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Background & Introduction
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The Future Power Grid
I The penetration of wind, solar and hydro power is increasing

significantly
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I New planning methodologies are required to accommodate
the intermittency of renewable energy resources
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Control Hierarchy

Inform
ation

Production Planning
I Hours-ahead unit commitment and economic

dispatch of the system generators

Balance Control
I Balancing of production and consumption in

near real-time

Frequency Control
I Real-time activation of reserved generation

capacity to maintain system stability
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Case Study: The Faroe Islands

I Population of about 50,000
people

I No interconnectors to other
countries (isolated power system)

I Some of the worlds best
conditions for wind power

I Target: 100% renewable energy
by 2030

I Flexibility on both the production
and the consumption side of
energy

Current challenges for the Faroe Islands are future challenges for
larger interconnected power systems
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Key Contributions

I Proof of concept for balance and frequency EMPC-based
control schemes

I Mean-Variance EMPC accounts for the inherent uncertainty
and variability of renewable energy sources

I Integrated planning and control using a hierarchical EMPC
algorithm

I Computationally efficient algorithms overcome tractability
issues of the proposed EMPC schemes

I An optimal reserve planning problem for unit commitment and
economic dispatch in small isolated power systems
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Economic MPC of Energy Systems
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Economic MPC (EMPC)

Optimal Control Problem

min.
u,x ,z

φ (u, x , z)

s.t. xk+1 = Axk + Buk , k ∈ N0

zk = Czxk , k ∈ N1

(u, x , z) ∈ X

I Prediction horizon Ni = {0 + i , 1 + i , . . . ,N − 1 + i}

I Input vector u = (uT
0 , uT

1 , uT
2 , . . . , uT

N−1)T ∈ RNnu

I State vector x = (xT
1 , xT

2 , xT
3 , . . . , xT

N )T ∈ RNnx

I Output vector z = (zT
1 , zT

2 , zT
3 , . . . , zT

N )T ∈ RNnz

Assumption: Cost function φ is a convex function and constraint
set X is a convex set
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Two-Generator Case Study

Generator Specifications

#Generator Capacity Response Time Utilization Cost

1 Small Fast High
2 Large Slow Low

Closed-Loop Simulation (Deterministic)
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Uncertainty Management

Closed-Loop Simulation (Stochastic)
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Certainty-Equivalent EMPC does not perform well in the presence
of uncertainty
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Certainty-Equivalent EMPC (CE-EMPC)

I Linear stochastic system

xk+1 = Axk + Buk + wk , k ∈ N0

yk = Cy xk + vk , k ∈ N1

zk = Czxk , k ∈ N1

I Affine functions

x = Lx (u; x0,w)
z = Lz(u; x0,w)

I Cost function

ψ(u; x0,w) = φ (u, Lx (u; x0,w), Lz(u; x0,w))

I Optimal control problem
min.
u∈U

ΨCE = ψ(u; x0,E [w ])
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Mean-Variance EMPC (MV-EMPC)

I CE-EMPC does not minimize the expected cost
ψ(u; x0,E [w ]) 6= E [ψ(u; x0,w)]
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I MV-EMPC
min.
u∈U

ΨMV = αE [ψ(u; x0,w)] + (1− α)V [ψ(u; x0,w)]

with risk-aversion parameter α ∈ [0; 1]
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Monte-Carlo Approximation

I Uncertainty scenarios S = {1, 2, . . . ,S}

I Optimal control problem

min.
u∈U ,{x s ,zs ,ψs}s∈S ,µ

αµ+ 1−α
S−1

∑
s∈S

(ψs − µ)2 ,

s.t. x s
k+1 = Ax s

k + Buk + w s
k , k ∈ N0, s ∈ S

zs
k = Czx s

k , k ∈ N1, s ∈ S
ψs = φ(u, x s , zs), s ∈ S
µ = 1

S
∑
s∈S

ψs

I Two-stage extension with non-anticipative constraints can be
applied for less conservative closed-loop performance

I Large-scale optimization problem even for small systems
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Performance of MV-EMPC
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Computationally Attractive Alternatives

I Safety margin using constraint back-off

I Augmented objective function, e.g. setpoint-based penalty
terms and/or regularization terms

MV-EMPC provides a baseline for performance evaluation
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Frequency Control via EMPC

I Objective 1: Avoid critical frequency fluctuations
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I Objective 2: Minimize cost of operations
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Optimal Control Problem

Objective Function
φ(u, z) = βφeco(u, z) + (1− β)φsp(u, z)

with risk-aversion parameter β ∈ [0; 1]
I φeco: Operate system at minimum cost

I φsp: Restore the frequency to the nominal frequency

Closed-Loop Simulation
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Optimization Algorithms

18 / 40



Computational Aspects of EMPC

Problem structure is utilized for real-time solution of the OCPs

s1 s2 s3

(a) Scenario Coupling

g1 g2 g3

(b) Generator Coupling

t1 t2 t3

(c) Temporal Coupling

I Case (a) and (b) are handled by decomposition methods

I Case (c) is handled using Riccati-based methods

I Nested structures occur (c)→(b)→(a)
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EMPC Decomposition Algorithms

Schematic Diagram

Aggregator (Master Problem)

Subproblem 1 Subproblem 2 Subproblem 3 Subproblem 4

Subproblems can be solved in parallel and warm-start is applicable

Methods

Method Problem Class Iterations Accuracy Dimensions
DWD LPs Few High Increasing
ADMM CPs Many Low Constant
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Example: Block-Angular LPs

I Problem formulation

min
t

{∑
j∈J

cT
j tj | Gjtj ≤ gj , j ∈ J ,

∑
j∈J

Hjtj ≤ h
}

I DWD: Extreme point representation

I ADMM: Problem splitting using auxiliary variables

vj = Hjtj , j ∈ J

Formulation of modified problem and simplified recursion is
challenging
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Benchmark

CPU Time to Solve the OCP
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I Memory issue around M = 3000 for centralized solves

I The performance of ADMM is very problem dependent
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Further ADMM Results

MV-EMPC

Step Description

1 Solve a single OCP for each uncertainty scenario
2 Minimize variance s.t. non-anticipative constraints

Input-Constrained EMPC

Step Description

1 Solve unconstrained OCP
2 Solve input-constrained OCP with no dynamics

A speedup in computational speed of more than an order of
magnitude is achieved for both cases

23 / 40



Homogeneous and Self-Dual Interior-Point Method

I Solution of the OCP min
x
{gT x |Ax = b, Cx ≤ d} is obtained

from solution of (z̃ , s̃, τ, κ) ≥ 0 and

AT ỹ + CT z̃ + gτ = 0, Ax̃ − bτ = 0
Cx̃ − dτ + s̃ = 0, −gT x̃ − bT ỹ − dT z̃ + κ = 0

I Warm-start works well for homogeneous and self-dual IPMs

tk Time

In
pu

t

u∗(k − 1) u∗(k)

I Search direction is computed using a Riccati-iteration
procedure
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LP Solver Comparison
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Warm-start reduces the CPU time by further 40% on average
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Integrated Planning and Control
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Production Planning

I Binary decisions b = (bT
0 , bT

1 , . . . , bT
L )T

I Problem formulation (simplified)
min.

u,x ,z,b
fR(u, x , z , b) + fZ(b)

s.t. xk+1 = Axk + Buk + Edk , k ∈ N0

zk = Czxk + Fzdk , k ∈ N1

cR(u, x , z , b) ≤ 0
cZ(b) ≤ 0

I Two time scales

τ0 τ1 τ2 τL−1 τL

t0 t1 t2 t3 t4 tf−2 tf−1 tf

∆t

∆τ
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Hierarchical Algorithm
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I The UL-OCP (MIQP/MILP) is closely related to the unit
commitment problem

I The UL-OCP may be solved with a low frequency

I Tailored algorithms can solve the LL-OCP (QP/LP) efficiently
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Three-Generator Example
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I Direct solution of the full OCP is 15 minutes

I Solution times are 2s (UL-OCP) and 0.1s (LL-OCP)

I Single resolve of the UL-OCP is performed

I Cost increase is less than 1% for the hierarchical approach
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Optimal Reserve Planning
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Unit Commitment in Isolated Power Systems

The conventional unit commitment and economic dispatch
problem can be posed as an MILP

min.
x ,y

f T x + gT y

s.t. Ax + By ≤ b
x ∈ Rn

y ∈ {0, 1}m

I Constraints: Power balance, fixed reserves, production limits,
ramping limits, etc.

I Variables: Production levels, reserve levels, on/off decisions,
etc.

The solution of the MILP provides a ≈24-hours ahead production
plan with a ≈15-minute resolution
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Operational Reserves
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I Primary reserves are critical to avoid power outages
(blackouts) in the event of a contingency ∆P(t) 6= 0

I Primary reserves are activated in direct proportion to the
frequency deviation from the nominal frequency
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Minimum Frequency Constraint

It is critical that f (t) ≥ f for some cut-off frequency f

I Large interconnected systems
System inertia is large and approximately constant
⇒ A fixed amount of primary reserve is sufficient

I Small isolated power systems
System inertia is small and varies considerably
⇒ Minimum frequency constraints are required

The constraint f (t) ≥ f is intractable to handle using
mixed-integer linear programming
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Alternative Formulation

The minimum frequency constraint

f (t) ≥ f

may be expressed as

EPR(t) + ∆E rot ≥ P lostt

I EPR(t) =
∫ t

0 PPR(τ)dτ is the energy contribution from the
activation of primary reserves

I ∆E rot is the energy contribution from the system inertia

I P lostt is the energy lost as a result of the contingency
(generator trip)
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Sufficient Conditions

I Minimum frequency occurs no later than time tc

PPR(tc) ≥ P lost

I Satisfy f (t) ≥ f for t ≤ tc, i.e.
EPR(t) + ∆E rot ≥ P lostt, t ≤ tc

t = 0 t = tc

f
f tr
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Optimal Reserve Planning Problem (ORPP)

I Unit commitment and economic dispatch problem with
minimum frequency constraints

I Compared to a conventional production and reserve planning
problem (BLUC)

I Simulations show that several potential blackouts are avoided
at a cost increase of 3%

I Tested in the Faroe Islands in 2015
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Conclusions & Future Work
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Conclusions

Methods
I MV-EMPC overcomes performance issues of CE-EMPC in

operation of uncertain systems
I MV-EMPC provides a baseline for approximate methods

Algorithms
I Tailored decomposition schemes significantly reduces

computational requirements of the proposed EMPC methods
I Additional speedup is achieved using Riccati-based IPMs

Applications
I Simulations demonstrate that EMPC-based methods for

balance and frequency control reduce cost and risk
I Unifying framework for balance control and unit commitment
I Frequency-constrained planning in isolated power systems
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Future Work

Feedback From Experiments
I Use feedback from the Faroe Islands to improve the proposed

planning and control methods

Risk Measures in MV-EMPC
I Employ other risk measures than the variance
I Increase sensitive to the tail shape of the cost distribution
I Develop algorithms to solve the resulting OCPs efficiently

Algorithms for EMPC
I Quadratic programming extensions of LP solvers
I Tuned and parallel implementations
I Scenario reduction in MV-EMPC
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Thanks! Questions and Comments?
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