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MODEL PREDICTIVE CONTROL (MPC)

. optimization problem
dynamical model P P

(learned or calibrated min 1Z’QZ ~+ 'z
from data) e 2 :

\N Ss.t. Az < b

embedded model-based optimizer
process

reference

—
r(t)

measurements

Use a dynamical model of the process to predict its future
evolution and choose the “best” control action




MODEL PREDICTIVE CONTROL (MPC)

e At time t: consider optimal control problem over a future horizon of N steps

A
t
pencz/ Zy on a ena/iy 77 p_ a_s_ - $
. acluation efFord . |
z‘rackmg 8”\% / - |
min 3 (WY — 12 W Cu — u" (1)
k=0 e——o T~ | ; g i
st wpy1 = f(zk, ug, t) ik t+N L
Yr = g(Tk, up, t)
constraints on wuy, yy N o |
T B
optimization problem
t+1+k t+]l\7+1,

e Solve problem w.r.t. {uo,...,un1}

e Apply the first optimal move u(t):uo*, throw the rest of the sequence away

e At time t+1: Get new measurements, repeat the optimization. And so on....

Used in process industries since the 80's



FIRST PAPER ON MPC ...

Discrete Dynamic Optimization
Applied to On-Line Optimal Control

MARSHALL D. RAFAL ond WILLIAM F. STEVENS
Northwaestern University, Evenisten, illinois

A gesers]l methad hos been doveloped for contralling deterministic systems described by
linesr ar lineorized dymomics. The disceete peoblem has been treared in detoll. Step-dy-step
eptimal costrols bor o quodictic performance index beve been derived. The method cccom-

modores vpper and Jower limits on the compenents of the contrel vectrer,

A small bieary distillerion wait wos considered as o Wypicel epplicorion of he method.
The contral vecter was made vp of feed rate, reflux ratio, ond reboiler heot laad. Conmol b

0 desired stote aad abevt 0 lood vpset was efiected.

Celculations ere perlormed quite rapidly and only grow sigaificantly with an increase In
the dimension of the control vector, Extemsion to much larger distillotion wnits with the

same controls thes seoms proctical,

The advent of high-spoed computess has made possible
the on-line digital control of many chemical enginecting
processes. Im on-lime control & threc-step procedure 15 ade
dered to:

1. Sensc the cusrent stale,

2. Calculate a suitable coatol action,

3. Apply this control for a penod of time known as the
sampling peniod.

The present study proposes a method for pedforming
step 2. The echnigee developed is based on linearized
dynaemics, The swrongly sonlmear binory distillation anit
provides a suitable system for this study, While such has
been publishod recently (2, 3, ) on modeling distiliation,
little f anything has appeared on the optimal comtrol of
such unats,

In recent years, o good deal has been published by Kale
man, Lagidas, and others (4 10 7) on the control of linear
ot limcanzed nonlinear systems by mimicdzing a quadiatic
fenction of the states tesulting from a sequence of control
sctioms, Thewr comtrols are always uncoostramned, ale
though the introduction of a quadsatic penalty feactson
limits this effect somewhat, The general constrained prob=
lem bas been treated nwmerically (I) for & single control
variable, 1t was Wanninger (10, 1]) who fast ¢hose 1w ook
at the peoblem on 3 one-step-at-a-tare Basis tather than

V-

Marshall D, Rafal is with Esaso Reseorch and Engineering
Company., Florham Park, New Jersey.

considering a sequence of comtrols, Mowever, he made oo
attempt 10 solve completely the resclung quadratic pro-
prarming prodlem,

The approach taken in the peesent work 15 L0 set up the
problem on a onc-step basis.  This s quite compatible
with the on-line digital control scheme. The problem is
then shown 10 be a special case of the quadratic program=
ming peoblem and as swch has a special solution. The
particulars concerning the theory underlymg the solution
scheme and its ixplementation ca 8 digital computer have
been presented (%) In additicn, & denivalion of the theo-
rems upon which the computational algoeithm is based is
presented in the Appendax.

The awthoes wish to bo very carefel 1o pomnt out that
optemal, as used herein, refors caly 10 & single step of
cmtrol, Even for wely lincar systems, the step=by-siep
optimal ¢control need not be overall opimal, A recent text
by Athans and Falb {Ja) peesents both the virtues and de-
fects of such a cme-stcp mcthod, I the present work, the
one-step approach is taken becawse i1 i smenable o
practical solution of the problem and is well swited o none
linear suuations where updating limearization 313 sseful,

THE PROBLEM

The system under consideeation 15 described by a ser of
matrix differeatial equations:

X(2) » AX() « BMUD) « (D o

Vol. 14, No. 1 AIChE Journoal Page 85

(Rafal, Stevens, AiChE Journal, 1968)

01-4



AUTOMOTIVE APPLICATIONS OF MPC

Bemporad, Bernardini, Borrelli, Cimini, Di Cairano, Esen, Giorgetti, Hrovat, Kolmanovsky, Ripaccioli, Trimboli,
Tseng, Yanakiev, ... (2001-2016)

Powertrain Vehicle dynamics

e direct-inj. engine control e traction control

e A[F ratio control e active steering P

* magnetic actuators * semiactive suspensions N

e robotized gearbox JAGUAR DENSO

e power MGT in HEVs
g CENTRO

e cabin heat control in HEVs rRicercHe ()N /8
. FIAT
e electrical motors Advanced Controls & Optimization

suspension ..
deflection

tire
deflection




AEROSPACE APPLICATIONS OF MPC

* Main goal: explore MPC capabilities in new space applications: cSd

e New MATLAB MPC Toolboxes developed (MPCTOOL and MPCSofT)

powered descent F}‘_‘» W -
Ay - p N
N ¥,

cooperating UAVs
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(Bemporad, Rocchi, 2011)
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(Bemporad, 2010) (Bemporad, 2012)
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A

(Pascucci, Bennani, Bemporad, 2016)

planetary rover




EMBEDDED LINEAR MPC

e Linear MPC requires solving a Quadratic Program (QP)

e Several algorithms exist to solve the QP on-line given x(t):

active set (AS), interior point (IP), gradient projection (GP), alternating direction
method of multipliers (ADMM), proximal methods, ...



FIRST PAPER ON QP ...

(Beale, 1955)

ON MINIMIZING A CONVEX FUNCTION SUBJECT TO LINEAR INEQUALITIES

By E. M. L. BEALE
Admiralty Research Laboratory, Teddington, Middlesex

SUMMARY

THE minimization of a convex function of variables subject-to linear inequalities is
discussed briefly in general terms. Dantzig’s Simplex Method is extended to yield
finite algorithms for minimizing either a convex quadratic function or the sum of
the t largest of a set of linear functions, and the solution of a generalization of the
latter problem is indicated. In the last two sections a form of linear programming

with random variables as coefficients is described, and shown to involve the minimiza-
tion of a convex function.

Arich set of good QP algorithms is available today,
but still more research is needed to have an impact
in real applications !



MPC IN A PRODUCTION ENVIRONMENT

embedded model-based optimizer

Requirements for production:

1. Speed (throughput): solve optimization problem within sampling interval

* " Ao

2. Robustness with respect to finite-precision arithmetics A
7 4 BN

3. Be able to run on limited hardware (e.g., 150 MHz) with little memory _

4. Worst-case execution time must be (tightly) estimated

5. Code simple enough to be validated/verified/certified
(in general, it must be understandable by production engineers)




MPC IN INDUSTRIAL AUTOMOTIVE PRODUCTION

10



FAST GRADIENT PROJECTION FOR (DUAL) QP

(Nesterov, 1983)

e Apply fast gradient method to dual QP: (Patrinos, Bemporad, IEEE TAC, 2014)
min 1z/H,z + 'z
no3 wr = yr + Bk — Yr—1) -1 =10=0
S.t. Gz < W + Sz
z,. = —Kwp—Jx
K = H ¢
S = %sz — %(S.CE -|— W) 7 = H_lF/
gk:{g_l Zjo Yk+1 = Max{yy + si, 0}
k2 — —

feasibility tol

e Termination criterion #1: primal feasibility

- 1
s. < —ec, Vi=1,....,m
kS TCG
e Termination criterion #2: primal optimality optimality tol
\
fGa) = £* < f(z) - o) = ~wispL < ey —wlsy < ey
L

duai. function —
11



FAST GRADIENT PROJECTION FOR (DUAL) QP

e Main on-line operations involve only
while keepgoing && (i<maxiter),

(Patrinos, Bemporad, IEEE TAC, 2014)

beta=(i-1)/(i-2).*(1i>0);

simple linear algebra
w=y+beta* (y-y0);

2==(iMG*w+iMcC);
8=CLz~bL;

yo=y;

% Check terminati
if all(s<=epsGL),

15

e Convergence rate:
2L 5 e
f(Z ) - f* S Z — Z* - return
k‘_l_]- (k—l— 2)2H O H —_— d
y=max(w+s,0);
imi+l;
end
e Tight bounds on maximum number of iterations ™
ol theoretical
51(32:_--};;r --------- T ®----
e Can be used to warm-start other methods el \ experimental
L R
Horizon N

o Currently extended to mixed-integer problems
(Naik, Bemporad, work in progress) o



HARDWARE TESTS (FLOATING VS FIXED POINT)

e Gradient projection works in fixed-point arithmetics

max 9;(zx)

EF1 TN

< 2LD2 |

/L

max conskraink violakion

(Patrinos, Guiggiani, Bemporad, 2013)

axpome.m&mttj decreasing with
number p of fractional bits

Table 1
["ixed-point bardware ymplementation
Size [variables/constraints| | Time [ms| | Time per iteration [us| | Code Size |[K B|
10/20 22.9 226 15
20/40 @ fiked 867 17
40/80 544.9 po ik 3382 27
60/120 1519.8 7561 43
Table 2
[loating-point hardware implementation
Size [variables/constraints| | Time [ms] | Time per iteration [us| | Code Size K B| l
10/20 88.6 974 16
20/40 C20D floating 3608 21
40/80 2240 po ik 13099 40
60/120 5816 30450 73

&xedrpoimﬁ about 4x faster than ﬂFLanéMngoLmE

32-bit Atmel SAM3X8E

ARM Cortex-M3 processing
unit

84 MHz, 512 KB of flash memory
and 100 KB of RAM

13



CAN WE SOLVE QP’S USING LEAST SQUARES ?

The Least Squares (LS) problem is probably the
most studied problem in numerical linear algebra

v = arg min ||Av — bH%

— S

(Legendre, 1805)ﬂ (Gauss, <= 1809)

In MATLAB: >> V=A\Db 2 (1 character)

e Nonnegative Least Squares (NNLS): min, ||Av — b||2
s.t. v>0

14



ACTIVE-SET METHOD FOR NONNEGATIVE LEAST SQUARES

1) P10, v+ 0;
2) w<— A'(Av —b);
3) ifw>00rP=1{1,..., m} then go to Step 11;
: 2 4) i argmingen iy wi, P P U
miny ||Av — b5 S argmin.., |(A)p) 2 = Bl3y(1,..mpp < 0
S.t v Z O 6) l- “_5“" »,;‘\";"r" . v 0
7) J < argmingep: 4, <o {Uh_hyh };
8) v v+ Ujvyj (y —v);
9N L+ {heR v, =0} P« P\Z

Algorithm: While maintaining primal
var v feasible, keep switching active set
until dual var w is also feasible

e NNLS algorithm is very simple (750 cha in Embedded MATLAB),
the key operation is to solve a standard LS problem at each iteration
(via QR, LDL’, or Cholesky factorization)

15



SOLVING QP’S VIA NONNEGATIVE LEAST SQUARES

‘ d, , 2016
e Use NNLS to solve strictly convex QP (Bemporad, [EEE TAC, 2016)

A —T
: 1 u : 1 €as
min 570z + e min Sl pitance
S't_'_f Gz < g‘_ tamgi.e&e the squares S-E; MUE d Problem
QP Q=LL
M=GL !
d=0>b-+ GQ_lc (Lawson, Hanson, 1974)
QP problem infeasible JASE
1 M 0 2
s.t. y>0
a1 LMy — Qe no Nonnegative Least Squares
14 d'y*

— —

retrieve primo& solukbion

10



SOLVING QP VIA NNLS: NUMERICAL RESULTS

worst-case over 100 random QP instances

(Bemporad, IEEE TAC, 2016)

worst-case occurred during entire simulation*®

10° : : l . : ’1
T T e = 10" |
102 B " [
() / Vo4 ()
.g [} F T~ //// .g
7 77
5 12 —— QPNNLS-LDL 2 100}
®) ——Dantzig O
GPAD
0 ——ADMM
107 ¢ QUADPROG (IP) |-
- - QUADPROG (AS) ——QPNNLS
, - - GUROBI (IP) —— Dantzig
| ——GUROBI (AS) - — QPOASES
QP-NNLS |- - QPOASES . ——GUROBI (AS)
-1 1 1 1 | 1 1 1 1 N
107, 20 40 60 80 100 0 5 10 15 20 25 30

number of variables

prediction horizon

* Step t=0 not considered for QPOASES not to penalize the
benefits of the method with warm starting

e Arather fast and relatively simple-to-code QP solver!

e Extended to solving mixed-integer QP’s  (Bemporad, NMPC 2015)

17



EXPLICIT MPC

e Can we implement optimization-based controllers like MPC without
an optimization solver running in real-time ?

18



EXPLICIT MODEL PREDICTIVE CONTROL AND MULTIPARAMETRIC QP

(Bemporad, Morari, Dua, Pistikopoulos, 2002)

The multiparametric solution of a strictly convex QP is continuous
and piecewise affine

z*(x) = arg min, %z’Hz +@F’z
s.t. Gz<W @

L —

|
P e :;:-231‘31f.‘;i?f?ff?,-?';fff.i';' 100?
,& ) 1 F]. T + '(']1 |f I_[ll‘ S I\’l :’.::.—lP;:('[mP u)}/{l , e _olates
. S ; . {10+ 0_
2= : \ u(x) = ¢ : : 'I/Lét
- —1- | FJ.\/;L + gn if I]‘,\[ll, o 16 M £ | aeeenrcon Lestauml; /* get next deliniter i3
|

19



NNLS FOR MULTIPARAMETRIC QP

e Avariety of mpQP solvers is available

e Most computations are spent in operations on polyhedra (=critical regions)

< W+ Sz G feasibiti&v of primal solution
A(z) > 0

& feasibiti&j 0-{: dual solution

- checking emptiness of polyhedra
- removal of redundant inequalities
- checking full-dimensionality of polyhedra

e All such operations are usually done via linear programming (LP)

20



NNLS FOR MULTIPARAMETRIC QP

e Key result:

A polyhedron P = {u € R™:

is nonempty iff

(v*,u*) = argmingy |lv + Au — b||3
v>0,u free

has zero residual ||[v* + Au* —b]|3 = 0

S.T.

o

dundank
reciies redm&xd&m&

~

Au < b}

e Numerical results on elimination of redundant inequalities:

NNLS

LP

™m
2
4
6)
8
10
12
14
16

0.0006
0.0019
0.0038
0.0071

0.0046
0.0103
0.0193
0.0340
0.0554
0.0955

random polyhedra of R™ with 10m inequalities

NNLS = compiled Embedded MATLAB
LP = compiled C code (GLPK)

CPU time = seconds (this Mac)

e Many other polyhedral operations can be also tackled by NNLS

2



NNLS FOR SOLVING MPQP PROBLEMS

e New mpQP algorithm based on NNLS + dual QP formulation to compute
active sets and deal with degeneracy

e Comparison with: T

— Hybrid Toolbox
— Multiparametric Toolbox 2.6 (with default opts)

¢ Included in MPC Toolbox 5.0 (2R2014b)
‘\ The MathWorks

NNNNNRPRPRPRrRPR PR
OO O0OOONNNN N OO~ »A~BApH

O A W NO OGP, WNOOPL,WNO O PH
&)
[t
[
N
=
&)
=
=
Ol
00
&)
o
[
O
[
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OPTIMIZE DECISIONS UNDER UNCGERTAINTY

-
1
N L)
— e %] )
— - '
_Jm‘ (S + $ : : : $ $ 4 ——
7“ " peri's »
Al-l-r LA '
& Dy, :
s J 7
el | | 15 PRl Nl wr | —

P A |

| u .’31 =

W pur- o R !

a2 : : : : ! : ot 4 : ! < - i
|ty el L > A" - o R
AN T - -
i A8 Ry e PRl — " 1 "‘45 —
2 N, i s ‘.,. $ $ + > s ooy %
Nov L e ~ s N
~ 4 a

renewable power

demand

1995 1997 0998 1999 2000 2004 29079 505 JOod 200% 2908 2ot Jooe

prices ~ater human (inter)action

e Deterministic (=certainty equivalence) approaches often inadequate
(e.g.: portfolio management)

e Robust control approaches do not model uncertainty (only assume
that is bounded) and pessimistically consider the worst case

e Stochastic models provide instead additional information about
uncertainty 03



STOCHASTIC MODEL PREDICTIVE CONTROL (SMPC)

stochasticity
model-based  w(t)

optimizer \ process
| |

reference input _ ||, \ output
o oyl ™ ll, o

I measurements ‘

Use a stochastic dynamical model of the process to predict its
possible future evolutions and choose the “best” control action

24



A FEW SAMPLE APPLICATIONS OF SMPC

Energy systems: power dispatch in smart grids, optimal bidding on electricity
markets (Patrinos, Trimboli, Bemporad 2011)

(Puglia, Bernardini, Bemporad 2011)

Financial engineering: dynamic hedging of portfolios replicating synthetic options
(Bemporad, Bellucci, Gabbriellini, 2009)
(Bemporad, Gabbriellini, Puglia, Bellucci, 2010)

(Bemporad,Puglia, Gabbriellini, 2011)

Water networks: pumping control in urban drinking water networks, under
uncertain demand & minimizing costs under varying electricity prices

(Sampathirao, Sopasakis, Bemporad, 2014)

Automotive control: energy management in HEVs, adaptive cruise control
(human-machine interaction)

(Di Cairano, Bernardini, Bemporad, Kolmanovsky, 2014)

Networked control: improve robustness against communication imperfections

(Bernardini, Donkers, Bemporad, Heemels, NECSYS 2010)

20



LINEAR STOCHASTIC MPC W/ DISCRETE DISTURBANGE

e Linear stochastic prediction model

Lhk41
Yk

(A,B,C,D) are can be sparse (ex: network of interacting subsystems)

A(wy)z + B(wg)ug + f(wy)
C(wg)zr + D(wy)uy, + g(wy)

C — EE——

e Discrete disturbance w; € {v?,...,w"} p; = Prlwj, = /]

S
p; >0, Y pi=1
j=1

Often wy, is low-dimensional (ex: electricity price, weather, etc.)

20



LINEAR STOCHASTIC MPG FORMULATION

Existing literature on stochastic MPC

(Schwarme & Nikolaou, 1999) (Munoz de la Pena, Bemporad, Alamo, 2005) (Oldewurtel, Jones, Morari, 2008)
(Wendt & Wozny, 2000) (Couchman, Cannon, Kouvaritakis, 2006) (Ono, Williams, 2008)
(Batina, Stoorvogel, Weiland, 2002) (Primbs, 2007) (van Hessem & Bosgra 2002) (Bemporad, Di Cairano, 2005)

(Bernardini, Bemporad, 2012)

N-1

. . / / /
e Performance index min By |2yPzy + ) 2,Qxy + ujRuy
k=0

* Goal: ensure mean-square convergence |im E[x'(t)x(t)] = 0 (for f(w(t))=0)
— 0O

* The existence of a stochastic Lyapunov functionV (z) = 2’ Px

BV @4 D]-V(@®) < —e()'La(t), ¥6>0  L=1'>0

7 Morozan, 1983) (Bernardini, Bemporad, 2012
ensures mean-square stability ( )( P )

27



COST FUNCTIONS FOR SMPC TO MINIMIZE

e Expected performance

N . :
= : = ?
min Z Eq {(yk — ’r‘k.) } .
u 1
k=0 @% |—|_|_'J Uy,
— N
““ 12 ‘t+i - ‘t+N

e Tradeoff between expectation & risk

N-1

min 3 (Bulye — ) +aVaru [y —m]  a >0
k=0

———

e Note that they coincide for a=1, since

VaryE [yr — k] = Ew [(yr — r1)?] — (Buw [yx — 1x])?

28



COST FUNCTIONS FOR SMPC TO MINIMIZE

e Conditional Value-at-Risk (CVaR) (Rockafellar, Uryasev, 2000)

p(w) 1 ok things go wrong
(y-r)2=a
N-1 1
rmxﬂ Z ay T 5Ew 'max {(yx — 7%)° — ay, 0}] /
k=0 B=95% \L 5%
o ]
= minimize expected loss when things go wrong (convex ') VaR=> 7(32

can be cast to a linear programming problem

*Min-max = minimize worst case performance

N—-1

min kgo max |yg, — 7| + plug|

can be cast to a linear programming problem
29



SCENARIO-BASED STOCHASTIC MPC

(Bernardini, Bemporad, 2012)

¢ Each scenario has its own evolution

ZIZ‘]i_I_l — A(wi)x‘;{ + B(wi)u{C + f(wi)

(=linear time-varying system)

e Expectations become simple sums !

N-1
Ex: min By |2y Pry + > z1.Qzp + ujRuy
k=0

s ([ . N1
i 3 5 (Pl X (ehar) + '

Expectations of quadratic costs remain quadratic costs

30



SCENARIO TREE GENERATION FROM DATA

e Scenario trees can be generated by clustering sample paths

e Paths can be obtained by Monte Carlo simulation of (estimated) models,
or from historical data

e The number of nodes can be decided a priori
A WE

Heuristic
Multilevel
Clustering

—

(Heitsch, Romisch, 2009)

scenario “fan” (collection of sample paths) scenario tree

e Alternative (simpler/less accurate) approach: k-means clustering

31



SMPC FOR MARKET-BASED OPTIMAL POWER DISPATCH

(Patrinos, Trimboli, Bemporad 2011)

coal |

o T
Q P,

+ photovoltaic
S R,
hydro-storage :|—Q
TABLE I: Generator Cost Data

Unit || Q; ($/MWh?) | ¢; ($/MWh) | ¢ ($)
;; I P1 0.009 30.375 398.025
P2 0.0225 73.35 292275
P3 0.0488 61.488 489.952

TABLE II: Generator Data

. P,
wind farm

PT [ 450 | 1100 | -250 750

natural gas P2 1 50 | 500 | 200 300

P3 50 | 100 =75 75

TABLE III: Storage Data

http://www.e-price-project.eu/ Unit [ &7 | o7 [ 2™ [ A [ oy | of | af
ST 51 300 | -120 120 [ 095 [ 085 | 0.90

c,min __ d,min c,max __ _d,max

2 2

2 et )
y 0 300
crice (r
ENABLING THE FUTURE ENERGY SYSTEM

p— | | | [SN———
SEVENTH FRAMEWORK
PROGRAMME 82


http://www.e-price-project.eu
http://www.e-price-project.eu

SMPC FOR MARKET-BASED OPTIMAL POWER DISPATCH

(Patrinos, Trimboli, Bemporad 2011)

Exact knowledge

Algorithm Storage | No Storage
of future uncertainty N [ Cost Cost Avg # of nodes

ey : T 6427979 | 6879741

D | 9819518
" [[SSMPC (e, = 0.1) || 7134582 | 7245962 350
o [SSMPC (] = 0.2) [[| 7144011 | 7249401 335
e e e L SSMPC (e, = 0.3) ||| 7148494 | 7250207 172
Deterministic: time SSMPC (e, = 0.4) ||| 7179848 | 7264505 87
dependent SSMPC (e,el = 0.5) I 722491 | 7267497 50
: 'SSMPC (e, = 0.6) J|| 7239985 | 7277410 38
expectations used for  1soMpc (e, = 0.7) [ 7250491 | 7298023 31
future uncertainty SSMPC (e, = 0.8) ||| 7255246 | 7312092 26
SSMPC (e, = 0.9) ||| 7260424 | 7318643 22
'SSMPC (e,] = 1.0) ||| 7260424 | 7318642 20

/ 1000

Stochastic formulation
. 500+
3
Loy
power exchanged <
Wlth grld 2005 50 100 150

PTU k (10 mins)

C— T

33



HOW ABOUT COMPUTATION COMPLEXITY ?

.00010010011010100100101001010001001001101C §
1101011100101010111100100101810010100101010
1100101010010101010010100101810010101010101
.01000101010101001010101001410101001010100.
1101010010101010101010101010010101001010104

1010100101010100101010010101001 01010310010
km NMAIATOTTITTIANNTIANTANTOTHT AT A1 0T 0 0010




COMPLEXITY OF STOCHASTIC OPTIMIZATION PROBLEM

e #optimization variables = #nodes x #inputs (in condensed version)
e Problems are very sparse (well exploited by interior point methods)

e Example: SMPC with quadratic cost and linear constraints

0 DRI IR ) A AR AR IR AN BRI AL AR AR TR R R LY AR R R A Y A A Y 0
:\\:: AR AR AL )

@,
N
o S t&
I R 3
> = o~ 500 LA
o) = O t
> @ N s
Y 100 f v
T B @ - i:
A o A 1ooo~i5
@ P O 150 P L5
3 ~ Jo : b
&S /A Y
— = 3 S S R i;‘
S P/P/ o 200 [ . 1500 - ; i}
) ) ! ) ';§
S o G © ‘ Il:i
O O 250 B i N
o X Pog
- o— 2000 &
S\ g = i
o R O 3oo§ ! !;
R o = D, \: \\\\ { =:§
> S y 2500 | R
N\GKo 350 } - : 1Y
RN\ + 435x435 Hesslan matrix N
O N D
KR = O N NGO AN l_ "\\
Q h . G ] i
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SMPC OF THE DRINKING WATER NETWORKS

. (Sampathirao, Sopasakis, Bemporad, Patrinos, 2015)
Main goals:

 Reduce electricity consumption for pumping (& & )

e Meet demand requirements

e Deliver smooth control actions

o Keep storage tanks above safety limits

e Respect the technical limitations: pressure limits, overflow limits &
pumping capabilities

 Water Demand
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STOCHASTIC MPC AND PARALLEL COMPUTATIONS ON GPU
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MPC-controlled network:

e Minimum pressure requirement hardly violated
* ~5% savings on energy cost w.r.t. current practice

e Smooth control actions
e sampling time =1 hour

(Sampathirao, Sopasakis, Bemporad, Patrinos, 2016)
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APG = Accelerated Proximal Gradient,
parallel implemented on NVIDIA Tesla
2075 CUDA platform

FP7-ICT project “EFFINET - Efficient Integrated Real-time Monitoring and Control of Drinking Water ‘ | « ‘

Networks” (2012-2015)
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CONCLUSIONS

e MPC can easily handle multivariable control problems with constraints in an
optimized way, it’s easy to design and reconfigure, it handles uncertainty

e Long history of success in the process industries

Is linear MPC really a mature
technology for production in
fast embedded applications?  YES !

//_ﬁ

s i Is stochastic MPC mature too ?
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