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The Hairy Ball Theorem

• An even-dimensional sphere does not possess any continuously 
differentiable field of unit tangent vectors.

• Is it possible to comb a coconut flat?

• How do we comb it well?

• Is it possible to consistently pick a perpendicular vector?

Failed attempt to comb a hairy ball,
leaving an uncomfortable tuft at each pole [Wikipedia]



Monte Carlo Ray Tracing

• One of the most commonly used operations in MC ray tracing is to 
sample a direction according to a distribution around a normal.

- Directions will be sampled millions and millions of times in a common rendering.

• The direction is usually sampled in spherical coordinates.

• We need a change of basis.

• How do we efficiently get this rotation?



Sample Space to World Space

• We sample spherical coordinates 𝜃𝜃,𝜙𝜙 .

• We convert to a local coordinate system with basis 𝑏𝑏1, 𝑏𝑏2,𝑛𝑛 by
𝑥𝑥,𝑦𝑦, 𝑧𝑧 = sin𝜃𝜃 cos𝜙𝜙 , sin𝜃𝜃 sin𝜙𝜙 , cos𝜃𝜃 .

• The change of basis is simply
𝜔𝜔 = 𝑥𝑥 𝑏𝑏1 + 𝑦𝑦 𝑏𝑏2 + 𝑧𝑧 𝑛𝑛.

but we typically have no explicit knowledge of 𝑏𝑏1 and 𝑏𝑏2.

• We need a technique for building an orthonormal basis from a unit vector.



Rotation from One Vector to Another

• If we use quaternions, we do not need a basis.
• The unit quaternion �𝒒𝒒 that specifies the rotation from 𝒖𝒖 to 𝒗𝒗:

�𝒒𝒒 = 𝒒𝒒𝑣𝑣 ,𝑞𝑞𝑤𝑤 = sin
𝜃𝜃
2
𝒘𝒘, cos

𝜃𝜃
2

=
𝒖𝒖 × 𝒗𝒗

2 1 + 𝒖𝒖 � 𝒗𝒗
,
1
2

2 1 + 𝒖𝒖 � 𝒗𝒗 .

• Let us set 𝒖𝒖 = (0,0,1) and 𝒗𝒗 = 𝑛𝑛 = (𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦,𝑛𝑛𝑧𝑧), then

�𝒒𝒒 =
(−𝑛𝑛𝑦𝑦,𝑛𝑛𝑥𝑥 , 0)

2 1 + 𝑛𝑛𝑧𝑧
,
1
2

2 1 + 𝑛𝑛𝑧𝑧 .

• Applying �𝒒𝒒 to our sampled direction, we rotate to world space: �𝒒𝒒 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 0 �𝒒𝒒∗.



Quaternion Versus Change of Basis Matrix

• Quaternion:
• No need to build a basis.
• Involves square roots and quaternion multiplications.
• Singularity for 𝑛𝑛 = 0, 0,−1 .

• Change of basis matrix:
• Build an orthonormal basis from the normal.
• Involves cross products and vector normalization.
• Avoid choosing a vector parallel with the normal when building the basis.

• Both methods accomplish the same.
• What basis is created by the quaternion technique?



Building an Orthonormal Basis [Frisvad 2012]

• Doing some lengthy calculations and simplifications, I found that

�𝒒𝒒 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 0 �𝒒𝒒∗ 𝑣𝑣 = 𝑥𝑥
1 − 𝑛𝑛𝑥𝑥2/(1 + 𝑛𝑛𝑧𝑧)
−𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦/(1 + 𝑛𝑛𝑧𝑧)

−𝑛𝑛𝑥𝑥
+ 𝑦𝑦

−𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦/(1 + 𝑛𝑛𝑧𝑧)
1 − 𝑛𝑛𝑦𝑦2/(1 + 𝑛𝑛𝑧𝑧)

−𝑛𝑛𝑦𝑦
+ 𝑧𝑧

𝑛𝑛𝑥𝑥
𝑛𝑛𝑦𝑦
𝑛𝑛𝑧𝑧

.

• This is an extremely efficient way to rotate sampled directions to world space 
(no square roots, easy to optimize).

• As a by-product, it is also a new way to build an orthonormal basis from a 3D 
unit vector:

𝑏𝑏1 = 1 −
𝑛𝑛𝑥𝑥2

1 + 𝑛𝑛𝑧𝑧
,−

𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦
1 + 𝑛𝑛𝑧𝑧

,−𝑛𝑛𝑥𝑥 , 𝑏𝑏2 = −
𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦

1 + 𝑛𝑛𝑧𝑧
, 1 −

𝑛𝑛𝑦𝑦2

1 + 𝑛𝑛𝑧𝑧
,−𝑛𝑛𝑦𝑦 .

http://people.compute.dtu.dk/jerf/papers/abstracts/onb.html


Rendering Advantages
• Faster sampling of directions

(sampling of spherical coordinates becomes advantageous compared to 
von Neumann rejection sampling.) 

• We can use it to produce tangent vector directions that are consistent
(no discontinuities).

• Thus, this method is probably also good for combing of hairy objects.
[demo]

http://people.compute.dtu.dk/jerf/code/hairy/


Avoiding the singularity and the branching
• Duff et al. [2017] improved the sampling technique by flipping signs in the 

basis so that we avoid numerical issues around the singularity.

• The trade-off is that the tangent vector directions are no longer consistent
across the equator of the unit sphere.

𝑏𝑏1 = 1 −
𝑛𝑛𝑥𝑥2

1 + |𝑛𝑛𝑧𝑧|
,−

𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦
1 + 𝑛𝑛𝑧𝑧

,−𝑛𝑛𝑥𝑥 sgn(𝑛𝑛𝑧𝑧) , 𝑏𝑏2 = −
𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦

1 + |𝑛𝑛𝑧𝑧|
sgn(𝑛𝑛𝑧𝑧), 1 −

𝑛𝑛𝑦𝑦2

1 + |𝑛𝑛𝑧𝑧|
sgn(𝑛𝑛𝑧𝑧),−𝑛𝑛𝑦𝑦 .

inline void rotate_to_normal(const optix::float3& normal, optix::float3& v)
{
const float sign = copysignf(1.0f, normal.z);
const float a = -1.0f/(1.0f + fabsf(normal.z));
const float b = normal.x*normal.y*a;
v =   optix::make_float3(1.0f + normal.x*normal.x*a, b, -sign*normal.x)*v.x

+ optix::make_float3(sign*b, sign*(1.0f + normal.y*normal.y*a), -normal.y)*v.y
+ normal*v.z;

}

http://jcgt.org/published/0006/01/01/
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