

Economic Model Predictive Control for Spray Drying Plants

Lars Norbert Petersen

PhD Defense

Kgs. Lyngby, Denmark. May 2016

Technical University of Denmark

Outline

- Introduction
- Spray Dryer Modelling
- Control strategies
 - Proportional and integral (PI) Control
 - Linear tracking MPC with RTO
 - Economic Nonlinear Model Predictive Control
- Comparison
- Industrial application of MPC with RTO
- Conclusion

Introduction

Megatrends in the Food Industry

 Global changes such as population growth, urbanization, climate changes etc. pose new challenges to the food industry.

Milk Powder Plant

• Enables transportation of surplus milk to areas with a deficit of milk.

Milk Powder Plant

 Increasing the energy efficiency and the residual moisture content (yield) of the spray drying process is the main concern and topic of this thesis.

The Multi-Stage Spray Dryer

The Multi-Stage Spray Dryer

- Inputs, main disturbances and controlled outputs
- Complex dynamics, fast disturbance changes and constraint satisfaction

The Value of Good Control

- "Squeeze and shift" of controlled outputs
 - Moves the residual moisture closer to the specification
 - Increases the product flow rate
 - Increased the energy efficiency

The Value of Good Control

• Spray Dryer Modeling

Spray Dryer Modeling

- Simulation model
 - First-principles engineering model
 - Best simulation accuracy
 - Differential algebraic equation (DAE) index-1 model
- Complexity reduced control model
 - Lumped model
 - Fewer states and parameters
 - Ordinary differential equation (ODE) model
- State-space model
 - Obtained by linearization of the ODE model

complexity

Simulation Model

- Modeling principle
- Assumptions
 - The air satisfies the ideal gas law
 - Hold-ups of dry air and solid powder are constant.
 - The stages are assumed well stirred.
 - The kinetic and potential energy are negligible.

Conservation equations

State functions

$$\begin{split} m_{\rm w} &= m_{\rm s} X \\ m_{\rm v} &= m_{\rm da} Y \\ U &= m_{\rm da} (h_a - RT) + m_{\rm s} h_p + m_{\rm m} h_m \end{split}$$

Simulation Model – Stage Model

- Constitutive equations
 - Evaporation rate

 $R_{\rm w} = k_1 D_{\rm w} (X - X_{\rm eq}) m_{\rm s}$

in which the diffusion term and the equilibrium moisture content is

$$D_{\mathbf{w}}(T,X) = \exp\left(-\frac{c_1}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right)\frac{X}{c_2 + X}$$

$$X_{\rm eq} = X_{\rm eq}(T, Y) + X_{\rm add}$$

Heat exchange

$$\Delta H_{\rm e}^{\rm in2out} = k_1 (T^a - T^b) F_s + k_2 X_f + k_3 T_f - k_4 \quad , \qquad Q_{\rm e}^{\rm in2out} = k_5 (T^a - T^b)$$

Heat loss

 $Q_{\rm l} = k_{\rm UA} (T - T_{\rm amb})$

Simulation Model

Stochastic DAE model with piecewise constant inputs

$$\begin{aligned} x_{k+1} &= F(x_k, u_k + w_{\mathbf{u},k}, d_k + w_{\mathbf{d},k}, \theta) \\ y_k &= h_{\mathbf{y}}(x_k) + v_k \end{aligned}$$

in which F is the solution of the system of differential equations

$$\begin{aligned} x(t_k) &= x_k \\ \frac{d}{dt}g(x(t)) &= f(x(t), u_k + w_{\mathbf{u},k}, d_k + w_{\mathbf{d},k}, \theta) \quad t_k \leq t \leq t_{k+1} \\ x_{k+1} &= x(t_{k+1}) \end{aligned}$$

- In addition, the model provides
 - Key performance indicators
 - Stickiness of the powder based on a laboratory experiment.

Simulation Model – Equipment and Experiments

- Equipment
 - GEA MSD-20 spray dryer
 - Residual moisture measurements (NIR)
 - Exhaust air humidity measurement

Experiment

- Drying of sugar (maltodextrin)
- 28 hours for estimation and 17 hours for validations
- Steps in inputs and disturbances

Simulation Model – Validation Data

- Control strategies
 - Proportional and integral (PI) Control
 - Conventional Tracking MPC with an RTO layer
 - Economic Nonlinear Model Predictive Control

PI Control

- Measures and controls the exhaust air temperature, to a target, by manipulating the feed flow.
- Inlet air temperatures are not manipulated.
- Disadvantages
 - Stickiness of powder and residual moisture content are not controlled
 - Optimal back-off and inlet air temperatures unknown
 - Cross-coupled dynamics make adjustment difficult for the operator
- Consequently, energy consumptions is high and residual moisture is low.

Industrially recorded disturbances

PI Control – Measured Outputs

PI Control – Manipulated Variables

Control strategies

- Proportional and integral (PI) Control
- Conventional Tracking MPC with an RTO layer
- Economic Nonlinear Model Predictive Control

MPC with **RTO**

- MPC with RTO is a two layer optimization based controller
 - MPC brings the controlled outputs, z, to the target, r, by manipulating, u.
 - RTO provides steady-state cost optimal targets
 - Uses a state-space model, nonlinear constraints and profit function
- Economics & constraints Advantage $RTO(T_s = 25 min)$ Stickiness of powder is controlled - steady-state linear model - NLP algorithm Product quality is controlled $\hat{\overline{x}}(t_k)$ Setpoints are updated according to the r(t_k) measured disturbances MPC ($T_s = 30 s$) - dvnamic linear model Cross-coupled dynamics are handled - tailored QP algorithm $d(t_k)$ u(t_k) $y(t_k)$ Consequently, profit of operation is increased Process W,V

State estimator

- Linear time varying (LTV) Kalman filter used for state estimation, and handles different sample frequencies of the measurements
- Maximum Likelihood (ML) tuning
- Offset-free control and output estimation by model augmentation
- The optimal control problem
 - Convex objective and linear constraints

$$\min_{\substack{\{u_{k+j}\}_{j=0}^{N-1} \\ j=0}} \phi = \frac{1}{2} \sum_{j=1}^{N} \|z_{k+j} - r_k\|_{2,Q_z}^2 + \frac{1}{2} \sum_{j=0}^{N-1} \|\Delta u_{k+j}\|_{2,S_u}^2$$
s.t. $\bar{x}_k = \hat{\bar{x}}_{k|k},$
 $\bar{x}_{k+j+1} = \bar{A}\bar{x}_{k+j} + \bar{B}u_{k+j} + \bar{E}d_k + \bar{\sigma}_x, \quad j \in \mathcal{N}_u$
 $z_{k+j} = \bar{C}_z \bar{x}_{k+j} + \sigma_z, \qquad j \in \mathcal{N}_z$
 $u_{\min} \le u_{k+j} \le u_{\max}, \qquad j \in \mathcal{N}_u$

RTO

- The Real-Time Optimization
 - Linear model, nonlinear objective and constraints

$$\begin{split} \min_{u_{\rm ss}, z_{\rm ss}, s} & \phi_{\rm ss} = -p(z_{\rm ss}, u_{\rm ss}, d_k) + \phi_s(s) \\ \text{s.t.} & [0 \ I] \bar{x}_{\rm ss} = [0 \ I] \hat{\bar{x}}_{k|k} \\ & \bar{x}_{\rm ss} = \bar{A} \bar{x}_{\rm ss} + \bar{B} u_{\rm ss} + \bar{E} d_k + \bar{\sigma}_{\rm x} \\ & z_{\rm ss} = \bar{C}_{\rm z} \bar{x}_{\rm ss} + \sigma_{\rm z} \\ & u_{\rm min} + \delta_2 \leq u_{\rm ss} \leq u_{\rm max} - \delta_2 \\ & c(z_{\rm ss}) - \delta_1 + s \geq 0 \\ & s > 0 \end{split}$$

- Model mismatch and unknown disturbances are handled by state estimator
- Back-off to maintain controllability in the MPC and comparable constraint violations.

MPC with RTO – Measured Outputs

MPC with RTO – Manipulated Variables

Control strategies

- Proportional and integral (PI) Control
- Conventional Tracking MPC with an RTO layer
- Economic Nonlinear Model Predictive Control

E-MPC

- E-(N)MPC is a one layer optimization based controller
 - Computes the inputs, u, at each sample time to maximize the predicted profit of operation directly
 - Uses complexity reduced model, constraints and profit function
- Advantage
 - Profit and constraints directly in the control layer
 - Back-off in MVs are not necessary
 - Cross-coupled dynamics are handled
- Consequently, profit of operation may be increased further

E-MPC

- State estimator
 - Nonlinear time varying (LTV) extended Kalman filter used for state estimation
 - Offset-free output estimation provided by model augmentation
- The optimal control problem

$$\begin{split} \min_{x,u,s} \phi &= \phi_{e} + \phi_{s} + \phi_{\Delta u}, \\ \text{s.t.} \quad [x_{k}; x_{d,k}] = \hat{x}_{k|k}, \quad x(t_{k}) = x_{k}, \\ \quad \frac{d}{dt}x(t) &= f(x(t), u_{k+j}, d_{k}, \theta) + B_{d}x_{d,k}, \quad t \in \mathcal{T}_{k}, \\ \quad z(t) &= h_{z}(x(t)) + C_{d,z}x_{d,k}, \qquad t \in \mathcal{T}_{k}, \\ u_{\min} &\leq u_{k+j} \leq u_{\max}, \qquad j \in \mathcal{N}_{u}, \\ c(z(t_{k+j})) + s_{k+j} \geq 0, \qquad j \in \mathcal{N}_{z}, \\ s_{k+j} \geq 0, \qquad j \in \mathcal{N}_{z}, \end{split}$$

E-MPC

• The objective function consists of an economic objective function,

$$\phi_{\mathbf{e}} = -\int_{t_k}^{t_k+T} p(z(t), u_{k+j}, d_k) dt$$

an I2-I1 penalty term,

$$\phi_{s} = \sum_{j=1}^{N} \frac{1}{2} \left\| s_{k+j} \right\|_{2,S_{W}}^{2} + \left\| s_{k+j} \right\|_{1,s_{w}}$$

and an input rate of movement regularization term

$$\phi_{\Delta \mathbf{u}} = \frac{1}{2} \sum_{j=0}^{N-1} \|\Delta u_{k+j}\|_{\mathbf{Q}_{\Delta \mathbf{u}}}^2 = \frac{1}{2} \sum_{j=0}^{N-1} \|u_{k+j} - u_{k+j-1}\|_{\mathbf{Q}_{\Delta \mathbf{u}}}^2$$

E-MPC – Measured Outputs

E-MPC – Manipulated Variables

Comparison

Comparison - KPI

• Key performance indicators

KPI					% increase to PI	
		PI	MPC-RTO	E-NMPC	MPC-RTO	E-NMPC
Product flow rate	F _p [kg/hr]	60.95	66.21	66.81	8.63%	9.61%
Energy consumption rate	$Q_{\rm tot}$ [kW]	87.2	89.1	90.4	2.21%	3.63%
Specific energy consumption	$\frac{Q_{\text{tot}}}{F_{p}}$ [MJ/kg]	5.16	4.81	4.88	-6.72%	-5.44%
Residual moisture	$1 - S_{cd} [\%]$	3.37	3.48	3.49	3.21%	3.37%
Energy efficiency	η [%]	40.2	42.7	42.5	6.06%	5.52%
Profit of operation	<i>p</i> [€/hr]	123.25	133.98	135.19	8.71%	9.69%

Table	1:	Average	KPI	values.
-------	----	---------	-----	---------

Comparison - Stickiness Estimate

Simulation model

Comparison - Stickiness Constraint

Complexity reduced control model

Industrial application of MPC with RTO

Industrial Implementation

- MPC with RTO is implemented
 - Performance improvement is comparable to E-MPC
 - Attractive model mismatch and disturbance rejection behavior
- First-order plus time delay transfer-function model.
 - Perturbation of plant based on repeated steps on the inputs.
- The MPC sample time is 20 sec and the RTO sample time is 30 sec.
- Running on an industrial PC connected to the plant PLC.

Industrial Implementation

SCADA faceplate

Industrial Implementation

Key performance indicators

KPI					% increase to PI	
		PI	MPC 1	MPC 2	MPC 1	MPC 2
Product flow rate	F_p [kg/hr]	7,177	7,416	7,499	3.35 [%]	4.44 [%]
Energy consumption	Q_{tot} [MW]	7.40	7.41	7.49	0.1 [%]	1.2 [%]
Specific energy consumption	$\frac{Q_{\text{tot}}}{F_{\text{p}}}$ [MJ/kg]	3.714	3.596	3.599	-3.16 [%]	-3.10 [%]
Residual moisture	$1^{r} - S [\%]$	2.633	2.746	2.799	4.28 [%]	6.31 [%]
Energy efficiency	η [%]	63.4	64.4	62.6	1.44 [%]	-1.28 [%]

Table 2	Average	KPI	values.
---------	---------	-----	---------

 The annual profit increase is estimated to be, 186,000 euro/year from the 0.14 p.p. improved residual moisture and 6,900 euro/year from 1 p.p. the energy efficiency increase. Conclusion

Conclusion

- Modeling of a four-stage spray dryer
 - Simulation model for validation of controllers
 - Complexity reduced model(s) for design of controllers
 - Validated against experimental data
- Development and simulation of MPC strategies
 - Both methods increases energy efficiency, production rate and profit of operation
 - Maintain the process within and closer to process constraints
- Application of MPC to an industrial spray dryer
 - MPC with RTO has been successfully applied and improves the KPIs of the process.

• Questions and comments