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challenging control problem

Characteristics:

 Multiple inputs/outputs

 Constraints

 Nonlinear, coupled dynamics

 Hardly ever in steady-state

Challenges:

 Fast sampling times

 Limited computational resources

 Controller has to run extremely 

reliable



Model Predictive Control
on embedded hardware
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1) Measure or estimate 

current system state

2) Predict future behavior 

using dynamic model

3) Optimize behaviour using 

optimization algorithm

4) Apply optimized inputs 

to system

Why embedded?

 Controller hardware highly integrated into product

 Guaranteed communication latency (safety critical!)

 Hardware may be much cheaper and more energy-efficient

MPC Controller

min
u

𝐹(𝑢)

𝑠. 𝑡. 𝐺 𝑢 = 0
𝐻(𝑢) ≤ 0

 𝒚

𝒚

𝒖∗











Server-based

Optimization

Embedded 

Optimization

Reliability
important, but operator can 

still override controller

crucial as typically no user-

interaction possible

Computation time
couple of seconds 

and above

seconds and below 

(often millisecond range)

Software dependencies
easy to link external 

libraries

self-contained code 

strongly preferred

Memory management dynamic or static
typically static 

(or even in hardware)

Number representation double precision
double/single precision 

or even fixed-point

What makes Embedded MPC special?
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Embedded MPC
As part of “Smart” Products
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Source: M.E. Porter, J.E. Heppelmann: How Smart, Connected Products Are Transforming 

Competition, Harvard Business Review, Nov. 2014.

Embedded

MPC
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Model Predictive Control
QP and general NLP
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Linear OCP:

𝑂𝐶𝑃 𝑥0 : min
𝑥 ∙ ,𝑢 ∙

 
𝑡0

𝑡0+𝑡𝑝

𝑥 𝑡 𝑇𝑄𝑥 𝑡 + 𝑢 𝑡 𝑇𝑅𝑢 𝑡 𝑑𝑡

𝑠. 𝑡. 𝑥 𝑡0 = 𝑥0
 𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 ∀ 𝑡 ∈ 𝑡0, 𝑡0 + 𝑡𝑝
0 ≥ 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 ∀ 𝑡 ∈ 𝑡0, 𝑡0 + 𝑡𝑝
0 ≥  𝐶𝑥 𝑡0 + 𝑡𝑝

Nonlinear OCP:

𝑂𝐶𝑃 𝑥0 : min
𝑥 ∙ ,𝑢 ∙

 
𝑡0

𝑡0+𝑡𝑝

𝐽 𝑥 𝑡 , 𝑢 𝑡 𝑑𝑡 + 𝑃 𝑥 𝑡0 + 𝑡𝑝

𝑠. 𝑡. 𝑥 𝑡0 = 𝑥0
 𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 ∀ 𝑡 ∈ 𝑡0, 𝑡0 + 𝑡𝑝
0 ≥ 𝑐 𝑥 𝑡 , 𝑢 𝑡 ∀ 𝑡 ∈ 𝑡0, 𝑡0 + 𝑡𝑝

0 ≥  𝑐 𝑥 𝑡0 + 𝑡𝑝

Quadratic Program (QP):

𝑄𝑃 𝑥0 : min
𝑧

1
2
𝑧𝑇𝐻𝑧 +𝑧′𝑔

𝑠. 𝑡. 𝐵𝑧 = 𝑏 𝑥0
𝐴𝑧 ≤ 𝑎

Nonlinear Program (NLP):

𝑁𝐿𝑃 𝑥0 : min
𝑧

𝐹 𝑧

𝑠. 𝑡. 𝐺 𝑧, 𝑥0 = 0
𝐻 𝑧 ≤ 0

(or MINLP in case of binary variables)



Embedded Linear MPC
The quest for fast and reliable solvers
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 Embedded applications have triggered major academic 

efforts to develop highly efficient solvers:

 Best choice is highly problem-dependent due to:

 numerical properties of MPC formulation

 implementation aspects (e.g. target hardware)

First-order gradient method, primal FGM, dual FGM, GPAD, FiOrdOs

Active-set quadprog (primal), QLD (dual), qpOASES (primal-dual)

Interior-point primal barrier, CVXGEN (primal-dual), FORCES (primal-dual), 

HPMPC

Others PQP, qpDUNES (Newton-type), ADMM, MPT (explicit MPC)



Numerical Properties

 MPC leads to specially-structured QP problems:

 specific sparsity pattern

 parametric dependency

 How to exploit problem sparsity?

 Parametric dependency can be exploited by warm-starts

Sparse vs. dense QP formulation

April 18, 2016 | Slide 9

© ABB Group

𝑄𝑃𝑠 𝑥0 : min
𝑧

1
2
𝑧′𝐻𝑠𝑧 + 𝑧′𝑔𝑠

𝑠. 𝑡. 𝐵𝑠𝑧 = 𝑏𝑠 𝑥0

𝐴𝑠𝑧 ≤ 𝑎𝑠

𝑄𝑃𝑑 𝑥0 : min
𝑧

1
2
𝑧′𝐻𝑑𝑧 + 𝑧′𝑔𝑑 𝑥0

𝑠. 𝑡. 𝐴𝑑𝑧 ≤ 𝑎𝑑 𝑥0

a) Using sparse solver: b) Eliminate states:

or



Numerical Properties

 Inequality constraints are a main reason to use MPC…

and they also make solving the QP more demanding

 Badly conditioned QP problems

(due to unstable dynamics, scaling, etc.)

 What if QP problem becomes infeasible?

 Some methods cannot handle semi-definite objective

Constraints and objective functions
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Implementation Aspects

 Reliability is key! (find a sufficiently accurate solution in time)

 Is computation time constant or (strongly) varying, 

predictable, bounded, or unknown? In any case, short enough?

 Do warm-starts help? (average vs. worst-case execution time)

 Code size, programming language, software dependencies, 

memory management

 Suitability for parallel execution on multi-core (or even hybrid) 

architectures

 Suitability for fixed-point implementation (e.g. on FPGA)
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 First-order methods:

 compute step towards solution of unconstrained QP

 project to feasible set (difficult for general constraints)

 Active-set methods: 

 guess which inequalities hold with equality at solution

 solve resulting equality-constrained QP (almost trivial)

 check if guess was correct, update guess if not

 Interior-point methods:

 remove inequalities, but penalize constraint violations in 

objective function (non-quadratic term, e.g. logarithmic)

 solve resulting equality-constrained NLP with Newton’s method

 Explicit methods and others

Linear MPC can run reliably 

at kHz sampling times 

even on embedded platforms!

How to choose the algorithm?

Existing Linear MPC Algorithms
A rough overview
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Decision Support Tool for MPC
Benchmarking and ranking
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Problem 

Formulation

Hardware 

Configuration

Decision Support Tool

extract problem 

features

consider hardware

run simulations

rank algorithms

Algorithm B

Algorithm D

Selection Criteria

Algorithm A

Algorithm B

Algorithm C

Algorithm D

Algorithm E

Algorithm C

Algorithm A

2
3

1 Algorithm E

 Matlab-based tool

 Compares up to 12 algorithms on 

PC, PEC2, PEC3, Xilinx’ Zynq

(joint work with Helfried Peyrl)

file:///C:/Program Files/MATLAB/R2013a_x64/bin/matlab.exe
file:///C:/Program Files/MATLAB/R2013a_x64/bin/matlab.exe


MPC Benchmarking Suite

 Overall computational performance on 14 MPC benchmark examples:

 > 2500 QP instances

 2-12 states

 1- 4 control inputs

 3-100 intervals

 different constraints

 Remarks:

 solver-specific 

termination criterion 

and default options

 no warm-starts

Illustrative results: speed
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more efficient

see Kouzoupis, Zanelli, Peyrl, Ferreau (2015)



MPC Benchmarking Suite
Illustrative results: accuracy
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more accurate

m
o

re
 r

e
lia

b
le

 Comparing accuracy of “first-order methods“ with fixed number of 

iterations:

 𝜏 = 0 defined as 

relative error less 

or equal than 10-8

 Remark:

 no problem-specific

tuning for ADMM

see Kouzoupis, Zanelli, Peyrl, Ferreau (2015)



MPC Benchmarking Suite
Illustrative results: #iterations
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 Comparing number of iterations vs. number of active constraints

for a specific example:

 Remark:

 qpOASES performing

cold-starts

see Kouzoupis, Zanelli, Peyrl, Ferreau (2015)



qpOASES

 qpOASES solves QP problems 

of the following form:

 C/C++ implementation with dense linear algebra,

developed since 2007

 Reliable and efficient for solving small- to medium-scale QPs 

(when states have been eliminated from MPC problem)

 Self-contained code (optionally, LAPACK/BLAS can be linked)

 Distributed as open-source software (GNU LGPL),

download at: https://projects.coin-or.org/qpOASES

© ABB Group 
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min
𝑧

1
2 𝑧

′𝐻𝑧 +𝑧′𝑔 𝑥0

𝑠. 𝑡. 𝑏 𝑥0 ≤ 𝑧 ≤  𝑏 𝑥0

𝑐 𝑥0 ≤𝐴𝑧 ≤  𝑐 𝑥0

see e.g. Ferreau, Kirches, Potschka, Bock, Diehl (2014)

An Implementation of the Online Active SEt Strategy



qpOASES

 Matlab / Octave / Scilab

 Simulink (dSPACE / xPC Target)

A few applications:

Interfaces and Applications
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Model Predictive Control
QP and general NLP
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Linear OCP:

𝑂𝐶𝑃 𝑥0 : min
𝑥 ∙ ,𝑢 ∙

 
𝑡0

𝑡0+𝑡𝑝

𝑥 𝑡 𝑇𝑄𝑥 𝑡 + 𝑢 𝑡 𝑇𝑅𝑢 𝑡 𝑑𝑡

𝑠. 𝑡. 𝑥 𝑡0 = 𝑥0
 𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 ∀ 𝑡 ∈ 𝑡0, 𝑡0 + 𝑡𝑝
0 ≥ 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 ∀ 𝑡 ∈ 𝑡0, 𝑡0 + 𝑡𝑝
0 ≥  𝐶𝑥 𝑡0 + 𝑡𝑝

Nonlinear OCP:

𝑂𝐶𝑃 𝑥0 : min
𝑥 ∙ ,𝑢 ∙

 
𝑡0

𝑡0+𝑡𝑝

𝐽 𝑥 𝑡 , 𝑢 𝑡 𝑑𝑡 + 𝑃 𝑥 𝑡0 + 𝑡𝑝

𝑠. 𝑡. 𝑥 𝑡0 = 𝑥0
 𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 ∀ 𝑡 ∈ 𝑡0, 𝑡0 + 𝑡𝑝
0 ≥ 𝑐 𝑥 𝑡 , 𝑢 𝑡 ∀ 𝑡 ∈ 𝑡0, 𝑡0 + 𝑡𝑝

0 ≥  𝑐 𝑥 𝑡0 + 𝑡𝑝

Quadratic Program (QP):

𝑄𝑃 𝑥0 : min
𝑧

1
2
𝑧𝑇𝐻𝑧 +𝑧′𝑔

𝑠. 𝑡. 𝐵𝑧 = 𝑏 𝑥0
𝐴𝑧 ≤ 𝑎

Nonlinear Program (NLP):

𝑁𝐿𝑃 𝑥0 : min
𝑧

𝐹 𝑧

𝑠. 𝑡. 𝐺 𝑧, 𝑥0 = 0
𝐻 𝑧 ≤ 0



Solution Methods for Nonlinear MPC
Direct methods
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 Direct methods first replace the continuous control input 

trajectory 𝑢(𝑡) by a finite-dimensional parameterization 𝑈

 Typically a piecewise constant control parameterization is 

used (on a partition 𝑡0 < 𝑡1 < … < 𝑡𝑁−1 = 𝑡0 + 𝑡𝑝):

𝑈 = 𝑢0, 𝑢1, … , 𝑢𝑁−1 = 𝑢 𝑡0 , 𝑢 𝑡1 , … , 𝑢 𝑡𝑁−1

 The way the states are discretized leads to different variants:

 single shooting (sequential approach)

 multiple shooting

 collocation (simultaneous approach)

OCP NLP Solution

discretize optimize

© ABB



Direct Methods for Nonlinear MPC
Solving the NLP

 NLPs can be solved efficiently using Newton-type methods:

 Interior-Point methods (e.g. IPOPT)

 Sequential Quadratic Programming

April 18, 2016 | Slide 22

© ABB

IP Methods:

 rather constant runtime

 easy to exploit sparsity

 difficult to warm-start

 need 2nd order derivatives

SQP Methods:

 rely on solving QPs

 easy to warm-start

 1st order derivatives enough

 more variable runtime



SQP Algorithm for Nonlinear MPC
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NMPC Controller

𝒚

 𝒚 1. Estimate 𝑥0 from measurement  𝑦

2. Run SQP algorithm:

a) Discretize OCP at current SQP iterate

b) Linearize objective and constraints

c) Prepare QP sub-problem

d) Solve QP sub-problem

e) Update SQP iterate

3. Send 𝑢0
∗ to process

 Real-time iteration scheme: only perform one iteration of 

a full-step Gauss-Newton SQP scheme

𝒖∗

see Diehl (2001), Diehl et al. (2002)



SQP Algorithm for Nonlinear MPC
ACADO Toolkit
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 ACADO Code Generation:

 Takes symbolic NMPC problem 

formulation in C++ or Matlab

 Auto-generates efficient, customized 

and self-contained C code 

implementing SQP algorithm for NMPC

 Compiles NMPC algorithm into 

Simulink S function

 Developed since 2009 at KU Leuven

(now U Freiburg)

 Open-source: www.acadotoolkit.org

see Houska, Ferreau, Diehl (2011)
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MPC for Compressor Control
Challenges
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 Up to 97% of compressor lifetime costs 

are engergy costs

 Goal: Combined anti-surge 

and process control to operate 

gas compressors more efficiently

 Challenges:

 Nonlinear, coupled dynamics

 Time delays

 Safety critical

 Millisecond sampling times

MAX 

efficiency



MPC for Compressor Control
Tests at PLCRC
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 Setup:

 Compressor test rig with 15kW 

variable-speed drive

 Identified nonlinear grey-box

model with 5 states

 Linearized MPC algorithm

using qpOASES

 Kalman filter for state estimation

 Running with 50ms sampling 

time on AC 800PEC

 Results:

 10% more distance to surge

 50% faster process control

see Cortinovis, Ferreau, Lewandowski, 

Mercangöz (2015)



NMPC for Load Commutated Inverters
48 Megawatt at 1kHz
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Thomas Besselmann

Synchronous machine

(48 Megawatt)

=

106 Porsche Carrera GTs

(48 MW at full-throttle)



NMPC for Load Commutated Inverters
48 Megawatt at 1kHz
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 Load commutated inverters (LCIs) play an important role in 

powering electrically-driven compressor stations

 Goal: Enable LCIs to ride through 

partial loss of grid voltage

 Solution: 

 Auto-generated NMPC algorithm 

(ACADO/qpOASES)

 Running at 1kHz on AC 800PEC

 Results:

 Successfully tested on a 48 MW 

pilot plant installation

 Works where PID solution fails!

see Besselmann, Van de moortel, Almer, Jörg, 

Ferreau (2016)
MPC           PID



«Kollsnes accounts for more than
40% of all Norwegian gas deliveries» (Gassco)
«Kollsnes accounts for more than
40% of all Norwegian gas deliveries» (Gassco)
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«Kollsnes accounts for more than 
40% of all Norwegian gas deliveries» (Gassco)

«Kollsnes accounts for more than 
40% of all Norwegian gas deliveries» (Gassco)

Embedded MPC!
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Conclusions
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 MPC can run reliably at millisecond sampling times,

even on embedded controller hardware

 If numerical performance is crucial, care must be taken to 

choose the most appropriate implementation

 Many more applications may benefit from embedded MPC

(enabling to “smart” products)




