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Fundamental features

MPC is the most successful advanced control technique 
applied in the process industries 

MPC can ensure (for linear and nonlinear multivariable systems) 
• closed-loop stability 
• constraint satisfaction 
• robustness against modeling errors and disturbances 
• setpoint tracking (often hierarchically) 
MPC enhances the process profitability

Model Predictive Control: 
motivations for its success

G. Pannocchia Distributed MPC: overview and advances
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Large scale systems: 

some examples

G. Pannocchia Distributed MPC: overview and advances

Large industrial plants Power generation networks

Systems of Systems
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One or more MPCs?

One centralized MPC 
• Pros: global (plant-wide) optimality, stability 
• Cons: limited flexibility, high computational cost 
Several decentralized MPCs 
• Pros: lower computational cost, high modularity  
• Cons: global suboptimality, stability issues

MPC for large scale systems: 
different approaches

G. Pannocchia Distributed MPC: overview and advances

Middle field…

Distributed MPC 
• Pros: high modularity, stability  
• Pros/Cons: global optimality (high computational cost)
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1.Comprehensive overview of (linear) distributed MPC algorithms 
•Models 
•Decentralized, Cooperative and Non-Cooperative MPC 
•Design and properties of Cooperative MPC 
•Cooperative MPC for tracking 

2.Advances in cooperative MPC for tracking 
•Proposed approaches 
•Application results 

3.Conclusions

Outline

G. Pannocchia Distributed MPC: overview and advances
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Part I 

A comprehensive overview of 


distributed MPC
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Overall DLTI system

Models for distributed MPC - I

G. Pannocchia Distributed MPC: overview and advances

x

+ = Ax + B u

y = C x

x 2 Rn
: current state

x

+ 2 Rn
: successor state

u 2 Rm
: manipulated input

y 2 Rp
: controlled output

Local DLTI subsystems
x

+
i = Ai xi + Bi ui +

X

j 2Ni

Bij uj

yi = Ci xi

M: number of subsystems

Ni : set of neighbors of subsystem i

xi , x
+
i 2 Rni

: current/successor i�th state

ui 2 Rmi
: manipulated i�th input

yi 2 Rpi
: controlled i�th output
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Interconnected systems and neighbors definition

Models for distributed MPC - II

G. Pannocchia Distributed MPC: overview and advances

1

Distributed Model Predictive Control

GABRIELE PANNOCCHIA
University of Pisa,

Pisa, Italy

F

Abstract—Distributed Model Predictive Control refers to a class of
predictive control architectures in which a number of local controllers
manipulate a subset of inputs to control a subset of outputs (states)
composing the overall system. Different levels of communication and
(non)cooperation exist, although in general the most compelling prop-
erties can be established only for cooperative schemes, those in which
all local controllers optimize local inputs to minimize the same plant-
wide objective function. Starting from state-feedback algorithms for
constrained linear systems, extensions are discussed to cover output
feedback, reference target tracking and nonlinear systems. An outlook
of future directions is finally presented.
Keywords— Constrained Large-Scale Systems, Interacting Dynamical
Systems, Cooperative Control Systems

INTRODUCTION AND MOTIVATIONS

Large-scale systems (e.g. industrial processing plants,
power generation networks, etc.) usually comprise sev-
eral interconnected units which may exchange material,
energy and information streams. The overall effective-
ness and profitability of such large-scale systems depend
strongly on the level of local effectiveness and profitabil-
ity of each unit but also on the level of interactions
among the different units. An overall optimization goal
can be achieved by adopting a single centralized model
predictive control (MPC) system [Rawlings and Mayne,
2009] in which all control input trajectories are optimized
simultaneously to minimize a common objective.

This choice is often avoided for several reasons. When
the overall number of inputs and states is very large, a
single optimization problem may require computational
resources (CPU time, memory, etc.) that are not available
and/or compatible with the system’s dynamics. Even if
these limitations do no hold, it is often the case that
organizational reasons require the use of smaller, local
controllers, which are easier to coordinate and maintain.

Thus, industrial control systems are often decentralized,
i.e. the overall system is divided into (possibly mildly
coupled) subsystems and a local controller is designed
for each unit disregarding the interactions from/to other
subsystems. Depending on the extent of dynamic cou-
pling, it is well known that the performance of such
decentralized systems may be poor, and stability prop-
erties may be even lost. Distributed predictive control
architectures arise to meet performance specifications
(stability at minimum) similar to centralized predictive
control systems, still retaining the modularity and local
character of the optimization problems solved by each
controller.

N1 = {2, 3}
S1

y1

S2
N2 = {1}

S3
N3 = {2}

y2

y3u3

u2

u1

Overall system

Fig. 1. Interconnected systems and neighbors definition

DEFINITIONS AND ARCHITECTURES FOR CON-
STRAINED LINEAR SYSTEMS

Subsystem dynamics, constraints and objectives
We start the description of distributed MPC algorithms
by considering an overall discrete-time linear time-
invariant system in the form:

x+ = Ax + Bu, y = Cx (1)

in which x 2 Rn and x+ 2 Rn are, respectively, the
system state at a given time and at a successor time,
u 2 Rm is the input, and y 2 Rp is the output.

We consider that the overall system (1) is divided into
M subsystems, Si, defined by (disjoint) sets of inputs
and outputs (states), and each Si is regulated by a local
MPC. For each Si, we denote by yi 2 Rpi its output,
by xi 2 Rni its state, and by ui 2 Rmi the control
input computed by the i�th MPC. Due to interactions
among subsystems, the local output yi (and state xi)
is affected by control inputs computed by (some) other
MPCs. Hence, the dynamics of Si can written as:

x+i = Aixi + Biui + Â
j2Ni

Bijuj, yi = Cixi (2)

in which Ni denotes the indices of neighbors of Si, i.e.
the subsystems whose inputs have an influence on the
states of Si. To clarify the notation we depict in Fig. 1 the
case of three subsystems, with neighbors N1 = {2, 3},
N2 = {1}, N3 = {2}.

Without loss of generality, we assume that each pair
(Ai, Bi) is stabilizable. Moreover, the state of each sub-
system xi is assumed known (to the i�th MPC) at each
decision time. For each subsystem Si, inputs are required
to fulfill (hard) constraints:

ui 2 Ui, i = 1, . . . , M (3)

in which Ui are polyhedrons containing the origin in
their interior. Moreover, we consider a quadratic stage
cost function `i(x, u) , 1

2 (x0Qix + u0Riu) and a termi-
nal cost function Vf i(x) , 1

2 x0Pix, with Qi 2 Rni⇥ni ,
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Why not coupling through states?
The state of each subsystem includes all modes from local and 

neighboring inputs to local output

Models for distributed MPC - III

G. Pannocchia Distributed MPC: overview and advances

Subsystem 1: x1  

x1

x2

�
, A1  


A11 A12

0 A22

�
, B1  


B11

0

�
, B12  


0
B22

�
, C1  

⇥
C11 0

⇤

Subsystem 2: x2  
⇥
x2

⇤
, A2  

⇥
A22

⇤
, B2  

⇥
B22

⇤
, B21  [ ], C2  

⇥
C22

⇤

• Equivalent subsystems coupled by inputs: 

Models obtained from ID naturally have input couplings 


x1

x2

�+
=


A11 A12

0 A22

� 
x1

x2

�
+


B11 0
0 B22

� 
u1

u2

�


y1

y2

�
=


C11 0
0 C22

� 
x1

x2

�

• An example of 2 subsystems “coupled by states”:
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Centralized MPC: a single MPC computes all inputs to 
optimize a global objective 

Decentralized MPC: each MPC computes its local input, 
disregarding interacting dynamics, to optimize a local objective 

Non-cooperative MPC: each MPC computes its local input, 
considering interacting dynamics, to optimize a local objective 

Cooperative MPC: each MPC computes its local input, 
considering interacting dynamics, to optimize a global objective

Taxonomy

G. Pannocchia Distributed MPC: overview and advances

Based on dynamics and objective of local controllers
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Decentralized MPC

G. Pannocchia Distributed MPC: overview and advances

x

+
i = Ai xi + Bi ui

������+
X

j 2Ni

Bij uj

yi = Ci xi

Model (decentralized)

3

S1

S2

MPC1
y1

x1

x2

u1

u2 y2MPC2

min
u1 V1 | N1 = ∆

min
u2 V2 | N2 = ∆

(a) Decentralized MPC: no communication, local objectives

S1

S2

MPC1
y1

x1

x2

u1

u2 y2MPC2

u1 u2

min
u1 V1

min
u2 V2

(b) Non-cooperative MPC: communication, local objectives

S1

S2

MPC1
y1

x1

x2

u1

u2 y2MPC2

u1 u2

min
u1 r1V1 + r2V2

min
u2 r1V1 + r2V2

(c) Cooperative MPC: communication, global objective

Fig. 2. Three distributed control architectures: decentralized MPC, non-cooperative MPC and cooperative MPC

local controller solves PCDi
i , given a previously com-

puted value of all other subsystems’ input sequences.
For each local controller, the new iterate is defined as
a convex combination of the newly computed solution
with the previous iteration. A relative tolerance is de-
fined, so that cooperative iterations stop when all local
controllers have computed a new iterate sufficiently close
to the previous one. A maximum number of cooperative
iterations can also be defined, so that a finite bound on
the execution time can be established.

Algorithm 1 (Cooperative MPC): Require: Overall
warm start u

0 , (u0
1, . . . , u

0
M), convex step weights

wi > 0, s.t. ÂM
i=1 wi = 1, relative tolerance parameter

e > 0, maximum cooperative iterations cmax.
1: Initialize: c 0 and ei  2e for i = 1, . . . , M.
2: while (c < cmax) and (9i | ei > e) do

3: c c + 1.
4: for i = 1 to M do

5: Solve PCDi
i in (9) obtaining u

⇤
i .

6: end for

7: for i = 1 to M do

8: Define new iterate: u

c
i , wiu

⇤
i + (1� wi)u

c�1
i .

9: Compute convergence error: ei ,
kuc

i�u

c�1
i k

kuc�1
i k .

10: end for

11: end while

12: return Overall solution: u

c , (uc
1, . . . , u

c
M).

We observe that Step 8 implicitly defines the new
overall iterate as a convex combination of the overall

solutions achieved by each controller, that is:

u

c =
M

Â
i=1

wi(u
c�1
1 , . . . , u

⇤
i , . . . , u

c�1
M ) (10)

It is also important to observe that Steps 5, 8 and 9 are
performed separately by each controller.

Properties
The basic cooperative MPC described in Algorithm 1
enjoys several nice theoretical and practical properties,
as detailed [Rawlings and Mayne, 2009, §6.3.1].

1) Feasibility of each iterate: u

c�1
i 2 UN

i implies u

c
i 2

UN
i , for all i = 1, . . . , M and c 2 I>0.

2) Cost decrease at each iteration: V(x(0), u

c) 
V(x(0), u

c�1) for all c 2 I>0.
3) Cost convergence to the centralized optimum:

limc!• V(x(0), u

c) = min
u2UN V(x(0), u), in

which U , U1 ⇥ · · ·⇥UM.
Resorting to suboptimal MPC theory, the above prop-

erties 1) and 2) can be exploited to show that the origin
of closed-loop system:

x+ = Ax + Bkc(x), with kc(x) , uc(0) (11)

is exponentially stable for any finite c 2 I>0. This result
is of paramount (practical and theoretical) importance
because it ensures closed-loop stability using cooperative
distributed MPC with any finite number of cooperative

Reference Scheme

Vi =
N�1X

k=0

�
xi (k)

T
Qixi (k) + ui (k)

T
Riui (k)

�
+ xi (N)TPixi (N)

Cost (local)
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Non-cooperative Distributed MPC

G. Pannocchia Distributed MPC: overview and advances

x

+
i = Ai xi + Bi ui +

X

j 2Ni

Bij uj

yi = Ci xi

Model (interacting)

3

S1

S2

MPC1
y1

x1

x2

u1

u2 y2MPC2

min
u1 V1 | N1 = ∆

min
u2 V2 | N2 = ∆

(a) Decentralized MPC: no communication, local objectives

S1

S2

MPC1
y1

x1

x2

u1

u2 y2MPC2

u1 u2

min
u1 V1

min
u2 V2

(b) Non-cooperative MPC: communication, local objectives

S1

S2

MPC1
y1

x1

x2

u1

u2 y2MPC2

u1 u2

min
u1 r1V1 + r2V2

min
u2 r1V1 + r2V2

(c) Cooperative MPC: communication, global objective

Fig. 2. Three distributed control architectures: decentralized MPC, non-cooperative MPC and cooperative MPC

local controller solves PCDi
i , given a previously com-

puted value of all other subsystems’ input sequences.
For each local controller, the new iterate is defined as
a convex combination of the newly computed solution
with the previous iteration. A relative tolerance is de-
fined, so that cooperative iterations stop when all local
controllers have computed a new iterate sufficiently close
to the previous one. A maximum number of cooperative
iterations can also be defined, so that a finite bound on
the execution time can be established.

Algorithm 1 (Cooperative MPC): Require: Overall
warm start u

0 , (u0
1, . . . , u

0
M), convex step weights

wi > 0, s.t. ÂM
i=1 wi = 1, relative tolerance parameter

e > 0, maximum cooperative iterations cmax.
1: Initialize: c 0 and ei  2e for i = 1, . . . , M.
2: while (c < cmax) and (9i | ei > e) do

3: c c + 1.
4: for i = 1 to M do

5: Solve PCDi
i in (9) obtaining u

⇤
i .

6: end for

7: for i = 1 to M do

8: Define new iterate: u

c
i , wiu

⇤
i + (1� wi)u

c�1
i .

9: Compute convergence error: ei ,
kuc

i�u

c�1
i k

kuc�1
i k .

10: end for

11: end while

12: return Overall solution: u

c , (uc
1, . . . , u

c
M).

We observe that Step 8 implicitly defines the new
overall iterate as a convex combination of the overall

solutions achieved by each controller, that is:

u

c =
M

Â
i=1

wi(u
c�1
1 , . . . , u

⇤
i , . . . , u

c�1
M ) (10)

It is also important to observe that Steps 5, 8 and 9 are
performed separately by each controller.

Properties
The basic cooperative MPC described in Algorithm 1
enjoys several nice theoretical and practical properties,
as detailed [Rawlings and Mayne, 2009, §6.3.1].

1) Feasibility of each iterate: u

c�1
i 2 UN

i implies u

c
i 2

UN
i , for all i = 1, . . . , M and c 2 I>0.

2) Cost decrease at each iteration: V(x(0), u

c) 
V(x(0), u

c�1) for all c 2 I>0.
3) Cost convergence to the centralized optimum:

limc!• V(x(0), u

c) = min
u2UN V(x(0), u), in

which U , U1 ⇥ · · ·⇥UM.
Resorting to suboptimal MPC theory, the above prop-

erties 1) and 2) can be exploited to show that the origin
of closed-loop system:

x+ = Ax + Bkc(x), with kc(x) , uc(0) (11)

is exponentially stable for any finite c 2 I>0. This result
is of paramount (practical and theoretical) importance
because it ensures closed-loop stability using cooperative
distributed MPC with any finite number of cooperative

Reference Scheme

Vi =
N�1X

k=0

�
xi (k)

T
Qixi (k) + ui (k)

T
Riui (k)

�
+ xi (N)TPixi (N)

Cost (local)



13

Cooperative Distributed MPC

G. Pannocchia Distributed MPC: overview and advances

x

+
i = Ai xi + Bi ui +

X

j 2Ni

Bij uj

yi = Ci xi

Model (interacting)

3

S1

S2

MPC1
y1

x1

x2

u1

u2 y2MPC2

min
u1 V1 | N1 = ∆

min
u2 V2 | N2 = ∆

(a) Decentralized MPC: no communication, local objectives

S1

S2

MPC1
y1

x1

x2

u1

u2 y2MPC2

u1 u2

min
u1 V1

min
u2 V2

(b) Non-cooperative MPC: communication, local objectives

S1

S2

MPC1
y1

x1

x2

u1

u2 y2MPC2

u1 u2

min
u1 r1V1 + r2V2

min
u2 r1V1 + r2V2

(c) Cooperative MPC: communication, global objective

Fig. 2. Three distributed control architectures: decentralized MPC, non-cooperative MPC and cooperative MPC

local controller solves PCDi
i , given a previously com-

puted value of all other subsystems’ input sequences.
For each local controller, the new iterate is defined as
a convex combination of the newly computed solution
with the previous iteration. A relative tolerance is de-
fined, so that cooperative iterations stop when all local
controllers have computed a new iterate sufficiently close
to the previous one. A maximum number of cooperative
iterations can also be defined, so that a finite bound on
the execution time can be established.

Algorithm 1 (Cooperative MPC): Require: Overall
warm start u

0 , (u0
1, . . . , u

0
M), convex step weights

wi > 0, s.t. ÂM
i=1 wi = 1, relative tolerance parameter

e > 0, maximum cooperative iterations cmax.
1: Initialize: c 0 and ei  2e for i = 1, . . . , M.
2: while (c < cmax) and (9i | ei > e) do

3: c c + 1.
4: for i = 1 to M do

5: Solve PCDi
i in (9) obtaining u

⇤
i .

6: end for

7: for i = 1 to M do

8: Define new iterate: u

c
i , wiu

⇤
i + (1� wi)u

c�1
i .

9: Compute convergence error: ei ,
kuc

i�u

c�1
i k

kuc�1
i k .

10: end for

11: end while

12: return Overall solution: u

c , (uc
1, . . . , u

c
M).

We observe that Step 8 implicitly defines the new
overall iterate as a convex combination of the overall

solutions achieved by each controller, that is:

u

c =
M

Â
i=1

wi(u
c�1
1 , . . . , u

⇤
i , . . . , u

c�1
M ) (10)

It is also important to observe that Steps 5, 8 and 9 are
performed separately by each controller.

Properties
The basic cooperative MPC described in Algorithm 1
enjoys several nice theoretical and practical properties,
as detailed [Rawlings and Mayne, 2009, §6.3.1].

1) Feasibility of each iterate: u

c�1
i 2 UN

i implies u

c
i 2

UN
i , for all i = 1, . . . , M and c 2 I>0.

2) Cost decrease at each iteration: V(x(0), u

c) 
V(x(0), u

c�1) for all c 2 I>0.
3) Cost convergence to the centralized optimum:

limc!• V(x(0), u

c) = min
u2UN V(x(0), u), in

which U , U1 ⇥ · · ·⇥UM.
Resorting to suboptimal MPC theory, the above prop-

erties 1) and 2) can be exploited to show that the origin
of closed-loop system:

x+ = Ax + Bkc(x), with kc(x) , uc(0) (11)

is exponentially stable for any finite c 2 I>0. This result
is of paramount (practical and theoretical) importance
because it ensures closed-loop stability using cooperative
distributed MPC with any finite number of cooperative

Reference Scheme

V =
MX

j=1

⇢iVi =
N�1X

k=0

�
x(k)TQx(k) + u(k)TRu(k)

�
+ x(N)TPx(N)

Cost (global)
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Decentralized MPC 
• Due to neglected dynamics, stability (as well feasibility, tracking, etc.) are 

not guaranteed 
• Possible remedies are based on robust (tube) MPC paradigms [Alessio 

et al., 2011; Riverso et al., 2013] 
Noncooperative distributed MPC 
• Due to local objectives, convergence of iterations and stability is not 

guaranteed 
• When convergence occurs, Nash equilibrium is reached. Still, stability 

may not hold [Rawlings and Mayne, 2009] 
Cooperative distributed MPC 
• Convergence of iterations and stability is guaranteed [Rawlings and 

Mayne, 2009] 
• Global optimality can be guaranteed [Stewart et al., 2011]

Properties of different architectures

G. Pannocchia Distributed MPC: overview and advances
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FHOCP and cooperative iterations

Each local MPC, knowing candidate sequences of all other 
MPCs, solves the FHOCP

Cooperative distributed MPC - I

G. Pannocchia Distributed MPC: overview and advances

Pi

⇣
x , {uj}j 6=i

⌘
: min

ui
V (x , u) s.t.

ui 2 Ui

⇣
x , {uj}j 6=i

⌘
, x(N) 2 Xf ✓ X

Input feasibility space
Ui

⇣
x , {uj}j 6=i

⌘
= {ui | ui (k) 2 Ui , x(k) 2 X }

Cooperative iterations, givenu0i : solution to Pi

✓

x ,
n

u[q�1]
j

o

j 6=i

◆

u[q]i = wiu
0
i + (1� wi )u

[q�1]
i

Keep track of overall 
state dynamics
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Main properties

Feasibility of each iterate

Cooperative distributed MPC - II

G. Pannocchia Distributed MPC: overview and advances

Cost decrease at each iteration

Cost convergence to centralized optimum

V (x(0),u[q])  V (x(0),u[q�1]) for all q 2 I�0

lim
q!1

V (x(0),u[q]) = min
u2UN

V (x(0),u)

u[q�1]
i 2 UN

i ) u[q]i 2 UN
i , for all i = 1, ... ,M and q 2 I�0

Stability, for any finite q, is proved via suboptimal MPC arguments
Can reduce 

computational 
requirements
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Equilibrium target

Any equilibrium solves:

Tracking in centralized MPC

G. Pannocchia Distributed MPC: overview and advances


A� I B 0
C 0 �I

�2

4
xs

us

ys

3

5 =


0
0

�

ytGiven desired setpoint      , the optimal equilibrium is:
min

x

s

,u
s

,y
s

V

ss

(y
s

, y
t

) s.t. above constraint and x

s

2 X, u

s

2 U

Tracking MPC problem

P (x̃) : V

0 (x̃) = min
ũ

�
V (x̃ (0) , ũ)

�� ũ 2 ŨN (x̃)
 

x̃ = x � x

0
s , ũ = u � u

0
sDeviation variables:

Single step approaches are also possible [Limon et al., 2008]
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Single step approach [Ferramosca et al., 2013]

Centralized cost function, including centralized target

Distributed cooperative MPC for 
tracking - I

G. Pannocchia Distributed MPC: overview and advances

Vt (x , u, xs , us , ys) =
N�1X

k=0

`(x(k)� xs , u(k)� us) + Vf (x(N)� xs)

+Vss (ys , yt)

s.t. x(0) = x

x (k + 1) = Ax (k) + B u (k)

A� I B 0
C 0 �I

�2

4
xs

us

ys

3

5 =


0
0

�
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FHOCP and cooperative iterations

G. Pannocchia Distributed MPC: overview and advances

Distributed cooperative MPC for 
tracking - II

P
i

⇣
x , {u

j

}
j 6=i

⌘
: min

u
i

, x
s

, u
s

, y
s

V

t

(x , u, x
s

, u
s

, y
s

) s.t.

u
i

2 U
i

⇣
x , {u

j

}
j 6=i

⌘
, (x(N), y

s

) 2 ⌦

Each local MPC, knowing candidate sequences of all other 
MPCs, solves the FHOCP

Cooperative iterations, givenu0i : solution to Pi

✓

x ,
n

u[q�1]
j

o

j 6=i

◆

u[q]i = wiu
0
i + (1� wi )u

[q�1]
i

⌦       is an invariant set for tracking [Ferramosca et al. 2013]

Need to keep track of 
centralized state 

dynamics



Distributed MPC: overview and advances 20G. Pannocchia

Part II 

Advances in cooperative MPC for tracking



21

Useful definitions
• A graph G = (V,E) : set of vertices V and edges E 
• A directed graph is composed by oriented edges 
• Inlet star: 
• Outlet star:

Some reminders of graph theory

G. Pannocchia Distributed MPC: overview and advances

S IN
i = {vj 2 V | (vj , vi ) 2 E}

SOUT
i = {vj 2 V | (vi , vj) 2 E}

x

+
1 = A1 x1 + B1 u1

x

+
2 = A2 x2 + B2 u2 + B21 u1

x

+
3 = A3 x3 + B3 u3 + B31 u1 + B32 u2

An example

S IN
1 = ;, SOUT

1 = {2, 3}, S IN
2 = {1}, SOUT

2 = {3}, S IN
3 = {1, 2}, SOUT

3 = ;
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Key observations
The evolution of i-th subsystem is influenced by inputs of 

subsystems in its inlet star 
The input of i-th subsystem influences evolution of subsystems 

in its outlet star

The augmented system - I

G. Pannocchia Distributed MPC: overview and advances

x

+
i = Ai xi + Bi ui +

X

k2SIN
i

Bikuk

x

+
j = Aj xj + Bjiui +

0

@
Bjuj +

X

k2SIN
j \{i}

Bjk uk

1

A , j 2 S

OUT
i

Other subsystems are not affected by the i-th subsystem input

x

+
j = Aj xj +

0

@
Bjuj +

X

k2SIN
j

Bjk uk

1

A , j /2 S

OUT
i
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Augmented i-th subsystem

The augmented system - II

G. Pannocchia Distributed MPC: overview and advances

Augmented inlet star
SINi  S IN

i [ SOUT
i [

0

@
[

j2SOUT
i

S IN
j \ {i}

1

A

Augmented local variables and matrices

x̄i =

"
xi⇥

xj

⇤
j2SOUT

i

#
, ūi =

⇥
uk

⇤
k2SINi

, ȳi =

"
yi⇥

yj

⇤
j2SOUT

i

#

¯Ai = diag

n

Ai , {Aj}j2SOUT
i

o

,

¯Bi =

"

Bi
⇥

Bji

⇤

j2SOUT
i

#

,

¯B IN
i =

⇥

hor{Bik}k2SINi , hor{Bjk}j2SOUT
i , k2SINi

⇤

x̄

+
i = Āi x̄i + B̄i ui + B̄

IN
i ūi

ȳi = C̄i x̄i

Final augmented dynamics
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Augmented system based 
cooperative MPC for tracking - I

G. Pannocchia Distributed MPC: overview and advances

Local (augmented system) cost function

Vti (·) =
N�1X

k=0

¯̀
i (x̄i (k)� x̄si , ui (k)� usi ) + V̄fi (x̄i (k)� x̄si ) + kys � ytk2T

s.t.

x̄i (0) = x̄i

x̄i (k + 1) = Āi x̄i (k) + B̄i ui (k) + B̄

IN
i ūi (k)

The global cost function can be reduced to a local (augmented) cost

¯̀
i (x̄i , ui ) =

1

2

�
x̄

T
i Q̄i x̄i + u

T
i Riui

�
, V̄fi (x̄i ) =

1

2
x̄

T
i P̄i x̄i

Local (augmented) cost functions

Discarded terms in the global function are not affected by ui

The solution is the same as 
considering the global cost
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Augmented system based 
cooperative MPC for tracking - II

G. Pannocchia Distributed MPC: overview and advances

Each local MPC, knowing candidate sequences of all MPCs in 
its inlet star, solves the FHOCP

FHOCP and cooperative iterations

P
i

⇣
x̄

i

, {u
j

}
j2SIN

i

⌘
: min

u
i

,x
s

,u
s

,y
s

V

ti

(u
i

, x
s

, u
s

, y
s

) s.t.

u
i

2 Ū
i

⇣
x̄

i

, {u
j

}
j2SIN

i

⌘
, (x̄

i

(N), ȳ
si

) 2 ⌦̄
i


A� I B 0
C 0 �I

�2

4
x

s

u

s

y

s

3

5 =


0
0

�

Input feasibility space
Ūi

⇣
x̄i , {uj}j2SINi

⌘
= {ui | ui (k) 2 Ui , x̄i (k) 2 X̄i}

Cooperative iterations: u[q]i = wiu
0
i + (1� wi )u

[q�1]
i

Need to keep track of 
augmented state dynamics 

only
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Overall algorithm

G. Pannocchia Distributed MPC: overview and advances

Require: Augmented subsystems, SIN

i

8i = 1 ...M, tolerance ✏, maximum no. cooper-
ative iterations q

max

, convex combination weights w

i

> 0, such that
P

M

i=1 wi

= 1.
1: Set q  0 and e

i

 2✏.
2: while q < q

max

and 9 i such that e
i

> ✏ do

3: q  q + 1
4: for i = 1 to M do

5: Solve problem P
i

to obtain the optimal input sequence u0
i

(x) and the cen-
tralized state-steady triple (x

s

, u
s

, y
s

).
6: if q = 1 then

7: u[q�1]
i

=
⇥
u

T

s

i

· · · u

T

s

i

⇤
T

8: end if

9: Define new iterate: u[q]
i

= w

i

u0
i

+ (1� w

i

)u[q�1]
i

.

10: Compute convergence error: e
i

=
||u[q]

i

�u
[q�1]
i

||

1+||u[q]
i

||
11: end for

12: end while

13: return Overall solution u =
⇣
u[q]
1 , u[q]

2 , ... , u[q]
M

⌘
.
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Step 1

Solve the centralized target problem to obtain

A two-step variant

G. Pannocchia Distributed MPC: overview and advances

Step 2

(xs , us , ys)
Each local MPC, knowing candidate sequences of all MPCs in 

its inlet star, solves the FHOCP with known 

(xs , us , ys)

Cooperative iterations: u[q]i = wiu
0
i + (1� wi )u

[q�1]
i
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Three alternatives

Complexity of different methods

G. Pannocchia Distributed MPC: overview and advances

DMPC0: available method [Ferramosca et al., 2013] 
DMPC1: proposed method (single step) 
DMPC2: proposed method (two steps)

DMPC0 DMPC1 DMPC2

Prediction model Centralized Augmented Augmented
Target calc. (TC) Embedded Embedded Separate
TC decision var. – – (xs , us , ys)
OCP decision var. (ui , x, xs , us , ys) (ui , x̄i , xs , us , ys) (ui , x̄i )
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A triple effect evaporator process

Application example - I

G. Pannocchia Distributed MPC: overview and advances

Subsystem 1 Subsystem 2 Subsystem 3
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Identified linear model

Application example - II

G. Pannocchia Distributed MPC: overview and advances

L1 Q1 V1 L2 V2 L3 V3

M1 � 0.04797
z�2.717 - � 0.0339

z�2.717 - - - -

T1 - 0.564
z�2.509 � 0.1745

z�2.509 - - - -

�1 - - 0.009394
z�2.549 - - - -

M2
0.05726
z�2.716 - - � 0.07207

z�2.716 � 0.09465
z�2.716 - -

T2
0.008029z�0.01856
z2�4.913z+6.029

0.089z�0.02579
z2�4.913z+6.029

0.2431z�0.6396
z2�4.913z+6.029 - �0.6057z+1.451

z2�4.913z+6.029 - -

�2 � 0.01418
z�2.604 - 0.01038

z�2.604 - 0.02976
z�2.604 - -

M3 - - - 0.07503
z�2.712 - - 0.08504

z�2.712 � 0.1255
z�2.712

T3
0.001138z+0.03875
z2�4.898z+5.986

�0.02526z+0.3423
z2�4.898z+5.986

0.06671z�0.127
z2�4.898z+5.986

0.09903z�0.2557
z2�4.898z+5.986

2.472z�6.521
z2�4.898z+5.986 - �2.895z+7.385

z2�4.898z+5.986

�3
�0.01013z+0.01865
z2�5.241z+6.864 - 0.004064z�0.005355

z2�5.241z+6.864
�0.2224z+0.6029
z2�5.241z+6.864

0.01244z�0.02893
z2�5.241z+6.864 - 0.464z�1.249

z2�5.241z+6.864

Neighbors and local (augmented) systems
N1 = ;, N2 = {1}, N3 = {1, 2}Neighbors sets:

x̄1 = (x1, x2, x3), x̄2 = (x2, x3), x̄3 = x3

SIN1 = {2, 3}, SIN2 = {1, 3}, SIN3 = {1, 3}
Augmented systems:
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Comparison of computation time 

Application example - III

G. Pannocchia Distributed MPC: overview and advances

1 2 5 10 20 30
Computation Time (s)

0
0.2
0.1
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

⇢ C
D

F

DMPC0

DMPC1

DMPC2

• Simulations performed in Matlab, MacBook Pro (3 GHz Intel Core i7, 16 GB RAM) 
• Horizon N=100, QP solved (non condensed form) using quadprog (interior-point) 
• Tested for 8 hours (480 samples) with two setpoint changes
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Application example - IV

G. Pannocchia Distributed MPC: overview and advances
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Comparison of closed-loop outputs
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Application example - V

G. Pannocchia Distributed MPC: overview and advances
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Comparison of closed-loop inputs
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Part III 

Conclusions
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Summary

Presented a comprehensive overview on linear distributed MPC 
Focus on cooperative algorithms, which share compelling 

properties with centralized architectures 
Discussed available distributed MPC for tracking algorithms 
Proposed novel distributed MPC for tracking approaches that 

rely “as local as possible” information instead of plant-wide state

Conclusions - I

G. Pannocchia Distributed MPC: overview and advances



36

Take home messages

Distributed MPC is a solid and reliable alternative to 
centralized MPC 

Cooperative architectures should be preferred 
Distributed MPC is preferable with respect to centralized MPC 

for organizational reasons, not computational

Conclusions - II

G. Pannocchia Distributed MPC: overview and advances

Research directions

Nonlinear distributed MPC 
Reconfigurability and reliability with respect to communication 

disruptions 
Distributed economic MPC
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