑ′ + (2p− 1

2 ±
1
2 )π .

The latter case corresponds to the previous one where the intersection of the rays with
the main axis was outside the sphere. The former case appears when the rays intersect
the positive side of the axis after rotating an integral number of revolutions and the
obtuse angle π − ϑ′ or the negative side of the axis after rotating an odd number of
half revolutions and the angle π − ϑ′. This case cannot occur for intersections with
the axis outside the sphere.

It is thus seen that each and every case in which a point on the axis can be hit
by some of the rays that apart from the central rays fall into the sphere and suffer m
reflections are included under the condition G = 2pπ.
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When G−2pπ for a point cannot be 0 but is a very small quantity, then the point
is not hit directly by the straight-lined refracted rays but only by the interfering,
diffracted rays.

As mentioned above, when we approach the sphere from an exterior point along
the main axis, then shortly after having passed one of the focal points of the central
rays we meet an amplitude twice as great as the amplitude in the focal point. From
this, the light propagation can be further determined by means of the results found
above for an exterior point. Assuming in these results that the angles are very small,
we have that

−ϑ+ 2θ − (2m+ 2)θ′ = 0 , and 2m+ 1∓ 1 = a multiple of 4 ,

meaning that m is even for the upper sign, odd for the lower sign.
[32] Moreover, we find that

A = iϑ4N
(1−N)m

(1 +N)m+2
, Fα = kt− a+ 2α− (2m+ 2)α′ ,

and by series expansion

H =
1

6θ
(−ϑ3 + 2θ3 − (2m+ 2)θ′3) .

The out-scattering, as determined by (43), will consequently be

A

√
απ

H
e(Fα+

π
4 )i = iϑ4N

(1−N)m

(1 +N)m+2

√
6αθπ

−ϑ3 + 2θ3 − (2m+ 2)θ′3
e(Fα+

π
4 )i .

Note now that when, as assumed, the angles are very small, one will according to
(77) have αθ = α′θ′ = aϑ, from which it follows that the obtained expression becomes
exactly twice the out-scattering in the focal point, just as determined in (74). The
other term in this last formula is of little significance and is here disregarded. From
this, it is seen that the obtained results are valid also for angles so small that they
readily follow the previous formulae derived for the central rays. Quite the same is
valid for interior points.

When θ or θ′ approach the upper limit π
2 , H will approach plus or minus ∞ for

both an exterior and an interior point, and the out-scattering determined by (43) will
thus converge to 0. When ϑ′ approaches π

2 for an interior point, A will converge to

−(±)i
γν,m

2
√
cosϑ′

, H to (±) 1
2 sin θ cosϑ′ , and Fα to C + (±)π4 , since

C = kt+ pπ − π

4
(2m∓ 1) + α cos θ − (2m+ 1)α′ cos θ′ .

The formula (43) thus becomes

A

√
απ

H
e(Fα+

π
4 )i = −(±)i

γν,m

2
√

cosϑ′

√
απ . 2 sin θ cosϑ′

(±)1
e(C+π

4 (1+(±)1))i ,

which equals, both when reading the upper and the lower sign,

1
2γν,m

√
2πα sin θ eCi .

When now a′ is assumed to be a point for which ϑ′ becomes exactly equal to π
2 ,

and when one of the two signs (±) is associated with a very close point a′ + h, then
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the opposite sign will be associated with another point a′ − h. However, from the
result obtained above, it is seen that for both of these very close points the calculated
out-scattering becomes the same independently of their distance from the point a′.
We infer from this that the obtained formulae remain valid also in the case where ϑ′

reaches the actual limit π
2 .

[33] The results presented in this section thus include all the cases where the light
rays, after being reflected and refracted an arbitrary number of times, hit the main
axis either directly or, in the vicinity of the focal points, by interference. Apart from
these cases, we may also question the effect of the diffraction of the rays passing
outside the sphere, but these diffraction phenomena only appear in the vicinity of the
geometrical shadow edge of the sphere and will be subjected to further examination
in the following section.

A general result emerges from what we here developed, namely that the light
intensity corresponding to the squared amplitude appears very differently in the var-
ious points of the main axis. Sometimes it appears as a quantity of the same order
as unity, that is, as the intensity of the incident light, sometimes as a quantity of the
order α, namely in the focal points of the central rays and in the axial focal lines of
the other rays, and finally as a quantity of the order α

4
3 in some of the end points of

the focal lines. In these last focal points, the intensity would be greater than in any
other point on the axis (as well as outside the axis) for an infinitely large sphere, but
in reality, when we stay within the limits of what is practically possible, the intensity
in these points is always considerably less than in the first focal point of the central
rays, which corresponds to m = 0. Taking N = 1.5 as an example, such an exterior
focal point only appears after three internal reflections. Setting now m = 3, we find
that

θ = 73◦39′16.6′′ , θ′ = 39◦46′15.8′′ , ϑ = 9◦8′26.8′′ ,

corresponding toG = 2π andH = 0. Further assuming that α = 40000π, we find from
the formula (50) the amplitude 24.681 and the intensity 609.14 when only including
the term of the highest order. The intensity in the first focal point is however 217311
and thus multiple times greater, as shown earlier.

5 α very large. Propagation outside the main axis.

For the spherical function Pn(cosϕ), we have the known expansion

Pn(cosϕ) = 2
1 . 3 . . . 2n− 1

2 . 4 . . . 2n

(
cosnϕ+

2n

2n− 1
· 1

2
cos(n− 2)ϕ+

2n(2n− 1)

(2n− 1)(2n− 3)
· 1 . 3

2 . 4
cos(n− 4)ϕ+ . . .

)
,

When n is odd, this series ends with the term involving cosϕ, and when n is even, it
ends with a constant term of which we take half.

We now assume here that ϕ is not 0 or very small, and also that n is a very
large number. For the sum of the series one will then obtain, as is well known, the
expression already found by Laplace [34]

Pn(cosϕ) =

√
2

πn sinϕ
cos
(

(n+ 1
2 )ϕ− π

4

)
.

From this, by discarding quantities of lower order, we further form

dPn(cosϕ)

dϕ
= −

√
2n

π sinϕ
sin
(

(n+ 1
2 )ϕ− π

4

)
.
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This value is inserted in the series (31). Since the point under consideration is assumed
to lie outside the main axis, it cannot be hit by the central rays, which correspond to
n < n1. For this reason, the summations here need only be carried out from n = n1
to n =∞. The series can thus be expressed by

K =−cosφ

a

∞∑
n1

√
2qn(a)

πn sinϕ
sin
(

(n+ 1
2 )ϕ− π

4

)
e(kt−

nπ
2 −λn(a))i 2kn ,

S = i
sinφ

a

∞∑
n1

√
2qn(a)

πn sinϕ
sin
(

(n+ 1
2 )ϕ− π

4

)
e(kt−

nπ
2 −λn(a))i 2sn ,

K ′ = i
cosφ

a′

∞∑
n1

√
2qn(a′)

πn sinϕ
sin
(

(n+ 1
2 )ϕ− π

4

)
e(kt−

nπ
2 )i sinλn(a′)2k′n ,

S′ =
sinφ

a′

∞∑
n1

√
2qn(a′)

πn sinϕ
sin
(

(n+ 1
2 )ϕ− π

4

)
e(kt−

nπ
2 )i sinλn(a′)2s′n .



(79)

In this section, we limit ourselves to perform the summations until n = n2, that
is, until the highest limit for n within which the functions qn and λn can be expressed
by the formulae given in (67) and (68).

Using the same procedure as in the previous section, we single out from the series
K and S the parts corresponding to

2kn = −1 , 2sn = −1 .

The terms in these parts will contain the two exponents(
kt− πn

2
− λn(a)±

(
(n+ 1

2

)
ϕ− π

4

)
i .

Setting n = ν + z in these, then by expansion in powers of z the coefficients of zi
become

G = −ϑ± ϕ ,
where the angle ϑ lies between 0 and π

2 , the angle ϕ between 0 and π, without reaching
these limits. For this reason the condition G = 2pπ will be satisfied only for p = 0
and ϑ = ϕ. Assuming this, the sum can be changed into an integral of the form (42),
after which by comparison one has for the series K

A =
cosφ

2ai

√
2

πa cosϑ sinϑ sinϕ
= −i cosφ

a sinϕ
√

2πa cosϕ
,

Fα = kt− a cosϕ− π

4
, H = − α

2a cosϕ
.

[35] The result of the integration given by (43) is

− cosφ

a sinϕ
e(kt−a cosϕ)i .

Due to the equation ϑ = ϕ, we thus have as a prerequisite that a sinϕ < α and
0 < ϕ < π

2 . If this is not the case, the result is 0.
Correspondingly, for the series S, we find

i
sinφ

a sinϕ
e(kt−a cosϕ)i .
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By insertion of these two expressions for K and S in the equations (17) and discarding
the terms of order lower than unity, we have the corresponding part of the components
ξe, ηe, ζe determined by [13]

ξe = − sinϕ cosφe(kt−a cosϕ)i , ηe = − cosϕ cosφe(kt−a cosϕ)i , ζe = sinφe(kt−a cosϕ)i .

These values are seen to be equal in size to the expressions given in the equations (13)
for the components of the incident light with opposite sign. Thus, this result merely
states that when the reflected and refracted rays are disregarded and the sphere is
thus considered entirely black and opaque we will then have complete darkness behind
the illuminated sphere outside the main axis and up to a certain distance from it. In
the previous section, it was proved that this is also the case on the main axis.

We then single out the term in the first two equations (69) that corresponds to

2kn = −bne2λn(α)i , 2sn = −cne2λn(α)i .

Inserting these values in the series K and S gives us terms with the two exponents(
kt− nπ

2
− λn(a) + 2λn(α)±

(
(n+ 1

2 )ϕ− π

4

))
i ,

where, by expansion in powers of z, the coefficient of zi becomes

G = −π − ϑ+ 2θ ± ϕ .

Since we must have θ ≥ ϑ, corresponding to a ≥ α, the condition G = 2pπ can only
be satisfied for p = 0 and when reading the upper sign. Thus,

G = −π − ϑ+ 2θ + ϕ = 0 .

For the sum K, we next get, by comparison with the integral (42), the coefficients

A = −i cosφ bν

a
√

2πα cosϑ sin θ sinϕ
, Fα = kt− a cosϑ+ 2α cos θ +

π

4
,

H =
− tanϑ+ 2 tan θ

2 sin θ
,

[36] after which the value of the integral determined by (43) becomes

K =
cosφ bν

a
√

cosϑ sinϕ(− tanϑ+ 2 tan θ)
e(kt−a cosϑ+2α cos θ)i .

Correspondingly, we find [14]

S =
−i sinφ cν

a
√

cosϑ sinϕ(− tanϑ+ 2 tan θ)
e(kt−a cosϑ+2α cos θ)i .

As these values are to be inserted in the equations (17) to determine the oscillatory
components, we first make the following generally valid remarks. When the series (79)
for K and S are transformed into integrals, only the exponential arguments come into
consideration during differentiation with respect to a and ϕ when discarding all lower
order quantities. These exponents are denoted Fαi, and we have

dFα

dν
= G = 2pπ .
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Since any multiple of 2πi may be pulled out of the exponent, one would have dFα
dθ = 0

when choosing θ instead of ν as independent variable. From this in turn follows that
when a is also variable,

dFα

da
= − cosϑ .

Moreover, ϕ must enter into Fα in such a way that we get

dFα

dϕ
= ±(ν + 1

2 ) = ±a sinϑ ,

and the sign corresponds to the sign with which ϕ enters into Fα.
One will thus in general have

ξe = sin2 ϑaK , ηe = ± sinϑ cosϑaK , ζe = ∓i sinϑaS . (80)

Applying this to the case computed above gives

ξe cosϑ− ηe sinϑ = 0 ,

ξe sinϑ+ ηe cosϑ =
cosφ bν sinϑ√

cosϑ sinϕ(− tanϑ+ 2 tan θ)
e(kt−a cosϑ+2α cos θ)i ,

ζe = − sinφ cν sinϑ√
cosϑ sinϕ(− tanϑ+ 2 tan θ)

e(kt−a cosϑ+2α cos θ)i .

This part of the light propagation corresponds to the propagation of the light
rays reflected from the front surface of the sphere, and the same results can easily
be derived by an elementary approach. As θ is the angle of incidence, ϑ the acute
angle that the reflected ray forms with the radial vector, the law of reflection yields
−π− ϑ+ 2θ+ ϕ = 0. The reflected light ray has a virtual focal point at the distance
α
2 cos θ (distance measured with [37] λ

2π as unit of length) from the reflecting surface
element. The distance of the point of interest from this element is a cosϑ − α cos θ,
and its distance from the focal point is a cosϑ− 1

2α cos θ.
If the point of interest is located on the surface of the sphere itself, one has

ϑ = θ = π − ϕ, and with the chosen system of axes the components of the incident
light are here

ξ0 = sinϕ cosφC , η0 = cosϕ cosφC , ζ0 = − sinφC , C = e(kt+α cos θ)i .

In the plane of incidence, the oscillatory deflection is thus

η0 cos θ − ξ0 sin θ = − cosφC .

According to Fresnel’s laws, this changes upon reflection into

tan(θ − θ′)
tan(θ + θ′)

cosφC = bν cosφC ,

while, after reflection, the oscillatory deflection perpendicular to the plane of incidence
becomes

sin(θ − θ′)
sin(θ + θ′)

sinφC = −cν sinφC .

In the reflected ray of light, the intensity must decrease at the same rate as when
light spreads over a larger surface element, and the amplitude at the rate of the square
root of this surface element.
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In the point of interest, this surface element is determined by(
a cosϑ− α

2
cos θ

)
2dθ . a sinϕdφ ,

which, for a = α, corresponding to ϑ = θ = π − ϕ, yields

α cos θ dθ . α sin θ dφ .

The ratio between these two elements is

α2 sin θ cos θ

(2a cosϑ− α cos θ)a sinϕ
=

sin2 ϑ

cosϑ sinϕ(− tanϑ+ 2 tan θ)
,

since α and a are eliminated by the equation a sinϑ = α sin θ.
It is seen that one will in this way arrive at exactly the same result as the one

found above.
Finally, inserting the general term of the first two series (69), namely

kn = bn,me
2(λn(α)−(m+1)λn(α

′))i , sn = cn,me
2(λ(α)−(m+1)λn(α

′))i ,

into the series (79) for K and S, the terms will contain the exponents(
kt− nπ

2
− λn(a) + 2λn(α)− (2m+ 2)λn(α′)±

(
(n+ 1

2 )ϕ− π

4

))
i .

By expansion of this in powers of z, the coefficients of zi become

G = mπ − ϑ+ 2θ − (2m+ 2)θ′ ± ϕ .

[38] The angle that the incident ray has rotated after m internal reflections is here
mπ + 2θ − (2m+ 2)θ′ = ∆m (p. 26), meaning that the equation can also be written
G = ∆m − ϑ ± ϕ. From this, it is seen that the condition G = 2pπ is satisfied when
the angle of incidence θ is chosen so that the ray after m internal reflections hits the
point of interest, and the upper sign must be read when this point and the incident
ray lie on the same side of the main axis. The lower sign when they lie on opposite
sides of the main axis.

For the sum K, we next obtain by comparison with the integral (42) the coefficient

A = ±i 2 cosφ bν,m

a
√

2πα cosϑ sin θ sinϕ
,

for the sum S, the coefficient

A = ± 2 sinφ cν,m

a
√

2πα cosϑ sin θ sinϕ
,

and, for both sums, the coefficients

Fα = kt− a cosϑ+ 2α cos θ − (2m+ 2)α′ cos θ′ + (p− 1
2m∓

1
4 )π ,

H =
1

2 sin θ
(− tanϑ+ 2 tan θ − (2m+ 2) tan θ′) ,

I =
1

6 sin2 θ
(− tan3 ϑ+ 2 tan3 θ − (2m+ 2) tan3 θ′) .

The result is given in the formula (43) and, in case one has H = 0, by the
formula (49). In the first case, the deflection with components determined by the
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equations (80) is of the same order as unity. In the second case (H = 0), which

represents all the focal surfaces, the deflection will be of the order α
1
6 , and the intensity

of the order α
1
3 . Since all quantities of order lower than unity are discarded throughout

this calculation, we need only include the first term of the formula (49).
The nature of the light propagation in the vicinity of the focal surfaces appears

from the calculations related to the formula (49) and from the following discussion.
From this, we see that when H approaches 0 the oscillation amplitude will grow
through a periodic motion from being of the order α0 to the order α

1
6 . This is the

case when we approach the focal surface from the side reachable by the rectilinearly
refracted and m times reflected light rays (G = 2pπ). The last and greatest maximum
is reached just before we reach the focal surface itself, after which the amplitude
decreases to the magnitude determined by the formula (50), corresponding to the
focal surface itself (H = 0, G = 2pπ). Afterwards, the amplitude decreases rapidly to
0. In the maximum point closest to the focal surface, the amplitude is 1.504 and the
intensity is 2.262 times larger than in the focal surface.

Since the determination of the light intensity in the focal surface and its vicinity
is of particular interest, especially with respect to the theory of the rainbow, I shall
put the formulae for this on a form suitable for numerical computation.

[39] Let Im(ϕ) denote the light intensity of the rays reflected m times from the
inner surface of the sphere in the point determined by ϕ, φ, a. The amplitude is
determined by the equations (80), and we find that the intensity, the square of the
amplitude, is expressed by

Im(ϕ) = a2 sin2 ϑ Ampl. (K2 + S2) .

According to the general formula (49), from which we only include the first term,
we have

Ampl. K2 =
4α

4
3

9I
2
3

Q2A2 , where A2 =
2 cos2 φ b2ν,m

a2απ cosϑ sin θ sinϕ
,

Ampl. S2 =
4α

4
3

9I
2
3

Q2A2 , where A2 =
2 sin2 φ c2ν,m

a2απ cosϑ sin θ sinϕ
.

If the incident light is unpolarised, which we will assume in the following, the intensity
is the mean of all values corresponding to values of φ from 0 to 2π. We therefore set

cos2 φ b2ν,m + sin2 φ c2ν,m = 1
2 (b2ν,m + c2ν,m) ,

after which, with the value of I given above, we get

Im(ϕ) =
4α

1
3Q2 sin2 ϑ

9π sinϕ cosϑ sin θ

(
6 sin2 θ

− tan3 ϑ+ 2 tan3 θ − (2m+ 2) tan3 θ′

) 2
3

(b2ν,m + c2ν,m) .

Introducing two new terms p and p′ given by

tan θ = p tan θ′ , N2p′ = p ,

we have

bν,m = 2N cos θ cos θ′
(N cos θ − cos θ′)m

(N cos θ + cos θ′)m+2
= 2p′ (1−p′)m

(1+p′)m+2 ,

cν,m = 2N cos θ cos θ′
(cos θ −N cos θ′)m

(cos θ +N cos θ′)m+2
= 2p (1−p)m

(1+p)m+2 .
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Moreover, the angles θ, θ′ and ϑ are determined by

sin θ = N sin θ′ =

√
p2 −N2

p2 − 1
, tanϑ = 2(p−m− 1) tan θ′ ,

just like one also has

a sinϑ = α sin θ , αλ = 2πR , aλ = 2πr ,

where R is the radius of the sphere and r is the distance of the point from the centre,
both measured like λ with an arbitrary unit of length. In addition (see p. 13),

Q = 3
(π

2

) 1
3

W .

By means of these substitutions, the intensity formula can be given the form

Im(ϕ) =
W 2

sinϕ
Cm , (a)

where Cm is independent of ϕ and determined by [40]

Cm =
R2

r2
·48p2(N2 − 1)

cosϑ (p2 − 1)

(
R(p2 −N2)

1
2

6λ(p2 − 1)
1
2 (p3 − 4(p−m− 1)3 −m− 1)2

)1
3(
p′ 2

(1− p′)2m

(1 + p′)2m+4
+ p2

(1− p)2m

(1 + p)2m+4

)
,

(b)

cosϑ =
p
√
N2 − 1√

p2(N2 − 1) + 4(p−m− 1)2(p2 −N2)
.

The quantity W entering into the formula (a) is determined by

W =

∫ ∞
0

cos
π

2
(ω3 −m′ω) dω ,

where m′ depends on ϕ in the following way. We assume ϕ0 to be the value of ϕ
corresponding to the focal surface, and it is thus determined by

G = mπ − ϑ+ 2θ − (2m+ 2)θ′ ± ϕ0 = 2p1π ,

where p1 is an integer. The sign for ϕ0, which lies between 0 and π, is determined by
the equation itself.

Now, setting ϕ = ϕ0 ∓ δ, we have G− 2p1π = −δ, but according to (46)

G− 2p1π = −ε
(
I

α2

) 1
3

, where ε =
(π

2

) 2
3

m′ .

When also inserting the given value of I, we thus obtain [15]

δ =
(π

2

) 2
3

m′
(
− tan3 ϑ+ 2 tan3 θ − (2m+ 2) tan3 θ′

6α2 sin2 θ

) 1
3

,

and, with the substitutions used above,

δ = m′

(
λ2(p2 − 1)(p3 − 4(p−m− 1)3 −m− 1)(p2 −N2)

1
2

48R2p3(N2 − 1)
3
2

) 1
3

. (c)
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In case a can be considered infinitely large (the rainbow), one has ϑ = 0 and
p = m+ 1, according to which the formulae (b) and (c) reduce to

Cm =
R2

r2
· 48p2(N2 − 1)

p2 − 1

(
R(p2 −N2)

1
2

6λp2(p2 − 1)
5
2

) 1
3 (

p′ 2
(1− p′)2m

(1 + p′)2m+4
+ p2

(1− p)2m

(1 + p)2m+4

)
,

(b’)

δ = m′

(
λ2(p2 − 1)2(p2 −N2)

1
2

48R2p2(N2 − 1)
3
2

) 1
3

. (c’)

As mentioned on p. 13, the equation W = 0, which corresponds to Im(ϕ) = 0

results in a series of values for m′ of which the qth is determined by m′ = 3(q − 1
4 )

2
3

for sufficiently large values of q. This corresponds to

δ =
1

4

(
9

4

) 1
3

[
(p2 − 1)2(p2 −N2)

1
2

p2(N2 − 1)
3
2

] 1
3 (

λ

R
(4q − 1)

) 2
3

.

In this form, the result was recently derived in an elementary manner and presented
by M. Boitel.6 [41] One difference, though, is that Boitel has tan δ on the left-hand
side of the equation instead of δ. On the other hand, Mascart7 has used the formula
δ = A(q − 1

4 )
2
3 in the calculation during experiments with a glass rod and found a

good agreement between experiment and calculation even for fairly large values of
δ(9◦).

The intensity in the focal surface itself (m′ = 0) is determined by

Im(ϕ0) =
Γ ( 1

3 )
2

12

(
2

π

)2
3 Cm

sinϕ0
.

The actual maximum intensity corresponding to m′ = 1.0845 can be found from this
with sufficient approximation (since the value of ϕ corresponding to this value of m′

generally differs only very slightly from ϕ0) through multiplication with 2.262. In this
way, I have calculated the maximum intensity for a couple of examples.

We assume R = 10 mm, N = 1.5, λ = 0.0005 mm, and m = 1. For an external
point very close to the surface of the sphere, we have r = R, ϑ = θ, tan θ = 4 tan θ′,
and thus p = 4 and p′ = 16

9 . Since we determine Cm by the formula (b), we find that
for these numerical values the maximum intensity equals 4.5423. As this intensity is
proportional to R

1
3 , it follows that even for spheres much smaller, until almost 100

times smaller, the intensity will exceed 1. At a distance of half a radius from the
surface of the sphere, we have r = 1.5R, ϑ = θ′, p = 5

2 , p′ = 10
9 , to which corresponds

a maximum intensity of 0.9423.
From these results, it turns out that for almost all practical cases of transparent

spheres we can find certain places outside the sphere. Places that are illuminated just
as strongly by the directly incident light from one side as by the light from the other
side that has reflected once off the inner surface of the sphere. These places are found
where this reflected light is strongest. As such places are presumably easily located
experimentally, and as they can be determined theoretically too by the communicated
formulae, good means have thus been provided for checking the agreement between
experiment and calculation.

6 Journ. de phys. S. II, t. 8, p. 282. 1889.
7 Comptes rendus de l’Académie des Sciences, t. 106, p. 1575. 1888.
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To mention another example, consider a spherical drop of water with the refractive
index 4

3 . For m = 1 and a infinitely large, we here find

maxium intensity = 0.06728
R2

r2

(
R

λ

)1
3

.

Taking for comparison another sphere of the same size but perfectly reflective, the

intensity of the light reflected from the front surface will be R2

4 r2 at the same distance.
These two intensities will then be equal in magnitude when we have R = 51.30λ,
which for λ = 0.000585 mm gives R = 0.03 mm. For a raindrop with a radius 8
times as [42] large, the maximum intensity of the light reflected once from the inner
surface will be twice the intensity one would obtain if the raindrop were replaced by
a perfectly reflective sphere of the same size.

Instead of using a single sphere, we now imagine a collection of equally sized sep-
arated spheres, all equally strongly illuminated by parallel incident and unpolarised
light rays. We set their intensity to 1. The spheres are assumed to be positioned so
closely or in a layer of such a large extent that the lines of sight of a distant observer
will everywhere hit one of the spheres. The complete collection of spheres, lying within
a cone with its apex in the eye of the observer, and which embraces the unit of solid

angle, will then emit light whose intensity in the apex of the cone is r2

R2π times larger
than the intensity due to a single sphere. If we let apparent brightness denote the
intensity of the light that within a unit of solid angle hits the observer’s eye, then for
such a collection of spherical raindrops of refractive index 4

3 we have

Max. of apparent brightness = 0.06728
1

π

(
R

λ

) 1
3

.

For a similar collection of perfectly reflecting spheres, one would independently
of the size of the spheres obtain an apparent brightness of 1

4π . In the comparison,
however, it must here be noted that all the light entering the system through a single
reflection is returned by new reflections, why the apparent brightness should here be
doubled or set equal to 1

2π . Assuming this, the two systems would for monochromatic
light, or if observed through a solid coloured glass, be seen with the same apparent
brightness when the radius of the raindrops is 8 times as large as calculated above,
that is, when it is 0.24 mm.

For the collection of raindrops considered here, the optical phenomena correspond
to the fully developed rainbows. For the individual spectral colours, the computation of
the apparent brightness of these and the supernumerary rainbows can now be carried
out using the formulae (a), (b’), (c’) in combination with a table of the integral W . We
finally posit an example that allows an observational check. Based on calculation, the
second rainbow appearing after two internal reflections has an apparent brightness
7.864 times smaller than that of the first rainbow, assuming of course that they are
formed under the same conditions.

The propagation of light in the interior of a sphere can be calculated by means
of the series for K ′ and S′ (79) in which we set

k′n = βn,me
(λn(α)−(2m+1)λn(α

′))i , s′n = γn,me
(λn(α)−(2m+1)λn(α

′))i .

[43] The following four exponents will appear in the terms(
kt− nπ

2
+ (±)λn(a′) + λn(α)− (2m+ 1)λn(α′)±

(
(n+ 1

2 )ϕ− π

4

))
i ,
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which by expansion in powers give as coefficient for zi

G = (2m− 1)
π

2
+ (±)

(
ϑ′ − π

2

)
+ θ − (2m+ 1)θ′ ± ϕ .

The angle that the incident ray has rotated after m internal reflections is here mπ +
θ − (2m+ 1)θ′ = ∆′m. The condition G = 2pπ determines the two double signs more
closely. As is the case for an external point, the upper sign for ϕ corresponds to
the case where the point of interest and the incident ray lie on the same side of the
main axis. Moreover, ϑ′ and ϕ have the same sign when the ray hitting the point of
interest cuts through the positive side of the main axis, but opposite signs when the
intersection is at the negative side of the main axis.

By comparison with the integral (42), we next have for the series K ′ and S′ the
respective coefficients

A = ∓(±)
i cosφ

a′
√

2πα cosϑ′ sin θ sinϕ
and A = ∓(±)

sinφ

a′
√

2πα cosϑ′ sin θ sinϕ
.

and for both series

Fα = kt+ (±)
(
a′ cosϑ′ +

π

4

)
+ α cos θ − (2m+ 1)α′ cos θ′ +

(
p− 1

2
m+

1

4
∓ 1

4

)
π ,

H =
1

2 sin θ
((±) tanϑ′ + tan θ − (2m+ 1) tan θ′) ,

I =
1

6 sin2 θ

(
(±) tan3 ϑ′ + tan3 θ − (2m+ 1) tan3 θ′

)
.

In order to determine the oscillatory components ξ
′
, η
′
, ζ
′
, we make use of the

equations analogous to (80)

ξ
′

= sin2 ϑ′ a′K ′ , η
′

= ∓(±) sinϑ′ cosϑ′ a′K ′ , ζ
′

= ∓i a′ sinϑ′ S′ . (81)

The light propagation is thus determined everywhere, as to the extent that it
suffices to carry out the summations with respect to n without crossing the limit
n = n2. We here assume that we can use the formulae (67) and (68) for qn and λn,
which in turn determine the functions vn and wn. To exceed this limit for n, it will
be necessary to find other expansions for these functions, which I shall cover in the
following section.

It should be noted that when ϑ′ reaches the limit π
2 in isolated internal points,

the propagation can also in this case be computed by means of the formulae given
here. For this reason, the proof can be done in the same way as in the corresponding
case treated previously (p. 27), where the point was located on the main axis. [44]

6 Continuation. Total reflection, diffraction.

The functions vn and wn can also be derived in a way different from the one previously
used (p. 18), by means of an otherwise quite similar expansion. We have identically
that

vn =
√
vnwne

1
2 log vn

wn , wn =
√
vnwne

− 1
2 log vn

wn .

Setting

vnwn = rn ,
1

2
log

vn
wn

= µn ,
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we will thus have
vn =

√
rne

µn , wn =
√
rne
−µn . (82)

By applying the equation wnv
′
n − w′nvn = 1 [16], one would further obtain, when

a denotes the variable,
dµn
da

=
1

2rn
, (83)

from which, by integration and with introduction of the value of µn corresponding to
a = 0,

µn =
1

2
log

a2n+1

12.32 . . . (2n− 1)2(2n+ 1)
+

∫ a

0

da

(
1

2rn
− 2n+ 1

2a

)
. (84)

Furthermore, by multiplication, the series (22) and (24) for vn and wn give

2rn =
2a

2n+ 1
+

(2a)3

(2n− 1)(2n+ 1)(2n+ 3)
·1
2

+
(2a)5

(2n− 3)(2n− 1) . . . (2n+ 5)
·1 . 3
2 . 4

+. . . .

(85)
The correctness of the law here suggested for the series can also be proven by forming
the differential equation for rn. Assuming that un satisfies the differential equation
(21), one could in general set

un =
√
pne

c
∫
da
pn , (86)

which inserted into (21) leads to the equation

pn
d2pn
da2

− 1

2

(
dpn
da

)2

+

(
1− n(n+ 1)

a2

)
2p2n + 2c2 = 0 , (87)

and, by another differentiation, we obtain the linear equation

d3pn
da3

+ 4

(
1− n(n+ 1)

a2

)
dpn
da

+
4n(n+ 1)

a3
pn = 0 . (88)

The equation (86) corresponds to the equations (82) for pn = rn and c = ± 1
2 , and

it also corresponds to the equations (63) for pn = qn and c = ±i. Thus, the last
equation (88) must be satisfied both for pn = qn and for pn = rn, and it is then not
difficult to verify the correctness of the laws in the series for qn and rn by means of
this equation.

[45] We consider both n and a to be large numbers, both of the order of magnitude
of α. Furthermore, when we as previously in the summation of the series qn disregard
all quantities of order lower than unity, the summation of the series (85) can then
under certain conditions be performed by

2rn =
a√

(n+ 1
2 )2 − a2

. (89)

The condition must consist in a not exceeding a certain limit, but by closer inspec-
tion of the series, one soon discovers that determination of this limit poses certain
difficulties. The terms of the series will for a < n first decrease, reach a minimum and
then grow, get an alternating sign and reach a maximum, and then finally descend
to 0. Thus, the term before the first negative term is already of the magnitude

(2a)2n+1

1 . 3 . . . 4n+ 1
· 1 . 3 . . . 2n− 1

2 . 4 . . . 2n
,
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which for ea > 2n+ 1, e.g. a = 0.75n, grows indefinitely with growing n.
It is therefore necessary to put the series for rn on a different form. By means of

the equation

1 . 2 . 3 . . . 2m

(2n− 2m+ 1)(2n− 2m+ 3) . . . (2n+ 2m+ 1)
= (−1)m

∫ π
2

0

dx sin(2n+ 1)x sin2m x ,

the series (85) can be given the form

2rn = 2a

∫ π
2

0

dx sin(2n+ 1)x

(
1− a2

12
sin2 x+

a4

12 . 22
sin4 x− . . .

)
,

and with the use of the Bessel function J0

2rn = 2a

∫ π
2

0

dx sin(2n+ 1)xJ0(2a sinx) . (90)

We first perform this integration from x = 0 to x = h, assuming h so small that we
can insert x in place of sinx without noticeable error as long as x is smaller than h.
By introducing a new variable y = (2n+ 1)x, this part of the integral thus becomes

a

n+ 1
2

∫ (2n+1)h

0

dy sin y J0

(
ay

n+ 1
2

)
=

a

n+ 1
2

∫ (2n+1)h

0

dy sin y

(
1−

(
ay

n+ 1
2

)2
· 1

22
+

(
ay

n+ 1
2

)4
1

22 . 42
− . . .

)
.

(91)
The upper limit of this integral can be regarded just as the kind of indefinite, arbi-

trary quantities that we have denoted by the common symbol ω, and the integration
can therefore be done using the formula (39). The result is the series

a

n+ 1
2

+

(
a

n+ 1
2

)3
1

2
+

(
a

n+ 1
2

)5
1 . 3

2 . 4
+ · · · = a√

(n+ 1
2 )2 − a2

,

where the only convergence condition is a < n+ 1
2 .

[46] In the second part of the integral (90), we can expand the Bessel function in
decreasing powers of a according to the well-known semi-convergent series

J0(2a sinx) =
1√

πa sinx
cos
(

2a sinx− π

4

)
+ . . . ,

where the orders of magnitude of the terms are those of α−
1
2 , α−

3
2 , . . .

Leaving out the subsequent terms of the series for J0, this part of the integral
becomes

a

n+ 1
2

∫ (2n+1)π2

(2n+1)h

dy
sin y cos

(
2a sin y

2n+1 −
π
4

)
√
πa sin y

2n+1

=

√
a

(2n+ 1)π

∫ (2n+1)π2

(2n+1)h

dy
sin
((

1 + a
n+ 1

2

)
y − ay3

24(n+ 1
2 )

3 + · · · − π
4

)
+ sin

((
1− a

n+ 1
2

)
y + ay3

24(n+ 1
2 )

3 − · · ·+ π
4

)
√
y − y3

24(n+ 1
2 )

2 + . . .
.

(92)
From this, it is seen that as long as the difference n+ 1

2 − a is of the order of α,
then this part of the integral is of order lower than unity. Since an assumption for the
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equation (89) is that we omit these quantities, the last equation remains valid if only
the difference n+ 1

2 − a is positive and of the order of α. This condition thus, when

interchanging a and n + 1
2 , quite corresponds to the one applying to qn in Equation

(67).
Assuming that n is very large, we set

12 . 32 . . . (2n− 1)2(2n+ 1) = 2(2n+ 1)2n+1e−(2n+1)

in Equation (84) and obtain by means of (89)

µn = − 1
2 log 2 + (n+ 1

2 ) log
n+ 1

2 −
√

(n+ 1
2 )2 − a2

a
+
√

(n+ 1
2 )2 − a2 . (93)

We are thus able to determine the functions vn and wn both for n + 1
2 > a and for

n+ 1
2 < a, in the first case by means of rn and µn and in the second case by qn and

λn. However, there is still an area left where these functions cannot be determined by
the established formulae, namely when the difference n+ 1

2 −a, whether it is positive
or negative, is of an order lower than α.

We have so far sought summation of all the involved series with such accuracy
that only the quantities of an order lower than unity are discarded. We will in the
following reduce the accuracy so that only the terms of the highest order are included.
When n + 1

2 − a is of an order lower than α, we will in this approximation be able
to discard all the quantities of the same order as unity when determining rn, since
rn will itself turn out to be a quantity of higher order. Thus, when we consider the
chosen limit (2n + 1)h as a quantity of the order of α0, [47] the entire integral (91)
can be discarded, as the two functions appearing in the integral, sin and J0, cannot
for any value of the variable become numerically larger than 1. Moreover, the second
part of the integral, determined by (92), reduces to

√
a

(2n+ 1)π

∫ (2n+1)π2

(2n+1)h

dy
sin
(

(1− a
n+ 1

2

)y + ay3

24(n+ 1
2 )

3 − · · ·+ π
4

)
√
y − y3

24(n+ 1
2 )

2 + . . .
. (94)

Again, the lower limit can be changed to 0 since here too the integral from 0 to
(2n + 1)h cannot give a result of order higher than unity. After the substitution
ay3 = 24(n + 1

2 )3x, however, the upper limit for x can be denoted ω as previously.
When discarding all terms leading to results of a lower order, we thus obtain

2rn(a) =
a

1
3

3
5
6
√
π

∫ ω

0

dxx−
5
6 sin

(
(n+ 1

2 − a)

(
24

a

)1
3

x
1
3 + x+

π

4

)
. (95)

From this, by expansion in powers of n + 1
2 − a and integration by means of the

equation (39), we obtain

2rn(a)=
a

1
3

3
5
6
√
π

[
Γ

(
1

6

)
sin

π

3
+Γ

(
3

6

)
sin

3π

3
· (n+ 1

2−a)

(
24

a

)1
3 1

1
+Γ

(
5

6

)
sin

5π

3
· (n+ 1

2−a)2
(

24

a

)2
3 1

1 . 2
+. . .

]
.

(96)
In this series, the 2nd, 5th, 8th, . . . terms become equal to 0.

Setting a = n+ 1
2 , for example, we obtain

2rn(n+ 1
2 ) = c(n+ 1

2 )
1
3 , c =

Γ ( 1
6 )

3
5
6
√
π
·
√

3

2
= 1.08874 , Log c = 0.0369226 . (97)
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By inserting the series (23) and (25) for vn and wn in rn = vnwn, I have computed
the table below. Already at the lowest values of n, this exhibits a surprisingly good
agreement between the true values of rn(n+ 1

2 ) and those calculated using the formulae
(97).

n = 0 , 1 , 2 , 3 , 4 , 5 , 6 ,

2rn(n+ 1
2 ) = 0.8415 , 1.2416 , 1.4756 , 1.6518 , 1.7967 , 1.9212 , 2.0314 ,

c(n+ 1
2 )

1
3 = 0.8641 , 1.2463 , 1.4776 , 1.6530 , 1.7975 , 1.9218 , 2.0319 .

Notice that when n+ 1
2 − a is of higher order than α

1
3 , the order of magnitude of

the terms will be growing. However, with this precondition and with the substitution(
1− a

n+ 1
2

)
y = x, the integral (94) reduces to

2rn =

√
a

(2n+ 1− 2a)π

∫ ω

0

dx√
x

sin
(
x+

π

4

)
=

a√
2a(n+ 1

2 − a)
, (98)

[48] which shows that we could now again proceed with the simpler formula (89) for
2rn as this leads to the same result when only taking the quantities of the highest
order into consideration. With this reduction in accuracy, the formula (89) remains

valid as long as the difference n + 1
2 − a is of a higher order than α

1
3 . When the

difference n+ 1
2 − a is not of lower order than α, then rn(a) is never of higher order

than unity. Because, if the difference is positive, this is evident from the equation
(89), and if the difference is negative, the same result is seen by using the equations
(23) and (25) to express vn and wn in the equation 2rn = vnwn. On the other hand,
if the difference n+ 1

2 − a is of lower order than α, then rn(a) can be of higher order
than unity, and by variation of n this function will according to (96) reach its highest
value for n+ 1

2 = a.

When n+ 1
2 − a is of lower order than α, the general term of the series (66) can

be determined by

(n−m+ 1)(n−m+ 2) . . . (n+m)

a2m
·1 . 3 . . . 2m− 1

2 . 4 . . . 2m
=

e−2m(n+ 1
2 +m)n+

1
2+m

√
πma2m(n+ 1

2 −m)n+
1
2−m

.

By changing from summation to integration, one obtains

qn(a) =

∫ n

0

dm√
πm

eF (m) , F (m) = −2m+m log
(n+ 1

2 )2 −m2

a2
+(n+

1

2
) log

n+ 1
2 +m

n+ 1
2 −m

,

or, by expansion in powers of m,

F (m) = −2m log
a

n+ 1
2

− 2

(
m3

(n+ 1
2 )2
· 1

2 . 3
+

m5

(n+ 1
2 )4
· 1

4 . 5
+ . . .

)
.

Next, setting m3 = 3(n + 1
2 )2x the integral can with sufficient accuracy be reduced

to

qn(a) =
(n+ 1

2 )
1
3

3
5
6
√
π

∫ ∞
0

dxx−
5
6 e
−(24)

1
3 (n+ 1

2 )
2
3 log a

n+1
2

·x
1
3−x

.

We can here, again with sufficient accuracy, set log a
n+ 1

2

=
a−n− 1

2

n+ 1
2

after which the

integration leads to the result

qn(a) =
(n+ 1

2 )
1
3

3
5
6
√
π

[
Γ

(
1

6

)
+Γ

(
3

6

)
(n+ 1

2−a)

(
24

n+ 1
2

)1
3 1

1
+Γ

(
5

6

)
(n+ 1

2−a)2
(

24

n+ 1
2

)2
3 1

1 . 2
+. . .

]
.

(99)
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Inserting here a = n+ 1
2 , we get with the same meaning of c as above

qn(n+
1

2
) =

2√
3
c(n+ 1

2 )
1
3 , Log

2√
3
c = 0.0993920 . (100)

Here too a good agreement is found with the exact values of qn(n + 1
2 ) calculated

directly from the series (66) already at the lowest values of n, as shown by the following
table. [49]

n = 0 , 1 , 2 , 3 , 4 , 5 , 6 ,

qn(n+ 1
2 ) = 1.0000 , 1.4444 , 1.7104 , 1.9121 , 2.0783 , 2.2215 , 2.3482 ,

2c√
3
(n+ 1

2 )
1
3 = 0.9978 , 1.4391 , 1.7062 , 1.9087 , 2.0755 , 2.2191 , 2.3462 .

In analogy with rn, we can express qn with limited accuracy by Equation (67) as

long as the difference a − (n + 1
2 ) is of higher order than α

1
3 . However, contrary to

rn, qn with growing n has a continually growing value.
We can calculate λn and µn as well as vn and wn from the values found for rn and

qn. From the equations 2rn = 2vnwn = qn sin 2λn, we find sin 2λn(n + 1
2 ) = sin π

3 ,

from which the values π
6 ,

π
3 ,

7π
6 ,

4π
3 , . . . appear for λn(n+ 1

2 ), but if λn(n+ 1
2 ) is further

determined by the equations vn =
√
qn sinλn, wn =

√
qn cosλn for n = 0, 1, 2, 3 . . . ,

we respectively find

λn(n+ 1
2 ) = 0.5 , 0.5165 , 0.5203 , 0.5215 . . . .

Apparently, this series converges to the lowest of the values stated above, namely to

λn(n+ 1
2 ) =

π

6
= 0.5236 . . . . (101)

From this, we find again by means of the equations v2n = rne
2µn = qn sin2 λn

µn(n+ 1
2 ) = − 1

4 log 3 . (102)

As one has λ′n(a) = 1
qn(a)

and µ′n(a) = 1
2rn(a)

, the series expansions for λn(a) and

µn(a) become the following, where we for the sake of brevity let q, r, q′, . . . denote
qn(n+ 1

2 ), rn(n+ 1
2 ), q′n(n+ 1

2 ), etc.,

λn(a) =
π

6
+

1

q

a− n− 1
2

1
− q′

q2
·

(a− n− 1
2 )2

1 . 2
+ . . . , (103)

µn(a) = −1

4
log 3 +

1

2r

a− n− 1
2

1
− r′

2r2
·

(a− n− 1
2 )2

1 . 2
+ . . . . (104)

In these equations, q′, r′, and the higher derivatives of qn(a) and rn(a) with respect
to a for a = n + 1

2 can be calculated from the equations (99) and (96). Thus, we

find q′ = − 2√
3
, r′ = r

3(n+ 1
2 )

, where the latter value is only of the order α−
2
3 and may

therefore be considered to be 0.
The functions vn and wn can be determined using the equations (vn ± wn)2 =

qn±2rn, since the signs for vn and wn that are here undecided are further determined
by vn =

√
qn sinλn, wn =

√
qn cosλn, where

√
qn is positive. The series expansions I

have found in this way by means of the series expansions (96) and (99), where the two
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quantities n+ 1
2 and a can be considered equal when outside the difference n+ 1

2 −a,
are [50]

vn(a)=C

(
Γ

(
1

3

)
cos

π

6
+ Γ

(
2

3

)
cos

5π

6
· ε

1
+ Γ

(
3

3

)
cos

9π

6
· ε

2

1 . 2
+ . . .

)
, (105)

wn(a)=C

(
Γ

(
1

3

)(
1 + sin

π

6

)
+ Γ

(
2

3

)(
1 + sin

5π

6

)
ε

1
+ Γ

(
3

3

)(
1 + sin

9π

6

)
ε2

1 . 2
+ . . .

)
,

(106)
where

C =
(a

6

)1
6 1√

3π
, ε =

(
6

a

)1
3

(n+ 1
2 − a) .

These series can easily be traced back to the definite integrals

vn(a) = C

∫ ω

0

dxx−
2
3 cos(εx

1
3 + x) , (107)

wn(a) = C

[∫ ∞
0

dxx−
2
3 eεx

1
3−x +

∫ ω

0

dxx−
2
3 sin(εx

1
3 + x)

]
. (108)

By inserting the series (105) and (106) in (vn±wn)2 = qn±2rn, one will without diffi-
culties be convinced of the correctness of these expansions. For use in this calculation,
I shall here state the equations

Γ

(
1

3

)2
= 2

1
3

√
π

3
Γ

(
1

6

)
, Γ

(
1

3

)
Γ

(
2

3

)
= 2

√
π

3
Γ

(
1

2

)
, Γ

(
2

3

)2
= 2

2
3

√
π

3
Γ

(
5

6

)
.

We now proceed to the calculation that was interrupted in the previous section
and consider the case where the sphere has a refractive index smaller than the one
of the surrounding medium. We thus assume N < 1 from which follows that the
equation α sin θ = α′ sin θ′ is impossible for sin θ > N .

In the equations (33) and (34), we now set vn(α′) =
√
rn(α′)eµn(α

′), while vn(α)
and wn(α) as previously are expressed by qn(α) and λn(α), and just like q′n can
be discarded in comparison with qn, r′n can in the same way also be discarded in
comparison with rn. Since qn(α) is determined by (67), rn(α) by (89), we obtain

2kn = −1+e2λn(α)i
qn − 2rn(α′)Ni

qn + 2rn(α′)Ni
= −1+e2λn(α)i

√
(n+ 1

2 )2 − α′ 2 −
√
α2 − (n+ 1

2 )2N2i√
(n+ 1

2 )2 − α′ 2 +
√
α2 − (n+ 1

2 )2N2i
,

and setting √
α2 − (n+ 1

2 )2√
(n+ 1

2 )2 − α′ 2
N2 = tan δ ,

the expression gets the simpler form

2kn = −1 + e2(λn(α)−δ)i .

In a similar way, we obtain

2sn = −1 + e2(λn(α)−∆)i , tan∆ =

√
α2 − (n+ 1

2 )2√
(n+ 1

2 )2 − α′ 2
.
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[51] The case of only having 2kn = −1 and 2sn = −1 has already been dealt with
in the previous section (p. 29). There, it was generally assumed that the functions
qn and λn could be expressed for all occurring variables by the formulae given in the
equations (67) and (68). However, it should be noted that, as far as this particular
case is concerned where kn and sn do not contain the variables α and α′ at all, we
only have to deal with the functions qn(a) and λn(a), and the condition for them to
be expressed by (67) and (68) is solely ν + 1

2 = a sinϑ < a. The results found are
thus valid until the distance a from the main axis, and, as we recall, the propagation
of light outside the sphere that is generated in this way consists of the incident light
itself on the negative side of the yz-plane and total darkness on the positive side of
the yz-plane.

Next assuming

2kn = e2(λn(α)−δ)i , 2sn = e2(λn(α)−∆)i ,

and setting here in the usual way n = ν+z, we note that expanding λν+z(α) in powers
of z yields coefficients for the various powers of z of a higher order of magnitude than
those obtained by the corresponding expansion of δ and ∆. As we set ν+ 1

2 = α sin θ,
we can express δ and ∆ by the constant values

tan δ =
cos θ√

sin2 θ −N2
N2 , tan∆ =

cos θ√
sin2 θ −N2

.

The expressions for kn and sn now correspond closely to the case dealt with
previously (p. 30), by which we determined the reflection from the outer surface. The
only differences are that the factors bν and cν have now become −1 and that the
phase has diminished in K with 2δ and in S with 2∆. With these changes, the results
found previously would find application here.

The limiting case sin θ = N does not form a special exception since δ and ∆ go
to π

2 for θ decreasing toward this limit, and the factors e−2δi and e−2∆i thus become
equal to −1. In this way, K and S will take on the same values as those presented by
the previous formulae for θ increasing toward the same limit.

The coefficients k′n and s′n are determined by

k′n = eλn(α)i−µn(α
′) 2N

√
qn(α)rn(α′)

qn(α) + 2rn(α′)Ni
, s′n = eλn(α)i−µn(α

′) 2N
√
qn(α)rn(α′)

Nqn(α) + 2rn(α′)i
.

In addition, as an interior point for n > α′ correspondingly has n > a′, one must
set

√
qn(a′) sinλn(a′) =

√
rn(a′)eµn(a

′) [17] in the series for K ′ and S′ (79). It is

thus seen that these series will contain the factor eµn(a
′)−µn(α′), which becomes a

vanishingly small quantity when a′ and α′ are not very nearly equal. This is clear
from the expression for µn given in (93), which is seen to be, when the variable is not
very close to n, [52] a very large negative quantity and even larger the smaller the
variable. The light propagation within the totally reflecting part of the sphere thus
only happens noticeably in a thin layer immediately below the surface of the sphere.

If we set a′ = α′ −Nh and assume h very small, we have

µn(α′)− µn(a′) =
Nh

2rn(α′)
=
h

α

√
(n+ 1

2 )2 − α′ 2 .

In the usual way, we then find

K ′ =
2N cosφ

α
√

1−N2 tan θ
√

sin2 θ −N2 cos2 θ
e(kt+α cos θ+π

2−δ)i−h
√

sin2 θ−N2

,

S′ = −i 2 sinφ

α
√

1−N2 tan θ
e(kt+α cos θ+π

2−∆)i−h
√

sin2 θ−N2

,



L. Lorenz: Light propagation in and outside a sphere 45

and ϕ+θ = π. To determine the components ξ
′
, η
′
, ζ
′
, we must return to the equations

(18), from which we notice that, sinceK ′ and S′ originally contained the factor eµn(a
′),

by discarding the quantities of lower order we have

dK ′

da′
=
dµn(a′)

da′
K ′ =

√
(n+ 1

2 )2 − a′

a′
K ′ =

√
sin2 θ −N2

N
K ′ .

Moreover, we obtain
dK ′

dϕ′
= (n+ 1

2 )K ′i = α sin θK ′i ,

and the same equations are valid also when K ′ is replaced by S′. For this case, the
equations (18) yield [18]

ξ
′

=
sin2 θ

N
αK ′ , η

′
= i

sin θ
√

sin2 θ −N2

N
αK ′ , ζ

′
= −i sin θ αS′ ,

where the values of K ′ and S′ found above can be inserted.
The results of this calculation of the total reflection, with respect to the external

as well as the internal points, turn out to agree with what is known from the theory
of total reflection for planar surfaces, and the calculation thus does not go beyond
what one could also derive by elementary means.

What is left is only to continue the summations of the series K and S (79) from
the limit of n at which the equations (67) and (68) are no longer valid for the variable
α. The value of kn given in (33) can in all cases be transformed to

2kn = −1 +Ae2λn(α)i , A =
qn(α)(1 + r′n(α′))−N(i+ 1

2q
′
n(α))2rn(α′)

qn(α)(1 + r′n(α′))−N(−i+ 1
2q
′
n(α))2rn(α′)

.

[53] When n exceeds the mentioned limit, this fraction denoted A turns out to be
equal to 1, assuming that N is different from 1. We shall here omit the case where
N − 1 is so small that this difference can be regarded as a quantity of order lower
than unity.

The equation A = 1 always holds true when q′n(α) is of a higher order than unity,
which according to (99) is the case when n − α is positive and of a higher order

than α
1
3 . Moreover, n is so large in the sum in question that qn(α) is of higher order

than unity, while rn(α′) and r′n(α′) cannot be of higher order than unity when the
difference n− α, whether positive or negative, is of order lower than α. The latter is
evident from what was previously stated (p. 41), as one has n−α′ = n−α−(N−1)α,
where the last term cannot be lower order than α. We thus see that in the current
case we always have A = 1. Since the very same considerations apply to the value of
sn given in (33), we thus have

2kn = −1 + e2λn(α)i , 2sn = −1 + e2λn(α)i .

Both these coefficients converge rapidly to 0 for n > α with growing n.
Regarding the case with 2kn = −1 and 2sn = −1, we refer to the preceding text

and have for our consideration the series

Q =
aK

cosφ
=

iaS

sinφ
= −

n3∑
n2

√
2qn(a)

πn sinϕ
sin
(

(n+ 1
2 )ϕ− π

4

)
e(kt−

nπ
2 +2λn(α)−λn(a))i ,

where n3 is the upper limit of n within which qn(a) and λn(a) can be determined
using (67) and (68).
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The exponential argument in this sum is(
kt− nπ

2
+ 2λn(α)− λn(a)±

(
(n+ 1

2 )ϕ− π

4

))
i ,

and if we set n = ν+z and ν+ 1
2 = a sinϑ, the coefficient of z becomes simply −ϑ±ϕ

when omitting quantities smaller than unity. For this coefficient to be 0 or very small,
we must use the upper sign and ϕ−ϑ must be 0 or very small. From this, we see that
the oscillatory components according to (80) can be determined by

ξe = sin2 ϕ cosφQ , ηe = sinϕ cosϕ cosφQ , ζe = − sinϕ sinφQ ,

from which we obtain the components with respect to the fixed axes

ξe = 0 , ηe = sinϕQ , ζe = 0 .

Since ϕ−ϑ is very small, we can set qn(a) = 1
cosϑ = 1

cosϕ and n = α sinϑ = a sinϕ

outside the exponent. The quantity sinϕQ then reduces to

sinϕQ = ηe =
i√

2πa cosϕ

n3∑
n2

eFni , Fn = kt− nπ
2

+2λn(α)−λn(a)+(n+ 1
2 )ϕ− π

4
.

[54] In this way, the composite phenomenon comprising the diffraction of parallel rays
of light by a reflecting sphere has been presented in a simple form.

We first consider the part of the sum where n is greater than α and see that λn(α)
decreases from π

6 to 0 for growing n. A closer determination of this is obtained from
the equations

e2λn(α)i =
1 + tanλn(α)i

1− tanλn(α)i
=

1 + e2µn(α)i

1− e2µn(α)i
= 1 + 2

∞∑
0

e2mµn(α)im ,

where µn(α) for n = α has the value − 1
4 log 3 and rapidly decreases with growing n.

Thus, if we in the sum in question set e2λn(α)i = 1 and in the exponent insert
n = ν + z and ν + 1

2 = a sinϑ in the usual way, the coefficients of zi in the exponent
become ϕ − ϑ through expansion in powers of z. In this way, for ϕ = ϑ, the sum
becomes the integral∫ n3−a sinϑ

α−a sinϑ

dz e

(
kt−a cosϕ−π4−

z2

2a cosϕ

)
i

= −i
√

2πa cosϕηe ,

which by the substitution

z =
(
x− ε

2

)√
2a cosϕ ,

ε

2
=
a sinϕ− α√

2a cosϕ
,

yields

ηe =
i√
π
e

(
kt−a cosϕ−π+ε2

4

)
i
∫ ω

0

dx e(εx−x
2)i ,

where the integral corresponds to the integral (57) if we change the sign of i to
the opposite. From the investigation of this last integral, it follows that for ε > 0,
that is, the point located beyond the geometrical shadow boundary of the sphere
(a sinϕ > α), the integral is a periodic function. Conversely, it becomes aperiodic
within the shadow boundary (ε < 0). Along the shadow boundary (ε = 0), we have

ηe = 1
2e

(kt−a cosϕ)i .
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The result is in any case the same as the one for the diffraction of light at a planar
circular disk inserted in place of the sphere in the great circle to which the incident
rays are tangent.

The other part of the sum considered above is

2

m=∞∑
m=0

n3∑
α

e(kt−λn(a)+(n+ 1
2 )ϕ−(2n−2m+1)π4 )i+2mµn(α) .

Setting in this n = ν + z, ν + 1
2 = α = a sinϑ, and using the expansion (104) for

µn(α), the coefficient of z in the exponent becomes (ϕ− ϑ)i− m
r through expansion

in powers of z, where r = rν(ν + 1
2 ) is determined by (97) and is of the order of α

1
3 .

[55] If now ϕ−ϑ is of a higher order than α−
1
3 , the sum in question, when including

only the terms of the highest order, can be expressed by

m=∞∑
m=0

1

ϕ− ϑ
e(kt−a cosϑ+α(ϕ−ϑ)+(2m+1)π4 )i−m2 log 3 ,

which is of a lower order than α
1
3 .

On the other hand, if the point of interest lies so close to the geometric shadow
boundary of the sphere that ϕ− ϑ becomes of the same order as α−

1
3 or even lower,

then all terms in the expansion of the exponent in powers of z need to be considered.
However, by the substitution z = rx they would all become of the order of α0, and
the entire integral becomes of the same order as r, meaning the order of α

1
3 . The

oscillation amplitude corresponding to this case can then be expressed by

C
α

1
3

√
a cosϑ

,

where C is a numerical constant. A more detailed calculation of this constant is hardly
of sufficient interest as it is quickly seen that this part of the light propagation can
be very minute, and since it coincides with the other diffracted light it will hardly be
observable. The formula shows that the intensity of this light is proportional to the
radius of the sphere lifted to the power of 2

3 and to the wavelength lifted to the power

of 1
3 . In addition, it is inversely proportional to the distance of the point of interest

from the great circle to which the incident rays are tangent, assuming though that
this distance does not become very small.

Finally, the oscillatory deflection corresponding to n < α is determined by

ηe =
i√

2πa cosϕ

α∑
n2

eFni ,

and during this summation λn(α) decreases with growing n from an undetermined
large value to π

6 . Setting n = ν − z, ν + 1
2 = α = a sinϑ, we obtain

ηe =
i√

2πa cosϕ

∫ ω

0

dz e(kt−a cosϑ+α(ϕ−ϑ)+2λν−z(α)−π4−(ϕ−ϑ)z)i ,

where λν−z(α) can be expanded according to (103). We now see that this case corre-
sponds closely to the one treated above and that the result can be presented in the
same form. This part of the light propagation corresponds to the diffraction of the
rays of light totally reflected at grazing incidence. The intensity of these latter rays
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decreases as the angle of incidence increases. However, because of the diffraction, this
intensity will not be zero in the geometric shadow boundary. It will rather be of a
magnitude similar to the intensity of the diffracted rays considered above, and the
intensity then rapidly decreases within the shadow boundary.

[56] The summation with respect to n has only been carried out until the upper
limit n = n3, but as mentioned above the coefficients kn and sn for n > α will
rapidly converge to 0 for growing n. This part of the sums will therefore generally be
vanishingly small.

7 Amount of out-scattered light. α very small. System of small
spheres.

Imagine all light scattered from the illuminated sphere being collected on the inner
side of a concentric spherical surface at an infinite distance from the sphere. Let L
be the total amount of collected light, r the radius of the infinite sphere, and I the
light intensity in the distance r as measured by the square of the amplitude. Then L
is defined and determined by

L = r2
∫ π

0

sinϕdϕ

∫ 2π

0

dφ I . (109)

According to the equations (17) and (31) the oscillatory components for a = 2πr
λ and

r infinite can be expressed by

ξe = 0 , ηe = − i cosφ

a
e(kt−a)i

∞∑
1

2n+ 1

n(n+ 1)

(
kn
d2Pn
dϕ2

+ sn
dPn

sinϕdϕ

)
,

ζe =
i sinφ

a
e(kt−a)i

∞∑
1

2n+ 1

n(n+ 1)

(
kn

dPn
sinϕdϕ

+ sn
d2Pn
dϕ2

)
.

The quantities kn and sn are here complex numbers whose moduli we denote kn
and sn. Now, determining I by the sum of the squares of the amplitudes of these
components, Equation (109) will once the integration with respect to φ is done yield

L =
λ2

4π

∫ π

0

sinϕdϕ

( ∞∑
1

2n+ 1

n(n+ 1)

(
kn

d2Pn
dϕ2

+ sn
dPn

sinϕdϕ

))2

+

( ∞∑
1

2n+ 1

n(n+ 1)

(
kn

dPn
sinϕdϕ

+ sn
d2Pn
dϕ2

))2
 .

Each of these squares can also be expressed as a product of two sums with the variables
n and m, and noting that we have∫ π

0

sinϕdϕ

(
d2Pn
dϕ2

· d
2Pm
dϕ2

+
1

sin2 ϕ

dPn
dϕ

dPm
dϕ

)
=

{
0 for m 6= n
2n2(n+1)2

2n+1 for m = n ,∫ π

0

dϕ

(
d2Pn
dϕ2

· dPm
dϕ

+
dPn
dϕ
· d

2Pm
dϕ2

)
= 0 ,

we find the amount of light L to be determined by

L =
λ2

2π

∞∑
1

(2n+ 1)
(
k2n + s2n

)
. (110)
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[57] The general expressions (33) for the coefficients kn and sn can also be written
in the form

kn = − 1

1 + pni
, pn =

wn(α)v′n(α′)−Nw′n(α)vn(α′)

vn(α)v′n(α′)−Nv′n(α)vn(α′)
, (111)

sn = − 1

1 + qni
, qn =

Nwn(α)v′n(α′)− w′n(α)vn(α′)

Nvn(α)v′n(α′)− v′n(α)vn(α′)
. (112)

The moduli of these coefficients are less than 1 except in those cases where one has
pn = 0, which corresponds to kn = −1, or where qn = 0, which corresponds to
sn = −1.

We will now more closely examine the light propagation in the case where the
diameter of the illuminated sphere is very small in comparison with the wavelength
of the incident light, so that we may consider α such a small number that in series
expansions in powers of α, as a rule, only the term with the lowest power of α is
included. As far as α′ is concerned, for the moment we make no restrictive assumption.

According to the series expansions (22) and (24) we have, when only the first term
of the series are included,

vn(α) =
αn+1

1 . 3 . . . 2n+ 1
, v′n(α) =

(n+ 1)αn

1 . 3 . . . 2n+ 1
,

wn(α) =
1 . 3 . . . 2n− 1

αn
, w′n(α) = −n1 . 3 . . . 2n− 1

αn+1
.

Inserting these values in (111) and (112), we observe that generally kn and sn become
very small quantities of the order of α2n+1. This is true since we have

pn =
12 . 32 . . . (2n− 1)2(2n+ 1)

α2n+1
· α′v′n(α′) +N2nvn(α′)

α′v′n(α′)−N2(n+ 1)vn(α′)
,

qn =
12 . 32 . . . (2n− 1)2(2n+ 1)

α2n+1
· α′v′n(α′) + nvn(α′)

α′v′n(α′)− (n+ 1)vn(α′)
,

and in the latter expression, we can set

α′v′n(α′) + nvn(α′) = α′vn−1(α′) , α′v′n(α′)− (n+ 1)vn(α′) = −α′vn+1(α′) .

Based on the special cases, the series (31) for K and S reduce to the first terms
corresponding to n = 1. Entering into these, we have

k1 = i
α3

3
· α
′v′1(α′)− 2N2v1(α′)

α′v′1(α′) +N2v1(α′)
, s1 = −iα

3

3

v2(α′)

v0(α′)
.

The oscillatory components ξe, ηe, ζe are then easily determined by means of the
equations (17).

If now α′ like α is a very small quantity, k1 can be reduced to the form

k1 = −i2α
3

3
· N

2 − 1

N2 + 2
,

while for α′ very small, or when α′ is a root of the equation v2(α′) = 0, we obtain
s1 = 0.

[58] In this last case, ξe will always according to the equations (17) be proportional
to cosϕ, from which follows that the out-scattered light orthogonal to the incident
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rays oscillates perpendicularly to the plane of incidence. This light is thus completely
polarised in the plane of incidence. Of course, this also applies when the incident light
is unpolarised.

Likewise, the same law must apply under the same conditions when we, instead
of a single sphere, imagine a collection of similar, mutually separated, and randomly
ordered spheres. Furthermore, if we in the expression for k1 insert α = 2πR

λ , where R is
the radius of the sphere, we see that, except for the incident light and the coordinates
of the point, the light propagation in an arbitrary point outside the sphere depends

only on the quantity N2−1
N2+2R

3. We now imagine that the radii of these spheres grow
until R1, while their refractive indices change from N to N1. At the same time, the
sphere centres are fixed and their radii must still be very small as compared with a
wavelength. If this change takes place in a way so that we keep [19]

N2 − 1

N2 + 2
R3 =

N2
1 − 1

N2
1 + 2

R3
1 ,

then the light propagation outside the spheres and everywhere outside the system
remains unaffected by the change. If we let R1 become as large as the smallest half
mean distance between the sphere centres, which is assumed very small compared
with the wavelength, then the system very closely resembles a homogeneous medium
with refractive index N1. From this, we in turn conclude that when the spheres
in the system remain unchanged while the density d1 of the system changes, then

the refractive index N1 will change in such a way that
N2

1−1
N2

1+2
1
d1

remains constant

(cf. “Farvespredningens Theori” [20]).
The total amount of out-scattered light from a single sphere is, according to (110),

determined by

L =
2λ2α6

3π

(
N2 − 1

N2 + 2

)2
,

and if A is the number of spheres within a unit of volume, then AL is the total amount
of light out-scattered from each unit of volume of the system. This quantity is the
absorption coefficient of the system, and denoting this by h when also expressing α
by 2πR

λ , we have

h = AL = A
128π5R6

3λ4

(
N2 − 1

N2 + 2

)2
, A =

3

4πR3
1

.

We thus see that the absorption coefficient is inversely proportional to the fourth
power of the wavelength (Rayleigh’s law8). Conversely, if the absorption coefficient
h of the system and its [59] refractive index N1 are given, the number of spheres
per unit of volume and a lower limit on their sizes can be derived under the given
assumptions, as we find from the mentioned formulae

A =
24π3

hλ4

(
N2

1 − 1

N2
1 + 2

)2
, R3 =

hλ4

32π4

(N2
1 + 2)(N2 + 2)

(N2
1 − 1)(N2 − 1)

>
hλ4

32π4

N2
1 + 2

N2
1 − 1

.

As an example, we take the refractive index and the absorption coefficient of
atmospheric air at normal pressure, namely N1 = 1.00029 [21] and, with 10−6 mm
as length unit, hλ4 = 0.0017. With this latter coefficient, 11.3 per cent of light at
wavelength 580 will be absorbed over a distance of 8 km, twice as much for λ = 480.

8 J. W. Strutt: Phil. Mag. 41, Febr., Apr., Jun. 1871.
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Inserting these numerical values above, we get

A = 0.0163 , R = 0.141

(
N2 + 2

N2 − 1

)1
3

> 0.141 ,

so, in a cubic millimetre, the number of spheres with a radius [22] of at least 0.141 ·
10−6 mm is 0.0163 · 1018. Corresponding to this, α = 0.00153 for λ = 580 and
α = 0.00185 for λ = 480.

There is a widely different kind of light propagation occurring in the special cases
where one has pn = 0 or qn = 0, which is possible for an entire series of wavelengths.
According to the equations (111) and (112), this corresponds to

wn(α)v′n(α′)−Nw′n(α)vn(α′) = 0 , Nwn(α)v′n(α′)− w′n(α)vn(α′) = 0 .

The first of these equations corresponds approximately to vn(α′) = 0, the other to
vn−1(α′) = 0. More precisely, setting α′ = β + ε in the first equation, and if β is a
root of the equation vn(β) = 0, then by expansion in powers of ε and by discarding
the terms containing powers of ε larger than the first, we obtain

ε =
wn(α)

Nw′n(α)
= − α

Nn
.

If qn+1 = 0 is the given equation, then corresponding to this, when including the first
two terms in the expansion of wn+1(α) and w′n+1(α),

Nα

(
1 +

α2

2(2n+ 1)

)
v′n+1(α′) +

(
n+ 1 +

(n− 1)α2

2(2n+ 1)

)
vn+1(α′) = 0 ,

where

vn+1(α′) = −v′n(α′)+
n+ 1

α′
vn(α′) and v′n+1(α′) = −

(
(n+ 1)2

α′ 2
− 1

)
vn(α′)+

n+ 1

α′
v′n(α′) .

From this, with the chosen degree of approximation, we find

(2n+ 1)α′vn(α′) + α2v′n(α′) = 0 .

Now, setting here α′ = β + ε′ while still having vn(β) = 0, we obtain

ε′ = − α2

(2n+ 1)α′
= − α

N(2n+ 1)
.

[60] The roots of pn = 0 and qn+1 = 0 are thus very close but not exactly equal,
and the difference between two corresponding roots is

ε′ − ε =
α(n+ 1)

Nn(2n+ 1)
, n > 0 .

Let δ and δ′ denote the corresponding changes of the wavelength, then

ε

β
= − δ

λ
,

ε′

β
= −δ

′

λ
, and δ − δ′ =

λα(n+ 1)

βNn(2n+ 1)
=
π2

β2
· 4R2

λ
· n+ 1

n(2n+ 1)
.

The table below provides the first five values of π
β for n = 0, 1, 2, 3, where β is

root of vn(β) = 0.
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n = 0 , n = 1 , n = 2 , n = 3 ,
1 0.6992 0.5451 0.4496 . . .
0.5000 0.4067 0.3454 0.3016 . . .
0.3333 0.2881 0.2549 0.2293 . . .
0.2500 0.2233 0.2025 0.1856 . . .
0.2000 0.1823 0.1681 0.1561 . . .

...
...

...
...

It is now seen that the greatest difference in wavelength δ − δ′ corresponds to
π
β = 0.6992, n = 1. Setting next R = 0.141 and λ = 580, we obtain δ− δ′ = 0.000045,

which is 13000 times smaller than the difference (0.6) between the wavelengths of the
two lines D1 and D2 in the solar spectrum.

In a system of spheres, absorption lines appear in the special cases considered
here when transmitted white light is resolved into a spectrum. While the amount of
out-scattered light from each sphere is generally a very small quantity proportional

to R6, just as we have seen, it will for pn = 0 or qn = 0 be λ2(2n+1)
2π or as great as

the amount of incident light that, when the light rays pass undisturbed, would hit

a sphere of radius
λ
√
n+ 1

2

π . As the mean distances between neighbouring spheres are
taken to be much smaller in the assumed system, we see that the system can be said
to be nearly impenetrable for this kind of rays. We further note that the absorption
lines corresponding to q1 = 0 or v0(β) = 0 are single, while all the others are double.

If one has determined wavelengths of a series of absorption lines for a system,
these can be ascribed to the reciprocals of the roots in vn(β) = 0, n = 0, 1, 2, . . . ,
through multiplication by a single constant factor. As this factor is equal to N

2πR ,
it will [61] thus be possible from the refractive index of the system and from its
ordinary absorption coefficient to determine all the constants of the system, namely
the number of spheres in a unit of volume, the size of the spheres and their refractive
index.

For this purpose, we can also use measurements of the widths of the lines for
which the calculation can be carried out as follows.

When the wavelength λ corresponds to pn = 0, the value of pn for a nearby
wavelength λ+ δ is determined by

pn = −
[
dpn
dα

+
dpn
dα′

N

]p=0

· αδ
λ

=
12 . 32 . . . (2n− 1)2

α2n+1
· N

2 − 1

N2

(
nN2 + n(n+ 1)

) δ
λ
.

In the same way, when λ corresponds to qn = 0, we have that qn for the wavelength
λ+ δ is determined by

qn =
12 . 32 . . . (2n− 1)2

α2n−1 (N2 − 1)
δ

λ
.

Although δ is considered a small quantity, it can however always be assumed so large
that pn and qn become very large as compared with unity, so that kn and sn can be
determined by

kn =
i

pn
, sn =

i

qn
.

For a system of spheres, the absorption coefficients corresponding to this will be

A

p2n
· λ

2(2n+ 1)

2π
and

A

q2n
· λ

2(2n+ 1)

2π
.

In the spectrum of the transmitted light, we now consider the two limits of an
absorption line as the points where the light intensity is reduced to a constant fraction
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e−c, and the width of the line is then thought to be determined by the difference 2δ
between the wavelengths in these two points. If x is the distance travelled through
the system, we have

c =
Ax

p2n
· λ

2(2n+ 1)

2π
and c =

Ax

q2n
· λ

2(2n+ 1)

2π
.

Inserting in these equations the values of pn and qn calculated above, it is seen that the
width of the lines is always proportional to the square root of the distance travelled,
and also to the square root of the number of spheres in a unit of volume.

The widest line corresponds to α′ = π, q1 = α′2−α2

α3 · δλ , which gives

2δ =
8R3

λ

√
6πAx

c
.

For A = 0.0163, R = 0.141, λ = 580, x = 1010 or 10 metres, and c = 0.693,
corresponding to a 50 per cent absorption in the limits of the line, we obtain

2δ = 2.57 ,

which corresponds to a width 4.3 times larger than the distance between the two
lines D1D2. It is not without interest to notice that 2δ can also immediately be [62]
calculated from the general absorption coefficient h without knowledge of the other
constants of the system, since N in the formula for h can here be considered a very
large number.

The absorption lines can thus become very wide and rather get the characteristic
of absorption bands when α′ belongs to the smallest of the roots of v0(α′) = 0. On
the other hand, if α′ belongs to the roots of v1(α′) = 0, v2(α′) = 0, . . . the stripes are
reduced, with the numerical constants used as an example, to lines of a width which
is scarcely measurable, even in the most fortunate case. Of course, this does not rule
out that they can be made visible.

With this computation of the light propagation within a system of small spheres,
it has not been my purpose to conduct an exact analysis, which would have required
a larger apparatus. I have only sought to present the peculiarity of this light propa-
gation, which in the case of a single sphere enables us to perform an exact calculation
of it, and thereby largely also enables us to compute it for a collection of spheres. The
purpose was thus in part to demonstrate the possibility of using the optical properties
of a system to gain knowledge of the elements [23], which in their smallness escape
direct observation, and in part to open our eyes to see the striking analogy, which
here emerges in its own right, between the optical properties of the assumed system
and those of the gases.

Comments

[1] Translated title: “On the reflection from a spherical surface.”
[2] In translation: “The result of the entire investigation is very complicated, and especially

the case most important for optics, where a very short wavelength is radiated, is very
difficult to put into a suitable form.”

[3] In translation: “The opposite case, where, as opposed to the wavelength, the reflecting
sphere has a very small radius, is on the other hand very suitable for approximation.”

[4] Translated title: “Theory of colour dispersion.”
[5] In modern terminology, ∆2 is written ∇2 and is referred to as the Laplacian.



54 The European Physical Journal H

[6] In modern terminology, one would write spherical polar or simply spherical coordinates
as the coordinate system is three-dimensional.

[7] On the left-hand side of the second equation, we have corrected αK to aK.
[8] In the equation for S′, we have corrected sn to s′n.
[9] We have corrected the word “Ligth” misprinted in the original footnote to “Light”.

[10] In the original text, the constant before W is the reciprocal of the one given here.
The correctness of the constant used here is confirmed by an errata page following the
original article (this is the only erratum in the errata page).

[11] In the second of the following equations, we have corrected cosϕ cosϕ to cosϕ cosφ.
[12] In this equation, and in later equations, we use the more modern notation of arctan

instead of the arc tg used by Lorenz.
[13] In the first of these equations, we have corrected ζe to ξe.
[14] In this equation, we have corrected 2α cosϑ to 2α cos θ.
[15] In this and the remaining equations of p. [40] of the original text, we have corrected

the symbol ∂ to δ.
[16] We have corrected the second occurrence of wn in this equation to w′n as in the correct

form of this equation, which is provided on p. 9.
[17] In this inline equation, we have replaced µn(α′) with µn(a′).
[18] In the first of the following equations, we have corrected what is seemingly a misprinted

a to an α.
[19] In the denominator on the left-hand side of the equation, we have corrected N2 + 1 to

N2 + 2. In the following paragraph, we have also in the denominator of the fraction
appearing inline corrected N2

1 + 1 to N2
1 + 2.

[20] The article “Farvespredningens Theori” is the “Theory of colour dispersion” also men-
tioned on p. 2.

[21] We have corrected the refractive index N1 = 0.00029 to N1 = 1.00029.
[22] We have corrected the provided minimum radius from 0.141−6 to 0.141 · 10−6.
[23] The word “elements” is here used to mean atoms/molecules.
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