Algorithms and Methods for Fast Model Predictive Control

Gianluca Frison

Technical University of Denmark
Department of Applied Mathematics and Computer Science

13 April 2016

Background: Model Predictive Control

Model Predictive Control (and Moving Horizon Estimation)

Background: Model Predictive Control

Model Predictive Control

+ optimal control signal
+ easy incorporation of forecasts
+ predictive adaptation to setpoint changes
+ natural handling of constraints and MIMO
+ generalization to non-linear systems
- need for a model
- an optimization problem at each sampling instant

Background: "The Free Lunch is Over" (2005)

- For decades, CPU frequency increase boosted CPU performance
- Around 2002 CPU frequency stalled, transistor count kept doubling every 2 years (Moore's law)
- Use additional transistors to increase CPU
performance-per-clock: vectorization (SIMD), parallelization (multi-core)

Background: "The Free Lunch is Over" (2005)

Consequences:

- "If your program is too slow, just wait for the next computer generation" is not true any more
- Vectorization and parallelization require extra programming effort (compilers can't do proper auto-vec. and auto-par.)
- In real-time critical applications, more performance requires more (hardware-exploiting) software optimization

Thesis approach

Algorithms and Methods for Fast Model Predictive Control

- Methods: dense linear algebra implementation methods for embedded optimization (Part I)
- Algorithms: structure-exploiting algorithms for MPC (Parts II and III)
- Both algorithms and their implementation are equally important in the development of fast solvers
- Bottom-up approach: speed-up performance-critical routines to speed-up the overall solvers

Dense Linear Algebra Routines for Embedded Optimization

Framework: embedded optimization

Assumptions about embedded optimization:

- Computational speed is a key factor: solve optimization problems in real-time on resources-constrained hardware.
- Data matrices are reused several times (e.g. at each optimization algorithm iteration): look for a good data structure.
- Structure-exploiting algorithms can exploit the high-level sparsity pattern: data matrices assumed dense.
- Size of matrices is relatively small (tens or few hundreds): generally fitting in cache.
- Basic Linear Algebra Subprograms
- The de-facto standard interface for linear algebra
- Implementations optimized for many computer architectures
- but optimized for large-scale matrices
- often poor small-scale performance (large overhead)
- Divided into 3 levels:
- level 1: vector-vector operations: $\mathcal{O}(n)$ storage, $\mathcal{O}(n)$ flops
- level 2: matrix-vector operations: $\mathcal{O}\left(n^{2}\right)$ storage, $\mathcal{O}\left(n^{2}\right)$ flops
- level 3: matrix-matrix operations: $\mathcal{O}\left(n^{2}\right)$ storage, $\mathcal{O}\left(n^{3}\right)$ flops
- an access to memory (memop) is much slower than a flop
- in level 3 BLAS there is a lot of space for optimization

LAPACK

- Linear Algebra PACKage
- Standard software library for numerical linear algebra
- E.g. Cholesky factorization, matrix inversion
- Built on top of BLAS
- unblocked routines using level $1 \& 2$ BLAS (small matrices)
- blocked routines using level 3 BLAS (large matrices)
- Bad multi-thread scalability (not explicit parallelism)
- PLASMA project
- Bad small-scale performance (level $1 \& 2$ BLAS)
- examples later in the talk

(D)GEMM

- (DP) general matrix-matrix multiplication
- Key sub-operation in all level 3 BLAS \& LAPACK
- Often used to benchmark BLAS implementations
- In optimized BLAS, high-performance by employing:
- blocking for registers
- machine-specific instructions (e.g. SIMD)
- special internal matrix format
- blocking for cache

Computational Performance

- measured in Gflops $=(\#$ of flops $) /\left(10^{9}\right.$. solution time in s)
- e.g. dsyrk + dpotrf costs $n^{3}+\frac{1}{3} n^{3}=\frac{4}{3} n^{3}$ flops
- compared with theoretical peak performance
- measure of CPU utilization
- useful to identify performance bottlenecks
- room for improvement?

Implementation of dsyrk + dpotrf on Intel Ivy-Bridge

Test operation:

$$
\mathcal{L}=\left(\mathcal{Q}+\mathcal{A} \cdot \mathcal{A}^{T}\right)^{1 / 2}
$$

NetlibBLAS

- Reference BLAS \& LAPACK
- triple-loop linear algebra
- machine independent code
[all code is single-threaded]
[all code compiled with gcc]
test dsyrk + dpotrf

test dsyrk + dpotrf

Triple-loop implementation

- less memops if inner loop over k : each element is computed as

$$
c_{i j}=c_{i j}+\sum_{k=0}^{n-1} a_{i k} \cdot b_{k j}, \quad i=0, \ldots, n-1, \quad j=0, \ldots, n-1
$$

- issue \#1: dependent operations, can not hide latency (since FP instructions are pipelined, latency $>$ throughput)

$$
\begin{aligned}
c_{i j} & =c_{i j}+a_{i 0} \cdot b_{0 j} \\
c_{i j} & =c_{i j}+a_{i 1} \cdot b_{1 j} \\
c_{i j} & =c_{i j}+a_{i 2} \cdot b_{2 j} \\
c_{i j} & =c_{i j}+a_{i 3} \cdot b_{3 j}
\end{aligned}
$$

- issue $\# 2$: ratio flops/memops $=2 / 2=1$

Implementation of dsyrk + dpotrf on Intel Ivy-Bridge

Code Generation

- e.g. fix the size of the loops: compiler can unroll loops and avoid branches
- need to generate the code for each problem size

test dsyrk + dpotrf

Implementation of dsyrk + dpotrf on Intel Ivy-Bridge

OpenBLAS

- high-performance for large matrices

test dsyrk + dpotrf

Implementation of dsyrk + dpotrf on Intel Ivy-Bridge

HPMPC - blocking for registers

- HPMPC: library for High-Performance implementation of solvers for Model Predictive Control
- hide latency of instructions
- reuse of matrix elements once in registers

Blocking for registers

- idea: use registers to hold a sub-matrix of C
- e.g. 2×2 sub-matrix in registers

	$b_{k, j+0}$	$b_{k, j+1}$
$a_{i+0, k}$	$c_{i+0, j+0}+a_{i+0, k} \cdot b_{k, j+0}$	$c_{i+0, j+1}+a_{i+0, k} \cdot b_{k, j+1}$
$a_{i+1, k}$	$c_{i+1, j+0}+a_{i+1, k} \cdot b_{k, j+0}$	$c_{i+1, j+1}+a_{i+1, k} \cdot b_{k, j+1}$

- solution \#1: independent operations, can hide latency

$$
\begin{aligned}
c_{i+0, j+0} & =c_{i+0, j+0}+a_{i+0,0} \cdot b_{0, j+0} \\
c_{i+1, j+0} & =c_{i+1, j+0}+a_{i+1,0} \cdot b_{0, j+0} \\
c_{i+0, j+1} & =c_{i+0, j+1}+a_{i+0,0} \cdot b_{0, j+1} \\
c_{i+1, j+1} & =c_{i+1, j+1}+a_{i+1,0} \cdot b_{0, j+1} \\
c_{i+0, j+0} & =c_{i+0, j+0}+a_{i+0,1} \cdot b_{1, j+0} \\
\ldots & =\ldots
\end{aligned}
$$

- solution \#2: ratio flops/memops=8/4=2

Implementation of dsyrk + dpotrf on Intel Ivy-Bridge

HPMPC - SIMD instructions

- use SIMD
(Single-Instruction Multiple-Data)
- AVX: 4 doubles per vector
- performance drop for n multiple of 32 - cache associativity

test dsyrk + dpotrf

Use of SIMD

- idea: perform the same instructions on small vectors of data, element-wise
- e.g. 2 -wide registers, 4×2 sub-matrix

- 2-wide SIMD gives up to $2 x$ speed-up

Implementation of dsyrk + dpotrf on Intel Ivy-Bridge

HPMPC - panel-major matrix format

- panel-major matrix format: arrange matrix elements in memory as accessed by the dgemm routine
- smooth performance

test dsyrk + dpotrf

Access pattern in optimized BLAS

registers

L1 cache

L2 cache

$$
\tilde{A}\left\{\begin{array}{r:}
1 \\
i_{r} \\
r^{2}
\end{array} \square\right.
$$

L3 cache

Figure: Access pattern of data in different cache levels for the dgemm routine in GotoBLAS/OpenBLAS/BLIS. Data is packed (on-line) into buffers following the access pattern.

Panel-major matrix format

- matrix elements are stored in the same order such as the gemm kernel accesses them
- optimal 'NT' variant (namely, A not-transposed, B transposed)
- panels width b_{s} is the same for the left and the right matrix operand, as well as for the result matrix

Optimized BLAS vs HPMPC software stack

Figure: Structure of a Riccati-based IPM for linear MPC problems when implemented using linear algebra in either optimized BLAS or HPMPC. Routines in the orange boxes use matrices in column-major format, routines in the green boxes use matrices in panel-major format.

Implementation of dsyrk + dpotrf on Intel Ivy-Bridge

HPMPC - merging of linear algebra routines

- specialized kernels for complex operations
- improves small-scale performance
- worse large-scale performance

test dsyrk + dpotrf

Merging of linear algebra routines - dsyrk + dpotrf

$$
\begin{aligned}
& \mathcal{L}=\left(\mathcal{Q}+\mathcal{A} \cdot \mathcal{A}^{T}\right)^{1 / 2}= \\
& {\left[\begin{array}{ccc}
\mathcal{L}_{00} & * & * \\
\mathcal{L}_{10} & \mathcal{L}_{11} & * \\
\mathcal{L}_{20} & \mathcal{L}_{21} & \mathcal{L}_{22}
\end{array}\right]=\left(\begin{array}{ccc}
\left.\left[\begin{array}{ccc}
\mathcal{Q}_{00} & * & * \\
\mathcal{Q}_{10} & \mathcal{Q}_{11} & * \\
\mathcal{Q}_{20} & \mathcal{Q}_{21} & \mathcal{Q}_{22}
\end{array}\right]+\left[\begin{array}{l}
\mathcal{A}_{0} \\
\mathcal{A}_{1} \\
\mathcal{A}_{2}
\end{array}\right] \cdot\left[\begin{array}{lll}
\mathcal{A}_{0}^{T} & \mathcal{A}_{1}^{T} & \mathcal{A}_{2}^{T}
\end{array}\right]\right)^{1 / 2}= \\
{\left[\begin{array}{ccc}
\left(\mathcal{Q}_{00}+\mathcal{A}_{0} \cdot \mathcal{A}_{0}^{T}\right)^{1 / 2} & \mathcal{A}^{*} & * \\
\left(\mathcal{Q}_{10}+\mathcal{A}_{1} \cdot \mathcal{A}_{0}^{T}\right) \mathcal{L}_{00}^{-T} & \left(\mathcal{Q}_{11}+\mathcal{A}_{1} \cdot \mathcal{A}_{1}^{T}-\mathcal{L}_{10} \cdot \mathcal{L}_{10}^{T}\right)^{1 / 2} & * \\
\left(\mathcal{Q}_{20}+\mathcal{A}_{2} \cdot \mathcal{A}_{0}^{T}\right) \mathcal{L}_{00}^{-T} & \left(\mathcal{Q}_{21}+\mathcal{A}_{2} \cdot \mathcal{A}_{1}^{T}-\mathcal{L}_{20} \cdot \mathcal{L}_{10}^{T}\right) \mathcal{L}_{11}^{-T} & \left(\mathcal{Q}_{22}+\mathcal{A}_{2} \cdot \mathcal{A}_{2}^{T}-\mathcal{L}_{20} \cdot \mathcal{L}_{20}^{T}-\mathcal{L}_{21} \cdot \mathcal{L}_{21}^{T}\right)^{1 / 2}
\end{array}\right]}
\end{array}\right.}
\end{aligned}
$$

- each sub-matrix computed using a single specialized routine
- reduce number of function calls
- reduce number of load and store of the same data

High-performance LAPACK for small matrices

- Implemented as level 3 BLAS routines
- Blocking at registers level
- Specialized kernels merging gemm kernel with unblocked LAPACK routines

Part II

Algorithms for Unconstrained MPC and MHE Problems

Linear Time-Variant Optimal Control Problem

$$
\begin{array}{ll}
\min _{u, x} & \sum_{n=0}^{N-1} \frac{1}{2}\left[\begin{array}{c}
u_{n} \\
x_{n} \\
1
\end{array}\right]^{T}\left[\begin{array}{lll}
R_{n} & S_{n} & r_{n} \\
S_{n}^{T} & Q_{n} & q_{n} \\
r_{n}^{T} & q_{n}^{T} & \rho_{n}
\end{array}\right]\left[\begin{array}{c}
u_{n} \\
x_{n} \\
1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
x_{N} \\
1
\end{array}\right]^{T}\left[\begin{array}{ll}
Q_{N} & q_{N} \\
q_{N}^{T} & \rho_{N}
\end{array}\right]\left[\begin{array}{c}
x_{N} \\
1
\end{array}\right] \\
\text { s.t. } & x_{n+1}=A_{n} x_{n}+B_{n} u_{n}+b_{n}, \quad n=0, \ldots, N-1 \\
& x_{0}=\hat{x}_{0} \\
& 0=D_{N} x_{N}+d_{N}
\end{array}
$$

- MPC vs MHE
- equality constraints at last stage

Karush-Kuhn-Tucker optimality conditions

KKT system (for $N=2$)
$\left[\begin{array}{llll|lll|l}Q_{0} & S_{0}^{T} & A_{0}^{T} & & & & & \\ S_{0} & R_{0} & B_{0}^{T} & & & & & \\ A_{0} & B_{0} & & -I & & & & \\ \hline & & -I & Q_{1} & S_{1}^{T} & A_{1}^{T} & & \\ & & & S_{1} & R_{1} & B_{1} & & \\ & & & A_{1} & B_{1} & & -I & \\ \hline & & & & & -I & Q_{2} & D_{2}^{T} \\ & & & & & & D_{2} & \end{array}\right]\left[\begin{array}{l}x_{0} \\ u_{0} \\ \lambda_{0} \\ \hline x_{1} \\ u_{1} \\ \lambda_{1} \\ \hline x_{2} \\ \lambda_{2}\end{array}\right]=\left[\begin{array}{l}-q_{0} \\ -r_{0} \\ -b_{0} \\ \hline-q_{1} \\ -r_{1} \\ -b_{1} \\ \hline-q_{2} \\ -d_{2}\end{array}\right]$

- Large, structured system of linear equations
- Sub-matrices are assumed dense or diagonal

Backward Riccati recursion

$$
\begin{aligned}
P_{n} & =Q_{n}+A_{n}^{T} P_{n+1} A_{n}- \\
& -\left(S_{n}^{T}+A_{n}^{T} P_{n+1} B_{n}\right)\left(R_{n}+B_{n}^{T} P_{n+1} B_{n}\right)^{-1}\left(S+B_{n}^{T} P_{n+1} A_{n}\right)
\end{aligned}
$$

- structure-exploiting factorization of the KKT matrix
- begins factorization at the last stage
- does not require invertible Hessian
- can not handle additional equality constraints at the last stage
- naturally handles MPC problems
- $\mathcal{O}\left(N\left(n_{x}+n_{u}\right)^{3}\right)$ flops

Backward Riccati recursion

Main loop
1 :
2: for $n \leftarrow N-1, \ldots, 0$ do
3: $\quad \mathcal{A}_{n}^{T} \mathcal{L}_{n+1} \leftarrow\left[\begin{array}{c}B_{n}^{T} \\ A_{n}^{T}\end{array}\right] \cdot L_{n+1,22}$
\triangleright trmm
4: $\quad \mathcal{M}_{n} \leftarrow \mathcal{Q}_{n}+\left(\mathcal{A}_{n}^{T} \mathcal{L}_{n+1}\right) \cdot\left(\mathcal{A}_{n}^{T} \mathcal{L}_{n+1}\right)^{T}$

- syrk

5: $\quad\left[\begin{array}{ll}L_{n, 11} & \\ L_{n, 21} & L_{n, 22}\end{array}\right] \leftarrow \mathcal{M}_{n}^{1 / 2}$
\triangleright potrf
6: end for
7: ...

Backward Riccati recursion

- HPMPC much better for small problems

- performance plot similar to linear algebra ones

Forward Schur-complement recursion

$$
\Sigma_{n+1}=Q_{n}+\left(\left[\begin{array}{ll}
A_{n} & B_{n}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{n} & S_{n}^{T} \\
S_{n} & R_{n}
\end{array}\right]^{-1}\left[\begin{array}{c}
A_{n} \\
B_{n}
\end{array}\right]\right)^{-1}
$$

- structure-exploiting factorization of the KKT matrix
- begins factorization at the first stage
- requires invertible Hessian (or regularization)
- handles additional equality constraints at the last stage
- naturally handles MHE problems
- $\mathcal{O}\left(N\left(n_{x}+n_{u}\right)^{3}\right)$ flops

Forward Schur-complement recursion

Main loop
1:
2: for $n \leftarrow 1, \ldots, N-1$ do
3: $\quad \Sigma \leftarrow Q_{n}+U_{n} \cdot U_{n}^{T}$
\triangleright lauum
4: $\quad \mathcal{Q} \leftarrow\left[\begin{array}{cc}\Sigma & 0 \\ S_{n} & R_{n}\end{array}\right]$
5: $\quad \mathcal{A} \leftarrow\left[\begin{array}{ll}A_{n} & B_{n}\end{array}\right]$
6: $\quad \mathcal{L}_{n} \leftarrow Q^{1 / 2}$
\triangleright potrf
7: $\quad \mathcal{A} \mathcal{L}_{n} \leftarrow \mathcal{A} \cdot \mathcal{L}^{-T}$
8: $\quad P_{\text {inv }} \leftarrow \mathcal{A} \mathcal{L}_{n} \cdot \mathcal{A} \mathcal{L}_{n}^{T}$
\triangleright trsm

9: $\quad L \leftarrow P_{i n v}^{1 / 2}$
\triangleright syrk

10: $\quad U_{n+1} \leftarrow L^{-T}$
\triangleright potrf

11: end for
12: ...

Forward Schur-complement recursion

- similar considerations to backward Riccati recursion
- but slightly worse performance due to more LAPACK routines

forward_schur_dense_trf, $\mathrm{N}=10$

Hessian condensing - idea

- Idea: use state-space equation to eliminate states variables from the optimization problem
- Smaller but dense Hessian

$$
\left[\begin{array}{ccc}
B_{0}^{T} Q_{1} B_{0}+B_{0}^{T} A_{1}^{T} Q_{2} A_{1} B_{0}+B_{0}^{T} A_{1}^{T} A_{2}^{T} Q_{3} A_{2} A_{1} B_{0} & * & * \\
B_{1}^{T} Q_{2} A_{1} B_{0}+B_{1}^{T} A_{2}^{T} Q_{3} A_{2} A_{1} B_{0} & B_{1}^{T} Q_{2} B_{1}+B_{1}^{T} A_{2}^{T} Q_{3} A_{2} B_{1} & * \\
B_{2}^{T} Q_{3} A_{2} A_{1} B_{0} & B_{2}^{T} Q_{3} A_{2} B_{1} & B_{2}^{T} Q_{3} B_{2}
\end{array}\right]
$$

Hessian condensing - MPC case

Initial state and state space equations

$$
x_{0}=\hat{x}_{0}, \quad x_{n+1}=A_{n} x_{n}+B_{n} u_{n}+b_{n}
$$

rewritten as

$$
\bar{A} \bar{x}=\bar{B} \bar{u}+\bar{b} \quad \Rightarrow \quad \bar{x}=\bar{A}^{-1} \bar{B} \bar{u}+\bar{A}^{-1} \bar{b} \doteq \Gamma_{u} \bar{u}+\Gamma_{x, b}
$$

where $(N=3)$

$$
\begin{gathered}
\bar{x}=\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \quad \bar{u}=\left[\begin{array}{l}
u_{0} \\
u_{1} \\
u_{2}
\end{array}\right], \quad \bar{b}=\left[\begin{array}{l}
\hat{x}_{0} \\
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right] \\
\bar{A}=\left[\begin{array}{cccc}
l & & \\
-A_{0} & I & & \\
& -A_{1} & I & \\
& & -A_{2} & I
\end{array}\right], \quad \bar{B}=\left[\begin{array}{lll}
B_{0} & & \\
& B_{1} & \\
& & B_{2}
\end{array}\right]
\end{gathered}
$$

Hessian condensing - MPC case

Key idea to have $\mathcal{O}\left(N^{2}\right)$ Hessian condensing algorithms

$$
\bar{A}^{-1}=\left[\begin{array}{cccc}
l & & & \\
-A_{0} & I & & \\
& -A_{1} & I & \\
& & -A_{2} & I
\end{array}\right]^{-1}=\left[\begin{array}{cccc}
I & & & \\
A_{0} & I & & \\
A_{1} A_{0} & A_{1} & I & \\
A_{2} A_{1} A_{0} & A_{2} A_{1} & A_{2} & I
\end{array}\right]
$$

- \bar{A} is sparse $\left(\mathcal{O}(N)\right.$ n.z.) but \bar{A}^{-1} is dense $\left(\mathcal{O}\left(N^{2}\right)\right.$ n.z. $)$

$$
\Gamma_{u}=\left[\begin{array}{cccc}
I & & & \\
-A_{0} & I & & \\
& -A_{1} & I & \\
& & -A_{2} & I
\end{array}\right]^{-1}\left[\begin{array}{llll}
B_{0} & & \\
& B_{1} & \\
& & B_{2}
\end{array}\right]=\left[\begin{array}{ccc}
B_{0} & & \\
A_{1} B_{0} & B_{1} & \\
A_{2} A_{1} B_{0} & A_{2} B_{1} & B_{2}
\end{array}\right]
$$

- backsolve vs matrix multiplication: n_{x} vs $N n_{u}$ trade-off

Hessian condensing - MPC case

If $S_{n}=0$, condensed Hessian

$$
\begin{aligned}
H & =\bar{R}+\Gamma_{u}^{T} \bar{Q} \Gamma_{u} \\
& =\bar{R}+\bar{B}^{T} \bar{A}^{-T} \bar{Q} \bar{A}^{-1} \bar{B}
\end{aligned}
$$

Three algorithms depending on the order of operations

- $\mathcal{O}\left(N^{3}\right)$ and $\mathcal{O}\left(n_{x}^{2}\right)$
- $\mathcal{O}\left(N^{2}\right)$ and $\mathcal{O}\left(n_{x}^{2}\right)$
- $\mathcal{O}\left(N^{2}\right)$ and $\mathcal{O}\left(n_{x}^{3}\right)$

Hessian cond - $\mathrm{n}_{\mathrm{x}}=16, \mathrm{n}_{\mathrm{u}}=8$ - dense Hessian

Hessian cond - $\mathrm{N}=30, \mathrm{n}_{\mathrm{u}}=2$ - dense Hessian

Hessian factorization - MPC case

- $\mathcal{O}\left(N^{3}\right)$ classical Cholesky factorization of condensed Hessian
- $\mathcal{O}(N)$ structure-exploiting Cholesky factorization of permuted condensed Hessian
- starts form last stage
- directly builds the factorized Hessian
- combined with $\left(\mathcal{O}\left(N^{2}\right)\right.$ and $\left.\mathcal{O}\left(n_{x}^{2}\right)\right)$ or $\left(\mathcal{O}\left(N^{2}\right)\right.$ and $\left.\mathcal{O}\left(n_{x}^{3}\right)\right)$ Hessian condensing algorithms

Hessian condensing \& factorization - MPC case

Still three algorithms

- $\mathcal{O}\left(N^{3}\right)$ and $\mathcal{O}\left(n_{x}^{2}\right)$
- $\mathcal{O}\left(N^{2}\right)$ and $\mathcal{O}\left(n_{x}^{2}\right)$
- $\mathcal{O}\left(N^{2}\right)$ and $\mathcal{O}\left(n_{x}^{3}\right)$

Hessian condensing - MHE case

State space equations (no initial state constraint)

$$
x_{n+1}=A_{n} x_{n}+B_{n} u_{n}+b_{n}
$$

rewritten as

$$
\bar{A} \bar{x}=\bar{B} \bar{u}+\bar{b}
$$

where $(N=3)$

$$
\begin{gathered}
\bar{x}=\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \quad \bar{u}=\left[\begin{array}{l}
u_{0} \\
u_{1} \\
u_{2}
\end{array}\right], \quad \bar{b}=\left[\begin{array}{l}
0 \\
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right] \\
\bar{A}=\left[\begin{array}{cccc}
0 & & \\
-A_{0} & l & & \\
& -A_{1} & I & \\
& & -A_{2} & I
\end{array}\right], \quad \bar{B}=\left[\begin{array}{lll}
B_{0} & & \\
& B_{1} & \\
& & B_{2}
\end{array}\right]
\end{gathered}
$$

Hessian condensing - MHE case

Recover invertibility of \bar{A}

$$
\bar{A} \bar{x}=\left[\begin{array}{cccc}
I & & & \\
-A_{0} & I & & \\
& -A_{1} & I & \\
& & -A_{2} & I
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]-\left[\begin{array}{l}
I \\
0 \\
0 \\
0
\end{array}\right] x_{0}=\overline{\mathcal{A}} \bar{x}-\mathcal{E}_{0} x_{0}
$$

gives

$$
\begin{aligned}
\bar{x} & =\overline{\mathcal{A}}^{-1} \mathcal{E}_{0} x_{0}+\overline{\mathcal{A}}^{-1} \bar{B} \bar{u}+\overline{\mathcal{A}}^{-1} \bar{b} \\
& =\overline{\mathcal{A}}^{-1} \overline{\mathcal{B}} \bar{v}+\overline{\mathcal{A}}^{-1} \bar{b}
\end{aligned}
$$

where

$$
\overline{\mathcal{B}}=\left[\begin{array}{l|lll}
I & & & \\
& B_{0} & & \\
& & B_{1} & \\
& & & B_{2}
\end{array}\right], \quad \bar{v}=\left[\begin{array}{l}
x_{0} \\
\hline u_{0} \\
u_{1} \\
u_{2}
\end{array}\right]
$$

Hessian condensing - MHE case

- x_{0} as additional input (of size n_{x}) at stage -1
- all algorithms for MPC can be employed
- $\mathcal{O}\left(n_{x}^{3}\right)$ can not be avoided
- one algorithm is always better
- same applies for condensed Hessian factorization

Hessian cond - $\mathrm{N}=30, \mathrm{n}_{\mathrm{u}}=2$ - dense Hessian

Part III

Algorithms for Constrained and Nonlinear MPC Problems

Linear MPC problem

$$
\begin{array}{ll}
\min _{u, x} & \sum_{n=0}^{N-1} \frac{1}{2}\left[\begin{array}{c}
u_{n} \\
x_{n} \\
1
\end{array}\right]^{T}\left[\begin{array}{lll}
R_{n} & S_{n} & r_{n} \\
S_{n}^{T} & Q_{n} & q_{n} \\
r_{n}^{T} & q_{n}^{T} & \rho_{n}
\end{array}\right]\left[\begin{array}{c}
u_{n} \\
x_{n} \\
1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
x_{N} \\
1
\end{array}\right]^{T}\left[\begin{array}{cc}
Q_{N} & q_{N} \\
q_{N}^{T} & \rho_{N}
\end{array}\right]\left[\begin{array}{c}
x_{N} \\
1
\end{array}\right] \\
\text { s.t. } & x_{n+1}=A_{n} x_{n}+B_{n} u_{n}+b_{n}, \quad n=0, \ldots, N-1 \\
& x_{0}=\hat{x}_{0} \\
& u_{n}^{1} \leq u_{n} \leq u_{n}^{\mathrm{u}}, \quad n=0, \ldots, N-1 \\
& x_{n}^{1} \leq x_{n} \leq x_{n}^{\mathrm{u}}, \quad n=1, \ldots, N
\end{array}
$$

- only box constraints considered here

Interior Point Methods (IPMs) - general idea

- General QP program \& KKT system

$$
\begin{aligned}
& \min _{x, u} \frac{1}{2} x^{\top} H x+g^{\top} x \\
& H x+g-A^{T} \pi-C^{T} \lambda=0 \\
& A x-b=0 \\
& \text { s.t. } \quad A x=b \\
& C x \geq d \\
& C x-d-t=0 \\
& \lambda^{\top} t=0 \\
& (\lambda, t) \geq 0
\end{aligned}
$$

- Newton method (2nd order method) for the KKT system

$$
\left[\begin{array}{cccc}
H & -A^{T} & -C^{T} & 0 \\
A & 0 & 0 & 0 \\
C & 0 & 0 & -I \\
0 & 0 & T_{k} & \Lambda_{k}
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta \pi \\
\Delta \lambda \\
\Delta t
\end{array}\right]=-\left[\begin{array}{c}
H x_{k}-A^{T} \pi_{k}-C^{T} \lambda_{k}+g \\
A \pi_{k}-b \\
C x_{k}-t_{k}-d \\
\Lambda_{k} T_{k} e+\sigma \mu_{k} e
\end{array}\right]
$$

Interior Point Methods (IPMs) - general idea

- structured system, can be rewritten as (augmented system)

$$
\begin{aligned}
& {\left[\begin{array}{cc}
H+C^{T}\left(T_{k}^{-1} \Lambda_{k}\right) C & -A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{l}
x_{k} \\
\pi_{k}
\end{array}\right]=} \\
& \quad=-\left[\begin{array}{c}
g-C^{T}\left(\Lambda_{k} e+T_{k}^{-1} \Lambda_{k} d+T_{k}^{-1} \sigma \mu_{k} e\right) \\
b
\end{array}\right]
\end{aligned}
$$

- KKT system of an equality constrained QP

Riccati-based IPM for the linear MPC problem

- In the linear MPC problem, KKT system of a LTV-OCP
- Most expensive operation: compute prediction-correction search directions (factorization of KKT system uses level 3 BLAS \& LAPACK)
- Backward Riccati recursion (cubic \& quadratic number of flops in stage variables number)
- All other operations in IPMs: linear number of flops in stage variables number

Riccati-based IPM in HPMPC

Table: Comparison of solvers for the box-constrained linear MPC problem: low- and high-level interfaces for the IPM in HPMPC, FORCES IPM and FORCES_Pro IPM. Run times are presented in seconds. For each problem size and solver, the number of IPM iterations is fixed to 10 .

				HPMPC low-level	HPMCP high-level	FORCES	FORCES Pro
n_{x}	n_{u}	n_{b}	N	low			
4	1	5	10	$5.39 \cdot 10^{-5}$	$6.31 \cdot 10^{-5}$	$1.1 \cdot 10^{-4}$	$1.0 \cdot 10^{-4}$
8	3	11	10	$9.05 \cdot 10^{-5}$	$1.04 \cdot 10^{-4}$	$3.4 \cdot 10^{-4}$	$3.1 \cdot 10^{-4}$
12	5	17	30	$5.07 \cdot 10^{-4}$	$5.74 \cdot 10^{-4}$	$2.11 \cdot 10^{-3}$	$1.84 \cdot 10^{-3}$
22	10	32	10	$3.94 \cdot 10^{-4}$	$4.60 \cdot 10^{-4}$	$3.96 \cdot 10^{-3}$	$3.29 \cdot 10^{-3}$
30	14	44	10	$7.03 \cdot 10^{-4}$	$8.17 \cdot 10^{-4}$	$9.47 \cdot 10^{-3}$	$7.49 \cdot 10^{-3}$
60	29	89	30	$1.10 \cdot 10^{-2}$	$1.26 \cdot 10^{-2}$	$1.67 \cdot 10^{-1}$	$1.25 \cdot 10^{-1}$

Conclusion

Arrival point of the PhD work:

- High-performance QP solvers for linear MPC
- Riccati-based IPM for MPC and
Schur-complement recursion for MHE interfaced with ACADO
- NMPC of a rotational start-up of a airbone wind energy system

Possible future directions - library

- split the library
- BLASFEO (?): linear algebra routines for embedded optimization
- HPMPC: algorithms for MPC built on top of it
- expand the library
- add LU factorization for e.g. implicit integrators
- add LDL factorization
- embed partial condensing into Riccati-based IPM
- improve the library
- agree on (and fix) interfaces
- kernels in assembly to reduce code size
- (re-)add single-precision support
- add support for embedded hardware (e.g. Cortex M)
- multi CPU cores

Possible future directions - direct sparse solvers

Direct sparse solvers (e.g. MA57 in IPOPT)

- built on top of level 3 BLAS (e.g. dgemm)
- analyzes the sparsity pattern of the problem, and gathers the non-zero elements into dense sub-matrices
- trade-off between sparsity exploitation (small sub-matrices) and BLAS performance (large sub-matrices): small-scale linear algebra performance is the key
- may lack the right routine in standard BLAS (e.g. in MA57, dsyrk with different factor matrices)
Re-implement MA57 on top of BLASFEO?

Thanks for your attention

Questions and comments?

Trend in (Intel) computing architectures

Table: Intel computer architectures: from 2-years cycle to 3 years-cycle

year	arch.	proc.	ISA	DP flops/cycle
$2006 / 07$	Merom	65 nm	SSSE3	4
$2007 / 08$	Penryn	45 nm	SSE4.1	4
$2008 / 09$	Nehalem	45 nm	SSE4.2	4
2010	Westmere	32 nm	SSE4.2	4
2011	Sandy-Bridge	32 nm	AVX	8
2012	Ivy-Bridge	22 nm	AVX	8
2013	Haswell	22 nm	AVX2/FMA3	16
2014	Haswell-refresh	22 nm	AVX2/FMA3	16
$2014 / 15$	Broadwell	14 nm	AVX2/FMA3	16
$2015 / 16$	Skylake	14 nm	AVX2/FMA3	16
$2016 / 17$	Kaby Lake	14 nm	AVX2/FMA3?	$16 ?$
$2017 / 18 ?$	Cannonlake	10 nm	AVX512?	$32 ?$

Code stack in HPMPC

double precision solvers

Figure: Structure of the linear algebra routines in HPMPC. The linear algebra kernels are tailored to each computer architecture. The linear algebra routines depend only on the panel height b_{s} (that may be different for single and double precision). The routines at higher levels in the routines hierarchy are completely architecture-independent.

Implementation of dsyrk + dpotrf on Intel Ivy-Bridge

HPMPC - swapping the order of outer loops

- has to be considered in case of not-squared kernels
- improves the L1 cache reuse
- machine-dependent code

test dsyrk + dpotrf

Backward Riccati recursion

- Main operations per stage:
- update

$$
\begin{aligned}
& Q+A \cdot P \cdot A^{T}=Q+A \cdot\left(L \cdot L^{T}\right) \cdot A^{T}=Q+(A \cdot L) \cdot(A \cdot L)^{T} \\
& \frac{7}{3} n_{x}^{3}+3 n_{x}^{2} n_{u}+n_{x} n_{u}^{2} \text { flops }
\end{aligned}
$$

- factorization-solution-downgrade

$$
\begin{aligned}
& \mathcal{L} \leftarrow R^{-1} \\
& L \leftarrow M \cdot \mathcal{L}^{-T} \\
& P \leftarrow P-L \cdot L^{T}
\end{aligned}
$$

$$
n_{x}^{2} n_{u}+n_{x} n_{u}^{2}+\frac{1}{3} n_{u}^{3} \text { flops }
$$

- Total flops: $N\left(\frac{7}{3} n_{x}^{3}+4 n_{x}^{2} n_{u}+2 n_{x} n_{u}^{2}+\frac{1}{3} n_{u}^{3}\right)$

Froward Schur-complement recursion

- Main operations per stage:
- computation of Schur complement

$$
\begin{aligned}
& Q+A \cdot P^{-1} \cdot A^{T}=Q+A \cdot\left(L \cdot L^{T}\right)^{-1} \cdot A^{T}=Q+\left(A \cdot L^{-T}\right) \cdot\left(A \cdot L^{-T}\right)^{T} \\
& \frac{7}{3} n_{x}^{3}+4 n_{x}^{2} n_{u}+2 n_{x} n_{u}^{2}+\frac{1}{3} n_{u}^{3} \text { flops }
\end{aligned}
$$

- inversion of positive definite matrix

$$
Q^{-1}=\left(L \cdot L^{T}\right)^{-1}=L^{-T} \cdot L^{-1}
$$

n_{x}^{3} flops

- Total flops:
- dense Hessian $N\left(\frac{10}{3} n_{x}^{3}+4 n_{x}^{2} n_{u}+2 n_{x} n_{u}^{2}+\frac{1}{3} n_{u}^{3}\right)$
- diagonal Hessian $N\left(\frac{10}{3} n_{x}^{3}+n_{x}^{2} n_{u}\right)$

