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Background: Model Predictive Control

Model Predictive Control (and Moving Horizon Estimation)
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Background: Model Predictive Control

Model Predictive Control

+ optimal control signal

+ easy incorporation of forecasts

+ predictive adaptation to setpoint changes

+ natural handling of constraints and MIMO

+ generalization to non-linear systems

- need for a model

- an optimization problem at each sampling instant
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Background: ”The Free Lunch is Over” (2005)

I For decades, CPU
frequency increase boosted
CPU performance

I Around 2002 CPU
frequency stalled,
transistor count kept
doubling every 2 years
(Moore’s law)

I Use additional transistors
to increase CPU
performance-per-clock:
vectorization (SIMD),
parallelization (multi-core)
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Background: ”The Free Lunch is Over” (2005)

Consequences:

I ”If your program is too slow, just wait for the next computer
generation” is not true any more

I Vectorization and parallelization require extra programming
effort (compilers can’t do proper auto-vec. and auto-par.)

I In real-time critical applications, more performance requires
more (hardware-exploiting) software optimization
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Thesis approach

Algorithms and Methods for Fast Model Predictive Control

I Methods: dense linear algebra implementation methods for
embedded optimization (Part I)

I Algorithms: structure-exploiting algorithms for MPC
(Parts II and III)

I Both algorithms and their implementation are equally
important in the development of fast solvers

I Bottom-up approach: speed-up performance-critical routines
to speed-up the overall solvers
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Part I

Dense Linear Algebra Routines for Embedded Optimization
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Framework: embedded optimization

Assumptions about embedded optimization:

I Computational speed is a key factor: solve optimization
problems in real-time on resources-constrained hardware.

I Data matrices are reused several times (e.g. at each
optimization algorithm iteration): look for a good data
structure.

I Structure-exploiting algorithms can exploit the high-level
sparsity pattern: data matrices assumed dense.

I Size of matrices is relatively small (tens or few hundreds):
generally fitting in cache.
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BLAS

I Basic Linear Algebra Subprograms

I The de-facto standard interface for linear algebra
I Implementations optimized for many computer architectures

I but optimized for large-scale matrices
I often poor small-scale performance (large overhead)

I Divided into 3 levels:
I level 1: vector-vector operations: O(n) storage, O(n) flops
I level 2: matrix-vector operations: O(n2) storage, O(n2) flops
I level 3: matrix-matrix operations: O(n2) storage, O(n3) flops

I an access to memory (memop) is much slower than a flop
I in level 3 BLAS there is a lot of space for optimization
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LAPACK

I Linear Algebra PACKage

I Standard software library for numerical linear algebra

I E.g. Cholesky factorization, matrix inversion
I Built on top of BLAS

I unblocked routines using level 1 & 2 BLAS (small matrices)
I blocked routines using level 3 BLAS (large matrices)

I Bad multi-thread scalability (not explicit parallelism)
I PLASMA project

I Bad small-scale performance (level 1 & 2 BLAS)
I examples later in the talk
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(D)GEMM

I (DP) general matrix-matrix multiplication

I Key sub-operation in all level 3 BLAS & LAPACK

I Often used to benchmark BLAS implementations
I In optimized BLAS, high-performance by employing:

I blocking for registers
I machine-specific instructions (e.g. SIMD)
I special internal matrix format
I blocking for cache
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Computational Performance

I measured in Gflops = (# of flops) / (109· solution time in s)

I e.g. dsyrk + dpotrf costs n3 + 1
3n

3 = 4
3n

3 flops

I compared with theoretical peak performance

I measure of CPU utilization

I useful to identify performance bottlenecks

I room for improvement?
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Implementation of dsyrk + dpotrf on Intel Ivy-Bridge

Test operation:

L =
(
Q+A · AT

)1/2

NetlibBLAS

I Reference BLAS &
LAPACK

I triple-loop linear algebra

I machine independent code

[ all code is single-threaded ]
[ all code compiled with gcc ]
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Triple-loop implementation

I less memops if inner loop over k: each element is computed as

cij = cij +
n−1∑
k=0

aik · bkj , i = 0, . . . , n − 1, j = 0, . . . , n − 1

I issue #1: dependent operations, can not hide latency
(since FP instructions are pipelined, latency > throughput)

cij = cij + ai0 · b0j
cij = cij + ai1 · b1j
cij = cij + ai2 · b2j
cij = cij + ai3 · b3j

I issue #2: ratio flops/memops=2/2=1
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Implementation of dsyrk + dpotrf on Intel Ivy-Bridge

Code Generation

I e.g. fix the size of the
loops: compiler can unroll
loops and avoid branches

I need to generate the code
for each problem size
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Implementation of dsyrk + dpotrf on Intel Ivy-Bridge

OpenBLAS

I high-performance for large
matrices
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Implementation of dsyrk + dpotrf on Intel Ivy-Bridge

HPMPC - blocking for registers

I HPMPC: library for
High-Performance
implementation of solvers
for Model Predictive
Control

I hide latency of instructions

I reuse of matrix elements
once in registers
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Blocking for registers

I idea: use registers to hold a sub-matrix of C
I e.g. 2× 2 sub-matrix in registers

bk,j+0 bk,j+1

ai+0,k ci+0,j+0 + ai+0,k · bk,j+0 ci+0,j+1 + ai+0,k · bk,j+1

ai+1,k ci+1,j+0 + ai+1,k · bk,j+0 ci+1,j+1 + ai+1,k · bk,j+1

I solution #1: independent operations, can hide latency

ci+0,j+0 = ci+0,j+0 + ai+0,0 · b0,j+0

ci+1,j+0 = ci+1,j+0 + ai+1,0 · b0,j+0

ci+0,j+1 = ci+0,j+1 + ai+0,0 · b0,j+1

ci+1,j+1 = ci+1,j+1 + ai+1,0 · b0,j+1

ci+0,j+0 = ci+0,j+0 + ai+0,1 · b1,j+0

. . . = . . .

I solution #2: ratio flops/memops=8/4=2
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Implementation of dsyrk + dpotrf on Intel Ivy-Bridge

HPMPC - SIMD instructions

I use SIMD
(Single-Instruction
Multiple-Data)

I AVX: 4 doubles per vector

I performance drop for n
multiple of 32 - cache
associativity
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Use of SIMD

I idea: perform the same instructions on small vectors of data,
element-wise

I e.g. 2-wide registers, 4x2 sub-matrix

b0 b1
a0
a1

[
c00
c10

]
+

[
a0
a1

]
·
[
b0
b0

] [
c01
c11

]
+

[
a0
a1

]
·
[
b1
b1

]
a2
a3

[
c20
c30

]
+

[
a2
a3

]
·
[
b0
b0

] [
c21
c31

]
+

[
a2
a3

]
·
[
b1
b1

]
I 2-wide SIMD gives up to 2x speed-up
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Implementation of dsyrk + dpotrf on Intel Ivy-Bridge

HPMPC - panel-major matrix
format

I panel-major matrix format:
arrange matrix elements in
memory as accessed by
the dgemm routine

I smooth performance
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Access pattern in optimized BLAS

Figure : Access pattern of data in different cache levels for the dgemm

routine in GotoBLAS/OpenBLAS/BLIS. Data is packed (on-line) into
buffers following the access pattern.
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Panel-major matrix format

+ = ·

bs

T

I matrix elements are stored in the same order such as the gemm

kernel accesses them

I optimal ’NT’ variant (namely, A not-transposed, B
transposed)

I panels width bs is the same for the left and the right matrix
operand, as well as for the result matrix
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Optimized BLAS vs HPMPC software stack

linear algebra 
kernels

linear algebra 
kernels

optimized BLAS 
based solver

HPMPC 
based solver

linear algebra 
routines

linear algebra 
routines

Riccati solver for 
unconstrained MPC

IPM solver for 
linear MPC

IPM solver for 
linear MPC

Riccati solver for 
unconstrained MPC

high-level 
wrapper

packing of 
matrices

Part I

Part II

Part III

Figure : Structure of a Riccati-based IPM for linear MPC problems when
implemented using linear algebra in either optimized BLAS or HPMPC.
Routines in the orange boxes use matrices in column-major format,
routines in the green boxes use matrices in panel-major format.

Gianluca Frison Algorithms and Methods for Fast Model Predictive Control



Implementation of dsyrk + dpotrf on Intel Ivy-Bridge

HPMPC - merging of linear
algebra routines

I specialized kernels for
complex operations

I improves small-scale
performance

I worse large-scale
performance
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Merging of linear algebra routines - dsyrk + dpotrf

L =
(
Q +A · AT

)1/2
=L00 ∗ ∗

L10 L11 ∗
L20 L21 L22

 =

Q00 ∗ ∗
Q10 Q11 ∗
Q20 Q21 Q22

 +

A0
A1
A2

 · [AT
0 AT

1 AT
2

]1/2

=

 (Q00 +A0 · AT
0 )1/2 ∗ ∗

(Q10 +A1 · AT
0 )L−T

00 (Q11 +A1 · AT
1 − L10 · LT

10)
1/2 ∗

(Q20 +A2 · AT
0 )L−T

00 (Q21 +A2 · AT
1 − L20 · LT

10)L
−T
11 (Q22 +A2 · AT

2 − L20 · LT
20 − L21 · LT

21)
1/2



I each sub-matrix computed using a single specialized routine
I reduce number of function calls
I reduce number of load and store of the same data
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High-performance LAPACK for small matrices

I Implemented as level 3
BLAS routines

I Blocking at registers level

I Specialized kernels
merging gemm kernel with
unblocked LAPACK
routines
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Part II

Algorithms for Unconstrained MPC and MHE Problems
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Linear Time-Variant Optimal Control Problem

min
u,x

N−1∑
n=0

1

2

unxn
1

T Rn Sn rn
ST
n Qn qn
rTn qTn ρn

unxn
1

+
1

2

[
xN
1

]T [
QN qN
qTN ρN

] [
xN
1

]
s.t. xn+1 = Anxn + Bnun + bn, n = 0, . . . ,N − 1

x0 = x̂0

0 = DNxN + dN

I MPC vs MHE

I equality constraints at last stage
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Karush-Kuhn-Tucker optimality conditions

KKT system (for N = 2)

Q0 ST
0 AT

0

S0 R0 BT
0

A0 B0 −I
−I Q1 ST

1 AT
1

S1 R1 B1

A1 B1 −I
−I Q2 DT

2

D2





x0
u0
λ0
x1
u1
λ1
x2
λ2


=



−q0
−r0
−b0
−q1
−r1
−b1
−q2
−d2


I Large, structured system of linear equations

I Sub-matrices are assumed dense or diagonal
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Backward Riccati recursion

Pn = Qn + AT
n Pn+1An−

− (ST
n + AT

n Pn+1Bn)(Rn + BT
n Pn+1Bn)−1(S + BT

n Pn+1An)

I structure-exploiting factorization of the KKT matrix

I begins factorization at the last stage

I does not require invertible Hessian

I can not handle additional equality constraints at the last stage

I naturally handles MPC problems

I O(N(nx + nu)3) flops
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Backward Riccati recursion

Main loop

1: . . .
2: for n← N − 1, . . . , 0 do

3: AT
n Ln+1 ←

[
BT
n

AT
n

]
· Ln+1,22 . trmm

4: Mn ← Qn + (AT
n Ln+1) · (AT

n Ln+1)T . syrk

5:

[
Ln,11
Ln,21 Ln,22

]
←M1/2

n . potrf

6: end for

7: . . .
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Backward Riccati recursion

I HPMPC much better for
small problems

I performance plot similar
to linear algebra ones
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Forward Schur-complement recursion

Σn+1 = Qn +

([
An Bn

] [Σn ST
n

Sn Rn

]−1 [
An

Bn

])−1

I structure-exploiting factorization of the KKT matrix

I begins factorization at the first stage

I requires invertible Hessian (or regularization)

I handles additional equality constraints at the last stage

I naturally handles MHE problems

I O(N(nx + nu)3) flops
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Forward Schur-complement recursion

Main loop

1: . . .
2: for n← 1, . . . ,N − 1 do
3: Σ← Qn + Un · UT

n . lauum

4: Q ←
[

Σ 0
Sn Rn

]
5: A ←

[
An Bn

]
6: Ln ← Q1/2 . potrf

7: ALn ← A · L−T . trsm

8: Pinv ← ALn · ALTn . syrk

9: L← P
1/2
inv . potrf

10: Un+1 ← L−T . trtri

11: end for

12: . . .
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Forward Schur-complement recursion

I similar considerations to
backward Riccati recursion

I but slightly worse
performance due to more
LAPACK routines
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Hessian condensing - idea

I Idea: use state-space equation to eliminate states variables
from the optimization problem

I Smaller but dense Hessian
BT

0 Q1B0 + BT
0 AT

1 Q2A1B0 + BT
0 AT

1 AT
2 Q3A2A1B0 ∗ ∗

BT
1 Q2A1B0 + BT

1 AT
2 Q3A2A1B0 BT

1 Q2B1 + BT
1 AT

2 Q3A2B1 ∗
BT
2 Q3A2A1B0 BT

2 Q3A2B1 BT
2 Q3B2
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Hessian condensing - MPC case

Initial state and state space equations

x0 = x̂0, xn+1 = Anxn + Bnun + bn

rewritten as

Āx̄ = B̄ū + b̄ ⇒ x̄ = Ā−1B̄ū + Ā−1b̄
.

= Γuū + Γx ,b

where (N = 3)

x̄ =


x0
x1
x2
x3

 , ū =

u0u1
u2

 , b̄ =


x̂0
b0
b1
b2



Ā =


I
−A0 I

−A1 I
−A2 I

 , B̄ =


0
B0

B1

B2
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Hessian condensing - MPC case

Key idea to have O(N2) Hessian condensing algorithms

Ā−1 =


I
−A0 I

−A1 I
−A2 I


−1

=


I
A0 I

A1A0 A1 I
A2A1A0 A2A1 A2 I


I Ā is sparse (O(N) n.z.) but Ā−1 is dense (O(N2) n.z.)

Γu =

 I
−A0 I

−A1 I
−A2 I


−1  0

B0

B1

B2

 =

 0
B0

A1B0 B1

A2A1B0 A2B1 B2


I backsolve vs matrix multiplication: nx vs Nnu trade-off
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Hessian condensing - MPC case

If Sn = 0, condensed Hessian

H = R̄ + ΓT
u Q̄Γu

= R̄ + B̄T Ā−T Q̄Ā−1B̄

Three algorithms depending on
the order of operations

I O(N3) and O(n2x)

I O(N2) and O(n2x)

I O(N2) and O(n3x)
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Hessian factorization - MPC case

I O(N3) classical Cholesky
factorization of condensed
Hessian

I O(N) structure-exploiting
Cholesky factorization of
permuted condensed
Hessian

I starts form last stage
I directly builds the

factorized Hessian
I combined with

(O(N2) and O(n2x)) or
(O(N2) and O(n3x))
Hessian condensing
algorithms
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Hessian condensing & factorization - MPC case

Still three algorithms

I O(N3) and O(n2x)

I O(N2) and O(n2x)

I O(N2) and O(n3x)
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Hessian condensing - MHE case

State space equations (no initial state constraint)

xn+1 = Anxn + Bnun + bn

rewritten as
Āx̄ = B̄ū + b̄

where (N = 3)

x̄ =


x0
x1
x2
x3

 , ū =

u0u1
u2

 , b̄ =


0
b0
b1
b2



Ā =


0
−A0 I

−A1 I
−A2 I

 , B̄ =


0
B0

B1

B2
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Hessian condensing - MHE case

Recover invertibility of Ā

Āx̄ =


I
−A0 I

−A1 I
−A2 I



x0
x1
x2
x3

−

I
0
0
0

 x0 = Āx̄ − E0x0

gives

x̄ = Ā−1E0x0 + Ā−1B̄ū + Ā−1b̄

= Ā−1B̄v̄ + Ā−1b̄

where

B̄ =


I

B0

B1

B2

 , v̄ =


x0
u0
u1
u2
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Hessian condensing - MHE case

I x0 as additional input (of
size nx) at stage −1

I all algorithms for MPC
can be employed

I O(n3x) can not be avoided

I one algorithm is always
better

I same applies for
condensed Hessian
factorization
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Part III

Algorithms for Constrained and Nonlinear MPC Problems
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Linear MPC problem

min
u,x

N−1∑
n=0

1

2

unxn
1

T Rn Sn rn
ST
n Qn qn
rTn qTn ρn

unxn
1

+
1

2

[
xN
1

]T [
QN qN
qTN ρN

] [
xN
1

]
s.t. xn+1 = Anxn + Bnun + bn, n = 0, . . . ,N − 1

x0 = x̂0

uln ≤ un ≤ uun , n = 0, . . . ,N − 1

x ln ≤ xn ≤ xun , n = 1, . . . ,N

I only box constraints considered here
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Interior Point Methods (IPMs) - general idea

I General QP program & KKT system

min
x,u

1

2
xTHx + gT x

s.t. Ax = b

Cx ≥ d

⇒

Hx + g − ATπ − CTλ = 0

Ax − b = 0

Cx − d − t = 0

λT t = 0

(λ, t) ≥ 0

I Newton method (2nd order method) for the KKT system
H −AT −CT 0
A 0 0 0
C 0 0 −I
0 0 Tk Λk




∆x
∆π
∆λ
∆t

 = −


Hxk − ATπk − CTλk + g

Aπk − b
Cxk − tk − d

ΛkTke + σµke
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Interior Point Methods (IPMs) - general idea

I structured system, can be rewritten as (augmented system)[
H + CT (T−1

k Λk)C −AT

−A 0

] [
xk
πk

]
=

= −
[
g − CT (Λke + T−1

k Λkd + T−1
k σµke)

b

]
I KKT system of an equality constrained QP
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Riccati-based IPM for the linear MPC problem

I In the linear MPC problem, KKT system of a LTV-OCP

I Most expensive operation: compute prediction-correction
search directions (factorization of KKT system uses level 3
BLAS & LAPACK)

I Backward Riccati recursion (cubic & quadratic number of
flops in stage variables number)

I All other operations in IPMs: linear number of flops in stage
variables number

Gianluca Frison Algorithms and Methods for Fast Model Predictive Control



Riccati-based IPM in HPMPC

Table : Comparison of solvers for the box-constrained linear MPC
problem: low- and high-level interfaces for the IPM in HPMPC, FORCES
IPM and FORCES Pro IPM. Run times are presented in seconds. For
each problem size and solver, the number of IPM iterations is fixed to 10.

HPMPC HPMCP FORCES FORCES
nx nu nb N low-level high-level Pro

4 1 5 10 5.39 · 10−5 6.31 · 10−5 1.1 · 10−4 1.0 · 10−4

8 3 11 10 9.05 · 10−5 1.04 · 10−4 3.4 · 10−4 3.1 · 10−4

12 5 17 30 5.07 · 10−4 5.74 · 10−4 2.11 · 10−3 1.84 · 10−3

22 10 32 10 3.94 · 10−4 4.60 · 10−4 3.96 · 10−3 3.29 · 10−3

30 14 44 10 7.03 · 10−4 8.17 · 10−4 9.47 · 10−3 7.49 · 10−3

60 29 89 30 1.10 · 10−2 1.26 · 10−2 1.67 · 10−1 1.25 · 10−1

Gianluca Frison Algorithms and Methods for Fast Model Predictive Control



Conclusion

Arrival point of the PhD work:

I High-performance QP
solvers for linear MPC

I Riccati-based IPM for
MPC and
Schur-complement
recursion for MHE
interfaced with ACADO

I NMPC of a rotational
start-up of a airbone wind
energy system
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Possible future directions - library

I split the library
I BLASFEO (?): linear algebra routines for embedded

optimization
I HPMPC: algorithms for MPC built on top of it

I expand the library
I add LU factorization for e.g. implicit integrators
I add LDL factorization
I embed partial condensing into Riccati-based IPM

I improve the library
I agree on (and fix) interfaces
I kernels in assembly to reduce code size
I (re-)add single-precision support
I add support for embedded hardware (e.g. Cortex M)
I multi CPU cores
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Possible future directions - direct sparse solvers

Direct sparse solvers (e.g. MA57 in IPOPT)

I built on top of level 3 BLAS (e.g. dgemm)

I analyzes the sparsity pattern of the problem, and gathers the
non-zero elements into dense sub-matrices

I trade-off between sparsity exploitation (small sub-matrices)
and BLAS performance (large sub-matrices): small-scale linear
algebra performance is the key

I may lack the right routine in standard BLAS (e.g. in MA57,
dsyrk with different factor matrices)

Re-implement MA57 on top of BLASFEO?
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Thanks for your attention

Questions and comments?
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Trend in (Intel) computing architectures

Table : Intel computer architectures: from 2-years cycle to 3 years-cycle

year arch. proc. ISA DP flops/cycle

2006/07 Merom 65 nm SSSE3 4
2007/08 Penryn 45 nm SSE4.1 4
2008/09 Nehalem 45 nm SSE4.2 4

2010 Westmere 32 nm SSE4.2 4
2011 Sandy-Bridge 32 nm AVX 8
2012 Ivy-Bridge 22 nm AVX 8
2013 Haswell 22 nm AVX2/FMA3 16
2014 Haswell-refresh 22 nm AVX2/FMA3 16

2014/15 Broadwell 14 nm AVX2/FMA3 16
2015/16 Skylake 14 nm AVX2/FMA3 16
2016/17 Kaby Lake 14 nm AVX2/FMA3? 16?
2017/18? Cannonlake 10 nm AVX512? 32?
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Code stack in HPMPC

x86_64 
Intel 
Core

x86 
Intel 
Atom

x86_64 
Intel 

Haswell

ARMv7A

b_s = 2 
linear 

algebra

b_s = 4 
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Figure : Structure of the linear algebra routines in HPMPC. The linear
algebra kernels are tailored to each computer architecture. The linear
algebra routines depend only on the panel height bs (that may be
different for single and double precision). The routines at higher levels in
the routines hierarchy are completely architecture-independent.
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Implementation of dsyrk + dpotrf on Intel Ivy-Bridge

HPMPC - swapping the order
of outer loops

I has to be considered in
case of not-squared kernels

I improves the L1 cache
reuse

I machine-dependent code

0

5

10

15

20

25

0 50 100 150 200 250 300

G
fl
o
p
s

matrix size n

test dsyrk + dpotrf

0

2

4

6

8

10

12

14

0 5 10 15 20

G
fl
o
p
s

matrix size n

test dsyrk + dpotrf

Gianluca Frison Algorithms and Methods for Fast Model Predictive Control



Backward Riccati recursion

I Main operations per stage:
I update

Q + A · P · AT = Q + A · (L · LT ) · AT = Q + (A · L) · (A · L)T

7
3n

3
x + 3n2xnu + nxn

2
u flops

I factorization-solution-downgrade

L ← R−1

L← M · L−T

P ← P − L · LT

n2xnu + nxn
2
u + 1

3n
3
u flops

I Total flops: N(73n
3
x + 4n2xnu + 2nxn

2
u + 1

3n
3
u)

Gianluca Frison Algorithms and Methods for Fast Model Predictive Control



Froward Schur-complement recursion

I Main operations per stage:
I computation of Schur complement

Q+A·P−1·AT = Q+A·(L·LT )−1·AT = Q+(A·L−T )·(A·L−T )T

7
3n

3
x + 4n2xnu + 2nxn

2
u + 1

3n
3
u flops

I inversion of positive definite matrix

Q−1 = (L · LT )−1 = L−T · L−1

n3x flops

I Total flops:
I dense Hessian N( 10

3 n
3
x + 4n2xnu + 2nxn

2
u + 1

3n
3
u)

I diagonal Hessian N( 10
3 n

3
x + n2xnu)
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