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Abstract

In this paper, we introduce a mean-variance criterion for production optimization of oil reservoirs and suggest the Sharpe ratio as
a systematic procedure to optimally trade-off risk and return. We demonstrate by open-loop simulations of a two-phase synthetic
oil field that the mean-variance criterion is able to mitigate the significant inherent geological uncertainties better than the alterna-
tive certainty equivalence and robust optimization strategies that have been suggested for production optimization. In production
optimization, the optimal water injection profiles and the production borehole pressures are computed by solution of an optimal
control problem that maximizes a financial measure such as the Net Present Value (NPV). The NPV is a stochastic variable as the
reservoir parameters, such as the permeability field, are stochastic. In certainty equivalence optimization, the mean value of the
permeability field is used in the maximization of the NPV of the reservoir over its lifetime. This approach neglects the significant
uncertainty in the NPV. Robust optimization maximizes the expected NPV over an ensemble of permeability fields to overcome
this shortcoming of certainty equivalence optimization. Robust optimization reduces the risk compared to certainty equivalence
optimization because it considers an ensemble of permeability fields instead of just the mean permeability field. This is an indirect
mechanism for risk mitigation as the risk does not enter the objective function directly. In the mean-variance bi-criterion objective
function risk appears directly, it also considers an ensemble of reservoir models, and has robust optimization as a special extreme
case. The mean-variance objective is common for portfolio optimization problems in finance. The Markowitz portfolio optimization
problem is the original and simplest example of a mean-variance criterion for mitigating risk. Risk is mitigated in oil production
by including both the expected NPV (mean of NPV) and the risk (variance of NPV) for the ensemble of possible reservoir models.
With the inclusion of the risk in the objective function, the Sharpe ratio can be used to compute the optimal water injection and
production borehole pressure trajectories that give the optimal return-risk ratio. By simulation, we investigate and compare the per-
formance of production optimization by mean-variance optimization, robust optimization, certainty equivalence optimization, and
the reactive strategy. The optimization strategies are simulated in open-loop without feedback while the reactive strategy is based
on feedback. The simulations demonstrate that certainty equivalence optimization and robust optimization are risky strategies. At
the same computational effort as robust optimization, mean-variance optimization is able to reduce risk significantly at the cost of
slightly smaller return. In this way, mean-variance optimization is a powerful tool for risk management and uncertainty mitigation
in production optimization.

Keywords: Robust Optimization, Risk Management, Oil Production, Optimal Control, Mean-Variance Optimization, Uncertainty
Quantification

1. Introduction

In conventional water flooding of an oil field, feedback based
optimal control technologies may enable higher oil recovery
than with a conventional reactive strategy in which produc-
ers are closed based on water breakthrough (Chierici, 1992;
Ramirez, 1987).

Optimal control technology and Nonlinear Model Predictive
Control (NMPC) have been suggested for improving the oil re-
covery during the water flooding phase of an oil field (Jansen
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et al., 2008). In such applications, the controller adjusts the wa-
ter injection rates and the bottom hole well pressures to max-
imize oil recovery or a financial measure such as the NPV. In
the oil industry, this control concept is also known as closed-
loop reservoir management (CLRM) (Foss, 2012; Jansen et al.,
2009). The controller in CLRM consists of a state estimator for
history matching (state and parameter estimation) and an opti-
mizer that solves a constrained optimal control problem for the
production optimization. Each time new measurements from
the real or simulated reservoir are available, the state estimator
uses these measurements to update the reservoir’s models and
the optimizer solves an open loop optimization problem with
the updated models (Capolei et al., 2013). Only the first part of
the resulting optimal control trajectory is implemented. As new

Preprint submitted to Journal of Petroleum Science and Engineering August 16, 2014



measurements become available, the procedure is repeated. The
main difference of the CLRM system from a traditional NMPC
is the large state dimension (106 is not unusual) of an oil reser-
voir model (Binder et al., 2001). The size of the problem dic-
tates that the ensemble Kalman filter is used for state and pa-
rameter estimation (history matching) and that single shooting
optimization is used for computing the solution of the optimal
control problem (Capolei et al., 2013; Jansen, 2011; Jørgensen,
2007; Sarma et al., 2005a; Suwartadi et al., 2012; Völcker et al.,
2011).

In this paper, we focus on the formulation of the optimiza-
tion problem in the NMPC for CLRM. In the study of different
optimization formulations, we leave out data assimilation (his-
tory matching) as well as the effect of feedback from a moving
horizon implementation and consider only the predictions and
computations of the manipulated variables in the open-loop op-
timization of NMPC. This can be regarded as an optimal control
study. The reason for this is twofold. First, in the initial devel-
opment of a field, no production data would be available and the
production optimization would be an open-loop optimal control
problem, i.e without feedback from measurements. Secondly,
the ability of different optimization strategies to mitigate the ef-
fect of the significant uncertainties present in reservoir models
is better understood if investigated in isolation.

In conventional production optimization, the nominal net
present value (NPV) of the oil reservoir is maximized (Brouwer
and Jansen, 2004; Capolei et al., 2013, 2012b; Foss, 2012; Foss
and Jensen, 2011; Nævdal et al., 2006; Sarma et al., 2005b;
Suwartadi et al., 2012). To compute the nominal NPV, nominal
values for the model’s parameters are used. In certainty equiv-
alence production optimization, the expected reservoir model
parameters are used in the maximization, while robust pro-
duction optimization uses an ensemble of reservoir models to
maximize the expected NPV (Capolei et al., 2013; Van Essen
et al., 2009). Certainty equivalence optimization is equivalent
to robust optimization for the ideal case of unconstrained lin-
ear dynamics with Gaussian additive noise and quadratic cost
functions, i.e. for Linear Quadratic Gaussian (LQG) problems
(Bertsekas, 2005; Stengel, 1994). For all other problems, the
certainty equivalence optimization and the robust optimization
are different. Both certainty equivalence optimization and ro-
bust optimization assume that the stochastic event is repeated
infinitely many times such that only the expected value but not
the risk is of interest. The purpose of the robust production op-
timization is to (indirectly) mitigate the effect of the significant
uncertainties in the parameters of the reservoir model. How-
ever, by the certainty equivalence and the robust production
optimization methods, the trade-off between return (expected
NPV) and risk (variance of the NPV) is not addressed directly.
Fig. 1 illustrates risk versus expected return (mean) for dif-
ferent optimization and operation strategies. This is a sketch
that shows the qualitative behavior of the results in this paper.
As is evident in the sketch, a significant risk is typically asso-
ciated with the certainty equivalence optimization and the RO
strategy. The implication is that the RO strategy may improve
current operation, but you cannot be sure due to the significant
risk arising from the uncertain reservoir model. This is prob-
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Figure 1: A sketch of the trade-off between risk and expected
return in different optimization methods implemented in the op-
timizer for model based production optimization.

ably one of the reasons that NMPC for CLRM has not been
widely adopted in the operation of oil reservoirs. The optimiza-
tion problem in production optimization can be compared in
some sense to Markowitz portfolio optimization problem in fi-
nance (Markowitz, 1952; Steinbach, 2001) or to robust design
in topology optimization (Beyer and Sendhoff, 2007; Lazarov
et al., 2012). The key to mitigate risk is to optimize a bi-
criterion objective function including both return and risk for
the ensemble of possible reservoir models. In this way, we can
use a single parameter to compute an efficient frontier (the blue
Pareto curve in Fig. 1) of risk and expected return. The robust
optimization is one limit of the efficient frontier and the other
limit is the minimum risk minimum return solution. By proper
balancing the risk and the return in the bi-criterion objective
function, we can tune the optimizer in the controller such that
an optimal ratio of return vs risk is obtained; such a solution is
called the market solution and is illustrated in Fig. 1.

The mean-variance optimization is based on a bi-criterion
objective function. Previously in the oil literature, multi-
objective functions have been used in production optimization
to trade-off long- and short-term NPV (Van Essen et al., 2011),
to robustify a non-economic objective function (Alhuthali et al.,
2008), and to trade-off oil production, water production and wa-
ter injection using a combination of mean value and standard
deviation for each term (Yasari et al., 2013). These approaches
pointed to the fact that a multi-objective function may be used
to trade-off risk for performance, but did not explicitly address
the risk-return relationship studied in the present paper using
a mean-variance optimization strategy. Furthermore, these pa-
pers did not provide a systematic method for selection of the
risk adverse parameter. The main contribution of the present
paper is to demonstrate, that a return-risk bi-criterion objective
function is a valuable tool for the profit-risk trade-off and pro-
vide a systematic method for selection the risk-return trade-off

parameter. We do this for the open loop optimization and do
not consider the effect of feedback.
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The paper is organized as follows. Section 2 defines the
reservoir model. Section 3 states the constrained optimal
control problem and describes the mean-variance optimization
strategy. The computation of economical and production key
performance indicators is explained in Section 4 . Section 5 de-
scribes the numerical case study. Conclusions are presented in
Section 6.

2. Reservoir Model

We assume that the reservoirs are in the secondary recov-
ery phase where the pressures are above the bubble point pres-
sure of the oil phase. Therefore, two-phase immiscible flow,
i.e. flow without mass transfer between the two phases, is a
reasonable assumption. We focus on water-flooding cases for
two-phase (oil and water) reservoirs. Further, we assume in-
compressible fluids and rocks, no gravity effects or capillary
pressure, no-flow boundaries, and isothermal conditions. The
state equations in an oil reservoir Ω, with boundary ∂Ω and
outward facing normal vector n, can be represented by pressure
and saturation equations. The pressure equation is described as

v = −λtK∇p, ∇ · v =
∑

i∈I,P

qi · δ(r − ri) r ∈ Ω (1a)

v · n = 0 r ∈ ∂Ω (1b)

r is the position vector, ri is the well position, v is the Darcy
velocity (total velocity), K is the permeability, p is the pressure,
qi is the volumetric well rate in barrels/day, δ is the Dirac’s delta
function, I is the set of injectors, P is the set of producers, and
λt is the total mobility. The total mobility, λt, is the sum of the
water and oil mobility functions

λt = λw(s) + λo(s) = krw(s)/µw + kro(s)/µo (2)

The saturation equation is given by

φ
∂

∂t
S w + ∇ ·

(
fw(S w)v

)
=

∑
i∈I,P

qw,i · δ(r − ri) (3)

φ is the porosity, s is the saturation, fw(s) is the water fractional
flow which is defined as λw

λt
, and qw,i is the volumetric water

rate at well i. We use the MRST reservoir simulator to solve the
pressure and saturation equations, (1) and (3), sequentially (Lie
et al., 2012). Specifically, MRST first computes the total mo-
bility using the initial water saturation. Secondly, the pressure
equation is solved explicitly using the initial water saturation
and the computed total mobility value. Thirdly, with the ob-
tained pressure solution, the velocity is computed and is used
in an implicit Euler method to solve the saturation equation.
This procedure is repeated until the final time is reached. Wells
are implemented using the Peaceman well model (Peaceman,
1983)

qi = −λtWIi(pi − pbhp
i ) (4)

pBHP
i is the wellbore pressure, and WIi is the Peaceman well-

index. The volumetric water flow rates at injection and produc-
tion wells are

qw,i = qi i ∈ I (5a)
qw,i = fwqi i ∈ P (5b)

The volumetric oil flow rates at production wells are

qo,i = (1 − fw)qi i ∈ P (6)

3. Optimal Control Problem

In this section, we present the continuous-time constrained
optimal control problem and its transcription by the single
shooting method to a finite dimensional constrained optimiza-
tion problem. First we present the continuous-time optimal
control problem; then we parameterize the control function us-
ing piecewise constant basis functions; and finally we convert
the problem into a constrained optimization problem using the
single shooting method.

Consider the continuous-time constrained optimal control
problem in the Lagrange form

max
x(t),u(t)

J =

∫ tb

ta
Φ(x(t), u(t))dt (7a)

subject to

x(ta) = x0, (7b)
d
dt

g
(
x(t)

)
= f (x(t), u(t), θ), t ∈ [ta, tb], (7c)

u(t) ∈ U(t). (7d)

x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the control vector,
and θ is a parameter vector in an uncertain space Θ (in our case
the permeability field). The time interval I = [ta, tb] as well
as the initial state, x0, are assumed to be fixed. (7c) represents
the dynamic model and includes systems described by index-1
differential algebraic equations (DAE) (Capolei et al., 2012a,b;
Völcker et al., 2009). (7d) represents linear bounds on the input
values, e.g. umin ≤ u(t) ≤ umax. In our formulations we do
not allow nonlinear state or output constraints. Suwartadi et al.
(2012) provide a discussion of output constraints.

3.1. Production Optimization

Production optimization aims at maximizing the net present
value (NPV) or the oil recovery for the life time of the oil reser-
voir. The stage cost, Φ, in the objective function for a NPV
maximization can be expressed as

Φ(x(t), u(t)) =
−1

(1 + d
365 )τ(t)

[∑
l∈I

rwi ql(u(t), x(t))

+
∑
i∈P

(
ro qo,i(u(t), x(t)) − rwp qw,i(u(t), x(t))

)] (8)
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ro, rwp, and rwi represent the oil price, the water separation cost,
and the water injection cost, respectively. qw,i and qo,i are the
volumetric water and oil flow rate at producer i; ql is the volu-
metric well injection rate at injector l; d is the annual interest
rate and τ(t) is the integer number of days at time t. The dis-
count factor (1+ d

365 )−τ(t) accounts for a daily compounded value
of the capital. Note that from the well model (4), it follows that
the flow rates, q, are negative for the producer wells and positive
for the injector wells. Hence, the negative sign in front of the
square bracket in the stage cost, Φ. Note that in the special case
when the discount factor is zero (d = 0) and the water injection
and separation costs are zero as well, the NPV is equivalent to
the quantity of produced oil.

3.2. Control Vector Parametrization

Let Ts denote the sample time such that an equidistant mesh
can be defined as

ta = t0 < . . . < tS < . . . < tN = tb (9)

with t j = ta + jTs for j = 0, 1, . . . ,N. We use a piecewise con-
stant representation of the control function in this equidistant
mesh, i.e. we approximate the control vector in every subinter-
val [t j, t j+1] by the zero-order-hold parametrization

u(t) = u j, u j ∈ Rnu , t j 6 t < t j+1, j ∈ 0, . . . ,N − 1 (10)

The optimizer maximizes the net present value by manipulat-
ing the well bhps. A common alternative is to use the in-
jection rates as manipulated variables (Capolei et al., 2012b).
The manipulated variables at time period k ∈ N are uk =

{{pbhp
i,k }i∈I, {p

bhp
i,k }i∈P} with I being the set of injectors and P be-

ing the set of producers. For i ∈ I, pbhp
i,k is the bhp (bar) in time

period k ∈ N at injector i. For i ∈ P, pbhp
i,k is the bhp (bar) at

producer i in time period k ∈ N .

3.3. Single-Shooting Optimization

We use a single shooting algorithm for solution of (7)
(Capolei et al., 2012b; Schlegel et al., 2005). Alterna-
tives are multiple-shooting (Bock and Plitt, 1984; Capolei
and Jørgensen, 2012) and collocation methods (Biegler, 1984,
2013). Despite the fact that the multiple shooting and the col-
location methods offer better convergence properties than the
single-shooting method (Biegler, 1984; Bock and Plitt, 1984;
Capolei and Jørgensen, 2012), their application in production
optimization is restricted by the large state dimension of such
problems. The use of multiple-shooting is prevented by the
need for computation of state sensitivities. Application of the
collocation method is challenging due to the state vector’s high
dimension and requires advances in iterative methods for solu-
tion of large-scale KKT systems to be computationally attrac-
tive. Heirung et al. (2011) apply the collocation method for
production optimization of a small-scale reservoir.

In the single shooting optimization algorithm, we define the
function

ψ({uk}
N−1
k=0 , x0, θ) ={

J =

∫ tb

ta
Φ(x(t), u(t))dt :

x(t0) = x0,

d
dt

g(x(t)) = f (x(t), u(t), θ), ta ≤ t ≤ tb,

u(t) = uk, tk ≤ t < tk+1, k = 0, 1, . . . ,N − 1
}

(11)

such that (7) can be expressed as the optimization problem

max
{uk}

N−1
k=0

ψ = ψ({uk}
N−1
k=0 ; x̄0, θ) (12a)

s.t. c({uk}
N−1
k=0 ) ≤ 0 (12b)

Gradient based optimization algorithms for solution of (12) re-
quire evaluation of ψ = ψ({uk}

N−1
k=0 ; x̄0, θ), ∇ukψ for k ∈ N ,

c({uk}
N−1
k=0 , and ∇uk c({uk}

N−1
k=0 ) for k ∈ N . For the cases studied in

this paper, the constraint function defines linear bounds. Con-
sequently, the evaluation of these constraint functions and their
gradients is trivial. Given an iterate, {uk}

N−1
k=0 , ψ is computed by

solving (7c) marching forwards. ∇ukψ for k ∈ N is computed
by the adjoint method (Capolei et al., 2012a,b; Jansen, 2011;
Jørgensen, 2007; Sarma et al., 2005a; Suwartadi et al., 2012;
Völcker et al., 2011).

To solve (12), we use Matlab’s fmincon function (MAT-
LAB, 2011). fmincon provides an interior point and an active-
set solver. We use the interior point method since we experi-
enced the lowest computation times with this method. An op-
timal solution is reported if the KKT conditions are satisfied to
within a relative and absolute tolerance of 10−6. The current
best but non-optimal iterate is returned in cases when the opti-
mization algorithm uses more than 200 iterations, the relative
change in the objective function is less than 10−8, or the rela-
tive change in the step size is less than 10−8. Furthermore, the
cost function is normalized to improve convergence. We use 4
different initial guesses when running the optimizations. These
initial guesses are constant bhp trajectories with the bhp close to
the maximal bhp for the injectors and the bhp close to the mini-
mal bhp for the producers. About half of the simulations ended
because they exceeded the maximum number of iterations but
without satisfying the KKT conditions at the specified tolerance
level. In these cases, the relative changes in the cost function
and step size were of the order of 10−6. Even if these solutions
do not reach our specified tolerances for the KKT conditions,
the solutions are sufficiently close to optimality to demonstrate
qualitatively the behavior of the mean-variance (MV) optimiza-
tion. This closeness to optimality is assessed by re-simulation
of some of these scenarios with a tolerance limit of 10−8. In
these cases, the optimizer converged to a KKT point in about
300 iterations; and we did not observe important differences
in these control trajectories compared to the already computed
control trajectories.
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3.4. Control Constraints

The bhps are constrained by well and reservoir conditions.
To maintain the two phase situation, we require the pressure to
be above the bubble point pressure (290 bar). To avoid fractur-
ing the rock, the pressure must be below the fracture pressure
of the rock (350 bar). To maintain flow from the injectors to the
producers, the injection pressure is maintained above 310 bar
and the producer pressures are kept below 310 bar. With these
bounds, we did not experience that the flow was reversed. With-
out these pressure bounds, state constraints must be included to
avoid flow reversion.

3.5. Certainty Equivalence, Robust, and Mean-Variance Opti-
mization

In reservoir models, geological uncertainty is generally pro-
found because of the noisy and sparse nature of seismic data,
core samples, and borehole logs. The consequence of a large
number of uncertain model parameters (θ) is the broad range of
possible models that may satisfy the seismic and core-sample
data. Obviously, the optimal controls, {uk}

N−1
k=0 = {uk(x0, θ)}N−1

k=0 ,
computed as the solution of the finite dimensional optimization
problem (12) with the objective function (11) depend on the
values of the uncertain parameters, θ. In practice, the initial
states, x0, will also be uncertain, but in this paper we assume
that all uncertainty is contained within θ. When θ is determinis-
tic, the objective function ψ = ψ({uk}

N−1
k=0 ; x0, θ) is deterministic

and the optimization problem (12) is well defined in the sense
that the objective function is a scalar variable. In contrast, when
θ is stochastic, ψ = ψ({uk}

N−1
k=0 ; x0, θ) is stochastic and the opti-

mization problem (12) is not well defined as ψ is a distribution
and not a scalar variable. To define the optimization problem
(12) for the stochastic case, a deterministic objective function
for (12) must be constructed. The Certainty Equivalence (CE)
optimization obtains a deterministic objective function by using
the expected value of the uncertain parameters

ψCE = ψ({uk}
N−1
k=0 ; x0, Eθ[θ]) (13)

The MV optimization strategy is obtained by using the bi-
criterion function

ψMV = λEθ[ψ] − (1 − λ)Vθ[ψ] λ ∈ [0, 1] (14)

as the objective function in (12). Eθ[ψ] is the expected value of
ψ, and Vθ[ψ] is the variance of ψ. The term Eθ[ψ] is related to
maximizing return while the term Vθ[ψ] is related to minimizing
risk.

Van Essen et al. (2009) introduce Robust Optimization (RO)
for production optimization to reduce the effect of geological
uncertainties compared to the CE optimization. The RO objec-
tive is

ψRO = Eθ[ψ] (15)

The RO objective, ψRO, is a special case of the MV objective,
ψMV , i.e. ψRO = ψMV for λ = 1.

We use a Monte Carlo approach for computation of the ex-
pected value of parameters, Eθ[θ]. The expected value of the

return,Eθ[ψ], and the variance of the return, Vθ[ψ], are also
computed by the Monte Carlo approach. A sample is a set of
realizations of the stochastic variables, θ:

Θd =

{
θ1, θ2, . . . , θnd

}
=

{
θi
}nd

i=1
(16)

This sample is also called an ensemble and is generated by the
Monte Carlo method. The objective function values, ψi, corre-
sponding to this ensemble are

ψi = ψ({uk}
N−1
k=0 ; x0, θ

i) i = 1, . . . , nd (17)

The sample estimators of the means and the variance are

θ̂ =
1
nd

nd∑
i=1

θi (18a)

ψ̂ =
1
nd

nd∑
i=1

ψi (18b)

σ2 =
1

nd − 1

nd∑
i=1

(
ψi − ψ̂

)2 (18c)

θ̂ is an estimator for Eθ[θ] and ψ̂ is an estimator for Eθ[ψ]. σ2

is an unbiased estimate of Vθ[ψ]. Therefore, σ is an unbiased
estimator of the standard deviation σθ[ψ] =

√
Vθ[ψ].

The CE objective function, ψCE , is computed using the sam-
ple estimator θ̂ ≈ Eθ[θ], i.e.

ψCE = ψ({uk}
N−1
k=0 ; x0, θ̂) (19)

Similarly, the MV objective function, ψMV , is computed using
the sample estimators ψ̂ ≈ Eθ[ψ] and σ2 ≈ Vθ[ψ], i.e.

ψMV = λψ̂ − (1 − λ)σ2 λ ∈ [0, 1] (20)

ψMV is computed by computation of ψi for each parameter,
i = 1, . . . , nd, and subsequent computation of the sample esti-
mators, ψ̂ and σ2. The gradient based optimizer used in this
paper needs the objective, ψMV , and the gradients, ∇ukψMV

for k ∈ N . Appendix A provides an explicit derivation of
these gradients. The computation of the objectives and the

gradients, ψi and
{
∇ukψ

i
}N−1

k=0
, can be conducted in parallel for

i = 1, 2, . . . , nd. The RO objective based on the sample estima-
tor, ψ̂ ≈ Eθ[ψ], is

ψRO = ψ̂ (21)

The computational effort in computing ψMV is similar to the
computational effort in computing ψRO. Therefore, no compu-
tational penalty is adopted by using the MV approach rather
than the RO approach. The CE optimization needs one func-
tion and gradient evaluation in each iteration, while the MV
optimization needs nd function and gradient evaluations in each
iteration. However, these nd function and gradient evaluations
can be conducted in parallel.
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4. Key Performance Indicators

In this section, we present the key performance indicators
(KPIs) used to evaluate the optimal control strategies. The KPIs
are divided into economic KPIs and production related KPIs.
All KPIs related to the mean-variance optimization are func-
tions of the mean-variance trade-off parameter, λ.

4.1. Profit, Risk and Market Solution
Given a control sequence, {uk}

N−1
k=0 , computed by some strat-

egy, the NPV may be computed for each realization of the en-
semble, ψi = ψ({uk}

N−1
k=0 ; x0, θ

i) for i = 1, . . . , nd. This gives a set
of NPVs, {ψi}

nd
i=1. By itself, these NPVs and their distribution

are of interest. Economic KPIs such as NPV mean, NPV stan-
dard deviation, ratio of NPV mean to NPV standard deviation,
and the minimum and maximum NPV in the finite set are used
to summarize and evaluate the performance of a given control
strategy, {uk}

N−1
k=0 . Given {ψi}

nd
i=1, the expected mean NPV may

be approximated using (18b), Eθ[ψ] ≈ ψ̂. Similarly, the stan-
dard deviation of the mean may be approximated using (18c),
σθ[ψ] ≈ σ. The ratio of return and risk is called the Sharpe
ratio and is defined as (Sharpe, 1994)

S h =
Eθ[ψ]
σθ[ψ]

≈
ψ̂

σ
(22)

The ensemble, {ψi}
nd
i=1, is finite. Therefore, the minimum and

maximum NPV may be computed by

ψmin = min {ψi}
nd
i=1 (23a)

ψmax = max {ψi}
nd
i=1 (23b)

Given an optimal control sequence, {uk}
N−1
k=0 , ψmin is the low-

est NPV in the ensemble of permeability fields and ψmax is the
highest NPV in the ensemble of permeability fields.

The economic KPIs,
{
ψ̂, σ, S h, ψmin, ψmax

}
, provide a set of

values that may be used to quickly evaluate and compare dif-
ferent control strategies, {uk}

N−1
k=0 , in terms of return and risk.

Subsequently, selected solutions, {uk}
N−1
k=0 , may be evaluated in

detail by inspection of the distribution of {ψi}
nd
i=1 and by in-

spection of the solution trajectories, {uk}
N−1
k=0 . The idea in the

mean-variance model is to compute the optimal solution for dif-
ferent values of the return-risk trade-off parameter, λ ∈ [0, 1],
and select the parameter λ to obtain the best trade-off between
return and risk (Markowitz, 1952; Steinbach, 2001). As part
of the mean-variance optimization, the NPV of each realiza-
tion of the ensemble is computed for various values of λ in
the mean-variance objective function (20). This gives {ψi(λ)}nd

i=1
and {uk(λ)}N−1

k=0 for a range of values of the mean-variance trade-
off parameter, λ ∈ [0, 1]. For each value of λ, the set of en-
semble NPVs and (18b) are used to approximate the expected
NPV as function of λ, Eθ[ψ(λ)] ≈ ψ̂(λ). Similarly, the set of
ensemble NPVs and (18c) are used to approximate the standard
deviation of the NPV as function of λ, σθ[ψ(λ)] ≈ σ(λ). The
expected NPV, Eθ[ψ(λ)], and the risk σθ[ψ(λ)], may be plotted
and tabulated as a function of λ. This gives some overview of
the behaviour of key economic performance indicators such as

expected profit and risk as a function of λ. Also a phase plot

of risk versus return,
{
σθ[ψ(λ)], Eθ[ψ(λ)]

}
for λ ∈ [0, 1], illus-

trates the risk-return relationship of the mean-variance model.
The efficient frontier is the curve that yields the maximal return
as function of risk. By itself, the efficient frontier does not pro-
vide a unique solution to the production optimization problem.
The efficient frontier provides only efficient pairs of return and
risk; the preferred solution depends on the risk preferences of
the decision maker. One way to choose a solution among the
efficient risk-return pairs is to choose the solution that maxi-
mizes the Sharpe ratio (22) (Sharpe, 1994). The solution that
maximizes the Sharpe ratio is called the market solution.

4.2. Cumulative Productions Indicators
In addition to the economic KPIs, we also consider produc-

tion related KPIs. The production related KPIs are the expected
cumulative oil production, the expected cumulative water injec-
tion, and the production efficiency.

The cumulative oil production, Qo(t), and the cumulative wa-
ter injection, Qw,in j(t), at time t are given by

Qo(t) =

∫ t

0

∑
i∈P

qo,i

 dt (24a)

Qw,in j(t) =

∫ t

0

∑
i∈I

qi

 dt (24b)

We approximate the cumulative oil production (24a) and wa-
ter injection (24b) at final time tb by using the right rectangle
(implicit Euler) integration method

Qo = Qo(tb) =

N−1∑
k=0

∑
i∈P

qo,i(xk+1, uk)

 ∆tk (25a)

Qw,in j = Qw(tb) =

N−1∑
k=0

∑
i∈I

qi(xk+1, uk)

 ∆tk (25b)

and we compute the expected values of the cumulative produc-
tions (25a)-(25b) as the sample averages

Eθ[Qo] =
1
nd

nd∑
i=1

Qi
o (26a)

Eθ[Qw,in j] =
1
nd

nd∑
i=1

Qi
w,in j (26b)

Superscript i refers to the quantity computed using realization
i. The production efficiency, ξ, is defined and computed as the
volumetric ratio of the produced oil and the injected water

ξ =
Eθ[Qo]

Eθ[Qw,in j]
(27)

4.3. Mean-Variance Optimization and the Market Solution
The flowchart in Fig. 2 summarizes the mean-variance based

optimization procedure to obtain the market solution. First, the
mean-variance trade-off parameter, λ ∈ [0, 1], is discretized into
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Figure 2: Flowchart of the model based optimization procedure using the mean-variance objective to obtain the market solution.
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a finite number of values {λm}
M
m=1. For each of these values

(λm, m = 1, 2, . . . ,M), we do model based optimization based
on the mean-variance objective function. The results from the
model based optimization are a function of λm. For each value
of the mean-variance parameter, {λm}

M
m=1, the results from the

model based optimization are the optimal bottom-hole pres-
sures, uopt(λm), the NPV distribution, and the KPIs. The mar-
ket solution is determined by selecting the value of the mean-
variance trade-off parameter, λmarket, that maximizes the Sharpe
ratio. We select and implement the bottom-hole pressures cor-
responding to the market solution and get the NPV distribution
as well as the KPIs corresponding to the market solution.

5. Simulated Test Cases

The mean-variance optimization strategy is studied for two
test cases. We discretize λ by choosing 16 points in the in-
terval [0, 1]. The first 5 points are equidistantly spaced (in
the λ-space), while the remaining points are selected manually
and adaptively by inspection of the efficient frontier such that
the points in the efficient frontier are approximately equidis-
tantly spaced. The same reservoir permeability fields and petro-
physical parameters are used for the two test cases. Fig. 3 il-
lustrates the ensemble of permeability fields used to represent
the uncertain reservoir. Fig. 4 illustrates the mean permeabil-
ity field of the ensemble of permeability fields. As illustrated
by Fig. 5 and reported in Table 1, the difference between the
two test cases are the well configurations and the economical
parameters. Test Case I contains more injector wells than Test
Case II. Furthermore, the water injection costs and the water
separation costs are higher in Test Case I than in Test Case II.
This implies that a reactive strategy that injects water at a max-
imal rate is penalized in Test Case I due to the high water injec-
tion and water separation costs. Test Case I is used to illustrate a
complicated well configuration benefitting from intelligent co-
ordination of wells and penalizing conventional reactive strate-
gies. Test Case II is simpler and the value of feedback becomes
more important than predictive coordination of the wells. This
means that in Test Case II a feedback based reactive strategy
will be able to do better than a model based open loop strategy.
Combined, the two test cases illustrates that the shape and ge-
ometry of the efficient frontier is case dependent, that the value
of feedback in a reactive strategy compared to an open-loop op-
timization strategy is dependent on the well configuration, and
that the mean-variance objective formulation is an efficient way
to trade off risk and return.

5.1. Uncertain Parameters

In our study, the permeability field is the uncertain parame-
ters. We generate 100 permeability field realizations of a 2D
reservoir in a fluvial depositional environment with a known
vertical main-flow direction. Fig. 3 illustrates such an ensem-
ble of permeability fields. These permeability realizations are
equal to the permeabilities used by Capolei et al. (2013). To
generate the permeability fields, we first create a set of 100 bi-
nary (black and white) training images by using the sequential

Table 1: Petro-physical and economical parameters for the two
phase model and the discounted state cost function used in the
case studies. TC I = Test Case I. TC II = Test Case II.

Description Value Unit
φ Porosity 0.2 -
cr Rock compressibility 0 Pa−1

ρo Oil density (300 bar) 700 kg/m3

ρw Water density (300 bar) 1000 kg/m3

µo Dynamic oil viscosity 3 · 10−3 Pa · s
µw Dynamic water viscosity 0.3 · 10−3 Pa · s
S or Residual oil saturation 0.1 -
S ow Connate water saturation 0.1 -
no Corey exponent for oil 2 -
nw Corey exponent for water 2 -
Pinit Initial reservoir pressure 300 bar
S init Initial water saturation 0.1 -
ro Oil price 120 USD/bbl
rwp Water separation cost (TC I) 25 USD/bbl
rwp Water separation cost (TC II) 20 USD/bbl
rwi Water injection cost (TC I) 15 USD/bbl
rwi Water injection cost (TC II) 10 USD/bbl
d Discount factor 0

Monte Carlo algorithm ’SNESIM’ (Liu, 2006). Then a Kernel
PCA procedure is used to preserve the channel structures and to
smooth the original binary images (Schölkopf et al., 1998). The
realizations obtained by this procedure are quite heterogeneous.
The values of the permeabilities are in the range 6 − 2734 mD.

5.2. Description of the Test Cases

We consider a conventional horizontal oil field that can be
modeled as two phase flow in a porous medium (Chen, 2007).
The reservoir size is 450 m × 450 m × 10 m. By spatial dis-
cretization, this reservoir is divided into 45×45×1 grid blocks.
The permeability field is uncertain, θ = ln K. We assume that
the ensemble in Fig. 3 represents the range of possible geolog-
ical uncertainties.

Table 1 lists the reservoir’s petro-physical and economical
parameters. The initial reservoir pressure is 300 bar everywhere
in the reservoir. The initial water saturation is 0.1 everywhere
in the reservoir. This implies that initially, the reservoir has a
uniform oil saturation of 0.9. The manipulated variables are the
bhps over the life of the reservoir. In this study, we consider a
zero discount factor, d, in the cost function (8). This means that
we maximize NPV at the final time without short term produc-
tion considerations (Capolei et al., 2012b).

In both test cases, we consider a prediction horizon of tN =

4 · 365 = 1460 days divided in N = 60 control periods (i.e.
the control period is Ts ≈ 24 days). We control the reservoir
using three strategies: a reactive strategy, a CE strategy, and
a MV strategy. The RO strategy is considered a special MV
strategy with λ = 1. In the reactive strategy, we develop the
field at the maximum production rate by setting the producers
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Figure 3: Plots of the permeability fields used to describe the uncertain reservoir. An ensemble of 100 realizations is used. The
realizations are quite heterogeneous. The permeability values are in the range 6 − 2734 mD. The logarithm of the permeability is
plotted for better visualization.
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Figure 4: A plot of the mean permeability field for the ensemble
of permeability fields in Fig. 3. The mean is a smoothed ver-
sion of the ensembles. Due to the heterogenous nature of the
ensembles, the mean does not necessarily reflect the channel
structure of any of the ensemble members.

at the lowest allowed bhp value (290 bar) and the injectors at
the maximum allowed bhp value (350 bar). When a production
well is no longer economical, it is shut in. A production well
is uneconomical when the value of the produced oil is less than
the separation cost of the produced water. The CE strategy is
based on solving problem (12) using the CE cost function ψCE

(19). It uses the mean (Fig. 4) of the ensemble (Fig. 3) as its
permeability field. The MV strategy is based on solving prob-
lem (12) using the cost function ψMV (20) for different values
of the parameter λ.

5.3. Test Case I

Fig. 5a illustrates the well configuration for Test Case I. Test
Case I has 9 injection wells and 4 producer wells. Table 1 con-
tains the petro-physical as well as the economic parameters.
From the oil price and the water separation cost for Test Case I,
it is apparent that a producer well becomes uneconomical when
the fractional flow, fw, exceeds ro/(ro +rwp) = 120/(120+25) =

0.828.
Fig. 6 shows the optimal bhp trajectories for the producer

wells while Fig. 7 shows the optimal bhp trajectories for the in-
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Figure 5: The well configuration for Test Case I and II. The
permeability field in this plot is the permeability field in the
upper left corner of Fig. 3. Producer wells are indicated by
the letter p, and injector wells are indicated by the letter i. In
addition to the injector and producer wells in Test Case II, Test
Case I has a number of injector wells at the boundary of the
field.

jector wells. These trajectories are computed using the reactive,
the MV, the RO, and the CE optimization strategy. λ = 0.59
gives the market solution for this case, and this value of λ is
used in the MV strategy. Compared to the RO and the market
MV strategy, the CE trajectories do not contain sudden large
changes in the bhp. This is due to the fact that the mean perme-
ability field used by the CE strategy does not have sharp edges.
It is also apparent that the bhp trajectories of the RO strategy
have larger sudden changes than the trajectories of the market
MV strategy. For some realizations of the permeability field,
the RO trajectories would perform very well because they uti-
lize the sharp channel structure in the permeability field. How-
ever, sudden large changes in the manipulated variables is an
indication of solutions that are sensitive to process noise and
model uncertainties. As sensitivity to noise is related to high
risk, the trajectories of the bore hole pressures indicate that the
RO strategy is more risky than the market MV strategy. Fig. 8
confirms this observation.

Fig. 8 illustrates the profit, ψi, for each realization of the
permeability field using the reactive strategy as well as the CE,
the RO, and the market MV optimal control strategies. The
average profit over the realizations is a measure of the expected
return, while the fluctuations are a measure of risk. For each
control strategy, the bigger the fluctuations in profit, the bigger
the related risk. It is evident that the CE strategy has the lowest
expected return and the biggest risk. The CE strategy also has
the lowest worst case return. The reactive strategy has a mean
return that is higher than the mean return of the CE strategy but
lower than the mean returns of the RO and the MV strategies.
The risk for the reactive strategy is lower than the risk for the
CE strategy but higher than the risks for the RO and the MV
strategies. Comparing the market MV and the RO strategies,
the RO strategy has a slightly higher mean profit than the market
MV strategy but at the price of a significantly higher risk.

Table 2 reports KPIs for each control strategy. The econom-

ical KPIs are the expected NPV, the standard deviation NPV,
the Sharpe ratio, and the minimum and maximum NPV for
the ensemble. The production related KPIs are the mean oil
production, the mean water injection, and the production effi-
ciency (27) for the ensemble. The mean oil production and the
mean water injection are scaled by the pore volume of the reser-
voir. Interestingly, the MV market strategy (λ = 0.59) has the
highest minimum ensemble NPV value, ψmin. This means that
in this case, the market solution has a better worst case profit,
ψmin, compared to all other control strategies including the MV
strategies with lower standard deviation. Compared to the CE
strategy and the reactive strategy, all MV control trajectories
give higher expected NPV and lower NPV standard deviation.
In that sense, the MV solutions are said to dominate the CE so-
lution and the solution given by the reactive strategy. The RO
solution has the highest maximum NPV and also the highest
expected NPV. However, among the MV solutions, it is also the
solution with the lowest minimum NPV. This implies that the
RO solution is very risky and this is confirmed by its high NPV
standard deviation. Among the MV solutions, the RO solution
has the highest NPV standard deviation. Fig. 9 summarizes
the economic KPIs of the MV solutions. Fig. 9a shows the
expected NPV as well as the worst and best NPV for the en-
semble as function of the mean-variance trade-off parameter, λ.
It is easily observed that the market MV solution, coinciden-
tally, is also the max-min solution, i.e. the solution yielding
the highest worst case NPV. Similarly, the high risk of the RO
solution is evident. Fig. 9b illustrates the standard deviation
of the NPV as function of the mean-variance trade-off parame-
ter, λ. The standard deviation of the NPV is a measure of risk.
The risk is a non-monotonous function of the mean-variance
trade-off parameter, λ. Measured by NPV standard deviation,
the minimum risk solution is obtained for λ = 0.125. However,
this solution is inferior to the market MV solution, as the mar-
ket MV solution has a higher worst case NPV, a higher mean
NPV, and a higher best case NPV (see Fig. 9a). Fig. 9c plots
the Sharpe ratio as function of the mean-variance trade-off pa-
rameter, λ. This plot indicates that the maximal Sharpe ratio,
i.e. the market solution, is obtained for λ = 0.59. The Sharpe
ratio is not a concave function of λ in this case. Another lo-
cal maximum with almost the same Sharpe ratio as the global
maximum is obtained for λ = 0.125, i.e. for the minimum risk
solution. As we noted previously, this solution is inferior to the
market solution. Also note that the RO solution has the lowest
Sharpe ratio. Fig. 9d illustrates the risk-return relations for the
different MV strategies as well as the CE, the RO (MV with
λ = 1), and the reactive strategy. This figure clearly illustrates
the superiority of the market MV strategy over the reactive strat-
egy and the CE strategy. It also shows the reduced risk of the
market MV strategy compared to the RO strategy at the cost
of slightly reduced mean profit. The risk-return curve for the
MV optimization strategies has two arcs. The efficient frontier
arc is the blue curve in Fig. 9d; the red curve is the inefficient
frontier. In the efficient frontier, an increased risk is associated
with an increased mean return. The MV strategy contains some
risk-return points that are feasible but not on the efficient fron-
tier, i.e. points that for a given risk level do not produce the
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Figure 6: Test Case I. Trajectories of the bhp at producer wells using different optimization strategies. In the reactive strategy, the
producer wells are shut in when production becomes uneconomical. The shut in time is different for each realization and is not
indicated in the plot.

Table 2: Key Performance Indicators (KPIs) for Test Case I. The economic KPIs are the expected profit, the standard deviation of
the profit, the Sharpe ratio, and the minimum and maximum profit for the ensemble. The reported production related KPIs are the
expected oil production, the expected water injection, and the production efficiency, ξ. The productions are normalized by the pore
volume. All improvements are relative to the reactive strategy.

Strategy ψ̂ σ S h ψmin ψmax Eθ[Qo] Eθ[Qw,in j] ξ

106 USD, % 106 USD, % 106 USD, % 106 USD, % , % , % %
Reactive 39.04, / 9.01, / 4.34 17.62, / 60.47, / 0.39, / 1.04, / 37.8
CE 28.57, −26.8 18.93, +110.2 1.51 -23.86, −235.4 60.25, −0.40 0.32, −18.4 0.88, −15.3 36.4
MV
λ = 1 (RO) 50.40, +29.1 8.17, −9.3 6.17 28.11, +67.2 69.90, +15.6 0.26, −34.0 0.44, −57.4 58.5
λ = 0.75 48.00, +25.0 6.13, −32.0 7.83 34.68, +96.8 64.52, +6.7 0.24, −38.9 0.39, −62.5 61.6
λ = 0.59 47.09, +20.6 4.89, −45.7 9.63 35.44, +101 57.747, −4.5 0.23, −40.9 0.38, −63.6 61.5
λ = 0.5 45.58, +16.7 5.15, −42.8 8.85 33.13, +88.0 57.84, −4.3 0.23, −41.0 0.39, −62.4 59.3
λ = 0.25 45.09, +15.5 4.76, −47.1 9.47 32.39, +83.8 56.3, −6.9 0.22, −42.5 0.37, −64.0 60.3
λ = 0.125 44.00, +12.7 4.61, −48.8 9.54 31.73, +80.1 54.67, −9.6 0.22, −44.1 0.36, −65.1 60.5
λ = 0 41.57, +6.5 5.02, −44.2 8.28 29.47, +67.2 52.40, −13.3 0.21, −45.6 0.36, −64.9 58.6
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Figure 7: Test Case I. Trajectories of bhp for injector wells using different optimization strategies.

maximal expected return.
For Test Case I, the production related KPIs in Table 2

demonstrate that the reactive strategy produces much more oil
compared to the other control strategies. However, it also in-
jects and produces much more water, i.e. Eθ[Qo] = 0.39 pore
volume and Eθ[Qw,in j] = 1.04 pore volume. From a pure pro-
duction point of view, the most efficient MV solution does
not coincide with the market solution nor with the RO solu-
tion. It occurs for λ = 0.75 and has a production efficiency of
ξ = 61.6%, i.e. 61.6 barrels of oil is produced for 100 barrels
of injected water.

5.4. Test Case II

Fig. 5b indicates the well configuration of Test Case II. Table
1 reports the petro-physical and economical parameters used
for the simulations. The economic parameters imply that a pro-
ducer well becomes non-economical when the fractional water
flow, fw, exceeds ro/(ro +rwp) = 120/(120+20) = 0.857. Com-

pared to Test Case I, Test Case II has fewer injection wells and
the water separation cost is lower.

Fig. 10 and Table 3 report the economic KPIs for Test
Case II. They summarize and provide an overview of the per-
formance of different control strategies for Test Case II. The
Sharpe ratio curve in Fig. 10c indicates that the market MV
solution is obtained for λ = 0.125. As illustrated by the effi-
cient frontier in the risk-return plot in Fig. 10d, the RO solution
and the CE solution both have higher expected return as well
as significantly higher risk (NPV standard deviation) than the
MV market solution. Comparing with the sketch in Fig. 1, the
efficient frontier illustrated in Fig. 10d is a textbook example
of the relation between risk and return. At the price of a low
reduction in the expected return, the MV market solution de-
creases the risk significantly compared to the RO solution and
the CE solution. Also the worst case NPV is much higher for
the MV market solution than the corresponding values for the
RO solution and the CE solution. The worst case NPV, ψmin, is
even negative for the CE solution.

12



1 20 40 60 80 100

−60

−40

−20

0

20

40

60

realization #

ψ
i  (

m
ill

io
n 

U
S

D
)

 

 

CE
Reactive
RO
MV, λ=0.59

Figure 8: Test Case I. The net present value (NPV) of the optimal solution for each realization of the ensemble. The optimal
solution is computed using a CE objective, a RO objective, and a MV objective with a mean-variance trade-off corresponding to
the market solution (λ = 0.59). We also show the NPVs for the reactive strategy.

Test Case II has been included to demonstrate the value of
information and feedback. While the optimization based strate-
gies studied in this paper are open-loop strategies that do not
use feedback, the reactive strategy is a feedback controller. As
reported in Fig. 10d and Table 3, the reactive strategy has both
a higher expected NPV and a lower risk (NPV standard devi-
ation) than the RO solution as well as the CE solution. Con-
sequently, the reactive solution is superior to the open-loop CE
and RO strategies. Furthermore, the worst case NPV of the re-
active strategy is higher than the worst case NPVs of the CE
solution and the RO solution. The worst case NPV of the re-
active strategy is even better than the mean NPV of the CE
strategy. Fig. 10d illustrates that the reactive strategy has a
significantly higher return than the MV market solution. How-
ever, the reactive strategy also has a higher risk measured by the
NPV standard deviation. Nevertheless, the reactive strategy is
still superior to the MV market solution as the worst case NPV
of the reactive strategy is larger than the best case NPV of the
market MV solution. This illustrates that even though a control
strategy may have a larger standard deviation than another con-
trol strategy, it may still be superior as all its possible profits are
larger than the profits of the other control strategy.

Interestingly and perhaps surprising, Fig. 10a as well as Ta-
ble 3 indicate that the Market MV solution is in some sense

inferior to the MV solution obtained for λ = 0.25. The MV
solution for λ = 0.25 has a worst case NPV, a mean NPV, and a
best case NPV, that are all higher than the corresponding values
for the market solution. Even though the market solution has
lower risk in terms of standard deviation of the NPV, this be-
comes in some sense irrelevant as both the mean NPV and the
worst case NPV of the MV solution with λ = 0.25 are higher
than the corresponding values of the market solution. A more
detailed comparison of the two MV strategies would require the
distribution of the NPVs for the two strategies and not only the
just discussed statistics.

In addition to economic KPIs, Table 3 also reports the pro-
duction related KPIs. The reactive strategy has the highest oil
recovery but also the highest water injection such that its pro-
duction efficiency, ξ, is the lowest among all strategies. The
most efficient solution measured by the production efficiency,
ξ, would be the minimum variance solution obtained for λ = 0.
This solution would have a production efficiency of ξ = 81.9%.
In economic terms, this solution would still be inferior to the
reactive strategy.

5.5. Discussion

Using two test cases, we demonstrated production optimiza-
tion of an uncertain oil reservoir by open-loop optimal control

13
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(d) A risk-return plot. The expected NPV vs standard deviation of NPV.

Figure 9: Mean-variance relations for Test Case I. Profit (a), risk (b), and Sharpe Ratio (c) for different mean-variance trade-offs,
λ. (d) is a phase plot of expected profit vs risk measured as the standard deviation of profit. The blue curve is the efficient frontier.
The red curve is the inefficient frontier. Also the CE solution and the reactive solution are indicated.

using a mean-variance objective function. We compared opti-
mal control using a mean-variance objective function to open-
loop optimal control with a CE objective function and an RO
objective function, respectively. For uncertain reservoirs, the
market solution of the mean-variance objective provides bet-
ter and more well-behaved bhp trajectories with less risk (stan-
dard deviation) of the NPV. This reduced risk typically comes
at the price of reduced profit. The simulations revealed that for
the reservoirs in this paper, the reduction in expected NPV is
modest compared to the risk reduction. Risk mitigation by the
mean-variance objective can be regarded as a regularization of
the RO objective and has the same regularizing effect on the so-
lution, i.e. the bhp trajectories, as the effect of e.g. a Tikhonov
regularizer in least squares problems (Hansen, 1998).

The analysis, evaluation and discussion of control perfor-
mance in uncertain oil reservoirs is facilitated by Fig. 9 and
Fig. 10. In practice, a dash board of risk-return relations sim-

ilar to Fig. 9 and Fig. 10 will be very valuable for reservoir
management and risk mitigation. A closed-loop reservoir man-
agement system, should compute MV optimal control solutions
for λ ∈ [0, 1]. This would give the expected NPV, the NPV
standard deviation, the Sharpe ratio, and the efficient frontier
in a risk-return diagram. The range of possible NPVs are sub-
sequently computed by simulating each of the optimal control
solutions for each of the permeability fields in the ensemble.
Reservoir engineers and managers could then analyze the dia-
grams as well as selected bhp trajectories. Based on this anal-
ysis, they should select a mean-variance trade-off parameter, λ.
This could be the market solution, but it could also be another
value. A set of optimal injector and producer well bhp trajecto-
ries corresponds to the selected value of λ. The bhp values in
the first control period are implemented in the reservoir. Test
Case II demonstrated the importance of feedback. To incorpo-
rate measurements obtained one control period later, a history
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Figure 10: Mean-variance relations for Test Case II. Profit (a), risk (b), and Sharpe Ratio (c) for different mean-variance trade-offs,
λ. (d) is a phase plot of expected profit vs risk measured as the standard deviation of profit. The blue curve is the efficient frontier.
Also the CE and reactive strategy are indicated.

matching procedure should be used to update the ensemble of
permeability fields. Based on this updated ensemble of per-
meability fields, the mean-variance open-loop optimal control
computations are repeated and the first part of the selected op-
timal bhps are implemented (Capolei et al., 2013).

When comparing the efficient frontiers in Fig. 9d and
Fig. 10d, it is apparent that the efficient frontier in Fig.
10d is a textbook example of an efficient frontier that is
monotonously increasing while the efficient frontier in Fig. 9d
is not monotonously increasing. When the efficient frontier is
monotonously increasing, increased risk results in increased ex-
pected profit. The efficient frontier in Fig. 9d may result from
the fact that Test Case I is complicated, but it may also be an
artificial result stemming from convergence of the numerical
optimization algorithm to different local optima when changing
the value of λ.

In the analysis and discussion of the performance of different

control strategies, worst case analysis is beneficial and infor-
mative. In this study, we analyzed worst case performance by
simulation using a bhp trajectory obtained by open-loop MV
optimization; i.e. as part of solving the mean-variance opti-
mal control problem, we computed the NPV, ψi, for each mem-
ber of the ensemble, and the set {ψi}

nd
i=1 was used to determine

ψmin = min {ψi}
nd
i=1 and ψmax = max {ψi}

nd
i=1. In a future study,

it would be interesting to compare the MV solution to a max-
min solution, i.e. to compute the optimal control trajectories by
solution of

max
{uk}

N−1
k=0

min
i∈{1,2,...,nd}

ψ = ψ({uk}
N−1
k=0 ; x0, θ

i) (28a)

s.t. c({uk}
N−1
k=0 ) ≤ 0 (28b)

Subsequently, KPIs such as the mean, the standard deviation,
and the Sharpe ratio may be computed. These KPIs can be used
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Table 3: Key Performance Indicators (KPIs) for Test Case II. The economic KPIs are the expected profit, the standard deviation of
the profit, the Sharpe ratio, and the minimum and maximum profit for the ensemble. The reported production related KPIs are the
expected oil production, the expected water injection, and the production efficiency, ξ. The productions are normalized by the pore
volume. All improvements are relative to the reactive strategy.

Strategy ψ̂ σ S h ψmin ψmax Eθ[Qo] Eθ[Qw,in j] ξ

106 USD, % 106 USD, % 106 USD, % 106 USD, % , % , % %
Reactive 56.47, / 6.05, / 9.33 43.92, / 70.104, / 0.35, / 0.86, / 39.5
CE 42.72, −24.35 18.27, +202.0 2.34 -38.40, −187.4 72.21, +3.01 0.26, −26.0 0.64, −27.4 40.3
MV
λ = 1 (RO) 44.11, −21.9 13.19, +118.0 3.34 9.28, −78.9 67.14, −4.2 0.23, −34.9 0.47, −45.8 47.5
λ = 0.75 42.52, −24.7 8.58, +41.8 4.96 17.93, −59.2 59.16, +15.6 0.19, −44.9 0.33, −61.9 57.2
λ = 0.5 39.62, −29.8 6.39, +5.6 6.20 21.24, −51.6 51.82, −26.1 0.17, −52.0 0.26, −70.6 64.6
λ = 0.25 35.97, −36.3 4.81, −20.5 7.48 22.46, −48.9 46.45, −33.7 0.15, −58.0 0.21, −76.3 70.0
λ = 0.125 32.64, −42.2 4.32, −28.7 7.56 21.29, −51.5 42.46, −39.4 0.13, −62.5 0.18, −79.6 72.7
λ = 0 26.23, −53.5 3.99, −34.0 6.57 17.37, −60.5 36.38, −48.1 0.10, −71.2 0.12, −86.1 81.9

to evaluate and compare the max-min solution to the mean-
variance solutions.

6. Conclusions

In this paper, we describe a mean-variance approach to risk
mitigation in production optimization by open-loop optimal
control. The mean-variance approach to risk mitigation is well
known in finance and design optimization, but have to our
knowledge not been used previously for production optimiza-
tion of oil reservoirs. By simulation, we demonstrate a com-
putationally tractable method for mean-variance optimal con-
trol calculations of a reservoir model consisting of an ensemble
of permeability fields. Compared to the RO strategy and the
CE strategy, the MV strategy based on the market value of the
mean-variance trade-off parameter, λ, is able to reduce risk sig-
nificantly. This comes at the price of slightly reduced mean
profits. In Test Case II, we indicated the importance of feed-
back. Therefore, future studies should investigate the mean-
variance optimal control strategy in a moving horizon closed-
loop fashion. Implemented in closed-loop using the moving
horizon principle, the optimal control problem for production
optimization of an oil reservoir is an example of an Economic
Nonlinear Model Predictive Controller (Economic NMPC). We
believe that the mean-variance objective function introduced in
this paper will be of interest to not only production optimization
for closed-loop reservoir management but also for Economic
NMPC in general. In the future, the mean-variance approach
for production optimization should be compared to other meth-
ods for stochastic optimization, e.g. conditional-value-at-risk
and two-stage stochastic programming, as well as the modified
MV strategy that can shut in uneconomical wells (Capolei et al.,
2013).
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Appendix A. Computation of the MV Objective and its
Gradients

The mean-variance objective function for an ensemble is de-
fined as

ψMV = λψ̂ − (1 − λ)σ2 (A.1)

with the mean and variances computed by

ψ̂ =
1
nd

nd∑
i=1

ψi (A.2a)

σ2 =
1

nd − 1

nd∑
i=1

(ψi − ψ̂)2 (A.2b)

The gradient, ∇ukψMV for k ∈ N , is computed as

∇ukψMV = λ∇uk ψ̂ − (1 − λ)∇ukσ
2 k ∈ N (A.3)

with the gradient of the mean, ∇uk ψ̂, computed as

∇uk ψ̂ =
1
nd

nd∑
k=1

∇ukψ
i (A.4)

The gradient of the variance, ∇ukσ
2, is

∇ukσ
2 =

1
nd − 1

nd∑
i=1

[
∇uk

(
ψi − ψ̂

)2
]

=
2

nd − 1

nd∑
i=1

[(
ψi − ψ̂

)
∇uk

(
ψi − ψ̂

)]
=

2
nd − 1

nd∑
i=1

[
(ψi − ψ̂)(∇ukψ

i − ∇uk ψ̂)
]

(A.5)

∇ukσ
2 can be computed by (A.5). To compute ∇ukσ

2 more effi-
ciently, we express ∇ukσ

2 as

∇ukσ
2 =

2
nd − 1

( nd∑
i=1

[(
ψi − ψ̂

)
∇ukψ

i
]
−

nd∑
i=1

[(
ψi − ψ̂

)
∇uk ψ̂

])
(A.6)
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and note that
nd∑
i=1

((
ψi − ψ̂

)
∇uk ψ̂

)
=

 nd∑
i=1

(
ψi − ψ̂

)∇uk ψ̂

=

 nd∑
i=1

ψi − ndψ̂

︸            ︷︷            ︸
=0

∇uk ψ̂ = 0

Consequently, the gradient of the variance can be computed ef-
ficiently by

∇ukσ
2 =

2
nd − 1

nd∑
i=1

(ψi − ψ̂)∇ukψ
i (A.7)
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