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Outline 

 Motivation  

 Iterative optimization using modifier adaptation 

 Multi-stage optimizing control 

• Idea and problem formulation 

• Results for a case study 

• Output feedback multi-stage optimizing control  

 Summary 

 

 

 

 

 

 

 

 

 

 

 

3 



Optimization and control with imperfect models 

Lyngby, May 31, 2016 

 

D
NYDD
NNYY

Process Dynamics 
and Operations 

Motivation for optimizing control 

 Operational excellence 
• Optimal utilization of equipment and resources 

• Minimization of unplanned shut-downs 

• Meeting of quality standards without re-work 

• Energy efficiency 

• Resource efficiency 

 Operations in the process industries are subject to significant 
uncertainties 
• Changing process behaviours (e.g. catalyst efficiency) 

• Changing equipment 

• Changing feeds 

• External influences as e.g. outside temperature 

 Efficient, safe and reliable operation requires reactive 
measurement-based control and optimization 
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Available technologies 

 Feedback control to track given set-points and constraints 

• Requires a margin around the constraints 

• Set-points must be chosen well 

 Optimization of the set-points and feedback control  

(Real-time Optimization (RTO) plus classical control or MPC) 

 Model-based (directly) optimizing control: 

• The target of the controller is an economic optimization under constraints:  

 Safety limits 

 Product quality constraints 

 Equipment limitations 

S. Engell: Feedback Control for Optimal Process Operation. J. Process Control 17, 2007, 203-219 

 RTO and optimizing control depend critically on the accuracy of 

the model that is employed. 
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Focus of this talk 

 In this talk the focus is on optimization and control using 

inaccurate or simplified models. 

 New strategies for robust control and optimization will be presented: 

• MAwQA – Modifier Adaptation with Quadratic Approximation 

     Robust iterative data and model based optimization 

• MSNMPC – Multi-stage Nonlinear Model Predictive Control 

     A new efficient robust NMPC strategy 
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Iterative Optimizing Control by  

Modifier Adaptation with Quadratic Approximation 

 
Weihua Gao, Simon Wenzel, Sebastian Engell 

The research leading to these results was funded by the ERC Advanced 

Investigator Grant MOBOCON under the grant agreement No. 291458. 
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Real-time optimization 
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Planning and Scheduling

Steady-state 
optimization

Model update

Validation Reconciliation

Plant

C1 Cn

• Model-based upper-level 

optimization system 

• Quasi-stationary optimization of 

the set-points of the plant 

• Targeting economic optimality 

RTO 

Control Layer 

Plant 
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Batch chromatography 

 

 

 

 

 

 

 

 

 Goal: 
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Model of batch chromatography 
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General Rate Model 
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 Challenge: Optimization in the presence of model uncertainty 

Effect of uncertainty in the adsorption isotherm 
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0 500
0
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3Elution profiles: 

“real plant” 
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Measurement-based RTO strategies 
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Model-based 

Model-free 

Measurements 

Two-step approach: parameter 

estimation and subsequent 

optimization 

Necessary conditions of 

optimality  tracking 

 Structural mismatch 

leads to wrong results 

 Sufficient excitation 

required 

 Limited number of 

inputs  

 Sequence of arcs  

must be fixed 
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The principle of Modifier Adaptation 
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Using the collected data, the bias (offset) between the plant and the 

model and the empirical gradients are estimated and used to modify the 

optimization problem: 

Instead of 

 

the optimizer solves 

 

 

 

 

 

If the bias and gradients are correct, this converges to the true optimum! 

 

 

 

 

 

 

gradient 

modifiers 
bias modifiers 
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Gradient estimation 

Finite difference approximation from the measurements at the latest 

nu+1 setpoints: 

 

 

 

S can become ill-conditioned  gradient becomes unreliable 

 Monitoring of the condition number 

 Additional moves to improve the condition number 

       W. Gao and S. Engell: Iterative Set-Point Optimization of Batch Chromatography,  

       Computers and Chemical Engineering 29, 2005, 1401 - 1410 

 Setpoints close to each other: Approximation good but sensitive to 

noise 

 Setpoints far apart: Error in the gradient but robust 
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Influence of noise on the gradient error 
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Quadratic approximation in Derivative-free Optimization 

 Optimization based upon probing of the target function 

 Repeatedly constructing local quadratic functions 

 

 

 

 

 

 Mathematically well 

founded 
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(Audet, 2008) 

Idea: Estimate the gradients via 

quadratic approximation 
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MAWQA-Algorithm 

 Modifier Adaptation with Quadratic Approximation 

 Iterative optimization combined with estimation of the gradients by 

quadratic approximation 

 Theory available how to choose the points which are interpolated to 

get a good approximation of the curvature 

• Nearby points for accuracy 

• Distant points for robustness 

 Trust region estimation – prevents too large steps 

 Monitoring of  model quality and switching between MA and pure DFO 

    Weihua Gao, Simon Wenzel and Sebastian Engell  

 IFAC ADCHEM 2015  

 European Control Conference 2015 

 Computers and Chemical Engineering, online 2016 
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Gradient via quadratic approximation 

 Capture the curvature information from more distant points to 

decrease the approximation error 

 Explore the inherent smoothness of the mapping to decrease the 

influence of the noise 
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Screen points for a well-distributed regression set 
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Illustration of regression set screening 
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 Sufficiently distant and well-distributed points 

are indispensable for capturing the curvature 

reliably from noisy data 

 The use of many points in a neighborhood can 

improve the accuracy of the gradient estimation 
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Trust region 
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 Allow large moves along a direction in 

which more data has been collected 

 Bound aggressive moves along a 

direction in which the plant still needs to 

be probed 
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Application to the batch chromatography example 
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Significantly improved robustness to noise and speed of convergence 

compared to our previous work (and to that of others). 
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Ten-variable synthetic example 

Caballero and Grossmann (2008): Algorithm based on fitting response surface takes 

800 sampled points to reach the optimum. 

The objective and one constraint 

are given by noisy implicit black-

box functions 

23 
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Optimization results for the synthetic example 

24 

Evolution of the objective Evolution of the constraint 

136 sampled points used 
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Generation of data-collecting moves 

25 

• The regression set is not well-poised  

• In the probed operating range, the function is not quadratic 

Dual-control mechanism with set-point moves 
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Multi-stage Nonlinear Model-predictive Control 

 
Sergio Lucia, Sankaranarayanan Subramanian, Sebastian Engell 

The research leading to these results was supported by the ERC Advanced 

Investigator Grant MOBOCON under the grant agreement No. 291458. 

The research leading to these results was 

supported by the German Research Council DFG 
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Model predictive control  
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Time 

Control 

past future 

u(t) 

Time 

State 
Constraint 

x(t) 

0 1 -1 -2 3 2 4 6  5 

0 1 -1 -2 3 2 4 6  5 

 Solve optimization problem 

• Mathematical Model 

• Cost function 

• Constraints 

 Apply first control input 

 Take new measurements 

 Optimize again 

 Apply first control input 

 Take new measurements and 

optimize again …. 

 

 Economic cost function can be 

used in the optimization  

 optimizing control 

MPC 
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Model predictive control: Wrong model 

28 

Time 

Control 

past future 

u(t) 

Time 

State 
Constraint 

x(t) 

What happens if the prediction  is 

not exact? 

• Violation of constraints  

• Decreased performance 

• Instability  

 

0 1 -1 -2 3 2 4 6  5 

0 1 -1 -2 3 2 4 6  5 

 Solve optimization problem 

• Mathematical Model 

• Cost function 

• Constraints 

 Apply first control input 

 Take new measurements 

MPC 
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Multi-stage NMPC: Formulation 

 

 Uncertainty is modelled by a scenario tree 

 Constraints must be met for all values of the uncertainty 

 Controller can react to the information gained at the next stage 

 This is taken into account in the optimization of the next decisions 
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Robust Multi-Stage NMPC 

 

 

 Closed-loop formulation by means of an open loop optimization 

problem 

• Applied to scheduling problems  
[Sand and Engell, Comp. Chem. Engg. 2005] 

• Early work on linear MPC  
[de la Peña et al., 2005], [Bernardini et al., 2009] 

 Proposed for Nonlinear MPC in [Dadhe & Engell, 2008] 

 Many publications by [Lucia et al.] since 2012 with promising results, 
[Lucia, Finkler, Engell, ADCHEM 2012, J. Proc. Control 2013, …] 
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 Avoid the exponential growth by branching the tree only up to the 

robust horizon 

 

 

 

 

 

 

 

 
Robust Horizon = 2 

Multi-stage NMPC: Robust horizon 
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Prediction Horizon = 4 
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An industrial batch polymerization reactor control problem 

32 

8 differential states 

3 control inputs 

2 uncertain parameters 

Model provided by BASF SE 

S. Lucia, J. Andersson, H. Brandt, M. Diehl, S. Engell: Handling Uncertainty in Eco-

nomic Nonlinear Model Predictive Control, J. Process Control 24 (2014), 1247-1259 

B 
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Industrial batch polymerization reactor model 

𝑚 𝑊 = 𝑚 𝑊,𝐹  

𝑚 𝐴 = 𝑚 𝐴,𝐹 − 𝑘𝑅1𝑚𝐴,𝑅 −
𝑝1𝑘𝑅2𝑚𝐴𝑊𝑇𝑚𝐴

𝑚𝑔𝑒𝑠
 

𝑚 𝑃 = 𝑘𝑅1𝑚𝐴,𝑅 +
𝑝1𝑘𝑅2𝑚𝐴𝑊𝑇𝑚𝐴

𝑚𝑔𝑒𝑠
 

𝑇 𝑅 =
1

𝑐𝑝,𝑅𝑚𝑔𝑒𝑠
 𝑚 𝐹𝑐𝑝,𝐹 𝑇𝐹 − 𝑇𝑅 + Δ𝐻𝑅𝑘𝑅1𝑚𝐴,𝑅 − 𝑘𝐾𝐴 𝑇𝑅 − 𝑇𝑆 −𝑚 𝐴𝑊𝑇𝑐𝑝,𝑅 𝑇𝑅 − 𝑇𝐸𝐾  

𝑇 𝑆 = 1/(𝑐𝑝,𝑆𝑚𝑆) 𝑘𝐾𝐴 𝑇𝑅 − 𝑇𝑆 − 𝑘𝐾𝐴 𝑇𝑆 − 𝑇𝑀  

𝑇 𝑀 =
1

𝑐𝑝,𝑊𝑚𝑀,𝐾𝑊
𝑚 𝑀,𝐾𝑊𝑐𝑝,𝑊 𝑇𝑀

𝐼𝑁  − 𝑇𝑀 + 𝑘𝐾𝐴 𝑇𝑆 − 𝑇𝑀  

𝑇 𝐸𝐾 =
1

𝑐𝑝,𝑅𝑚𝐴𝑊𝑇
𝑚 𝐴𝑊𝑇𝑐𝑝,𝑊 𝑇𝑅 − 𝑇𝐸𝐾 − 𝛼 𝑇𝐸𝐾 − 𝑇𝐴𝑊𝑇 +

𝑝1𝑘𝑅2𝑚𝐴𝑚𝐴𝑊𝑇ΔH𝑅
𝑚𝑔𝑒𝑠

 

𝑇 𝐴𝑊𝑇 =
1

𝑐𝑝,𝑊𝑚𝐴𝑊𝑇,𝐾𝑊
𝑚 𝐴𝑊𝑇,𝐾𝑊𝑐𝑝,𝑊 𝑇𝐴𝑊𝑇

𝐼𝑁 − 𝑇𝐴𝑊𝑇 − 𝛼 𝑇𝐴𝑊𝑇 − 𝑇𝐸𝐾  

𝑘𝑅1 = 𝑘0𝑒
−
𝐸𝑎
𝑅𝑇𝑅  𝑘𝑈1 1 − 𝑈 + 𝑘𝑈2𝑈  

𝑘𝑅2 = 𝑘0𝑒
−

𝐸𝑎
𝑅𝑇𝐸𝐾  (𝑘𝑈1 1 − 𝑈 + 𝑘𝑈2𝑈) 
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8 differential states 

3 control inputs 

2 uncertain parameters 
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Formulation of the NMPC problem 

 Control task: 

• Minimize the batch time while satisfying temperature constraints for all 

values of two uncertain (±30 %) parameters 

 

 Standard NMPC with tracking cost: 

𝐽track =  −𝑚𝑃,𝑘
𝑗

+ 𝑞 𝑇𝑅,𝑘
𝑗
− 𝑇set

2
+ 𝑟 Δuk

j 2
𝑁𝑝−1

𝑘=0

 

 

 Multi-stage NMPC with economic cost function: 

𝐽eco = 𝜔𝑖  −𝑚𝑃,𝑘
𝑗

+ 𝑟 Δuk
j 2

𝑁𝑝−1

𝑘=0

𝑁

𝑖=1
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Standard NMPC: No uncertainties 
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Reactor temperature 

Adiabatic temperature 

Monomer feed rate 

Jacket inlet temperature 

 Comparison of tracking and economic NMPC 



Optimization and control with imperfect models 

Lyngby, May 31, 2016 

 

D
NYDD
NNYY

Process Dynamics 
and Operations 

Simulation results for different scenarios 

36 

Standard NMPC Standard NMPC with conservative 

choice of parameters 

Simulations for different values of 𝑘 and Δ𝐻 (±30%) 
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Simulation results for different scenarios 

37 

Simulations for different values of 𝑘 and Δ𝐻 (±30%) 
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Multi-stage NMPC 

 Simple scenario tree 

• 3 extreme values of the 

uncertainties 

• Tree branches only at the fist stage 
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Comparison with standard NMPC 

 

 Batch time reduction of 60% w.r.t. standard (cons.) NMPC 

38 

Scenario Batch time in hours 

ΔH𝑅 𝑘0 Standard NMPC Standard (cons.) Multi-stage 

+30% +30% infeasible 2.15 2.03 

+30% 0% infeasible 2.72 2.24 

+30% -30% infeasible 4.05 2.69 

0% +30% 1.60 2.22 1.60 

0% 0% 1.81 3.00 1.84 

0% -30% 2.69 4.57 2.50 

-30% +30% 1.50 2.72 1.43 

-30% 0% 1.99 3.57 1.86 

-30% -30% 2.88 5.11 2.68 

Av. batch time [h] infeasible 3.35 2.10 

Comp time [s] Standard NMPC Standard (cons.) Multi-stage 

Average  0.072 0.059 1.134 

Maximum  0.230 0.179 1.550 
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Comparison with open-loop robust NMPC 

39 

Open-loop robust NMPC Multi-stage NMPC 

~ 25% longer batch! 
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 The values of the states are not known generally. The states need to be 

estimated based on measurements.  

 

 
 

 

 

 

 

 

 

Output feedback NMPC - Motivation 

Time 

Control 
past future 

𝒖(𝒕) 

Time 

State Constraint 

𝒙(𝒕) 

0 1 -1 -2 3 2 4 6  5 

0 1 -1 -2 3 2 4 6  5 

𝒙 (t) 
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Multi-stage output feedback NMPC 

 Instead of predicting the future state, predict the estimates 

𝑥 𝑘+1 = 𝑓𝑒𝑠𝑡(𝑥 𝑘 , 𝑢𝑘 , 𝑑𝑘) 

 

 If the estimates can be predicted, the states can be assumed to be 

bounded by 
𝑥𝑘 ∈ 𝑥 𝑘 ⊕Σ𝑘 

 

 Since we know the estimates at every time, the feedback policy can be 

obtained based on the predicted estimates 

 

 EKF or UKF equations can be used to get 

𝑥 𝑘+1 = 𝑓 𝑥 𝑘 , 𝑢𝑘 , 𝑑𝑘 + 𝐾𝑘𝜈𝑘 
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Multi-stage output feedback NMPC using the EKF 
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0P

 Start with current estimate 𝑥 0 and 

covariance information 𝑃0 from 

the estimator 

 

 Propagate the state estimate and 

the covariance information 

 Use the EKF equations to 

estimate future states for different 

values of the innovations 

• 𝑥 𝑘+1 = 𝑓 𝑥 𝑘 , 𝑢𝑘 , 𝑝𝑘 + 𝐾𝑘𝜈𝑘 

 

 The covariance of the innovations 

𝐶𝑘𝑃𝑘
−𝐶𝑘

𝑇 + 𝑅𝑘  is used to get the 

samples of the innovations 
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Output feedback NMPC – Problem formulation 

     

     

     

     

     

     

 Mathematical formulation: 

                                     

 

      

 

subject to: 

𝑥 𝑘+1
𝑗

= 𝑓 𝑥 𝑘
𝑝 𝑗

, 𝑢𝑘
𝑗
, 𝑑𝑘

𝑟 𝑗
+ 𝐾𝑘

𝑗
𝜈𝑘
𝑟(𝑗)

                            ∀ 𝑗, 𝑘 + 1 ∈ 𝐼 

𝐾𝑘
𝑗
= Φ 𝑥 𝑘

𝑝 𝑗
, 𝑢𝑘

𝑗
, 𝑑𝑘

𝑟 𝑗
, 𝑃𝑘

𝑝 𝑗
                                                 ∀ 𝑗, 𝑘 ∈ 𝐼 

𝑃𝑘+1
𝑗

= Ψ 𝑥 𝑘
𝑝 𝑗

, 𝑢𝑘
𝑗
, 𝑑𝑘

𝑟 𝑗
, 𝑃𝑘

𝑝 𝑗
                                             ∀ 𝑗, 𝑘 ∈ 𝐼 

𝑥 𝑘
𝑗
⊕ {𝜎𝑘

𝑗
} ∈ 𝕏, 𝑢𝑘

𝑗
∈ 𝕌                                                    ∀ 𝑗, 𝑘 ∈ 𝐼 

𝑢𝑘
𝑗
= 𝑢𝑘

𝑙  if  𝑥𝑘
𝑝(𝑗)

= 𝑥𝑘
𝑝(𝑙)

                                                   ∀ 𝑗, 𝑘 , 𝑙, 𝑘 ∈ 𝐼

  

 

 

 

 

 

 

 

 

min
𝑢𝑘
𝑗
 𝜔𝑖 𝐽𝑖

𝑁

𝑖=1

 

𝐽𝑖 =  𝐿(𝑥 𝑘+1
𝑗

, 𝑢𝑘
𝑗
)

𝑁𝑝−1

𝑘=0

, ∀𝑥 𝑘+1
𝑗

, 𝑢𝑘
𝑗
∈ 𝑆𝑖  Kalman update 

with the sampled 

innovations  

The EKF/ UKF 

equations 
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Industrial batch polymerization reactor 

𝑚 𝑊 = 𝑚 𝑊,𝐹  

𝑚 𝐴 = 𝑚 𝐴,𝐹 − 𝑘𝑅1𝑚𝐴,𝑅 −
𝑝1𝑘𝑅2𝑚𝐴𝑊𝑇𝑚𝐴

𝑚𝑔𝑒𝑠
 

𝑚 𝑃 = 𝑘𝑅1𝑚𝐴,𝑅 +
𝑝1𝑘𝑅2𝑚𝐴𝑊𝑇𝑚𝐴

𝑚𝑔𝑒𝑠
 

𝑇 𝑅 =
1

𝑐𝑝,𝑅𝑚𝑔𝑒𝑠
 𝑚 𝐹𝑐𝑝,𝐹 𝑇𝐹 − 𝑇𝑅 + Δ𝐻𝑅𝑘𝑅1𝑚𝐴,𝑅 − 𝑘𝐾𝐴 𝑇𝑅 − 𝑇𝑆 −𝑚 𝐴𝑊𝑇𝑐𝑝,𝑅 𝑇𝑅 − 𝑇𝐸𝐾  

𝑇 𝑆 = 1/(𝑐𝑝,𝑆𝑚𝑆) 𝑘𝐾𝐴 𝑇𝑅 − 𝑇𝑆 − 𝑘𝐾𝐴 𝑇𝑆 − 𝑇𝑀  

𝑇 𝑀 =
1

𝑐𝑝,𝑊𝑚𝑀,𝐾𝑊
𝑚 𝑀,𝐾𝑊𝑐𝑝,𝑊 𝑇𝑀

𝐼𝑁  − 𝑇𝑀 + 𝑘𝐾𝐴 𝑇𝑆 − 𝑇𝑀  

𝑇 𝐸𝐾 =
1

𝑐𝑝,𝑅𝑚𝐴𝑊𝑇
𝑚 𝐴𝑊𝑇𝑐𝑝,𝑊 𝑇𝑅 − 𝑇𝐸𝐾 − 𝛼 𝑇𝐸𝐾 − 𝑇𝐴𝑊𝑇 +

𝑝1𝑘𝑅2𝑚𝐴𝑚𝐴𝑊𝑇ΔH𝑅
𝑚𝑔𝑒𝑠

 

𝑇 𝐴𝑊𝑇 =
1

𝑐𝑝,𝑊𝑚𝐴𝑊𝑇,𝐾𝑊
𝑚 𝐴𝑊𝑇,𝐾𝑊𝑐𝑝,𝑊 𝑇𝐴𝑊𝑇

𝐼𝑁 − 𝑇𝐴𝑊𝑇 − 𝛼 𝑇𝐴𝑊𝑇 − 𝑇𝐸𝐾  

𝑘𝑅1 = 𝑘0𝑒
−
𝐸𝑎
𝑅𝑇𝑅  𝑘𝑈1 1 − 𝑈 + 𝑘𝑈2𝑈  

𝑘𝑅2 = 𝑘0𝑒
−

𝐸𝑎
𝑅𝑇𝐸𝐾  (𝑘𝑈1 1 − 𝑈 + 𝑘𝑈2𝑈) 

 

8 differential states 

3 control inputs 

1 uncertain parameter 
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NMPC problem formulation 

 Control task: 

• Minimize the batch time while satisfying temperature 

constraints for all the values of the uncertainty (±30 %)  

• Constraint on the temperature of the reactor (90±2) °C 

 Economic cost function 

𝐽eco = 𝜔𝑖  −𝑚𝑃,𝑘
𝑗

+ 𝑟1Δ 𝑚 𝐹,𝑘
𝑗

+ 𝑟2Δ𝑇𝑀,𝑘
𝐼𝑁,𝑗

+ 𝑟3Δ𝑇𝐴𝑊𝑇,𝑘
𝐼𝑁,𝑗

𝐾−1

𝑘=0

𝑁

𝑖=1

 

 Only the measurements of 2 states 𝑇𝑅 and 𝑇𝑀 are available with 

measurement noise,  standard deviation 𝜎 = 0.3 K 

 EKF with parameter estimation is used 

 Prediction horizon = 10 samples 

 Robust horizon = 1 sample 

 Sampling time = 90 s 
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12 

Standard Multi-stage NMPC    Robust Output Feedback NMPC 

Standard vs output feedback scheme 

𝑘0
𝑡𝑟𝑢𝑒 = 1.3 𝑘0

𝑛𝑜𝑚 
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Multi-stage optimizing control - Conclusions 

 The improvement of the robustness is very convincing. 

 Direct solution without a need for specific engineering 

 Improvement over nominal NMPC even when parameter updates 
are available online 

       S. Lucia, T. Finkler, S. Engell: Multi-Stage nonlinear model predictive control applied to a 
       semi-batch polymerization reactor under uncertainty, J. Process Control 23, 2013, 
       1306-1319 

 Numerically tractable  DO MPC based upon CasADi 

 There is more: 

• Multiple model state estimation to update the probabilities in the scenario tree 

• Dual control – improving the model accuracy to improve the control 
performance 

• Guaranteed constraint satisfaction by reachability analsis also for values that 
are not in the scenario tree 
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Summary   

 Advanced control offers a significant potential for improved operations! 

 One can control well with inaccurate models! 

 Two solutions presented: 

• Iterative model and data based optimization 

• Multi-stage robust model-based optimization 

 Modeling effort is the bottleneck in the solution of practical problems. 

• Robust optimization and control reduce the modeling effort! 

 Difficult problem: Satisfaction of complex product property 
constraints 

• Soft sensors and additional online measurements  - not necessarily 
selective, e.g. ultrasound, conductivity, pH, turbidity 

• Online measurements, e.g. NIR or Raman spectroscopy 

 Open-source software for efficient implementation of NMPC and 
MS-NMPC: DO-MPC  
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