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Model Predictive Control (MPC)

dynamical	model
(learned	or	calibrated

from	data)
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embedded	model-based	optimizer
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Use	a	dynamical	model	of	the	process	to	predict	its	future	
evolution	and	choose	the	“best”	control	action

optimization	problem

process

m
in

1
2
x

0 Q
x

+
c

0 x

s.t
.

A

x


b



future

min

N�1X

k=0

kWy

(y

k

� r(t))k2 + kWu

(u

k

� u

ref

(t))k2

s.t. x

k+1

= f(x

k

, u

k

, t)

y

k

= g(x

k

, u

k

, t)

constraints on u

k

, y

k

x

0

= x(t)

Model Predictive Control (MPC)
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•	Apply	the	first	optimal	move	u(t)= u0*,	throw	the	rest	of	the	sequence	away

predicted	outputs

manipulated	inputs

t t+k t+N

uk

r(t)

t+1  t+1+k t+N+1

•	At	time	t+1:	Get	new	measurements,	repeat	the	optimization.	And	so	on	…	

yk

•	At	time	 t:	consider	optimal	control	problem	over	a	future	horizon	of	N	steps
past

feedback !

optimization	problem

• Solve	problem	w.r.t.	{u0,...,u N-1}

penalty on
tracking error

penalty on
actuation effort

Used	in	process	industries	since	the	80's
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First paper on MPC ...
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(Rafal,	Stevens,	AiChE	Journal,	1968)

1968:	The	Beatles	published	the	White	Album



tire	
deflection

suspension
deflection

Automotive applications of MPC
Bemporad,	Bernardini,	Borrelli,	Cimini,	Di	Cairano,	Esen,	Giorgetti,	Hrovat,	Kolmanovsky,	Ripaccioli,	Trimboli,	
Tseng,	Yanakiev,	...	(2001-2016)

Homogeneous Stratified

Vehicle	dynamics
•traction	control
•active	steering	
•semiactive	suspensions

Powertrain
•direct-inj.	engine	control
•A/F	ratio	control
•magnetic	actuators
•robotized	gearbox	
•power	MGT	in	HEVs
•cabin	heat	control	in	HEVs
•electrical	motors Advanced Controls & Optimization
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powered	descent

Aerospace applications of MPC

(Bemporad,	Rocchi,	2011)

• Main	goal:	explore	MPC	capabilities	in	new	space	applications:	

• New	MATLAB	MPC	Toolboxes	developed	(MPCTOOL	and	MPCSofT)
(Bemporad,	2010)	(Bemporad,	2012)

planetary	rover

cooperating	UAVs

(Pascucci,	Bennani,	Bemporad,	2016)



Embedded Linear MPC
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min
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z0Hz + x0(t)F 0z +

1

2
x0(t)Y x(t)

s.t. Gz  W + Sx(t)

• Linear	MPC	requires	solving	a	Quadratic	Program	(QP)

z =

2

6664

u0
u1
...

uN�1

3

7775

• Several	algorithms	exist	to	solve	the	QP	on-line	given	x(t):

active	set	(AS),	interior	point	(IP),	gradient	projection	(GP),	alternating	direction	
method	of	multipliers	(ADMM),	proximal	methods,	...



First Paper on QP ...
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(Beale,	1955)

A	rich	set	of	good	QP	algorithms	is	available	today,	
but	still	more	research	is	needed	to	have	an	impact	
in	real	applications	!	



MPC in a production environment
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embedded	model-based	optimizer
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1. Speed	(throughput):	solve	optimization	problem	within	sampling	interval

2. Robustness	with	respect	to	finite-precision	arithmetics

3. Be	able	to	run	on	limited	hardware	(e.g.,	150	MHz)	with	little	memory	

4.Worst-case	execution	time	must	be	(tightly)	estimated	

5. Code	simple	enough	to	be	validated/verified/certified
(in	general,	it	must	be	understandable	by	production	engineers)

Requirements	for	production:



MPC in industrial automotive production
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Fast gradient projection for (dual) QP

y-1 =y0=0

K = H�1G0

J = H�1F 0

wk = yk + �k(yk � yk�1

)

zk = �Kwk � Jx

sk =

1

LGzk � 1

L(Sx+W )

yk+1

= max {yk + sk,0}

•Apply	fast	gradient	method	to	dual	QP:

• Termination	criterion	#1:	primal	feasibility

• Termination	criterion	#2:	primal	optimality

f(zk)� f⇤  f(zk)� ⇥(wk) = �w0
kskL  �V

dual function

(Nesterov,	1983)

feasibility tol

optimality tol

(Patrinos,	Bemporad,	IEEE	TAC,	2014)

�k =

(
0 k = 0
k�1
k+2 k > 0
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Fast gradient projection for (dual) QP
(Patrinos,	Bemporad,	IEEE	TAC,	2014)•Main	on-line	operations	involve	only	

simple	linear	algebra

• Convergence	rate:

theoretical

experimental

• Currently	extended	to	mixed-integer	problems

f(zk+1)� f⇤ 
2L

(k +2)2
kz0 � z⇤k2

• Tight	bounds	on	maximum	number	of	iterations

12(Naik,	Bemporad,	work	in	progress)

• Can	be	used	to	warm-start	other	methods



Hardware tests (floating vs fixed point)

32-bit	Atmel	SAM3X8E	
ARM Cortex-M3	processing	
unit
84	MHz,	512	KB	of	flash	memory	
and	100	KB	of	RAM

(Patrinos,	Guiggiani,	Bemporad,	2013)

fixed
point

floating
point

fixed-point about 4x faster than floating-point
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•Gradient	projection	works	in	fixed-point	arithmetics	

max

i
gi(zk)  2LD2

k+1

+ Lv✏
2

z +4D✏⇠ exponentially decreasing with 
number p of fractional bits

max constraint violation



In	MATLAB:		>> v=A\b % (1 character)

• Nonnegative	Least	Squares	(NNLS):

v = argmin kAv � bk22

Can we solve QP’s using least squares ?
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minv kAv � bk22
s.t. v � 0

The	Least	Squares	(LS)	problem	is	probably	the	
most	studied	problem	in	numerical	linear	algebra

(Legendre,	1805) (Gauss,	<=	1809)



Active-set method for Nonnegative Least Squares

•NNLS	algorithm	is	very	simple	(750 chars in Embedded MATLAB),	
the	key	operation	is	to	solve	a	standard	LS	problem	at	each	iteration	
(via	QR,	LDL’,	or	Cholesky	factorization)

15

(Lawson,	Hanson,	1974)

3

i) The set X
f

of parameters x for which the problem is
feasible is a polyhedron;

ii) The optimizer function z⇤ : X
f

! Rn is piecewise affine
and continuous over X

f

;
iii) If in addition matrix

h

Q F

0

F Y

i

is symmetric and positive
semidefinite, the value function V ⇤

: X
f

! R associating
with every x 2 X

f

the corresponding optimal value of (3)
is continuous, convex, and piecewise quadratic.

When X ⇢ Rn, the results of Theorem 1 hold by replacing
X

f

with X
f

\X .
An immediate corollary of Theorem 1 is that the explicit

version of the MPC control law u in (4), being the first n
u

components of the optimal vector z(x), is also a continuous
and piecewise-affine state-feedback law defined over a parti-
tion of the set X

f

\X of states into M polyhedral cells

u⇤
(x) =

8

>

<

>

:

K1x+ h1 if E1x  e1

...
...

KMx+ hM if EMx  eM .

(8)

An example of such a partition is reported in Figure 1 of
Section VI-B. The explicit representation (8) has mapped the
MPC law (4) into a lookup table of affine gains, meaning that
for each given x the values computed by solving the QP (3)
on-line and those obtained by evaluating (8) are exactly the
same.

B. Generalization of the MPC formulation
The explicit approach described above can be extended to

the following MPC setting:
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are, respectively, the
prediction, control, and constraint horizons. The extra variable
✏ is introduced to soften output constraints via the relaxation

vectors V
min

, V
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> 0 of Rn

y and penalized by the (usually
large) weight ⇢

✏

in the cost function (9a).
Everything marked in bold-face in (9) can be treated as a

parameter with respect to which solve the mpQP problem and
obtain the explicit form of the MPC controller. For example,
for a tracking problem with no anticipative action (rk ⌘ r

0

,
8k = 0, . . . , N�1), no measured disturbance, fixed upper and
lower bounds, the explicit solution is a continuous piecewise
affine function of the parameter vector [x0

0
r0

0
u�1

0
]

0.

III. POLYHEDRAL COMPUTATIONS BASED ON NNLS

Finding a solution to the mpQP problem (3) requires solv-
ing several problems of computational geometry, as will be
detailed in Section IV. The goal of this section is to provide
an alternative to existing methods that rely on the availability
of a linear programming (LP) solver, building upon a standard
and easy-to-code solver for the Non-Negative Least-Squares
(NNLS) problem

r⇤ = min

v

kAv � bk2
2

s.t. v � 0,
(10)

where v 2 Rn, A 2 Rm⇥n, b 2 Rm, and r⇤ 2 R is the mini-
mum squared Euclidean norm of the residual w⇤

= Av⇤�b. A
well-known and simple, yet very effective, active-set method
for solving the NNLS problem (10) is described in [19, p.161]
and is summarized in Algorithm 1. At convergence after a
finite number of steps, the algorithm provides the optimal
solution vector v⇤, with v⇤

i

> 0, 8i 2 P , and v⇤
i

= 0,
8i 2 {1, . . . ,m} \ P .

Algorithm 1 NNLS solver [19, p.161]
Input: Matrices A, b.

1) P  ;, v  0;
2) w  A0

(Av � b);
3) if w � 0 or P = {1, . . . ,m} then go to Step 11;
4) i argmin

i2{1,...,m}\P w
i

, P  P [ {i};
5) yP  argmin

zP k((A0
)P)

0zP � bk2
2

, y{1,...,m}\P  0;
6) if yP � 0 then v  y and go to Step 2;
7) j  argmin

h2P: y

h

0

n

v

h

v

h

�y

h

o

;
8) v  v +

v

j

v

j

�y

j

(y � v);
9) I  {h 2 P : v

h

= 0}, P  P \ I;
10) go to Step 5;
11) v⇤  v; end.

Output: A vector v⇤ solving (10)

Algorithm 1 can be easily modified to warm-start from a
set P 6= ; of active constraints, see, e.g., [21, Algorithm 2].
Moreover, since solving Step 5 is the most time consum-
ing operation of Algorithm 1, iterative methods have been
proposed for QR factorization [19, Chap. 24] and LDLT

factorization [20] to exploit the incremental changes of the
active set P in Steps 4 and 9.

In the sequel, we will also refer to the unconstrained
problem

r⇤ = min

v

kAv � bk2
2

(11)

minv kAv � bk22
s.t. v � 0

Algorithm:	While	maintaining	primal	
var	v	feasible,	keep	switching	active	set	
until	dual	var	w	is	also	feasible
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Solving QP’s via nonnegative least squares

•Use	NNLS	to	solve	strictly	convex	QP
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(Bemporad,	IEEE	TAC,	2016)

complete the squares

Least	
Distance	
Problem

Nonnegative	Least	Squares

QP

retrieve primal solution

residual	
= 0	?

yes

no

QP problem infeasible

(Lawson,	Hanson,	1974)
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Solving QP via NNLS: Numerical results
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QP-NNLS

• A	rather	fast	and	relatively	simple-to-code	QP	solver	!

(Bemporad,	IEEE	TAC,	2016)

worst-case	over	100	random	QP	instances worst-case	occurred	during	entire	simulation*

*	Step	t=0	not	considered	for	QPOASES	not	to	penalize	the	
benefits	of	the	method	with	warm	starting

(Bemporad,	NMPC	2015)• Extended	to	solving	mixed-integer	QP’s



Explicit MPC

•Can	we	implement	optimization-based	controllers	like	MPC	without	
an	optimization	solver	running	in	real-time	?
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Explicit model predictive control and multiparametric QP

The	multiparametric	solution	of	a	strictly	convex	QP	is	continuous	
and	piecewise	affine	

Corollary:	The	linear	MPC	control	law	is	continuous	&	piecewise	affine	!

(Bemporad,	Morari,	Dua,	Pistikopoulos,	2002)

z⇤ =

2

6664

u⇤0
u⇤1...

u⇤N�1

3

7775

z⇤(x) = argminz 1
2z

0Hz + x0F 0z
s.t. Gz  W + Sx

It’s
 jus

t a 
while 

loop
!
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• A	variety	of	mpQP	solvers	is	available

• Most	computations	are	spent	in	operations	on	polyhedra	(=critical	regions)

- checking	emptiness	of	polyhedra
- removal	of	redundant	inequalities
- checking	full-dimensionality	of	polyhedra

• All	such	operations	are	usually	done	via	linear	programming	(LP)

NNLS for multiparametric QP

20

x0•	

(Bemporad	et	al.,	2002)
(Tøndel,	Johansen,	Bemporad,	2003)

(Baotic,	2002)

(Spjøtvold	et	al.,	2006)(Patrinos,	Sarimveis,	2010)

feasibility of primal solution
feasibility of dual solution

Ĝz

⇤(x)  Ŵ + Ŝx

�̃

⇤(x) � 0



A	polyhedron
is	nonempty	iff

has	zero	residual	

m NNLS LP
2 0.0006 0.0046
4 0.0019 0.0103
6 0.0038 0.0193
8 0.0071 0.0340
10 0.0111 0.0554
12 0.0178 0.0955
14 0.0263 0.1426
16 0.0357 0.1959

Aju
 bj

Aiu  bi

NNLS for multiparametric QP
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(Bemporad,	IEEE	TAC	2015)

redundant non 
redundant

• Key	result:	
P = {u 2 Rn : Au  b}

(v⇤, u⇤) = argminv,u kv +Au� bk22
s.t. v � 0, u free

kv⇤ +Au⇤ � bk22 = 0

• Numerical	results	on	elimination	of	redundant	inequalities:
random	polyhedra	of	Rm	with	10m	inequalities

NNLS	=	compiled	Embedded	MATLAB
LP	=	compiled	C	code	(GLPK)

CPU	time	=	seconds	(this	Mac)

• Many	other	polyhedral	operations	can	be	also	tackled	by	NNLS	

Au  b



q m Hybrid Tbx MPT NNLS

4 2 0.0174 0.0256 0.0026
4 3 0.0263 0.0356 0.0038
4 4 0.0432 0.0559 0.0061
4 5 0.0650 0.0850 0.0097
4 6 0.0827 0.1105 0.0126
8 2 0.0347 0.0396 0.0050
8 3 0.0583 0.0680 0.0092
8 4 0.0916 0.0999 0.0140
8 5 0.1869 0.2147 0.0322
8 6 0.3177 0.3611 0.0586
12 2 0.0398 0.0387 0.0054
12 3 0.1121 0.1158 0.0191
12 4 0.2067 0.2001 0.0352
12 5 0.6180 0.6428 0.1151
12 6 1.2453 1.3601 0.2426
20 2 0.1029 0.0763 0.0152
20 3 0.3698 0.2905 0.0588
20 4 0.9069 0.7100 0.1617
20 5 2.2978 1.9761 0.4395
20 6 6.1220 6.2518 1.2853

NNLS for solving mpQP problems

• New	mpQP	algorithm	based	on	NNLS	+	dual	QP	formulation	to	compute	
active	sets	and	deal	with	degeneracy

• Comparison	with:	

– Hybrid	Toolbox
– Multiparametric	Toolbox	2.6	(with	default	opts)

• Included	in	MPC	Toolbox	5.0	(≥R2014b)

22

(Bemporad,	2003)

(Kvasnica,	Grieder,	Baotic,	2006)

(Bemporad,	IEEE	TAC,	2015)

(Bemporad,	Morari,	Ricker,	1998-2015)



Optimize decisions under uncertainty

renewable	power

prices

demand

human	(inter)action

?
? ??

•Deterministic	(=certainty	equivalence)	approaches	often	inadequate	
(e.g.:	portfolio	management)

•Robust	control	approaches	do	not	model	uncertainty	(only	assume	
that	is	bounded)	and	pessimistically	consider	the	worst	case

•Stochastic	models	provide	instead	additional	information	about	
uncertainty

water

?

23



Stochastic Model Predictive Control (SMPC)

24

process
model-based	
optimizer

reference outputinput

measurements

r(t) u(t) y(t)

stochasticity
w(t)

Use	a	stochastic	dynamical	model	of	the	process	to	predict	its	
possible	future	evolutions	and	choose	the	“best”	control	action



• Energy	systems:	power	dispatch	in	smart	grids,	optimal	bidding	on	electricity	
markets

• Financial	engineering:	dynamic	hedging	of	portfolios	replicating	synthetic	options

• Water	networks:	pumping	control	in	urban	drinking	water	networks,	under	
uncertain	demand	&	minimizing	costs	under	varying	electricity	prices	

• Automotive	control:	energy	management	in	HEVs,	adaptive	cruise	control	
(human-machine	interaction)

• Networked	control:	improve	robustness	against	communication	imperfections

A few sample applications of SMPC

25

(Bernardini,	Donkers,	Bemporad,	Heemels,	NECSYS	2010)

(Di	Cairano,	Bernardini,	Bemporad,	Kolmanovsky,	2014)

(Patrinos,	Trimboli,	Bemporad	2011)
(Puglia,	Bernardini,	Bemporad	2011)

(Bemporad,	Bellucci,	Gabbriellini,	2009)
(Bemporad,	Gabbriellini,	Puglia,	Bellucci,	2010)

(Bemporad,Puglia,	Gabbriellini,	2011)

(Sampathirao,	Sopasakis,	Bemporad,	2014)



wk 2 {w1, . . . , ws} pj = Pr[wk = wj]

pj � 0,
sX

j=1
pj = 1

(
x

k+1 = A(w
k

)x
k

+B(w
k

)u
k

+ f(w
k

)
y

k

= C(w
k

)x
k

+D(w
k

)u
k

+ g(w
k

)

Linear stochastic MPC w/ discrete disturbance

26

• 	Linear	stochastic	prediction	model

• 	Discrete	disturbance

(A, B, C, D)	are	can	be	sparse	(ex:	network	of	interacting	subsystems)

Often	wk	is	low-dimensional	(ex:	electricity	price,	weather,	etc.)



Linear stochastic MPC formulation

27

(van	Hessem	&	Bosgra	2002)

(Munoz	de	la	Pena,	Bemporad,	Alamo,	2005)

(Primbs,	2007)
(Couchman,	Cannon,	Kouvaritakis,	2006) (Ono,	Williams,	2008)

(Oldewurtel,	Jones,	Morari,	2008)(Schwarme	&	Nikolaou,	1999)
(Wendt	&	Wozny,	2000)
(Batina,	Stoorvogel,	Weiland,	2002) (Bemporad,	Di	Cairano,	2005)

(Bernardini,	Bemporad,	2012)

Existing	literature	on	stochastic	MPC

•	Goal:	ensure	mean-square	convergence																																																	(for	f(w( t))=0)

•The	existence	of	a	stochastic	Lyapunov	function	
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(Morozan,	1983)ensures	mean-square	stability

L = L0 > 0

(Bernardini,	Bemporad,	2012)



↵ � 0

VarwE [yk � rk] = Ew
⇥
(yk � rk)

2
⇤
� (Ew [yk � rk])

2

min
u

N�1X

k=0
Ew

h
(yk � rk)

2
i

min
u

N�1X

k=0

(Ew [yk � rk])
2 + ↵Varw [yk � rk]

Cost functions for SMPC to minimize

28

•Expected	performance

•Tradeoff	between	expectation	&	risk

•Note	that	they	coincide	for	α=1,	since
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•Conditional	Value-at-Risk	(CVaR) (Rockafellar,	Uryasev,	2000)

= minimize expected loss when things go wrong (convex !)

p(w)

(y-
r)2

β=95%

things	go	wrongok

α

(y-r)2≥α

5%

•Min-max = minimize worst case performance

VaR

can	be	cast	to	a	linear	programming	problem

can	be	cast	to	a	linear	programming	problem
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Expectations	of	quadratic	costs	remain	quadratic	costs

Ex:

(=linear	time-varying	system)

•Each	scenario	has	its	own	evolution	

•Expectations	become	simple	sums	!	

(Bernardini,	Bemporad,	2012)



Scenario tree generation from data
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• Scenario	trees	can	be	generated	by	clustering	sample	paths

• Paths	can	be	obtained	by	Monte	Carlo	simulation	of	(estimated)	models,	
or	from	historical	data

• The	number	of	nodes	can	be	decided	a	priori

scenario “fan” (collection of sample paths)
⇠2 ⇠3 ⇠4

he
ig

ht
 =

 4

⇠0 ⇠1

he
ig

ht
 =

 4

⇠4⇠0 ⇠1 ⇠2 ⇠3⇠0 ⇠1 ⇠2 ⇠3 ⇠4scenario tree

k

wk

N

Heuristic	
Multilevel	
Clustering	

(Heitsch,	Römisch,	2009)

•Alternative	(simpler/less	accurate)	approach:	k-means	clustering
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coal	I

coal	II

natural	gas
wind	farm

photovoltaic

hydro-storage
TABLE I: Generator Cost Data

Unit Qi ($/MWh2) qi ($/MWh) ci ($)
P1 0.009 30.375 398.025
P2 0.0225 73.35 292.275
P3 0.0488 61.488 489.952

TABLE II: Generator Data

Unit p

min

i p

max

i �p

min

i �p

min

i
P1 450 1100 -250 250
P2 50 500 -200 200
P3 50 100 -75 75

(P3), two intermittent generators, i.e., a wind farm (R1) and
a photovoltaic (PV) generator (R2), and one hydro storage
unit (S1).

Fig. 2: 12 bus power system

The characteristics of the conventional power generators
are given in Tables I and II, while the parameters of the
storage unit are summarized in Table III.

The PTU (sampling time) is assumed to be equal to
10 minutes. Real historical data were used in the sim-
ulations. Load and real-market price data are obtained
from the New York ISO (http://www.nyiso.com/
public/market_data/), while meteorological data re-
garding wind speed and solar radiation are obtained by the
National Data Buoy Center (http://www.ndbc.noaa.
gov/). Specifically, data for the first 22 days of January
2011 were used for creating scenarios at every time instant
k � Z+, while the power system in closed-loop with the
scenario-based SMPC controller is simulated for the 23rd

TABLE III: Storage Data
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TABLE IV: Comparison of scenario-based SMPC with pre-
scient optimal control and certainty-equivalent MPC

Algorithm Storage No Storage
Cost Cost Avg # of nodes

Prescient-OC 6427979 6879741
CE-MPC 9778750 9819518

SSMPC (e
rel

= 0.1) 7134582 7245962 350
SSMPC (e

rel

= 0.2) 7144011 7249401 335
SSMPC (e

rel

= 0.3) 7148494 7250207 172
SSMPC (e

rel

= 0.4) 7179848 7264505 87
SSMPC (e

rel

= 0.5) 7224912 7267497 50
SSMPC (e

rel

= 0.6) 7239985 7277410 38
SSMPC (e

rel

= 0.7) 7259491 7298023 31
SSMPC (e

rel

= 0.8) 7255246 7312092 26
SSMPC (e

rel

= 0.9) 7260424 7318643 22
SSMPC (e

rel

= 1.0) 7260424 7318642 20

of January. Figure 3b depicts the load, total intermittent
generation (sum of wind farm and PV outputs) and the real-
time price for that day.

Fig. 3: Load, intermittent generation (left) and real-time price
(right) for January 23rd, 2011

Scenario-based SMPC (SSMPC) was compared against
prescient optimal control (Prescient-OC) where the complete
knowledge of the realization of the stochastic exogenous
inputs is assumed, and certainty-equivalent MPC (CE-MPC),
where the uncertain parameters are substituted by their time-
varying average values based on the historical data. The
prediction horizon N was set equal to 16 for both SSMPC
and CE-MPC. SSMPC was tested for various values of
the relative error parameter of forward tree construction.
Table IV summarizes the results of the simulations. As
expected, the average number of nodes is decreasing while
the simulations cost is increasing as erel increases. It is clear
from Table IV that SSMPC outperforms CE-MPC. In order to
examine the value of employing energy storage systems for
power systems with intermittent generation, we also compare
against the case where there is no energy storage unit in the
system.

Figure 4 illustrates the operational costs of the three
approaches during the simulation. Unlike CE-MPC, it is
clear that SSMPC can take advantage of the high profit
opportunities appearing when upward real-time price spikes
occur. The next three figures depict power outputs for the
three conventional generators (Figure 5), the state of charge

TABLE I: Generator Cost Data

Unit Qi ($/MWh2) qi ($/MWh) ci ($)
P1 0.009 30.375 398.025
P2 0.0225 73.35 292.275
P3 0.0488 61.488 489.952
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(P3), two intermittent generators, i.e., a wind farm (R1) and
a photovoltaic (PV) generator (R2), and one hydro storage
unit (S1).

Fig. 2: 12 bus power system

The characteristics of the conventional power generators
are given in Tables I and II, while the parameters of the
storage unit are summarized in Table III.

The PTU (sampling time) is assumed to be equal to
10 minutes. Real historical data were used in the sim-
ulations. Load and real-market price data are obtained
from the New York ISO (http://www.nyiso.com/
public/market_data/), while meteorological data re-
garding wind speed and solar radiation are obtained by the
National Data Buoy Center (http://www.ndbc.noaa.
gov/). Specifically, data for the first 22 days of January
2011 were used for creating scenarios at every time instant
k � Z+, while the power system in closed-loop with the
scenario-based SMPC controller is simulated for the 23rd
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TABLE IV: Comparison of scenario-based SMPC with pre-
scient optimal control and certainty-equivalent MPC

Algorithm Storage No Storage
Cost Cost Avg # of nodes

Prescient-OC 6427979 6879741
CE-MPC 9778750 9819518

SSMPC (e
rel

= 0.1) 7134582 7245962 350
SSMPC (e

rel

= 0.2) 7144011 7249401 335
SSMPC (e

rel

= 0.3) 7148494 7250207 172
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= 0.8) 7255246 7312092 26
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SSMPC (e

rel
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of January. Figure 3b depicts the load, total intermittent
generation (sum of wind farm and PV outputs) and the real-
time price for that day.

Fig. 3: Load, intermittent generation (left) and real-time price
(right) for January 23rd, 2011

Scenario-based SMPC (SSMPC) was compared against
prescient optimal control (Prescient-OC) where the complete
knowledge of the realization of the stochastic exogenous
inputs is assumed, and certainty-equivalent MPC (CE-MPC),
where the uncertain parameters are substituted by their time-
varying average values based on the historical data. The
prediction horizon N was set equal to 16 for both SSMPC
and CE-MPC. SSMPC was tested for various values of
the relative error parameter of forward tree construction.
Table IV summarizes the results of the simulations. As
expected, the average number of nodes is decreasing while
the simulations cost is increasing as erel increases. It is clear
from Table IV that SSMPC outperforms CE-MPC. In order to
examine the value of employing energy storage systems for
power systems with intermittent generation, we also compare
against the case where there is no energy storage unit in the
system.

Figure 4 illustrates the operational costs of the three
approaches during the simulation. Unlike CE-MPC, it is
clear that SSMPC can take advantage of the high profit
opportunities appearing when upward real-time price spikes
occur. The next three figures depict power outputs for the
three conventional generators (Figure 5), the state of charge

http://www.e-price-project.eu/

(Patrinos,	Trimboli,	Bemporad	2011)

http://www.e-price-project.eu
http://www.e-price-project.eu
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TABLE I: Generator Cost Data

Unit Qi ($/MWh2) qi ($/MWh) ci ($)
P1 0.009 30.375 398.025
P2 0.0225 73.35 292.275
P3 0.0488 61.488 489.952

TABLE II: Generator Data

Unit pmin
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i �pmin
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i
P1 450 1100 -250 250
P2 50 500 -200 200
P3 50 100 -75 75

(P3), two intermittent generators, i.e., a wind farm (R1) and
a photovoltaic (PV) generator (R2), and one hydro storage
unit (S1).

Fig. 2: 12 bus power system

The characteristics of the conventional power generators
are given in Tables I and II, while the parameters of the
storage unit are summarized in Table III.

The PTU (sampling time) is assumed to be equal to
10 minutes. Real historical data were used in the sim-
ulations. Load and real-market price data are obtained
from the New York ISO (http://www.nyiso.com/
public/market_data/), while meteorological data re-
garding wind speed and solar radiation are obtained by the
National Data Buoy Center (http://www.ndbc.noaa.
gov/). Specifically, data for the first 22 days of January
2011 were used for creating scenarios at every time instant
k � Z+, while the power system in closed-loop with the
scenario-based SMPC controller is simulated for the 23rd

TABLE III: Storage Data
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S1 15 300 -120 120 0.95 0.85 0.90

uc,min

i = ud,min

i uc,max
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i
0 300

TABLE IV: Comparison of scenario-based SMPC with pre-
scient optimal control and certainty-equivalent MPC

Algorithm Storage No Storage
Cost Cost Avg # of nodes

Prescient-OC 6427979 6879741
CE-MPC 9778750 9819518

SSMPC (e
rel

= 0.1) 7134582 7245962 350
SSMPC (e

rel

= 0.2) 7144011 7249401 335
SSMPC (e

rel

= 0.3) 7148494 7250207 172
SSMPC (e

rel

= 0.4) 7179848 7264505 87
SSMPC (e

rel

= 0.5) 7224912 7267497 50
SSMPC (e

rel

= 0.6) 7239985 7277410 38
SSMPC (e

rel

= 0.7) 7259491 7298023 31
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rel

= 0.8) 7255246 7312092 26
SSMPC (e

rel

= 0.9) 7260424 7318643 22
SSMPC (e

rel

= 1.0) 7260424 7318642 20

of January. Figure 3b depicts the load, total intermittent
generation (sum of wind farm and PV outputs) and the real-
time price for that day.

Fig. 3: Load, intermittent generation (left) and real-time price
(right) for January 23rd, 2011

Scenario-based SMPC (SSMPC) was compared against
prescient optimal control (Prescient-OC) where the complete
knowledge of the realization of the stochastic exogenous
inputs is assumed, and certainty-equivalent MPC (CE-MPC),
where the uncertain parameters are substituted by their time-
varying average values based on the historical data. The
prediction horizon N was set equal to 16 for both SSMPC
and CE-MPC. SSMPC was tested for various values of
the relative error parameter of forward tree construction.
Table IV summarizes the results of the simulations. As
expected, the average number of nodes is decreasing while
the simulations cost is increasing as erel increases. It is clear
from Table IV that SSMPC outperforms CE-MPC. In order to
examine the value of employing energy storage systems for
power systems with intermittent generation, we also compare
against the case where there is no energy storage unit in the
system.

Figure 4 illustrates the operational costs of the three
approaches during the simulation. Unlike CE-MPC, it is
clear that SSMPC can take advantage of the high profit
opportunities appearing when upward real-time price spikes
occur. The next three figures depict power outputs for the
three conventional generators (Figure 5), the state of charge

Exact	knowledge	
of	future	uncertainty

Deterministic:	time-
dependent	
expectations	used	for	
future	uncertainty

Stochastic	formulation

of the storage unit (Figure 6) and the exchanged power with
the real-time market (Figure 7) for the power system in
closed-loop with the SSMPC controller (erel = 0.1).

Fig. 4: Operational Cost comparison

Fig. 5: Conventional power generation

VI. CONCLUSIONS AND FUTURE WORK

In this paper we formulated a real-time market-based
optimal power dispatch problem for power systems that
can be seen as balance responsible parties participating in
the deregulated electricity market. Specifically, the power
system must balance its own loads while respecting opera-
tional constraints, minimizing production costs, and making
as large profit as possible by trading power on the real-
time market. The power system can contain intermittent
generation and storage energy systems, characteristics that
will become prevalent in future power systems.

We proposed a novel scenario-based stochastic MPC algo-
rithm for the solution of the real-time market-based optimal
power dispatch problem. The algorithm uses a scenario tree
generation algorithm in order to construct a tree suitable for
multistage stochastic optimization from a scenario fan and
solves a convex QP at every sampling time. The algorithm
is very flexible in the sense that the process of creating sce-
narios is separated from the solution procedure. Specifically,
the user can provide scenarios based on historical data or
coming from a time-series model of the underlying stochastic

Fig. 6: State of charge of the energy storage unit

Fig. 7: Exchanged electricity with the real-time market

process. The value of incorporating stochastic information
was examined on a non-trivial 12-bus system using real
historical data for simulation, showing clear advantages over
simpler certainty-equivalent MPC methods and achieving
large cost savings which stronlgy encourage the use of
stochastic MPC for managing electric power systems in
today’s (and tomorrow’s) markets.
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power	exchanged	
with	grid

(Patrinos,	Trimboli,	Bemporad	2011)
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Complexity of stochastic optimization problem

• #optimization	variables	=	#nodes	x	#inputs	(in	condensed	version)

• Problems	are	very	sparse	(well	exploited	by	interior	point	methods)

• Example:	SMPC	with	quadratic	cost	and	linear	constraints
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Main	goals:

• Reduce	electricity	consumption	for	pumping	(																				)
• Meet	demand	requirements
• Deliver	smooth	control	actions
• Keep	storage	tanks	above	safety	limits
• Respect	the	technical	limitations:	pressure	limits,	overflow	limits	&	
pumping	capabilities

SMPC of the drinking water networks
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(Sampathirao,	Sopasakis,	Bemporad,	Patrinos,	2015)



Stochastic MPC and Parallel Computations on GPU

FP7-ICT project “EFFINET - Efficient Integrated Real-time Monitoring and Control of Drinking Water 
Networks” (2012-2015)
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MPC-controlled	network:	
• Minimum	pressure	requirement	hardly	violated
• ~5%	savings	on	energy	cost	w.r.t.	current	practice	
• Smooth	control	actions
• sampling	time	=	1	hour
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APG = Accelerated Proximal Gradient, 
parallel implemented on NVIDIA Tesla 
2075 CUDA platform

Drinking water network 
of Barcelona:

63 tanks 
114 controlled flows 
17 mixing nodes 

(Sampathirao,	Sopasakis,	Bemporad,	Patrinos,	2016)



• MPC	can	easily	handle	multivariable	control	problems	with	constraints	in	an	
optimized	way,	it’s	easy	to	design	and	reconfigure,	it	handles	uncertainty

Conclusions
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• Long	history	of	success	in	the	process	industries

http://cse.lab.imtlucca.it/~bemporad/publications

Is	linear	MPC	really	a	mature	
technology	for	production	in	
fast	embedded	applications	? YES ! 

Is	stochastic	MPC	mature	too	?

WE’RE VERY CLOSE ... 

http://cse.lab.imtlucca.it/~bemporad/publications
http://cse.lab.imtlucca.it/~bemporad/publications

