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Abstract

In this paper, we discuss overnight blood glucose stabilization in patients with type 1 diabetes using a Model Predictive Controller
(MPC). We compute the model parameters in the MPC using a simple and systematic method based on a priori available patient
information. We describe and compare 3 different model structures. The first model structure is an autoregressive integrated
moving average with exogenous input (ARIMAX) structure. The second model structure is an autoregressive moving average with
exogenous input (ARMAX) model, i.e. a model without an integrator. The third model structure is an adaptive ARMAX model
in which we use a recursive extended least squares (RELS) method to estimate parameters of the stochastic part. In addition, we
describe some safety layers in the control algorithm that improve the controller robustness and reduce the risk of hypoglycemia.
We test and compare our control strategies using a virtual clinic of 100 randomly generated patients with a representative inter-
subject variability. This virtual clinic is based on the Hovorka model. We consider the case where only half of the meal bolus is
administered at mealtime, and the case where the insulin sensitivity increases during the night. The numerical results suggest that
the use of an integrator leads to higher occurrence of hypoglycemia than for the controllers without the integrator. Compared to the
other control strategies, the adaptive MPC reduces both the time spent in hypoglycemia and the time spent in hyperglycemia.
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1. Introduction

Type 1 diabetes is a metabolic disease characterized by
destruction of the insulin-producing β-cells in the pancreas.
Therefore, patients with type 1 diabetes need exogenous insulin
administration. However, the dosage of insulin must be done
carefully. An insulin overdose may lead to low blood glucose
(hypoglycemia). Hypoglycemia has immediate effects, such as
seizures, coma or even death. In contrast, prolonged periods
of too high blood glucose (hyperglycemia) are associated with
complications such as retinopathy, neuropathy and nephropathy
[1].

An increasing number of patients with type 1 diabetes apply
a therapy approach based on continuous subcutaneous (sc) in-
sulin infusion (CSII) using insulin pumps combined with con-
tinuous glucose monitoring devices (CGMs). CGMs provide
frequent subcutaneous (sc) glucose measurements. The CSII
pump provides a preprogrammed continuous infusion of rapid
acting insulin to mitigate the endogenous glucose production
(EGP) from the liver. Larger amounts of insulin are adminis-
tered in relation to meals to compensate the effects of carbo-
hydrates (CHO) intake. However, the decisions on the timing
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Figure 1: Closed-loop glucose control. Glucose is measured subcutaneously us-
ing a continuous glucose monitor (CGM). Insulin is dosed by an insulin pump.

and amount of meal insulin injection as well as the profile of
the EGP insulin injection are left to the patient. By automating
the decisions on insulin injections, closed-loop control of the
blood glucose concentration by an Artificial Pancreas (AP) has
the potential to ease the life and reduce the burden and risk of
complications for patients with type 1 diabetes. The first ver-
sion of the AP (Biostator) was developed 40 years ago [2, 3].
It used intravenous insulin, dextrose injections, and intravenous
glucose measurements. However, this setup is only usable for
in-clinical studies and does not mimic everyday life of a type
1 diabetes patient. Current prototypes of the AP use the sc-sc
route for glucose sensing and injection of insulin. They include
a CGM, a control algorithm, and an insulin pump. Fig. 1 illus-
trates the principle of an AP. Even more recently, glucagon has
been tested as a safety hormone [4–6], but the use of glucagon
is not considered in this paper. Several research groups worked
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on the implementation of APs and tested their implementation
with virtual patients [7–9] as well as in vivo clinical studies
[10–14]. Regardless of the control algorithm used, the perfor-
mance of current APs is limited by several factors: 1) the intra-
and inter-patient variability; 2) the lags and delays associated to
the choice of the sc-sc route for glucose monitoring and insulin
administration [15]; and 3) the accuracy and reliability of the
CGM.

Model Predictive Control (MPC) is one of the most com-
monly used methods for the AP. The main advantage of MPC is
the ability to handle hard constraints on input variables and soft
constraints on output variables in a systematic way. Insulin on
board (IOB) constraints in the linear MPC can reduce the risk
of overdosing insulin due to nonlinearities in glucose-insulin
dynamics [16]. MPC can easily incorporate a feedforward-
feedback mechanism that reduces the postprandial glucose peak
by administering meal boluses in anticipation of meals [17, 18].
Disturbances, such as meal intake, physical exercise, stress, and
illness affect the insulin needs throughout the day. Patients
with type 1 diabetes usually reject the disturbance coming from
meals by taking a large amount of insulin. In this procedure, it
is implicitly assumed that people with type 1 diabetes can ac-
curately estimate their meal sizes and have an accurate knowl-
edge of their postprandial dynamics. In practice, patients typ-
ically do not have such information available [19]. Moreover,
the other sources of disturbances cannot easily be measured and
are usually included in a stochastic term. An adaptive control
algorithm has the potential to cope with these unknown distur-
bances [7, 20].

This paper presents an adaptive control strategy for overnight
BG stabilization. We describe an AP using a CGM for glucose
feedback, an insulin pump, and a control algorithm based on
MPC. The considered control strategy requires a priori avail-
able patient information for computing a subject-specific set of
parameters. The required information is: The basal insulin in-
fusion rate, the insulin sensitivity factor (also called the cor-
rection factor), and the insulin action time. We discuss MPCs
based on three different structures for the stochastic part of a
deterministic-stochastic input-output model. The first MPC is
based on an autoregressive integrated moving average with ex-
ogenous input (ARIMAX) model. The integrator in the ARI-
MAX based MPC provides steady-state offset free control at
the expense of a deliberate model-plant mismatch that increases
the variance of the control error [21, 22]. The ARIMAX based
MPC is described in [23] and tested in an overnight clinical
study [11]. The key novelties in this paper are that we inves-
tigate by simulation if the integrator is needed in the MPC for
an AP and introduce adaptive estimation. Therefore, the second
MPC is based on an autoregressive moving average with exoge-
nous input (ARMAX) model, i.e. a model without an integra-
tor. This model cannot guarantee offset-free steady state control
to step disturbances but provides lower control error variance
[21, 22].The third MPC is based on an adaptive ARMAX model
in which we use a Recursive Extended Least Square (RELS)
method to estimate parameters of the moving average part. The
controllers are tested and compared using a cohort of 100 vir-
tual patients.
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Figure 2: The Hovorka model.

The paper is structured as follows. In Section 2, we describe
the model and the methods used to simulate a cohort of patients
with type 1 diabetes and noise-corrupted CGM measurements.
Section 3 presents a procedure for computation of the deter-
ministic part of the model used by the MPC. The parameters in
this part of the model are derived from prior patient information
and are common for the three model classes. In Section 4, we
introduce the stochastic models for the three different MPCs.
Furthermore, we describe the realization of the deterministic-
stochastic input-output models as state space models in innova-
tion form and present the corresponding Kalman filtering and
prediction equations. Section 5 presents the MPC algorithm
used in the AP. The MPC is based on a state space model in in-
novation form and uses soft output constraints to define a zone
of desirable glucose concentrations. In Section 6, we evaluate
and discuss the performance of the three different controllers
using a cohort of 100 virtual patients. We consider the case
where half of the ideal meal bolus is administered at mealtime,
and the case where the insulin sensitivity increases during the
night. Conclusions are provided in Section 7.

2. Physiological models for patients with type 1 diabetes

Several physiological models have been developed to simu-
late virtual patients with type 1 diabetes [24–26]. They describe
subcutaneous insulin transport, intake of carbohydrates through
meals, and include a model of glucose-insulin dynamics.

In this paper, we use the Hovorka model to simulate patients
with type 1 diabetes. Using the parameters and distributions
provided in [15, 27] and [28], we generate a cohort of 100 vir-
tual patients. The Hovorka model is illustrated in Fig. 2. Table
1 summarizes the parameters and their distributions.

2.1. CGM model

In addition, we use a CGM for glucose feedback in our con-
troller setup. For the numerical simulations, we generate noisy
CGM data based on the model and the parameters determined
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Table 1: Parameters and distribution for the simulated cohort.
Parameter Unit Distribution
EGP0 mmol/kg/min EGP0 ∼ N(0.0161, 0.00392)
F01 mmol/kg/min F01 ∼ N(0.0097, 0.00222)
k12 min−1 k12 ∼ N(0.0649, 0.02822)
ka1 min−1 ka1 ∼ N(0.0055, 0.00562)
ka2 min−1 ka2 ∼ N(0.0683, 0.05072)
ka3 min−1 ka3 ∼ N(0.0304, 0.02352)
S f

IT min−1/(mU/L) S f
IT ∼ N(51.2, 32.092)

S f
ID min−1/(mU/L) S f

ID ∼ N(8.2, 7.842)
S f

IE L/mU S f
IE ∼ N(520, 306.22)

ke min−1 ke ∼ N(0.14, 0.0352)
VI L/kg VI ∼ N(0.12, 0.0122)
VG L/kg VG ∼ N(0.15, 0.232)
τI min 1

τI
∼ N(0.018, 0.00452)

τG min 1
ln(τG) ∼ N(−3.689, 0.252)

Ag Unitless Ag ∼ U(0.7, 1.2)
BW kg BW ∼ U(65, 95)

Table 2: Parameters for the CGM model [29].
Parameter Value
τsub 15 min
λ 15.96
ξ -5.471
δ 1.6898
γ -0.5444

by [29]. This model consists of two parts. The first part de-
scribes the glucose transport from blood to interstitial tissues,
which is

dGsub

dt
=

1
τsub

(G(t) −Gsub(t)) . (1)

Gsub(t) is the subcutaneous glucose concentration and G(t) is
the blood glucose concentration. The time constant τsub is asso-
ciated to glucose transport from blood to subcutaneous tissues.

The second part models non-Gaussian sensor noise. The
model is given by

ek = 0.7(ek−1 + vk), k ≥ 1, (2)
vk ∼ Niid(0, 1), (3)

ηk = ξ + λ sinh
(ek − γ

δ

)
, (4)

and the initial condition e0 ∼ Niid(0, 1). Fig. 3 provides an
example of a CGM noise sequence ηk. The glucose value
returned by the CGM that is used for the controller feedback is

GCGM(tk) = Gsub(tk) + ηk. (5)

3. A control relevant model of glucose-insulin dynamics

In this section, we derive a control relevant model describ-
ing the effect of sc injected insulin, u(t), on the subcutaneous
glucose concentration, y(t). This model is the deterministic part
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Figure 3: Example of a CGM noise realization.

of the deterministic-stochastic input-output model used by the
MPCs. The deterministic part of the model is based on clini-
cally available parameters, and turns out to give a good com-
promise between data requirements, performance and robust-
ness of the resulting controller.

3.1. Choice of the deterministic model

All the physiological models listed in Section 2 contain a
large number of parameters, and even the minimal model may
be difficult to identify [30]. To overcome this issue, we use
a low-order linear model to describe the glucose-insulin dy-
namics. Similar approaches have been investigated previously.
Kirchsteiger et al. [31] used a third order transfer function with
an integrator, van Heusden et al. [32] used a third order discrete
transfer function model, and Percival et al. [33] applied a first
order transfer function with a time delay. In this paper, we use
a continuous-time second order transfer function,

G(s) =
Y(s)
U(s)

=
Ku

(τs + 1)2 , (6)

to model the effect of sc injected insulin on sc glucose. The
gain, Ku, and the time constant, τ, are computed from known
subject-specific parameters: the insulin action time and the in-
sulin sensitivity factor (ISF).

The insulin action time and the insulin sensitivity factor are
related to the response of blood glucose to an insulin bolus. If
we assume that blood glucose is approximately identical to sc
glucose, this is the impulse response of (6). The insulin action
time is the time for blood glucose to reach its minimum. The
ISF corresponds to the maximum decrease in blood glucose per
unit of insulin bolus. These parameters are empirically deter-
mined by the patient and his/her physician. These parameters
may vary from day to day for a given patient but give an esti-
mate of the effect of insulin on blood glucose and sc glucose.
Fig. 4 provides an illustration of the ISF and the insulin action
time.

Fig. 5 depicts the impulse response for a virtual patient with
type 1 diabetes and its second order approximation (6). This
patient is simulated using the model developed by Hovorka et
al. [24]. Fig. 5 illustrates that a second order model provides
an acceptable approximation of a patient with type 1 diabetes.

In the temporal domain, the impulse response of (6) is de-
scribed by

y(t) = Ku
t
τ2 exp(−t/τ). (7)
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Figure 4: Impulse response for the nonlinear Hovorka model. The bolus size is
0.1U.

The insulin action time corresponds to the time to reach the
minimum blood glucose. Consequently, this insulin action time
is equal to τ. We determine Ku using (7) and the fact that the
insulin sensitivity factor is equal to the minimal blood glucose
(sc glucose), y(τ) = −IS F, such that

Ku = −τ exp(1)IS F. (8)

We discretize the transfer function (6) in the form

y(t) =
B(q−1)
A(q−1)

u(t). (9)

Using a zero-order-hold insulin profile, the continuous-time
transfer function (6) may be used to determine the A and B
polynomials in the model (9). They are

A(q−1) = 1 + a1q−1 + a2q−2, (10a)

B(q−1) = b1q−1 + b2q−2, (10b)

with the coefficients a1, a2, b1 and b2 computed as [34]

a1 = −2 exp(−Ts/τ), (11a)
a2 = exp(−2Ts/τ), (11b)
b1 = Ku(1 − exp(−Ts/τ)(1 + Ts/τ)), (11c)
b2 = Ku exp(−Ts/τ)(−1 + exp(−Ts/τ) + Ts/τ). (11d)

Ts is the sample time.

4. A control relevant deterministic-stochastic model

In this section, we extend the deterministic discrete-time
transfer function model (9) with a stochastic part that models
the process noise, measurement noise, and other unknown fac-
tors affecting the glucose concentration measured by the CGM.
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Figure 5: Impulse responses for a second order model and the nonlinear Hov-
orka model. The bolus size is 0.1U and the parameters for the second order
model are: τ=4 hours and IS F = 0.4 mmol/L/0.1 U = 4.0 mmol/L/U.

We assume that the model describing the glucose-insulin dy-
namics is in the form

A(q−1)y(t) = B(q−1)u(t) + C(q−1)F(q−1)ε(t). (12)

A(q−1) and B(q−1) are obtained as described in Section 3.
C(q−1) = 1+c1q−1+c2q−2 is the moving average polynomial and
F(q−1) is a filter transfer function giving the resulting MPC sys-
tem certain properties. When F(q−1) = 1, the resulting model
(12) is an ARMAX model. This model structure does not nec-
essarily contain an integrator and cannot guarantee steady state
offset free control to unknown step disturbances. When

F(q−1) =
1 − αq−1

1 − q−1 , α ∈ [0, 1[, (13)

the resulting model (12) becomes an ARIMAX model. It con-
tains an integrator in the filter that ensures steady-state offset
free control to unknown step disturbances. The drawback of
using the filter (13) is that it introduces a model-plant mis-
match, which gives higher control error variance. When α→ 1,
F(q−1) → 1 and the model-plant mismatch based on the filter
vanishes along with the steady-state offset free property. Based
on extensive simulations for the Hovorka model with an MPC
based on (12) and (13), we choose α = 0.99.

We propose and discuss three different choices for the
stochastic model in (12). The first two choices estimate the
C(q−1) polynomial based on a previous clinical study, while the
last method estimates it recursively using a RELS algorithm.

4.1. Estimation in stochastic differential equations
Using the procedure introduced in [35, 36], we estimate the

coefficients C(q−1) by estimating the noise parameters, σ and r,
in

dx(t) = (Acx(t) + Bcu(t))dt + σdω(t), (14a)
yk = Ccx(tk) + vk. (14b)
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The triple (Ac, Bc, Cc) is a realization of (6). ω(t) is a stan-
dard Wiener process. In our case, the matrix σ is time invari-
ant and diagonal with a single identical parameter in the diag-
onal. The measurement noise, vk, is normally distributed, i.e.
vk ∼ Niid(0, r2). We estimate σ and r using a maximum likeli-
hood criteria for the one-step prediction error [37, 38]. By zero-
order hold (zoh) discretization, design of a stationary Kalman
filter, and z-transformation of the resulting state space model in
innovation form, (14) may be represented as

yk = G(q−1)uk + H(q−1)εk (15)

with

G(q−1) =
B(q−1)
A(q−1)

=
b1q−1 + b2q−2

1 + a1q−1 + a2q−2 , (16a)

H(q−1) =
C(q−1)
A(q−1)

=
1 + c1q−1 + c2q−2

1 + a1q−1 + a2q−2 . (16b)

The parameters identified from data for a single patient are c1 =

−1.62 and c2 = 0.68 [35, 36]. These parameters are used in the
MPC based on an ARIMAX model and in the MPC based on an
ARMAX model. The adaptive MPC is based on an ARMAX
model for which c1 and c2 are estimated recursively.

The discrete-time model (15) obtained by estimation of the
noise parameters, σ and r, in (14) is related to (12) by

εk = F(q−1)εk. (17)

This implies that (15) with the transfer functions (16) and the
noise εk defined by (17) is equivalent to the deterministic-
stochastic model (12) used by the MPC for filtering and pre-
diction.

4.2. ARMAX model
The MPC based on an ARMAX model uses (12) with

A(q−1) = 1 + a1q−1 + a2q−2 and B(q−1) = b1q−1 + b2q−2 defined
from clinical available parameters, C(q−1) = 1 + c1q−1 + c2q−2

obtained from noise estimation in a continuous-discrete lin-
ear stochastic model fitted to data for a single patient, and
F(q−1) = 1. In this case, (12) can be expressed as the ARMAX
model

A(q−1)y(t) = B(q−1)u(t) + C(q−1)ε(t), (18)

which can be represented as a state space model in innovation
form

xk+1 = Axk + Buk + Kεk, (19a)
yk = Cxk + εk, (19b)

using the observer canonical realization

A =

[
−a1 1
−a2 0

]
, (20a)

B =

[
b1
b2

]
, (20b)

K =

[
c1 − a1
c2 − a2

]
, (20c)

C =
[
1 0

]
. (20d)

The MPC based on this ARMAX model does not guarantee
offset free control and the moving average model, C(q−1), has
been identified from data for a single patient that may be dif-
ferent than the virtual patients generated by the Hovorka model
and used to evaluate the MPCs in this study. However, the AR-
MAX based MPC is expected to produce lower control error
variance than the MPC based on the ARIMAX model [21, 22].

4.3. ARIMAX model
The MPC based on an ARIMAX model uses (12) with

A(q−1) = 1 + a1q−1 + a2q−2 and B(q−1) = b1q−1 + b2q−2 defined
from clinical available parameters, C(q−1) = 1 + c1q−1 + c2q−2

obtained from noise estimation in a continuous-discrete linear
stochastic model fitted to data for a single patient, and F(q−1)
defined by (13) using α = 0.99. In this case, (12) can be ex-
pressed as the ARMAX model

Ā(q−1)y(t) = B̄(q−1)u(t) + C̄(q−1)ε(t) (21)

with

Ā(q−1) = (1 − q−1)A(q−1)

= 1 + (a1 − 1)q−1 + (a2 − a1)q−2 + (−a2)q−3,
(22a)

B̄(q−1) = (1 − q−1)B(q−1)

= b1q−1 + (b2 − b1)q−2 + (−b2)q−3,
(22b)

C̄(q−1) = (1 − αq−1)C(q−1)

= 1 + (c1 − α)q−1 + (c2 − αc1)q−2 + (−αc2)q−3,
(22c)

and realized as a state space model in innovation form (19) with
the observer canonical state space matrices

A =

 −(a1 − 1) 1 0
−(a2 − a1) 0 1
−(−a2) 0 0

 , (23a)

B =

 b1
b2 − b1
−b2

 , (23b)

K =

 (c1 − α) − (1 − a1)
(c2 − αc1) − (a2 − a1)

(−αc2) − (−a2)

 , (23c)

C =
[
1 0 0

]
. (23d)

The key advantage of the ARIMAX model is that it guarantees
steady-state offset free control for step disturbances. Its draw-
back is that the filter (13) introduces a model-plant mismatch
that increases the variance of the controlled variables [21, 22].

4.4. Adaptive ARMAX model
In this case, we estimate the parameters c1 and c2 in C(q−1) =

1 + c1q−1 + c2q−2 at each sample time. In this way, we adapt
the noise model C(q−1) to the data but keep the determinis-
tic model (9) fixed. Previously, adaptive control for ARMAX
model structures has been considered for the control algorithm
in an AP [7, 39–42]. These papers estimate the full model (12),
i.e. (A(q−1), B(q−1), C(q−1)) with F(q−1) = 1. However, such
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estimations may for some data lead to an unstable system or a
system with a positive insulin gain [43]. The key novelty for
this paper is that we adaptively identify only the stochastic part,
i.e. the C(q−1) polynomial. This corresponds to keeping the
deterministic part of the model fixed and adaptively estimating
the Kalman filter gain.

The parameters c1 and c2 are estimated at each iteration using
the RELS method

εk = yk − φ
′
kθ̂k|k−1 − φ̃

′
kθ̃k, (24a)

Kk =
Pk−1φk

µ + φ′kPk−1φk
, (24b)

θ̂k+1|k = θ̂k|k−1 + Kkεk, (24c)

Pk =
1
µ

(
Pk−1 −

Pk−1φkφ
′
kPk−1

µ + φ′kPk−1φk

)
. (24d)

The past innovations, φk, the estimated parameters, θk, the past
data, φ̃k, and the fixed parameters, θ̃k, are

φk =
[
εk−1 εk−2

]′
, (25a)

θk =
[
c1 c2

]′
, (25b)

φ̃k =
[
yk−1 yk−2 uk−1 uk−2

]′
, (25c)

θ̃k =
[
−a1 −a2 b1 b2

]′
. (25d)

Pk is the model parameters covariance matrix that we initialize
with

P0 =

[
100 0

0 100

]
. (26)

Finally, µ is the forgetting factor. This parameter has an in-
fluence on the weight of previous observations. When µ = 1,
all the past observations are equally weighted. Small values
of µ (i.e. µ close to zero) give more importance to recent ob-
servations [44]. 1/(1 − µ) is an approximation of the mem-
ory length (in time samples). In this paper, we use µ = 0.95
such that the corresponding memory length is approximately
1/(1 − 0.95) = 20 time samples, i.e. 100 minutes.

This ARMAX model, (18) with A(q−1) and B(q−1) individ-
ualized but fixed and C(q−1) estimated at each sample time,
provides a personalized and adaptive model for filtering and
prediction of the CGM values. However, using the adaptive
ARMAX model structure does not guarantee steady-state offset
free control to step disturbances.

4.5. Filtering and prediction
The ARMAX model with the parameters fixed or adaptively

estimated as well as the ARIMAX model may all be realized
as a state space model in innovation form (19). In this section,
we describe the optimal filtering and prediction of state space
models in innovation form. The innovation of (19) is

ek = yk −Cx̂k|k−1 (27)

and the corresponding predictions are [22]

x̂k+1|k = Ax̂k|k−1 + Bûk|k + Kek, (28a)
x̂k+1+ j|k = Ax̂k+ j|k + Bûk+ j|k, j = 1, . . . ,N − 1, (28b)

ŷk+ j|k = Cx̂k+ j|k, j = 1, . . . ,N. (28c)

The innovation (27) and the predictions (28) constitute the
feedback and the predictions in the MPCs.

5. Model Predictive Control

Control algorithms for glucose regulation in patients with
type 1 diabetes must be able to handle intra- and inter-patient
variability. In addition, the controller must administer insulin in
such a way that hypoglycemia is avoided. Due to the nonlinear-
ity in the glucose-insulin interaction, the risk of hypoglycemic
episodes as consequence of dosing too much insulin is particu-
larly prominent.

In this section, we describe an MPC formulation with soft
output constraints and hard input constraints. This formula-
tion is based on the individualized prediction model for glucose
computed in Section 3 and the stochastic models described in
Section 4. Along with other features, we introduce a modi-
fied time-varying reference signal to robustify the controller and
mitigate the effect of glucose-insulin nonlinearities and model-
plant mismatch in the controller action.

The MPC algorithm computes the insulin dose by solution
of an open-loop optimal control problem. Only the control ac-
tion corresponding to the first sample interval is implemented
and the process is repeated at the next sample interval. This is
called a moving horizon implementation. The innovation (27)
provides feedback from the CGM, yk. The open-loop optimal
control problem solved in each sample interval is the convex
quadratic program

min
{ûk+ j|k ,v̂k+ j+1|k}

N−1
j=0

φ (29a)

s.t. (28) (29b)
umin ≤ ûk+ j|k ≤ umax j = 0, . . . ,N − 1 (29c)
ŷk+ j+1|k ≥ ymin − v̂k+ j+1|k j = 0, . . . ,N − 1 (29d)
v̂k+ j+1|k ≥ 0 j = 0, . . . ,N − 1 (29e)

with the objective function, φ, defined as

φ =
1
2

N−1∑
j=0

‖ŷk+ j+1|k − r̂k+ j+1|k‖
2
2 + κ‖v̂k+ j+1|k‖

2
2

+
1
2

N−1∑
j=0

λ‖∆ûk+ j|k‖
2
2.

(30)

N is the control and prediction horizon. We choose a prediction
horizon equivalent to 10 hours, such that the insulin profile of
the finite horizon optimal control problem (29) is similar to the
insulin profile of the infinite horizon optimal control problem,
i.e. (29) with N → ∞. ‖ŷk+ j+1|k − r̂k+ j+1|k‖

2
2 penalizes glucose

deviation from the time-varying glucose setpoint and aims to
drive the glucose concentration to 6 mmol/L. λ‖∆ûk+ j|k‖

2
2 is a

regularization term that prevents the insulin infusion rate from
varying too aggressively. For the simulations and the in vivo
clinical studies, we set λ = 100/u2

ss. The soft output constraint
(29d) penalizes glucose values below 4 mmol/L. Since hypo-
glycemia is highly undesirable, we choose the weight on the
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Figure 6: The penalty function ρ = ‖y − r‖22 + κ‖min{y − ymin, 0}‖22.

soft output constraint to be rather high, i.e. κ = 100. Fig. 6
illustrates the penalty function.

To guard against model-plant mismatch, we modify the max-
imal allowable insulin injection, umax, and let it depend on the
current glucose concentration. If the glucose concentration is
low (below the target of 6 mmol/L), we prevent the controller
from taking future hyperglycemia into account by restricting
the maximal insulin injection. If the glucose concentration is
high (4 mmol/L above the target), we increase the maximal al-
lowable insulin injection rate. In the range 0 - 4 mmol/L above
target, we allow the controller to double the basal insulin injec-
tion rate. These considerations lead to

umax =


1.5uss 4 ≤ yk ≤ ∞

uss 0 ≤ yk ≤ 4
0.5uss −∞ ≤ yk ≤ 0

, (31)

in which uss is the basal insulin infusion rate. Due to pump
restrictions, the minimum insulin injection rate, umin, is a low
value, but not exactly zero.

Ref. [45] and [7] use a time-varying glucose reference signal
to robustify the controller and reduce the risk of hypoglycemic
events. In this paper, we use an asymmetric time-varying glu-
cose reference signal. The idea of the asymmetric reference sig-
nal is to induce safe insulin injections in hyperglycemic periods
and fast recovery in hypoglycemic and below target periods.
The asymmetric time-varying setpoint is given by

r̂k+ j|k(t) =

yk exp
(
−t j/τ

+
r

)
yk ≥ 0

yk exp
(
−t j/τ

−
r

)
yk < 0

j = 1, . . . ,N. (32)

Since we want to avoid hypoglycemia, we make the controller
react more aggressively if the blood glucose level is below 6
mmol/L, so we choose τ−r = 15 min and τ+

r = 90 min. Fig. 7
provides an illustration of the time-varying reference signal.

6. Comparison of the MPC strategies for a virtual clinic

In this section, we compare the three different versions of
our MPC for a cohort of 100 virtual patients. These three ver-
sions are the ARMAX formulation presented in Section 4.2, the
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Figure 7: Time-varying reference signals for glucose above (blue curve) and
below (green curve) the target of 6 mmol/L.

ARIMAX formulation presented in Section 4.3, and the adap-
tive ARMAX model formulation presented in Section 4.4. We
compare the performance of the controllers for the case where
the meal is underbolused and the case where the insulin sen-
sitivity is increased by 30% during the night. The change in
insulin sensitivity is simulated by a step change in the insulin
sensitivity parameters of the Hovorka model.

The ARMAX based controllers do not contain an integrator
and cannot guarantee steady-state offset free control. However,
the tuning of the MPCs based ARMAX models are simpler than
the tuning of the MPC based on the ARIMAX model. The
reason is that no artificial model-plant mismatch is introduced
in the MPC based on ARMAX models, while the ARIMAX
based controller deliberately include such a mismatch to ensure
steady-state offset free control.

The MPC is individualized using the insulin basal rate (uss),
the insulin sensitivity factor (ISF), and the insulin action time
(τ) for each individual patient. In the virtual clinic, these num-
bers are computed from an impulse response starting at a steady
state. The meal boluses are determined using a bolus calculator
similar to the one presented in [46]. The glucose is provided to
the controller every 5 minutes by a noise-corrupted CGM. The
pump insulin infusion rate is changed every 5 minutes.

The clinical protocol for the 100 in silico patients is: 1) The
patient arrives at the clinic at 17:00. The Kalman filter is ac-
tivated; 2) The patient gets a 75 g CHO dinner and an insulin
bolus at 18:00. We assume that the meal is rapidly consumed.
The bolus size is determined to compensate the effects of the
meal; 3) The closed loop starts at 22:00. In addition to the
Kalman filter, the MPC is activated; 4) The patient gets a 60 g
CHO breakfast and an insulin bolus at 08:00. The controller is
switched off.

7



Minimum Glucose [mmol/L]

M
ax

im
um

 G
lu

co
se

 [m
m

ol
/L

]

6.1 5  3.9 2.8

22.2

16.7

10  

6.1 

Figure 8: Control Variability Grid Analysis (CVGA) plot for the three different
stochastic model structures. 50% of the meal bolus is administered at mealtime.
Black: ARIMAX. Red: ARMAX. White: Adaptive ARMAX.

Table 3: Evaluation of the controller for the different control strategies in the
case where only 50% of the meal bolus is administered at mealtime. The num-
bers show the total percentage of time spent in different glucose ranges for the
100 virtual patients during the period 22:00 - 08:00.

Glucose (mmol/L) ARIMAX ARMAX Adaptive ARMAX
G > 10 17.8 23.9 20.8
G > 8 31.6 58.1 42.2
3.9 ≤ G ≤ 10 82.1 76.1 79.2
3.9 ≤ G ≤ 8 68.3 41.9 57.8
G < 3.9 0.1 0 0
G < 3.5 0 0 0

6.1. Underbolused meal

Fig. 8 shows the CVGA plot for the three different strate-
gies in the case where only 50% of the meal bolus is adminis-
tered at mealtime. The control strategy based on an ARIMAX
model shows several cases of mild hypoglycemia due to an in-
sulin overdose. The two control strategies based on an ARMAX
model are able to avoid this undershoot. Fig. 9 shows the glu-
cose and insulin traces for a single patient. Table 3 shows the
time spent in the euglycemic range, hypoglycemia and hyper-
glycemia for the three different strategies. The results show that
the control strategy based on an ARIMAX model structure re-
duce the time spent in hyperglycemia. The adaptive ARMAX
model structure shows the best compromise between the time
spent in euglycemia and safety concerning the risk of insulin
overdose.

6.2. Change in insulin sensitivity

Fig. 10 shows the CVGA plot for the three different strate-
gies for the case where the insulin sensitivity is increased by
30% during the night. Table 4 shows the time spent in the eu-
glycemic range, hypoglycemia and hyperglycemia for the three
different strategies. The control strategies based on an ARMAX
model structure, i.e. the controllers without the integrator, re-
duce the occurrences of hypoglycemia, and avoid severe hy-
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Figure 10: Control Variability Grid Analysis (CVGA) plot for the three different
stochastic model structures. The insulin sensitivity is increased by 30% during
the night. Black: ARIMAX. Red: ARMAX. White: Adaptive ARMAX.

Table 4: Evaluation of the controller for the different control strategies. The
insulin sensitivity is increased by 30% during the night. The numbers show
the total percentage of time spent in different glucose ranges for the 100 virtual
patients during the period 22:00 - 08:00.

Glucose (mmol/L) ARIMAX ARMAX Adaptive ARMAX
G > 10 <0.1 <0.1 <0.1
G > 8 3.2 2.5 2.2
3.9 ≤ G ≤ 10 99.1 99.4 99.7
3.9 ≤ G ≤ 8 95.9 96.9 97.5
G < 3.9 0.9 0.6 0.3
G < 3.5 0.2 0 0

poglycemia (i.e. glucose values below 3.5 mmol/L). Fig. 11
provides the glucose and insulin traces for a specific patient.

7. Conclusion

This paper presents subject-specific control strategies de-
signed for overnight stabilization of blood glucose in patients
with type 1 diabetes. The controllers are tested using 100 vir-
tual patients with a representative parameter distribution and
scenarios where we simulate an underbolused meal and insulin
sensitivity variation. The choice of the model structure for the
stochastic part of the model is a tradeoff between offset-free
control and model-plant mismatch. For the specific virtual pa-
tients and scenarios used in this paper, simulations reveal that
the MPC based on the adaptive ARMAX model provides better
performance than the MPC based on an ARMAX model and
the MPC based on an ARIMAX model. The MPC based on the
ARIMAX model has been applied in a previous clinical study.
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vanovič, F. J. D. III, Safety constraints in an artificial pancreatic β cell:
An implementation of model predictive control with insulin on board,
Journal of Diabetes Science and Technology 3 (2009) 536 – 544.

[17] G. Marchetti, M. Barolo, L. Jovanovič, H. Zisser, D. E. Seborg, A
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vanovič, F. J. D. III, Modeling the effects of subcutaneous insulin ad-
ministration and carbohydrate consumption on blood glucose, Journal of
Diabetes Science and Technology 4 (5) (2010) 1214–1228.

[34] B. Wittenmark, K. J. Åström, K.-E. Årzén, Computer control: An
overview, Technical report, IFAC Professional Brief (Jan. 2002).

[35] D. Boiroux, A. K. Dunn-Henriksen, S. Schmidt, L. Frøssing,
K. Nørgaard, S. Madsbad, O. Skyggebjerg, N. K. Poulsen, H. Madsen,
J. B. Jørgensen, Control of blood glucose for people with type 1 dia-

betes: an in vivo study, in: Proceedings of the 17th Nordic Process Con-
trol Workshop, 2012, pp. 133 – 140.

[36] A. K. Duun-Henriksen, D. Boiroux, S. Schmidt, O. Skyggebjerg,
S. Madsbad, P. R. Jensen, J. B. Jørgensen, N. K. Poulsen, K. Nørgaard,
H. Madsen, Tuning of controller for type 1 diabetes treatment with
stochastic differential equations, in: 8th IFAC Symposium on Biological
and Medical Systems, 2012, pp. 46–51.

[37] N. R. Kristensen, H. Madsen, S. B. Jørgensen, Parameter estimation in
stochastic grey-box models, Automatica 40 (2004) 225 – 237.

[38] J. B. Jørgensen, S. B. Jørgensen, Comparison of prediction-error mod-
elling criteria, in: Proceedings of the 2007 American Control Conference
(ACC 2007), 2007, pp. 140–146.

[39] M. Eren-Oruklu, A. Cinar, D. K. Rollins, L. Quinn, Adaptive system iden-
tification for estimating future glucose concentrations and hypoglycemia
alarms, Automatica 48 (2012) 1892–1897.

[40] F. H. El-Khatib, J. Jiang, E. R. Damiano, Adaptive closed-loop control
provides blood-glucose regulation using dual subcutaneous insulin and
glucagon infusion in diabetic swine, Journal of Diabetes Science and
Technology 1 (2) (2007) 181–192.

[41] F. El-Khatib, S. Russell, D. Nathan, R. Sutherlin, E. Damiano, A bihor-
monal closed-loop artificial pancreas for type 1 diabetes, Science Trans-
lational Medicine 2 (27) (2010) 27ra27.

[42] F. H. El-Khatib, S. J. Russel, K. L. Magyar, M. Sinha, K. McKeon, D. M.
Nathan, E. R. Damiano, Autonomous and continuous adaptation of a bi-
hormonal bionic pancreas in adults and adolescents with type 1 diabetes,
Journal of Clinical Endocrinology and Metabolism 99 (5) (2014) 1701–
1711.

[43] D. A. Finan, J. B. Jørgensen, N. K. Poulsen, H. Madsen, Robust model
identification applied to type 1 diabetes, in: 2010 American Control Con-
ference (ACC 2010), 2010, pp. 2021–2026.

[44] J. K. Huusom, N. K. Poulsen, S. B. Jørgensen, J. B. Jørgensen, Adaptive
disturbance estimation for offset-free SISO model predictive control, in:
2011 American Control Conference (ACC 2011), 2011, pp. 2417–2422.

[45] W. Garcia-Gabin, J. Vehı́, J. Bondia, C. Tarı́n, R. Calm, Robust sliding
mode closed-loop glucose control with meal compensation in type 1 dia-
betes mellitus, in: Proceedings of the 17th World Congress, The Interna-
tional Federation of Automatic Control, 2008, pp. 4240 – 4245.

[46] D. Boiroux, D. A. Finan, J. B. Jørgensen, N. K. Poulsen, H. Madsen,
Strategies for glucose control in people with type 1 diabetes, in: Proceed-
ings of the 18th World Congress, The International Federation of Auto-
matic Control, 2011, pp. 3765–3770.

10


