
SUBMITTED FOR IEEE TRANSACTIONS ON AUTOMATIC CONTROL, AUGUST 20, 2014 1

A Homogeneous and Self-Dual Interior-Point
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Abstract—We develop an efficient homogeneous and self-dual
interior-point method (IPM) for the linear programs arising in
economic model predictive control (MPC) of constrained linear
systems with linear objective functions. The algorithm is based
on a Riccati iteration procedure, which is adapted to the linear
system of equations solved in homogeneous and self-dual IPMs.
Fast convergence is further achieved by means of a recent
warm-start strategy for homogeneous and self-dual IPMs. We
implement the algorithm in MATLAB and C. Its performance
is tested using a conceptual power management case study.
Closed loop simulations show that 1) the proposed algorithm
is significantly faster than several state-of-the-art IPMs based
on sparse linear algebra, and 2) warm-start reduces the average
number of iterations by 35-40%.

Index Terms—Optimization algorithms, Linear programming
algorithms, Predictive control for linear systems, Riccati itera-
tions, Energy systems

I. INTRODUCTION

In economic MPC of linear systems with a linear objective
function and linear constraints, the constrained optimal control
problem can be posed as a linear program (LP). As the
optimization problem is solved online, the performance and
reliability of the optimization algorithm solving the LP is
important. In this paper, we develop a homogeneous and self-
dual variant of Mehrotra’s predictor-corrector method [1], [2]
for economic MPC that combines the following performance
improving components:
• Riccati Iteration Procedure: We speed-up the most time

consuming numerical operations using a Riccati iteration
procedure.

• Warm-Start: We implement a warm-start strategy for the
homogeneous and self-dual IPMs. [3] reports that this
method reduces the number of iterations by 30-75% based
on the NETLIB collection of test problems.

Riccati-based IPMs have been developed for set-point based
MPC with an `2-penalty [4]–[6] and with an `1-penalty [7]. A
Riccati iteration procedure has not previously been combined
with the homogeneous and self-dual model. The homogeneous
and self-dual model has become widely adopted by state-of-
the-art IPMs for linear and conic programming. This paper
is organized as follows. Section II formulates the control law
associated with economic MPC as the solution to a highly
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structured LP. Section III introduces the homogeneous and
self-dual model. This section also provides a Riccati iteration
procedure for solving the structured linear system that occurs
in every iteration of an IPM for solving the LP. Section
IV discusses warm-start. Section V compares a MATLAB
and C implementation of the proposed algorithm denoted
LPempc to several state-of-the-art IPMs using a simple power
management case study1. Concluding remarks are given in
Section VI.

II. OPTIMAL CONTROL PROBLEM

We consider linear state space systems in the form

xk+1 = Axk +Buk + Edk, dk ∼ N(0, Rd), (1a)
yk = Cyxk + ek, ek ∼ N(0, Re), (1b)
zk = Czxk, (1c)

where x0 ∼ N(x̂0, P0). (A,B,Cy, Cz, E) are the state space
matrices, xk ∈ Rnx is the state vector, uk ∈ Rnu is the input
vector, yk ∈ Rny is the measurement vector, zk ∈ Rnz is
the output vector, dk is the process noise vector and ek is
the measurement noise vector. We use bold letters to denote
stochastic variables.

In this paper, the Economic MPC optimal control problem
is defined to optimize the control actions of (1) with respect to
a linear economic objective function, input limits, input-rate
limits and soft output limits. Evaluation of this control law
requires the solution to the LP

min.
u,x̂,ẑ,ρ

∑
j∈N0

pTk+juk+j + qTk+j+1ρk+j+1, (2a)

s.t.
x̂k+j+1|k = Ax̂k+j|k +Buk+j , j ∈ N0, (2b)
ẑk+j|k = Czx̂k+j|k, j ∈ N1, (2c)
uk+j ≤ uk+j ≤ uk+j , j ∈ N0, (2d)

∆uk+j ≤ uk+j − uk+j−1 ≤ ∆uk+j , j ∈ N0, (2e)

zk+j − ρk+j ≤ ẑk+j|k ≤ zk+j + ρk+j , j ∈ N1, (2f)

ρk+j ≥ 0, j ∈ N1, (2g)

where Ni := {0 + i, 1 + i, . . . , N − 1 + i}, with N being
the length of the prediction and control horizon. The problem
data are the state-space matrices, (A,B,Cz), the filtered

1Software and implementation details are available via http://www2.imm.
dtu.dk/∼jbjo/publications
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estimate, x̂k|k, the input limits, (uk+j , uk+j), the input-
rate limits, (∆uk+j ,∆uk+j), the output limits, (zk+j , zk+j),
the input prices, pk+j , and the price for violating the out-
put constraints, qk+j . Note that for compact notation, the
optimization variables in (2) are written as u, x̂, ẑ and ρ,
where u =

[
uTk uTk+1 · · · uTk+N−1

]T
, and similarly for

x̂, ẑ, and ρ. The filtered estimate, x̂k|k := E[xk|Yk], is
the conditional expectation of xk given the observations
Yk :=

[
yT0 yT1 yT2 . . . yTk

]T
. We obtain this value using

the Kalman filter. By augmenting the state-space system such
that

A :=

[
A 0
0 0

]
, x̂k :=

[
x̂k
uk−1

]
, B :=

[
B
I

]
,

E :=

[
E
0

]
, Cz :=

[
Cz 0

]
, Cy :=

[
Cy 0

]
,

we can express (2e) as

∆uk+j ≤uk+j −Dxk ≤ ∆uk+j , j ∈ N0,

in which D :=
[
0 I

]
. This formulation simplifies later

computations considerably. To keep the notation simple we
assume that k = 0 and write x̂j := x̂0+j|0 for conditional
expressions. The problem data is collected in the structures g,
F , b, H and c, and (2) is put into the form

min.
t,s
{gT t|Ft = b,Ht+ s = c, s ≥ 0}. (3)

As an example, consider the case for N = 2

t :=
[
uT0 x̂T1 ρT1 uT1 x̂T2 ρT2

]T
,

g :=
[
pT0 0 qT1 pT1 0 qT2

]T
,

and[
F b

]
:=

[
B −I 0 0 0 0 −Ax̂0
0 A 0 B −I 0 0

]
,

[
H c

]
:=



I 0 0 0 0 0 u0
0 0 0 I 0 0 u1
−I 0 0 0 0 0 −u0
0 0 0 −I 0 0 −u1
I 0 0 0 0 0 ∆ũ0
0 −D 0 I 0 0 ∆u1
−I 0 0 0 0 0 −∆

˜
u0

0 D 0 −I 0 0 −∆u1
0 Cz −I 0 0 0 z1
0 0 0 0 Cz −I z2
0 −Cz −I 0 0 0 −z1
0 0 0 0 −Cz −I −z2
0 0 −I 0 0 0 0
0 0 0 0 0 −I 0



,

where ∆ũ0 := ∆u0 + Dx̂0 and ∆
˜
u0 := ∆u0 + Dx̂0. The

problem (2) can thus be posed as a highly structured LP with
n := N(nu + nx + nz) variables, mE := Nnx equality
constraints, and mI := N(4nu + 3nz) inequality constraints.
Note that we have eliminated ẑj from the optimization problem
using the linear relation (2c).

III. HOMOGENEOUS AND SELF-DUAL INTERIOR-POINT
METHOD

The dual of the LP (3) is

max
v,w

{−bT v − cTw| − FT v −HTw = g, w ≥ 0}, (4)

where v ∈ RmE and w ∈ RmI are dual variables correspond-
ing to the Lagrange multipliers for the equality constraints and
the inequality constraint of (3), respectively. We assume that
F has full row rank. This is always the case for the problem
(3).

Homogeneous and self-dual IPMs solve (3) and (4) indi-
rectly. The idea is to construct a related LP with properties
that are useful for IPMs. Aside from an inherent ability to
detect infeasibility, recent advances show that IPMs based on
the homogeneous and self-dual model can be warm-started
efficiently [3]. We refer to [8]–[10] for proofs and details.

Introduce a new set of optimization variables (t̃, ṽ, w̃, s̃),
and the additional scalar variables (τ̃, κ̃). Then the self-dual
and homogeneous problem associated with (3) and (4) may be
stated as the linear feasibility problem

find t̃, ṽ, w̃, s̃, τ̃, κ̃, (5a)

s.t. FT ṽ +HT w̃ + gτ̃ = 0, (5b)

bτ̃ − F t̃ = 0, (5c)

cτ̃ −Ht̃− s̃ = 0, (5d)

− gT t̃− bT ṽ − cT w̃ + κ̃ = 0, (5e)
(w̃, s̃, τ̃, κ̃) ≥ 0, (5f)

Proposition 1 shows that the solution to (3) and (4) can be
obtained by solving (5).

Proposition 1: The linear feasibility problem (5) always
has a strict complimentary solution (t̃∗, ṽ∗, w̃∗, s̃∗, τ̃∗, κ̃∗)
satisfying s̃∗j w̃

∗
j = 0 for j = 1, 2, . . . ,mI and τ̃∗κ̃∗ = 0.

For such a solution, one of the following conditions hold
1) τ̃∗ > 0, κ̃∗ = 0: The scaled solution (t∗, v∗, w∗, s∗) =

(t̃∗, ṽ∗, w̃∗, s̃∗)/τ̃∗ is a primal-dual optimal solution to
(3) and (4).

2) τ̃∗ = 0, κ̃∗ > 0: The problem (3) is infeasible or un-
bounded; either −bT ṽ∗− cT w̃∗ > 0 (primal infeasible),
or gT t̃∗ < 0 (dual infeasible).

Proof: See [10], [11].

A. Riccati Iteration Procedure for Economic MPC

Let k denote a particular iteration number. The necessary
and sufficient optimality conditions for (5) are (w̃, s̃, κ̃, τ̃) ≥ 0
and 

FT ṽ +HT w̃ + gτ̃
bτ̃ − F t̃

cτ̃ −Ht̃− s̃
−gT t̃− bT ṽ − cT w̃ + κ̃

W̃ S̃1mI

τ̃ κ̃

 =


0
0
0
0
0
0

 , (6)

W̃ is a diagonal matrix with the elements of w̃ in its diagonal,
and similarly for S̃. Moreover, 1mI

is the column vector of
all ones of size mI . The main computational bottleneck in
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finding a point that satisfies the optimality conditions using
a homogeneous and self-dual IPM is solving a linear system
of equations (in each iteration of the IPM) [1], [2]. For an
arbitrary right hand side, we can solve this linear system of
equations as

FT∆ṽ +HT∆w̃ + g∆τ̃ = r1, (7a)

b∆τ̃ − F∆t̃ = r2, (7b)

c∆τ̃ −H∆t̃−∆s̃ = r3, (7c)

gT∆t̃+ bT∆ṽ + cT∆w̃ −∆κ̃ = r4, (7d)

W̃∆s̃+ S̃∆w̃ = r5, (7e)
κ̃∆τ̃ + τ̃∆κ̃ = r6. (7f)

The system (7) is different from the system solved in standard
IPMs. The Riccati iteration procedures proposed in [4]–[6]
can therefore not be applied directly to solve the system (7).
Proposition 2 shows that a solution to (7) can be computed
by solving a reduced linear system of equations (8) and a
number of computationally inexpensive operations. Proposi-
tion 3 shows that the reduced system can be solved using a
Riccati iteration procedure that scales as O(N(nu+nx+nz)

3).
The procedure eliminates variables from the reduced linear
system (9), such that it can be expressed in a form (11) that
often occurs in optimal control problems. Riccati iterations
solve the resulting system efficiently by exploiting its structure
[4]–[6]. The complexity of solving the system (7) directly
using sparse linear algebra routines is linear to quadratic in
N , while a general purpose solver using dense linear algebra
scales cubically [12]. If the number of states, nx, is large
compared to the number of inputs, nu, condensing methods
are more efficient than Riccati-based solvers [5]. Note that it
is convenient to have an algorithm that scales linearly in the
prediction horizon, N , as stability of MPC schemes often may
be achieved by selecting a sufficiently large value of N [13],
[14].

Reference [15] provides details on a predictor-corrector IPM
[1], [2], LPempc, that utilizes a C implementation (with calls
to BLAS and LAPACK) of the numerical procedure presented
in Proposition 2 and Proposition 3. To speed-up the numerical
computations and reduce the storage requirements, LPempc
handles operations involving the structured matrices F and H
as specialized linear algebra routines.

Proposition 2: The solution to (7) can be obtained by
solving 0 FT HT

−F 0 0

−H 0 W̃−1S̃

f1 h1
f2 h2
f3 h3

 =

r1 −gr2 −b
r3 −c

 , (8)

and subsequent computation of

∆τ̃ =
r6 − τ̃(gT f1 + bT f2 + cT f3)

κ̃+ τ̃(gTh1 + bTh2 + cTh3)
,

∆t̃ = f1 + h1∆τ̃,

∆ṽ = f2 + h2∆τ̃,

∆w̃ = f3 + h3∆τ̃,

∆κ̃ = gT∆t̃+ bT∆ṽ + cT∆w̃ − r4,
∆s̃ = W̃−1(rC − S̃∆w̃),

where r3 := r3 + W̃−1r5 and r6 := r6 + τ̃ r4.
Proof: See [11].

Proposition 3: System (8) can be solved in O(N(nu+nx+
nz)

3) operations using a Riccati iteration procedure.
Proof: For a single arbitrary right hand side, we may

write the system (8) as 0 FT HT

−F 0 0

−H 0 W̃−1S̃

∆t̃
∆ṽ
∆w̃

 =

rDrE
rI

 . (9)

Denote the Lagrange multipliers associated with the inequality
constraints (2d) and (2g) as η, δ, υ, ω, γ, ζ and ξ where

η :=
[
ηT0 ηT1 . . . ηTN−1

]T
,

and similarly for δ, υ, γ, ζ and ξ. The multipliers (η, δ) are
associated with the input limits (2d), (υ, ω) are associated
with the input-rate limits (2e), (γ, ζ) are associated with the
output limits (2f), and ξ is associated with the non-negative
constraints (2g). The system variables are written in the form

∆t̃ =
[
∆uT0 ∆x̂T1 ∆ρT1 . . . ∆uTN−1 ∆x̂TN ∆ρTN

]T
,

∆ṽ =
[
∆ṽT0 ∆ṽT1 . . . ∆ṽTN−1

]T
,

∆w̃ =
[
∆ηT ∆δT ∆υT ∆ωT ∆γT ∆ζT ∆ξT

]T
.

Accordingly, we partition the right hand side such that

rD =
[
rTu,0 rTx,1 rTw,1 . . . rTu,N−1 rTx,N rTw,N

]T
,

rE =
[
RTv,0 RTv,1 . . . RTv,N−1

]T
,

rI =
[
rTη rTδ rTυ rTω rTγ rTζ rTξ

]T
,

and write the diagonal matrix W̃−1S̃ in terms of diagonal
submatrices

W̃−1S̃ = diag
(
ΣTη ,Σ

T
δ ,Σ

T
υ ,Σ

T
ω ,Σ

T
γ ,Σ

T
ζ ,Σ

T
ξ

)
.

The linear system of equations (9) can now be stated in the
form

∆ηi −∆δi + ∆υi −∆ωi +BT∆ṽi = ru,i, i ∈ N0,

−∆ui + Ση,i∆ηi = rη,i, i ∈ N0,

∆ui + Σδ,i∆δi = rδ,i, i ∈ N0,

−∆ui +D∆x̂i + Συ,i∆υi = rυ,i, i ∈ Ñ0,

∆ui −D∆x̂i + Σω,i∆ωi = rω,i, i ∈ Ñ0,

∆x̂i+1 −A∆x̂i −B∆ui = Rv,i, i ∈ Ñ0,

∆ρi − Cz∆x̂i + Σγ,i∆γi = rγ,i, i ∈ N1,

∆ρi + Cz∆x̂i + Σζ,i∆ζi = rζ,i, i ∈ N1,

∆ρi + Σξ,i∆ξi = rξ,i, i ∈ N1,

−∆γi −∆ζi −∆ξi = rw,i, i ∈ N1,

−∆ṽi + CTz (∆γi+1 −∆ζi+1) +AT∆ṽi

+DT (ωi −∆υi) = rx,i, i ∈ Ñ0,

with Ñ0 := N0 \ {0} and the special cases

−∆u0 + Συ,0∆υ0 = rυ,0,

∆u0 + Σω,0∆ω0 = rω,0,

∆x̂1 −B∆u0 = Rv,0,

−∆ṽN−1 + CTz (∆γN −∆ζN ) = rx,N .
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The Lagrange multipliers associated with the inequality con-
strains ∆η, ∆δ, ∆υ, ∆ω, ∆γ, ∆ζ and ∆ξ are eliminated
from the equations above. This is computationally inexpensive
as the matrices to be inverted in the process are all diagonal.
The reduced set of equations are

BT∆ṽ0 + U0∆u0 = Ru,0, (10a)

BT∆ṽi + Ui∆ui +Gi∆x̂i = Ru,i, i ∈ Ñ0, (10b)
−∆x̂1 +B∆u0 = Rv,0, (10c)

−∆x̂i+1 +A∆x̂i +B∆ui = Rv,i, i ∈ Ñ0, (10d)

Wi∆ρi +MT
i ∆x̂i = Rw,i, i ∈ N1, (10e)

−∆ṽi−1 +Mi∆ρi + X̄i∆x̂i

+GTi ∆ui +AT∆ṽi = R̄x,i, i ∈ Ñ0, (10f)
−∆ṽN−1 +MN∆ρN + X̄N∆x̂N = R̄x,N , (10g)

where we have defined

Ui := Σ−1η,i + Σ−1δ,i + Σ−1ω,i + Σ−1υ,i , i ∈ N0,

Gi := −(Σ−1ω,i + Σ−1υ,i)D, i ∈ Ñ0,

Wi := Σ−1ζ,i + Σ−1ξ,i + Σ−1γ,i , i ∈ N1,

Mi := CTz (Σ−1ζ,i − Σ−1γ,i), i ∈ N1,

X̄i := CTz (Σ−1ζ,i + Σ−1υ,i)Cz +DT (Σ−1γ,i + Σ−1ω,i)D, i ∈ Ñ0,

X̄N := CTz (Σ−1ζ,N + Σ−1υ,N )Cz,

and

Ru,i := ru,i + r̄δ,i + r̄ω,i − r̄η,i − r̄υ,i, i ∈ N0,

Rv,i := −Rv,i, i ∈ N0,

Rw,i := rw,i−1 + r̄ζ,i−1 + r̄ξ,i + r̄γ,i, i ∈ N1,

R̄x,i := rx,i + CTz (r̄ζ,i − r̄γ,i) +DT (r̄υ,i − r̄ω,i), i ∈ Ñ0,

R̄x,N := rx,N + CTz (r̄ζ,N − r̄γ,N ).

Finally, r̄δ,i := Σ−1δ,i rδ,i. In a similar way we have defined
r̄ω,i, r̄η,i, r̄υ,i, r̄ζ,i, r̄ξ,i and r̄γ,i. Solving (10e) for ∆ρi and
substituting into the remaining equations of (10) yields

BT∆ṽ0 + U0∆u0 = Ru,0

BT∆ṽi + Ui∆ui +Gi∆x̂i = Ru,i, i ∈ Ñ0

−∆x̂1 +B∆u0 = Rv,0

−∆x̂i+1 +A∆x̂i +B∆ui = Rv,i, i ∈ Ñ0

−∆ṽi−1 +Xi∆x̂i +GTi ∆ui +AT∆ṽi = Rx,i, i ∈ Ñ0

−∆ṽN−1 +XN∆x̂N = Rx,N

where Xi := X̄i − MiW
−1
i MT

i and Rx,i := R̄x,i −
MiW

−1
i Rw,i. As an example let N = 3. In this case, the

equations above may be arranged as

U0B
T

B −I
−I X1G

T
1 A

T

G1 U1 B
T

A B −I
−I X2G

T
2 A

T

G2 U2 B
T

A B −I
−I X3





∆u0
∆ṽ0
∆x̂1
∆u1
∆ṽ1
∆x̂2
∆u2
∆ṽ2
∆x̂3


=



Ru,0
Rv,0
Rx,1
Ru,1
Rv,1
Rx,2
Ru,2
Rv,2
Rx,3


(11)

This system can be solved by a Riccati iteration procedure
in O(N(nu + nx + nz)

3) operations [4], [6], [7].

IV. WARM-START

We apply the warm-start strategy of [3] to pick an initial
point for the homogeneous and self-dual IPM. The method
combines a guess of the solution (candidate point), (t̄, v̄, w̄, s̄),
with the standard starting point (0, 0,1mI

,1mI
, 1, 1). An

important feature of the homogeneous and self-dual model
is that the the standard starting point is perfectly centralized
with respect to the central path [3]. This makes warm-start
work well for IPMs based on the homogeneous and self-dual
model. The initial point in [3] is defined as

w̃0 = λw̄ + (1− λ)1mI
, s̃0 =λs̄+ (1− λ)1mI

,

t̃0 = λt̄, ṽ0 =λv̄,

τ̃0 = 1, κ̃0 =(w̃0)T s̃0/mI ,

where λ ∈ [0, 1] is a tuning parameter. When λ = 0 the initial
point becomes the standard starting point, and for λ = 1 the
initial point becomes the candidate point.

In MPC applications, the optimal control problem is solved
in a receding horizon manner. A good choice of the candidate
point at time k can therefore be constructed using the solution
from the previous time step. As an example consider the
solution of (3) and (4) at time step k = 0, for N = 3

t∗ :=
[
u∗T0 x̂∗T1 ρ∗T1 u∗T1 x̂∗T2 ρ∗T2 u∗T2 x̂∗T3 ρ∗T3

]T
.

The following candidate point is then used at time step k = 1

t̄ :=
[
u∗T1 x̂∗T2 ρ∗T2 u∗T2 x̂∗T3 ρ∗T3 u∗T2 x̂∗T3 ρ∗T3

]T
.

Similarly, we left-shift the slack variables, s, and the dual
variables, v and w, to construct s̄, v̄ and w̄.

V. POWER MANAGEMENT CASE STUDY

In this section, we compare LPempc against IPMs from
the following software packages: Gurobi, SeDuMi, MOSEK,
LIPSOL, GLPK. These state-of-the-art IPMs are mainly writ-
ten in low-level language such as FORTRAN and C, and rely
on sparse linear algebra that are specifically tailored to the
solution of large-scale sparse linear and conic programs. We
also include the simplex method provided by CPLEX in our
comparisons, as well as FORCES that is an IPM based on
automatic code generation [16]. All solvers are called from
MATLAB using MEX interfaces. We have performed our
simulations using an Intel(R) Core(TM) i5-2520M CPU @
2.50GHz with 4 GB RAM running a 64-bit Ubuntu 12.04.1
LTS operating system.

The test system is a system of m generic power generating
units in the form introduced in [17]. For i = 1, 2, . . . ,m

Yi(s) =
1

(τis+ 1)3
(Ui(s) +Di(s)) + Ei(s). (12)

Di(s) is the process noise, Ei(s) is the measurement noise,
Ui(s) is the power set-point and Yi(s) is the power production.
The total production from the m power generating units is the
sum Z(s) =

∑m
i=1

1
(τis+1)3 (Ui(s) +Di(s)) . We convert the
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TABLE I
CASE STUDY PARAMETERS

τi pk uk uk ∆uk ∆uk

Power Plant 1 90 100 0 200 -20 20
Power Plant 2 30 200 0 150 -40 40
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Fig. 1. Closed-loop simulation of a power system controlled by economic
MPC. Warm-start (λ = 0.99) yields a significant reduction in the number of
iterations.

transfer function model into the state space form (1) using
a sampling time of Ts = 5 seconds. In the resulting model
structure, uk ∈ Rnu is the nu power set-points, yk ∈ Rny

is the measured power production, and zk ∈ Rnz is the total
power production. Note that nu = ny = m and nz = 1. It is
assumed that dk ∼ N(0, σI) and ek ∼ N(0, σI).

A. Simulations

An example with two power generating units is considered;
a cheap/slow unit, and an expensive/fast unit. This conflict
between response time and operating costs represents a com-
mon situation in the power industry where large thermal power
plants often produce a majority of the electricity, while the
use of units with faster dynamics such as diesel generators
and gas turbines are limited to critical peak periods. The
controller objective is to coordinate the most cost-efficient
power production, respecting capacity constraints and a time-
varying electricity demand. It is assumed that full information
about the initial state is given x0 ∼ (0, 0), and that the penalty
of violating the output constraints is qk = 104 for all time
steps. Table I lists the system and controller parameters. We
set the prediction horizon to N = 80 time steps. It has been
verified by simulation that the controller is stable for this value
of N .

Fig. 1 shows a closed-loop simulation with σ = 1. The
figure illustrates the power production of each power gener-
ating unit. The cheap unit produces 97% of the energy, while
the expensive unit is activated only to compensate for the
power imbalances otherwise caused by the slow unit. Fig. 1
also shows that warm-start yields a significant reduction in the
number of iterations. On average the number of iterations is
reduced by approximately 37%.
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Fig. 2. Number of iterations as a function of the tuning parameter λ and
the noise parameter σ. Each box-plot has been generated based on an entire
closed-loop simulation. In the top plot we have fixed σ = 1, and in the bottom
plot λ = 0.99.
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Fig. 3. CPU-time for the different solvers as a function of the horizon N
length and the number of power generators m.

Fig. 2 shows a number of box-plots used to select the warm-
start parameter λ. The case λ = 0 corresponds to a cold-start.
For all values of λ, warm-start reduces the average number
of iterations. We have chosen λ = 0.99 for our controller.
This value of λ yields an initial point which is both close
to the candidate point and lies well inside the interior of the
non-negative orthant, (w̃, s̃, κ̃, τ̃) ≥ 0. Fig. 2 shows that for
λ = 0.99, the number of iterations is reduced even when the
variance of the process and measurement noise is increased
significantly.

Fig. 3 plots the computation time for solving the LP (2) as
a function of the number of power generating units, m, and
the length of the horizon, N . The figure shows that LPmpc
is faster than all other solvers with a significant margin. In
addition to the algorithms included in Fig. 3, the problem (2)
was solved using the code generation based IPM CVXGEN
[18]. For problems larger than m = 4 and N = 12, code
generation in CVXGEN fails due to the problem size. Therefore,
we have not included results for CVXGEN in our benchmark.
In general, code generation based solvers such as CVXGEN and
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Fig. 4. CPU-time for solving (2) with 15 power generating units and a
prediction horizon of 200 time steps. We observe that warm-starting reduces
the average number of iterations by approximately 40%.

FORCES are most competitive for small-dimensional problems
[16]. Fig. 4 shows CPU-timings for a closed-loop simulation
with 15 power generating units and a prediction horizon of
N = 200 time steps. Only the most competitive solvers are
included. In this simulation LPempc is up to an order of
magnitude faster than CPLEX, Gurobi, SeDuMi and MOSEK,
depending on the problem data. On average, LPempc is
approximately 5 times faster than Gurobi, 6 times faster than
MOSEK, 19 times faster than SeDuMi, and 22 times faster than
CPLEX.

VI. CONCLUSIONS

In this paper, we have developed a computationally efficient
IPM for economic MPC of linear systems with a linear objec-
tive function and linear constraints. The algorithm combines
the homogeneous and self-dual model, and a Riccati iteration
procedure specifically tailored to MPC. This is a significant
contribution since existing Riccati iteration procedures for
MPC are not directly applicable to the homogeneous and self-
dual model that has become widely adopted by state-of-the-
art IPMs for linear programming. We have also implemented
and tested a recent warm-start strategy for homogeneous and
self-dual IPMs that has not previously been used in MPC
applications. Our simulations show that this strategy reduces
the average number of iterations by 35-40%, and that a
MATLAB and C implementation of the proposed algorithm,
LPempc, is significantly faster than several state-of-the-art
IPMs, as well as automatic code generation based IPMs for
MPC. In a conceptual power management case study, LPempc
is up to an order of magnitude faster than CPLEX, Gurobi,
SeDuMi and MOSEK. This is important, since the computing
time of solving the optimal control problem is critical in
MPC applications. The simulation results also show that the
difference in computing time becomes larger with the problem
size as LPempc scales in a favorable way.
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