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Abstract—In this paper, we describe and evaluate Model
Predictive Control (MPC) algorithms for an Artificial Pancreas
(AP) with both insulin and glucagon. Such a device is called a
dual-hormone AP. We evaluate the performance of two different
glucagon administration strategies and compare them to a
strategy using insulin only that serves as a reference strategy.
In all cases, the dosing of the insulin is based on the same
MPC algorithm. Glucagon is included as a safety feature in the
closed-loop system, and the administration of insulin is done in
a non-aggressive way such that it does not anticipate glucagon
administration. Insulin and glucagon are never administered
simultaneously; the switch between insulin and glucagon adminis-
tration is based on either a measured glucose level threshold with
hysteresis or a prediction of future hypoglycemia. We simulate
cases where meals are correctly bolused and not bolused, as well
as cases with insulin sensitivity changes. The results indicate
that both switching strategies for a dual-hormone AP reduce the
time spent in hypoglycemia significantly. Moreover, the glucagon
control strategy using glucose predictions in the switch allows
earlier glucagon intervention and further reduces the time spent
in hypoglycemia without overdosing glucagon.

I. INTRODUCTION

Healthy people keep the blood glucose around the target 3.5
- 8.0 mmol/L. People with type 1 diabetes (T1D) are dependent
on exogenous insulin supply due to an autoimmune destruction
of the insulin producing cells in the pancreas. The therapeutic
target for this patient group is near-normalization of blood
glucose levels via intensive insulin therapy.

Furthermore, T1D affects the glycemic counter-regulatory
system. In healthy people, a too low glucose concentration
(i.e. hypoglycemia) inhibits the production of insulin and
stimulates the secretion of an antagonistic pancreatic hormone,
glucagon. However, hypoglycemia in T1D is typically related
to insulin overdosing, which suppresses the counter-regulatory
mechanisms and blocks the restoration of euglycemia.

For decades, researchers have been trying to replace the
usual insulin therapy by an automated closed-loop insulin de-
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Fig. 1. The dual-hormone artificial pancreas. It includes a CGM sensor, a
smartphone for control, an insulin pump and a glucagon pump.

livery system that is known as the Artificial Pancreas (AP) [1]–
[10]. With Continuous Glucose Monitors (CGM) available,
various control strategies have been investigated and tested.
The approaches with the most promising results are based on
Model Predictive Control (MPC) [11]–[20]. Yet, safety of the
AP remains an unresolved issue; especially when it comes to
hypoglycemia prevention.

One way to reduce the risk of hypoglycemia is to incor-
porate glucagon as a safety hormone in the AP. The first
controller using glucagon was developed more than 30 years
ago [21]. This dual-hormone AP (i.e. an AP with insulin and
glucagon) was not usable in everyday life due to, among other
reasons, the instability of glucagon in soluble formulation.
Recently, the planned release of stable soluble glucagon ana-
logues has raised the interest in dual-hormone APs [22]–[25].
For virtual as well as real patients with T1D, all studies using a
dual-hormone AP confirm that the time spent in hypoglycemia
is reduced compared to an AP using insulin only [26]–
[29]. However, high doses of glucagon may have side effects
including nausea and vomiting [30]. For example, Russell et
al. [28] reported several cases of nausea and vomiting during
the glucagon administration phase, although they could not
relate it to high glucagon doses. Fig. 1 shows a possible dual-
hormone AP setup, including the CGM sensor, a smartphone
used for monitoring and control, and the insulin and glucagon
pumps.

So far, the most popular control strategies for glucagon
administration are proportional derivative (PD) control [26],
[28], [31] and MPC [32], [33]. PD controllers have fewer
parameters, but rely much more on the glucose trend (deriva-



tive part) than on the current glucose level (proportional
part). In PD control, glucagon overdose can for instance be
avoided by stopping the glucagon administration beyond a
certain threshold as in [26]. Conversely, MPC can use the
glucose level predictions to optimize the insulin and glucagon
administration in a straightforward way. In addition, MPC can
incorporate soft constraints on insulin/glucagon variations or
levels to improve the safety of the controller and to limit
the administration of glucagon to safety purposes only. The
tuning of an MPC with soft constraints and switching logic
between the insulin and the glucagon controller requires some
expertise in MPC. The tuning of such an MPC system with
soft constraints should be based on simulations as well as the
systematic and partially automatic tuning methods for MPC
[34]–[39]. Therefore, even though the tuning of a controller
using MPC seems more difficult than the one of a PD due to
the lack of experience with a dual-hormone AP, the systematic
tuning methods facilitate the tuning of the MPC considerably.
At this point in time, the simulation based evaluation of
controllers is partially limited as there only exist a limited
number of models that describe the absorption of subcutaneous
glucagon and its action on blood glucose. In this paper, we
report such a model and demonstrate how it can be used for
evaluation of a dual-hormone AP.

In addition, a further complication is that the action time
associated with the subcutaneous route of glucagon adminis-
tration impairs the performance of a dual-hormone AP. This
time is shorter than the absorption time of subcutaneously ad-
ministered fast acting insulin, but is longer than the absorption
time of naturally secreted glucagon. A review of dual-hormone
APs indicates that administering glucagon too late may reduce
its efficiency to prevent hypoglycemia [40]. Therefore, one of
the major challenges in a dual-hormone AP is to find a suitable
strategy for when to start the glucagon administration.

The aim of this paper is to evaluate different glucagon
administration strategies for the dual-hormone AP. We com-
pare three different controllers. The first controller uses only
insulin. The second controller uses a strategy based on the
current glucose level to enable or disable the glucagon ad-
ministration. Finally, the third controller uses the glucose
predictions to enable or disable the glucagon administration.

The paper is organized as follows. Section II describes the
model used for simulations, Section III introduces the predic-
tion model used in the MPC, and Section IV describes the
dual-hormone control algorithm. Sections V and VI provide
the simulation results and concluding remarks.

II. DUAL-HORMONE SIMULATION MODEL

In-silico testing of a dual-hormone control algorithm re-
quires a suitable model that is able to simulate the effects
of subcutaneously administered insulin and glucagon. Until
recently, the majority of mathematical models including the
UVA/Padova T1D simulator [41] and the Hovorka model
[42] considered only insulin in the description of the glucose
regulatory system. Some of the physiology-based models
incorporate also glucagon [43], [44]. These complex models
have numerous parameters. Consequently, these models are
not easy to individualize by adjusting the parameters.

Recently, Dalla Man et al. presented an extension of the
UVA/Padova T1D simulator [45]. The extension contains
glucagon kinetics and action. It can be used to simulate a
cohort of patients. This model is an important step forward for
testing of the dual-hormone AP. Its main drawback is that its
parameters are not publicly available. For simulation purposes,
we implement the model by Bergman et al. [46] extended
with glucagon action as proposed by Herrero et al. [47].
Herrero et al. augment the minimal model of glucose kinetics
with compartmental absorption models for subcutaneously
administered insulin and glucagon, as well as ingested meals.

A. Model Overview
A system of differential equations describes the extended

glucose kinetics in the form [47]

Ġ(t) =−[SG +X(t)−W (t)]G(t)+SGGb +
D2(t)

tmaxGV
(1a)

Ẋ(t) =−p2X(t)+ p2SI [I(t)− Ib] (1b)
Ẇ (t) =−p3W (t)+ p3SN [N(t)−Nb] (1c)

G(t) [mg/dL], I(t) [µU/dL] and N(t) [pg/dL] are the plasma
glucose, plasma insulin and plasma glucagon concentrations,
respectively. X(t) [min−1] and W (t) [min−1] describe the
action of insulin and glucagon on glucose production.

Herrero et al. [47] employ three-compartment models with
identical structure to describe the absorption of insulin and
glucagon from the subcutaneous depot into the plasma. For
insulin the model is [47]

İ(t) =−keI(t)+
S2(t)

VItmaxI
(2a)

Ṡ1(t) = u1(t)−
S1(t)
tmaxI

(2b)

Ṡ2(t) =
S1(t)−S2(t)

tmaxI
(2c)

S1(t) [µU/kg] and S2(t) [µU/kg] represent the insulin con-
centrations in the first and in the second compartment. u1(t)
[µU/kg/min] is the subcutaneous insulin infusion rate per kg
of body weight.

Similarly, the model describing glucagon absorption is of
the form [47]

Ṅ(t) =−kNN(t)+
Z2(t)

VNtmaxN
(3a)

Ż1(t) = u2(t)−
Z1(t)
tmaxN

(3b)

Ż2(t) =
Z1(t)−Z2(t)

tmaxN
(3c)

where Z1(t) [pg/kg] and Z2(t) [pg/kg] represent the glucagon
concentrations in the first and in the second compartment.
u2(t) [pg/kg/min] is the subcutaneous glucagon infusion rate
per kg of body weight.

Furthermore, the model includes the two-compartment gas-
trointestinal absorption subsystem proposed by Hovorka et al.
[42]

Ḋ1(t) = AGDG−D1/tmaxG (4a)
Ḋ2(t) = (D1(t)−D2(t))/tmaxG (4b)



D1(t) [mg/kg] and D2(t) [mg/kg] are the glucose concen-
trations in the first and in the second compartment. DG
[mg/kg/min] is the carbohydrate intake per kg of body weight.

Herrero et al. [47] identify the model parameters for 3
separate periods of a day to mimic the circadian rhythm for
3 real patients. For details about the model and its parameters
together with the numerical values we refer the reader to [47].

B. Glucose Sensor

The glucose concentration is measured by a CGM. The
feedback from the CGM is a very important component of the
control system. Instead of the plasma glucose concentration,
CGMs measure glucose concentration in the interstitial tissue.
To simulate a CGM measurement, we employ a deterministic
model of the glucose transport from blood to interstitial tissue
together with the sensor noise model presented by Facchinetti
et al. [48].

III. PREDICTION MODEL

The central part of the MPC is the prediction model. In
the context of an AP, the prediction model should capture the
action times and delays associated with subcutaneous insulin
and glucagon administration. Ideally, the model should follow
the physiological properties of the patient. However, due to
the lack of easily obtainable clinical data, even the simplest
physiological models for T1D (e.g. the model developed by
Bergman et al. [46]) are difficult to identify and individualize
for a particular patient [49].

Therefore, simpler linear models for predicting the blood
glucose have been investigated. Kirchsteiger et al. [50] inves-
tigate models with integrators, van Heusden et al. [51] propose
a third order linear transfer function model, and Percival et al.
[52] use a first order model with a transport delay. Turksoy et
al. [11] and Russell et al. [28] use high order ARX models to
describe the insulin and glucagon (Russell et al.) dynamics.

We employ a low-order linear model to describe the ef-
fects of insulin, glucagon and other unknown factors. The
model consists of a deterministic part modeling the glucose-
insulin and glucose-glucagon dynamics and a stochastic part
describing all unknown factors. As the meal dynamics is very
uncertain, we do not consider an explicit meal model in our
predictions. The continuous-time transfer function model is

Y (s) = YD(s)+YS(s) = G(s)U(s)+H(s)E(s) (5)

with a deterministic part, YD(s), and a stochastic part, YS(s).
Y (s) and U(s) denote the Laplace transforms of the output
(the subcutaneous glucose concentration) and the inputs (the
insulin and glucagon delivery). The stochastic part, YS(s) =
H(s)E(s), accounts for process and measurement noises and
patient-model mismatch.

A. The Deterministic Part of the Prediction Model

In our previous simulation study, we investigated how
different deterministic parts of the prediction model affect the
closed-loop performance of a dual-hormone control algorithm
[53]. We considered first, second and third order linear systems

with and without a transport delay. In the second and third
order models, we assumed equal time constants to reduce
the number of identified parameters. Using different time
constants does not improve the quality of the model fit [50],
[53]. The ability of the considered models to capture the
insulin and glucagon dynamics varies significantly. Fig. 2
compares the responses of the linear models and the nonlinear
simulation model to a defined insulin bolus [53]. We have
observed similar responses for glucagon. Surprisingly, the
results indicate that the choice of prediction model is not
critically important for the performance of the closed-loop
system. Based on these findings, we selected the second order
system without a delay as the best trade-off between the overall
performance and identifiability in the clinical practice.

We can express the deterministic part YD(s) in (5) as

YD(s) = GI(s)UI(s)+GG(s)UG(s) (6)

GI(s) and GG(s) are the transfer functions describing the
effects of insulin and glucagon on glucose. UI(s) and UG(s)
are the Laplace transforms of the insulin and glucagon infusion
rates, uI(t) and uG(t), respectively.

1) Individualization of the deterministic model: The se-
lected second order transfer functions GI(s) and GG(s) are

GI(s) =
KI

(τIs+1)2 (7a)

GG(s) =
KG

(τGs+1)2 (7b)

where KI , KG and τI , τG are the gains and time constants
corresponding to the insulin and glucagon action on glucose.
A large advantage of (7a)-(7b) compared to linear systems with
different time constants or transport delay is that the parameter
pairs (KI , τI) and (KG, τG) can be computed from easily
accessible patient-specific data. It is evident from the impulse
response of (7a) that the computation of the parameters of
the glucose/insulin transfer function, KI and τI , requires only
knowledge of the insulin sensitivity factor (ISF) and the insulin
action time(τI) [54]. Both ISF and insulin action time are
commonly known patient parameters. On the other hand, the
corresponding parameters of the glucagon action are usually
not known, but they can be estimated from the response of the
patient to a glucagon dose in a fairly simple manner [32].

B. The Stochastic Part of the Prediction Model
Discretization of (5) with a sampling time of Ts = 5 min

yields

y(t) =
BI(q−1)

AI(q−1)
uI(t)+

BG(q−1)

AG(q−1)
uG(t)+

C(q−1)

D(q−1)
ε(t) (8)

Similarly to the continuous-time version (5), the model
(8) has a deterministic part associated to the infusion of
insulin, uI(t), and glucagon, uG(t), and a stochastic term
C(q−1)/D(q−1)ε(t). ε(t) is assumed to be a white noise pro-
cess. In addition, we assume that C(q−1) = 1+c1q−1 +c2q−2

and D(q−1) = AI(q−1) with c1 = 1.62 and c2 = 0.68 deter-
mined from clinical data for one real patient [54], [55]. Then,
we can express (8) as the following ARMAX model

Ā(q−1)y(t) = B̄I(q−1)uI(t)+ B̄G(q−1)uG(t)+C̄(q−1)ε(t) (9)
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Fig. 2. Impulse responses of different linear models and the nonlinear
simulation model to a 0.1U insulin bolus [53].

Ā(q−1) = AI(q−1)AG(q−1), B̄G(q−1) = BG(q−1)AI(q−1),
B̄I(q−1) = BI(q−1)AG(q−1), and C̄(q−1) = C(q−1)AG(q−1).
Using an observer canonical realization, we represent the
ARMAX model (9) as a discrete-time state space model in
innovation form [17], [36], [54], [56], [57]

xk+1 = Axk +Buk +Kεk (10a)
yk =Cxk + εk (10b)

with B = [BI BG] and uk = [uI ;uG]k.

C. Kalman Filter and Predictor

The innovation of the state space model (10) is ek =
yk−Cx̂k|k−1. x̂k|k−1 represents a one-step prediction from the
previous step. As the process and measurement noise are
perfectly correlated, the filtering is reduced to x̂k|k = x̂k|k−1
and the corresponding predictions are [56]

x̂k+1|k = Ax̂k|k−1 +Bûk|k +Kek (11a)

x̂k+1+ j|k = Ax̂k+ j|k +Bûk+ j|k, j = 1, . . . ,N−1 (11b)

ŷk+ j|k =Cx̂k+ j|k, j = 1, . . . ,N (11c)

Equations (11) constitute the prediction model used in the
MPC. The innovation ek provides the glucose feedback from
the CGM to the control algorithm. Through the innovation, all
unknown factors affecting the glucose concentration, including
meal intake, enter the Kalman filter and MPC when the CGM
senses the corresponding change in subcutaneous glucose.

IV. DUAL-HORMONE CONTROL ALGORITHM

In this section, we describe the dual-hormone control algo-
rithm responsible for the insulin and glucagon administration.
The control algorithm uses two independent MPCs to manip-
ulate the insulin and glucagon infusion. In the following, we
describe both MPCs as well as two different strategies for
switching between the controllers. The first strategy utilizes
the principle of relay with hysteresis to activate/deactivate the
MPCs. In the second strategy, the activation is based on the
Kalman filter predictions.

Even with glucagon available, the goal is to design a control
algorithm that relies on manipulating the insulin infusion. It
uses glucagon only as a safety feature when hypoglycemia
cannot be avoided by restricting or completely suspending
insulin infusion. In the controller design, we consider hard
input constraints (insulin or glucagon infusion) and soft output
(glucose concentration) constraints.

A. Micro-Bolus Insulin Controller Design
At each sample instant, the controller solves the following

constrained convex quadratic program to compute the insulin
micro-bolus infusion rate profile

min
{uI; j ,η j+1}N−1

j=0

φ (12a)

s. t. x̂k+1|k =Ax̂k|k−1 +BIuI;k|k +Kek (12b)

ŷk+1|k =Cx̂k+1|k (12c)

x̂k+1+ j|k =Ax̂k+ j|k +BIuI;k+ j|k j∈N1 (12d)

ŷk+1+ j|k =Cx̂k+1+ j|k j∈N1 (12e)

uI;min≤uI;k+ j−1|k≤uI;max j∈N0 (12f)

ŷk+ j|k≥ymin− η̂k+ j|k j∈N0 (12g)

ŷk+ j|k≤ymax + η̂k+ j|k j∈N0 (12h)

η̂k+ j|k≥0 j∈N0 (12i)

with N0={1,...,N}, N1={1,...,N-1} and the objective function

φ =
1
2

N−1

∑
j=0

glucose penalty function︷ ︸︸ ︷
‖ŷk+1+ j|k− rk+1+ j|k‖2 + γ‖η̂k+1+ j|k‖2

+
1
2

N−1

∑
j=0

λI‖∆uI;k+ j|k‖2︸ ︷︷ ︸
regularization term

(13)

To capture the slow glucose-insulin dynamics and the influence
of all insulin on board, we use a prediction and control horizon
of 24 hours (N = 288). In the objective function (13), the
penalty related to glucose deviations includes the error of
tracking the reference trajectory, rk+1+ j|k, and violations of
the soft output constraints (12g)-(12h), η̂k+ j|k. The lower and
upper soft constraints, ymin and ymax, corresponding to 4.5
mmol/L and 10 mmol/L are asymmetrical with respect to the
target 5.5 mmol/L. The soft constraint violations are heavily
penalized by γ = 100. The regularization term λI‖∆uI;k+ j|k‖2

moderates the controller aggressiveness and reduces sensitivity
to noise to ensure smooth control action. We individualize
the algorithm using λI = 600/uI;b; uI;b is the patient-specific
basal insulin infusion rate, which maintains a basal glucose
concentration of 5.5 mmol/L. The linear MPC computes
deviations from the constant basal infusion rate, uI;b. Hence,
the operating range is [−uI;b,uI;max].

1) Safety Modifications: To enhance safety of the algo-
rithm, we employ a time-varying exponential reference signal
when the glucose concentration is above the target [32], [57],
[58]. When the glycemia is lower, the reference is set to the
target level. Consequently

rk+ j|k(t)=

{
ŷke−t/τr if ŷk≥ 0 mmol/L
0 if ŷk < 0 mmol/L

(14)



It is important to note that rk and ŷk are deviations from
the target. The time constant that determines the reference
trajectory is τr = 90 min.

To reduce the risk of hypoglycemia, we implement a set of
safety rules restricting the maximal allowed insulin infusion
rate, uI;max. uI;max depends on the current estimate of the
glucose level [32], i.e.

uI;max =


1.5 uI;b if ŷk≥ 4.5 mmol/L
uI;b if 0≤ ŷk < 4.5 mmol/L
0 if ŷk < 0 mmol/L

(15)

Furthermore, if the patient announces a meal and a prandial
bolus is administered, the algorithm suspends the insulin
infusion for the 3 hours following the bolus. This is motivated
by our previous studies with an ideal nonlinear MPC with
full knowledge of the system states, which would deliver the
insulin in a similar manner, i.e. almost bolus-like insulin dose
followed by a period with no insulin administration [59]–[61].

B. Glucagon Controller Design

The glucagon MPC uses a similar structure as the MPC for
insulin micro-bolus infusion, (12b)-(12i). The glucagon MPC
uses 1) the control vector uG and vector BG corresponding to
the glucagon infusion instead of uI and BI ; and 2) the objective
function

φ =
1
2

N−1

∑
j=0

glucose penalty function︷ ︸︸ ︷
‖ŷk+1+ j|k− rk+1+ j|k‖2 + γ‖η̂k+1+ j|k‖2

+
1
2

N−1

∑
j=0

λG‖∆uG;k+ j|k‖2︸ ︷︷ ︸
regularization term

(16)

In case of glucagon, we do not restrict the maximal al-
lowed infusion rate (12f). However, we do impose soft con-
straints (12g)-(12h) to prevent hypoglycemia, but also to avoid
overshooting the target glucose concentration by excessive
glucagon dosing. For this purpose, we set the soft lower and
the upper glucose concentration constraints to 4.5 mmol/L and
6 mmol/L. Their violation is subject to a large penalty, i.e.
γ = 100. Variations in the glucagon infusion rate are penalized
using the weighting coefficient λG = 0.1. This regularization
is used to reduce the sensitivity of the glucagon infusion to
measurement noise and other sources of noise.

If the patient announces a meal and the glucagon MPC is
active, the control algorithm will not allow glucagon adminis-
tration in a 30-minute period following the meal ingestion to
avoid increasing the post-prandial hyperglycemia.

Fig. 3 illustrates the asymmetric glucose penalty functions
for the insulin infusion MPC (13) and the glucagon infusion
MPC (16).

C. Switch between the Insulin MPC and the Glucagon MPC

An important aspect of a dual-hormone AP is the decision
mechanism that can activate the glucagon infusion sufficiently
soon to retain the glucagon efficiency, but at the same time
avoid an unwanted or a too aggressive glucagon dosing.
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The first strategy we investigate is based on relay switching
with hysteresis. The glucagon controller is activated, when the
measured glucose concentration decreases below 4.5 mmol/L.
At the same time the insulin MPC is switched off. The
insulin MPC is switched back on and the glucagon MPC is
deactivated, when the measured glucose concentration rises
above 5 mmol/L.

In the second strategy, the Kalman filter predictions deter-
mine the glucagon activation. Under normal conditions the
insulin MPC is running. However, if the Kalman filter predicts
future hypoglycemia at any time in the prediction horizon,
the glucagon MPC is turned on and the insulin controller is
switched off.

D. Mealtime Bolus Calculation
Besides the insulin and glucagon MPCs, the control al-

gorithm includes a bolus calculator. The prandial insulin
bolus calculation utilizes information about the insulin-to-
carbohydrate ratio, IC (U/g), of the particular patient and the
announced meal size (g). The bolus size is computed by

Bolus= κ CHO · IC (17)

CHO (g) is the announced amount of carbohydrates. For
each patient we choose an appropriate κ ∈ [0,1] to prevent
overdosing insulin. κ is independent of the current glucose
concentration. κ varied from 0.5 to 1.0 in the three virtual
patients. It was tuned empirically based on information about
the insulin absorption time constants. For virtual patients with
a slow insulin absorption, we chose a lower value of κ .
However, we currently do not have any fixed and systematic
rules regarding the individualization and selection of κ .

V. SIMULATION RESULTS AND DISCUSSION

We perform the simulation study for the 3 patients with
time-varying parameters from [47]. The fixed daily meal
regimen consists of three meals at 6:00, 12:00 and 18:00. The
CHO meal sizes are: Patient 1, 85g - 85g - 110g; Patient
2, 70g - 70g - 90g; and Patient 3, 110g - 110g - 150g.
The scenarios we simulate include missed prandial boluses,
correct boluses when insulin sensitivity (IS) is at its nominal
value, and correct boluses when IS increases by 40%. These
scenarios are included to challenge the control algorithm.
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The legend reports the total amount of insulin (basal+bolus) and glucagon
administered over 24 hours.

A. No Mealtime Bolus
To illustrate the ability of the controller to safely regulate

the blood glucose and avoid a late postprandial insulin-induced
hypoglycemia, we first simulate a scenario when no meals are
announced and therefore no prandial insulin is administered.
Fig. 4 shows the glucose traces along with the insulin infusion
profiles for the 3 patients. Due to the strict safety rules (15), the
insulin MPC cannot sufficiently compensate the postprandial
glucose peaks. However, the controller provides a safely reg-
ulated process without a single hypoglycemic episode caused
by insulin overdosing. As is evident from Fig. 4, the controller
never uses glucagon infusion for the 3 virtual patients in the
situation of a forgotten mealtime bolus.

B. Correct Mealtime Bolus - Nominal Insulin Sensitivity
In this scenario, the control algorithm administers a correct

prandial insulin bolus and the insulin sensitivity follows the
nominal daily profile identified in [47]. Under these circum-
stances, glucagon infusion is not necessary and even the
single-hormone control is able to avoid hypoglycemia, as
the summarizing Table I reports. Nevertheless, the table also
shows that none of the glucagon administration strategies are
able to avoid glucagon infusion. In case of the relay switching,
the glucagon MPC is activated each time the estimated glucose
concentration falls below 4.5 mmol/L and remains active until
it rises above 5 mmol/L. Activating the glucagon MPC based
on predictions is prone to measurement noise, especially when
the current glucose is close to the hypoglycemic range. As a
result, the strategy with predictive activation of the glucagon
MPC administers slightly more glucagon than the relay switch-
ing approach. Fig. 5 illustrates the situations when the control
algorithm injects glucagon even though the hypoglycemia is
not imminent. In this scenario, we observed similar patterns
with both glucagon administration strategies.

C. Correct Mealtime Bolus - Increased Insulin Sensitivity
Here, we simulate a scenario where the prandial boluses are

estimated correctly, but the IS increases by 40%. The increased
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Fig. 5. Performance of the relay switching dual-hormone AP when the meals
are announced at mealtime and the IS is correctly estimated.
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Fig. 6. Performance of the relay switching dual-hormone AP. The meals are
announced at mealtime and the simulated IS is 40% larger than estimated.

IS leads to a late postprandial hypoglycemia caused by an
insulin overdose at mealtime. Moreover, during the night, the
insulin infusion controller has to overcome a large patient-
model mismatch. With significantly increased IS and the same
bolus sizes, the controller has to inject glucagon to prevent
severe hypoglycemia. Subsequent to an insulin overdose, the
single-hormone controller has no means to counteract the
effects of the insulin on board. Fig. 6 and Fig. 7 show the
performance of the two glucagon administration strategies.
Table I provides a summary and further details. The strategy
using predictive activation of the glucagon MPC injects in
general slightly more glucagon. Both strategies are able to
completely avoid hypoglycemia for Patient 2 and 3. Accord-
ingly, the slightly larger glucagon doses in the predictive
activation strategy do not improve the glycemic control. In
Patient 1, however, the predictive activation results in reducing
the time spent in hypoglycemia by more than 50% compared
to the relay switching at the expense of a 14% increase in the
glucagon dosage.

D. Discussion and Limitations

The simulations show that a glucagon switching strategy
based on predictions allows earlier administration of glucagon



TABLE I
SUMMARY OF THE DUAL-HORMONE EXPERIMENT

Normal IS Increased IS
Ins. Ins.+Gluc. Rel. Ins.+Gluc. Pred. Ins. Ins.+Gluc. Rel. Ins.+Gluc. Pred.

Patient 1 G> 10 mmol/L (%) 4.00 4.00 4.00 2.00 2.00 2.00
8≤G≤ 10 mmol/L (%) 10.33 12.33 12.00 8.00 17.67 11.67
3.9≤G≤ 8 mmol/L (%) 85.67 83.67 84.00 73.33 70.67 81.66

G< 3.9 mmol/L (%) 0.00 0.00 0.00 16.67 9.67 4.67
Total basal insulin administered (U) 7.26 7.22 7.75 6.81 7.37 7.72

Total glucagon administered (µg) 0.00 31.78 50.84 0.00 141.72 162.47
Patient 2 G> 10 mmol/L (%) 23.67 24.33 24.67 17.67 19.00 18.33

8≤G≤ 10 mmol/L (%) 14.00 14.00 14.00 12.33 11.67 12.34
3.9≤G≤ 8 mmol/L (%) 62.33 61.67 61.33 64.67 69.33 69.33

G< 3.9 mmol/L (%) 0.00 0.00 0.00 5.33 0.00 0.00
Total basal insulin administered (U) 5.12 5.15 5.18 5.47 5.54 5.55

Total glucagon administered (µg) 0.00 10.05 12.25 0.00 26.77 27.89
Patient 3 G> 10 mmol/L (%) 2.67 2.67 2.67 0.00 0.00 0.00

8≤G≤ 10 mmol/L (%) 13.33 14.00 14.00 7.67 7.67 7.67
3.9≤G≤ 8 mmol/L (%) 84.00 83.33 83.33 77 92.33 92.33

G< 3.9 mmol/L (%) 0.00 0.00 0.00 15.33 0.00 0.00
Total basal insulin administered (U) 2.92 3.85 4.40 2.41 3.74 3.42

Total glucagon administered (µg) 0.00 48.09 50.66 0.00 170.71 191.45
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Fig. 7. Performance of the dual-hormone AP with predictive switching. The
meals are announced at mealtime and the simulated IS is 40% larger than
estimated.

in case of upcoming hypoglycemia. The largest improve-
ment is obtained for Patient 1, for which the time spent in
hypoglycemia is significantly reduced at the expense of a
slightly increased amount of administered glucagon. Overall,
the above mentioned results are consistent with the findings
from Bakhtiani et al. [40].

However, the obtained results are limited by the simulation
model and the available population size. This model does
not take into consideration the interaction between insulin
and glucagon. Insulin in the α-cells has an inhibitory action
on glucagon secretion. For instance, the model developed by
Dalla Man et al. uses the plasma insulin level to mimic this
action [45]. Therefore, further studies using a larger population
and with different physiological models are necessary to
support the results presented in this paper.

VI. CONCLUSION

This paper presents MPC based control algorithms in a
dual-hormone AP. The control system is based on an insulin
infusion MPC and a glucagon infusion MPC. The glucagon

infusion MPC is used as a safety controller to prevent hy-
poglycemia and glucagon is only administered when hypo-
glycemia is either measured or predicted. The paper addresses
different glucagon switching strategies for a dual-hormone
AP. The simulations results indicate that earlier administration
of glucagon by use of a prediction approach has a positive
effect on the prevention of hypoglycemia. In addition, this
causes neither glucagon overdosing nor increase of the time
spent in hyperglycemia. Further studies using a larger virtual
population and using different simulation models, as well as
in vivo studies, will be needed to validate these findings.
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