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Abstract In conventional waterflooding of an oil field,
feedback based optimal control technologies may enable
higher oil recovery than with a conventional reactive
strategy in which producers are closed based on water
breakthrough. To compensate for the inherent geological
uncertainties in an oil field, robust optimization has been
suggested to improve and robustify optimal control strate-
gies. In robust optimization of an oil reservoir, the water
injection and production borehole pressures (bhp) are com-
puted such that the predicted net present value (NPV) of an
ensemble of permeability field realizations is maximized.
In this paper, we both consider an open-loop optimization
scenario, with no feedback, and a closed-loop optimization
scenario. The closed-loop scenario is implemented in a
moving horizon manner and feedback is obtained using an
ensemble Kalman filter for estimation of the permeability
field from the production data. For open-loop implementa-
tions, previous test case studies presented in the literature,
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show that a traditional robust optimization strategy (RO)
gives a higher expected NPV with lower NPV standard
deviation than a conventional reactive strategy. We present
and study a test case where the opposite happen: The reac-
tive strategy gives a higher expected NPV with a lower NPV
standard deviation than the RO strategy. To improve the RO
strategy, we propose a modified robust optimization strat-
egy (modified RO) that can shut in uneconomical producer
wells. This strategy inherits the features of both the reactive
and the RO strategy. Simulations reveal that the modified
RO strategy results in operations with larger returns and
less risk than the reactive strategy, the RO strategy, and the
certainty equivalent strategy. The returns are measured by
the expected NPV and the risk is measured by the stan-
dard deviation of the NPV. In closed-loop optimization, we
investigate and compare the performance of the RO strategy,
the reactive strategy, and the certainty equivalent strategy.
The certainty equivalent strategy is based on a single real-
ization of the permeability field. It uses the mean of the
ensemble as its permeability field. Simulations reveal that
the RO strategy and the certainty equivalent strategy give a
higher NPV compared to the reactive strategy. Surprisingly,
the RO strategy and the certainty equivalent strategy give
similar NPVs. Consequently, the certainty equivalent strat-
egy is preferable in the closed-loop situation as it requires
significantly less computational resources than the robust
optimization strategy. The similarity of the certainty equiv-
alent and the robust optimization based strategies for the
closed-loop situation challenges the intuition of most reser-
voir engineers. Feedback reduces the uncertainty and this is
the reason for the similar performance of the two strategies.
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history matching
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1 Introduction

In the oil industry, closed-loop reservoir management
(CLRM) has been suggested to maximize oil recovery or a
financial measure such as the net present value of a given
oil reservoir [1–12]. Fig. 1 illustrates the components in
closed-loop reservoir management. The controller consists
of model based data assimilation, also known as a param-
eter and state estimator, and a model based optimizer for
maximizing the oil recovery or some predicted financial
measure such as the net present value. The inputs to the
controller is production measurements, forecasts of the oil
price, the interest rate, and the operating unit costs. Based
on these inputs the controller computes water injection tra-
jectories as well as borehole pressure trajectories. Only the
first part of these trajectories are implemented in the real
oil reservoir. As new measurements become available, the
process is repeated. The parameters and the states of the
model are re-estimated using the data assimilation compo-
nent. These filtered states and parameters are used in the
model based optimization for computation of optimal tra-
jectories for the manipulated variables, and the first part of
the trajectories are implemented. This form of control is
also known as Nonlinear Model Predictive Control (NMPC)
[13–19]. A key difference of NMPC applied to reservoir
management and traditional process control applications is
the size of the model describing the system. In reservoir
management, spatial discretization of the partial differen-
tial equation (PDE) system describing the flow results in
a system of differential equations that is much larger than
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Fig. 1 Closed-loop reservoir management

the systems typically encountered in process control appli-
cations. The large-scale nature of the closed-loop reservoir
management problem requires special numerical techniques
for the data assimilation [20] as well as the optimization
[21, 22].

In this paper, we study and discuss two closed-loop
approaches for real-time production optimization. Both of
the two closed-loop approaches consist of three key ele-
ments: 1) A gradient based optimization algorithm for
computation of the control input, 2) an ensemble Kalman
filter (EnKF) for model updating through data assimila-
tion (history-matching), and 3) use of the moving horizon
principle for data assimilation and implementation of the
computed control input.The first closed-loop approach is
a certainty equivalent strategy. In this strategy, the EnKF
is used to estimate permeabilities of each member of the
ensemble. The average of these permeabilities is used in the
optimization. The second closed-loop approach is a strategy
based on robust optimization. In this strategy, all members
of the ensemble are used to compute the mean net present
value for the optimization.

We know from finance that strategies which attempt to
increase returns are often accompanied by an increased
uncertainty [23]. The robust strategy typically reduces
the uncertainty of the expected outcome compared to a
non-robust strategy and one would consequently expect a
decrease in return [24, 25]. Figure 2 sketches this phe-
nomenon. For the test cases used in the oil industry to
test robust optimization strategies, this phenomenon has not
been reported [26]. Due to the large-scale nature of an oil
reservoir model, we cannot compute the entire distribu-
tion of the net present value for the closed-loop system.
Accordingly, the ambition in this paper is in a computational
tractable way, using a few realizations, to demonstrate the
closed-loop performance of the certainty equivalent and the
robust optimization strategy.
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Fig. 2 Conceptual sketch of the distribution of the net present value
for two strategies in finance. A robust strategy has lower variance and
typically also lower mean value than non-robust strategies such as a
certainty equivalent strategy
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Data assimilation by the EnKF is a popular method for
history matching as well as closed-loop reservoir manage-
ment [1, 3, 4, 6, 27]. In [28], different data assimilation and
optimization methods are tested on the synthetic ”Brugge
field” to maximize its NPV. The three best results are all
obtained by methods using an EnKF for data assimilation.
The EnKF method is a Monte Carlo implementation of the
Kalman filter [29]. The literature available on the EnKF
in petroleum engineering is rather large and mature. Data
assimilation using the ensemble Kalman filter has been
reviewed by [30–32] and [20, 33, 34] provide overviews
of filtering techniques. A review of various issues of the
EnKF, including sampling error because of small ensem-
bles, covariance localization (limiting the influence of the
observations to the state variables that are located spatially
close to them), filter divergence, and model error, is given
in [31] and [30]. [35] describes the necessity of introduc-
ing a confirming step to ensure consistency of the updated
static and dynamic variables with the flow equations, while
[30] discusses the reduction of the ensemble size with a
resampling scheme. The problem of ensemble collapse is
discussed in [36]. [37] considers a way to handle model
constraints within the EnKF. [38] investigates an update
step that preserves multi-point statistics and not only two
point-statistics.

In the model based optimization part of CLRM, a tra-
ditional choice is to use methods based on one realization,
usually the ensemble mean from the EnKF. To reduce the
risk arising from uncertainty in the geological description,
[26] proposes to optimize the expectation of net present
value over a set of reservoir models using a gradient based
method. This procedure is referred to as robust optimization
(RO). In open-loop simulations, [26] compares the results
of the RO procedure to two alternative approaches: a nomi-
nal optimization (NO) and a reactive control approach. They
find that RO yields a much smaller variance than the alter-
natives. Moreover the RO strategy significantly improves
the expected NPV over the alternative methods (on aver-
age 9.5 % higher than using reactive-control and 5.9 %
higher than the average of NO strategies). [27, 39, 40] do
closed-loop reservoir management using an EnKF for data
assimilation and robust optimization with a gradient-free
ensemble based optimization scheme for the model based
optimization. [39] reports that an ensemble based optimiza-
tion results in a NPV improvement of 22 % compared to a
reactive strategy. However, they do not compare the closed-
loop robust strategy to a closed-loop certainty equivalent
strategy.

To our knowledge, there is no closed-loop application
of the gradient-based robust optimization strategy as imple-
mented in [26] available in the literature. Furthermore,
the CLRM literature misses an open-loop as well as a
closed-loop comparison of the performance of an ensem-

ble based optimization scheme [39] or a gradient-based
robust optimization scheme [26] with a certainty equivalent
optimization strategy based on the ensemble mean. In this
work we partially fill this gap and do CLRM comparing
a RO strategy [26] to three alternative approaches: a reac-
tive strategy, a nominal strategy, and a certainty equivalent
strategy. By using feedback, the ensemble of permeability
fields converge to a point such that the RO strategy becomes
equivalent to the certainty equivalent strategy based on the
ensemble mean. The RO is more expensive computationally
than the certainty equivalent strategy. In this paper, we use
a case study to compare the RO strategy in closed-loop to
other strategies.

The paper is organized as follows. Section 2 defines the
reservoir model. Section 3 states the constrained optimal
control problem and describes the robust optimization strat-
egy. The ensemble Kalman filter for data assimilation is
described in Section 4. Section 5 describes the numerical
case study and conclusions are presented in Section 6.

2 Reservoir model

In this work, we assume that the reservoirs are in the sec-
ondary recovery phase where the pressures are above the
bubble point pressure of the oil phase. Therefore, two-phase
immiscible flow, i.e. flow without mass transfer between
the two phases, is a reasonable assumption. We focus on
water-flooding cases for two-phase (oil and water) reser-
voirs. Further, we assume incompressible fluids and rocks,
no gravity effects or capillary pressure, no-flow boundaries,
constant porosity, and finally isothermal conditions. The
state equations in an oil reservoir �, with boundary ∂�

and outward facing normal vector n, can be represented by
pressure and saturation equations. The pressure equation is
described as

v = −λtK∇p, ∇ · v = q in �

v · n = 0 on ∂� (1)

v is the Darcy velocity (total velocity), K is the permeability,
p is the pressure, q is the volumetric well rate, and λt is the
total mobility, which in this setting is the sum of the water
and oil mobility functions,

λt = λw(s) + λo(s) = krw(s)/μw + kro(s)/μo (2)

The saturation equation is given by

φ
∂

∂t
Sw + ∇ · (fw(Sw)v

) = qw

ρw

(3)

φ is the porosity, s is the saturation, fw(s) is the water frac-
tional flow which is defined as λw

λt
, and qw is the volumetric

water rate at the well. We use the MRST [41] reservoir
simulator to solve the pressure and saturation equations,
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(1) and (3), sequentially. Wells are implemented using the
Peaceman well model [42]

qi = −λtWIi

(
pi − pBHP

i

)
(4)

qi is the flow rate into grid block i, pBHP
i is the wellbore

pressure, and WIi is the Peaceman well-index.

3 Production optimization

Production optimization aims at maximizing a performance
index, net present value or oil recovery, for the life time of
the oil reservoir. Spatial and temporal discretization of the
model equations and the performance index yield a finite
dimensional nonlinear constrained optimization problem on
a time horizon from 0 to N that can be formulated as

max
{xk}Nk=0,{uk}N−1

k=0

J =
N−1∑

k=0

Jk(xk, xk+1, uk) (5a)

subject to

x0 = x̄0 (5b)

gk(xk, xk+1, uk; θ) = 0 k ∈ N := {0, 1, . . . , N − 1}
(5c)

c
(
{uk}N−1

k=0

)
≤ 0 (5d)

x̄0 is the initial states, θ is a parameter vector in an uncer-
tain space � (in our case the permeability field), xk is the
state vector, uk is a piecewise constant control vector, gk

is the discretization of the dynamical model, (1) and (3),

and c
(
{uk}N−1

k=0

)
are linear bounds on the control vector. In

our formulations we do not allow nonlinear state or output
constraints, see e.g. [43].

3.1 Objective function

The optimizer maximizes the net present value by manipu-
lating the well bhps. Hence, the manipulated variable at time

period k ∈ N is uk =
{
{pbhp

i,k }i∈I , {pbhp

i,k }i∈P

}
with I

being the set of injectors and P being the set of producers.
For i ∈ I , p

bhp
i,k is the bhp (bar) in time period k ∈ N at

injector i. For i ∈ P , p
bhp

i,k is the bhp (bar) at producer i in
time period k ∈ N .

The stage cost, Jk , in the objective function for a net
present value (NPV) maximization can be expressed as

Jk = − �tk

(1 + d)
tk+1

τ

[
∑

i∈P

ro qk+1
o,i (uk, xk+1)

−
∑

i∈P

rwp qk+1
w,i (uk, xk+1)+

∑

l∈I

rwi qk+1
l (uk, xk+1)

]

(6)

ro, rwp, and rwi represent the oil price, the water separation
cost, and the water injection cost, respectively. The water
flow rate (bbl/day) in producer i at time period k is qk

w,i =
fwqk

i and the oil flow rate is qk
o,i = (1 − fw)qk

i . qk
i is the

flow rate at producer i as given by (4). The well rates at
the injector wells are denoted by ql (only water is injected).
Note that from the well model (4), it follows that the flow
rates q are negative for the producer wells and positive for
the injector wells. d is the discount factor, �tk is the time
interval, and N is the number of control steps. Note that in
the special case when the discount factor is zero (d = 0) and
the water injection and separation costs are zero as well, the
NPV is equivalent to the quantity of produced oil.

3.2 Control and constraints

We control the bhp of the wells and assume that these con-
trol inputs are piecewise constant functions. The bhps are
constrained by well and reservoir conditions. To maintain
the two phase situation we require the pressure to be above
the bubble point pressure (290 bar). To avoid fracturing the
rock, the pressure must be below the fracture pressure of
the rock (350 bar). To maintain flow from the injectors to
the producers, the injection pressure is maintained above
310 bar and the producer pressures are kept below 310
bar. With these bounds we did not experience that the flow
was reversed. Without these pressure bounds, however, state
constraints, like bounds on flow rates (4), must be applied
to avoid flow reversion.

3.3 Single-shooting optimization

We use a single shooting algorithm [11, 44] for solu-
tion of (5a). Alternatives are multiple-shooting [45, 46]
and collocation methods [47]. Despite the fact that the
multiple shooting and the collocation methods offer bet-
ter convergence properties than the single-shooting method
[45–47], their application in production optimization is
restricted by the large state dimension of such prob-
lems. The use of multiple-shooting is prevented by the
need for computation of state sensitivities. The colloca-
tion method do not allow for adaptive time stepping and
would need to solve huge-scale optimization problems. In
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the single shooting optimization algorithm, we define the
function

ψ = ψ
(
{uk}N−1

k=0 ; x̄0, θ
)

=
{
J =

N−1∑

k=0

Jk(xk, xk+1, uk) :

x0 = x̄0, gk(xk, xk+1, uk; θ) = 0, k ∈ N

}
(7)

such that (5a) can be expressed as the optimization problem

max
{uk}N−1

k=0

ψ = ψ
(
{uk}N−1

k=0 ; x̄0, θ
)

s.t. c
(
{uk}N−1

k=0

)
≤ 0 (8)

Gradient based optimization algorithms for solving (8)

require evaluation of ψ = ψ
(
{uk}N−1

k=0 ; x̄0, θ
)

, ∇ukψ for

k ∈ N , c
(
{uk}N−1

k=0 , and ∇uk c
(
{uk}N−1

k=0

)
for k ∈ N . The

constraint function is in the cases considered linear bounds
such that evaluation of these constraint functions and their
gradients is trivial. Given an iterate, {uk}N−1

k=0 , ψ is com-
puted by solving (7) marching forwards. ∇ukψ for k ∈ N
is computed by the adjoint method [9, 11, 43, 48–51]. In
this method, the gradients {∇ukψ}N−1

k=0 are computed using
Algorithm 1 with

∇xk gk = ∇xk gk(xk, xk+1, uk; θ) k ∈ N (9a)

∇xk+1gk = ∇xk+1gk(xk, xk+1, uk; θ) k ∈ N (9b)

∇ukgk = ∇ukgk(xk, xk+1, uk; θ) k ∈ N (9c)

∇xk Jk = ∇xk Jk(xk, xk+1, uk) k ∈ N \ {0} (9d)

∇xk+1Jk = ∇xk+1Jk(xk, xk+1, uk) k ∈ N (9e)

∇ukJk = ∇ukJk(xk, xk+1, uk) k ∈ N (9f)

that are computed and stored during the forward solution
of (7).

Algorithm 1 Adjoint method for computing {∇ukψ}N−1
k=0 .

Solve for λN in ∇xN
gN−1λN = ∇xN

JN−1
fork = N − 1,N − 2, . . . , 1 do

Compute ∇uk
ψ = ∇uk

Jk − ∇uk
gkλk+1

Solve for λk in ∇xk
gk−1λk = ∇xk

Jk−1 +∇xk
Jk −∇xk

gkλk+1
end for
Compute ∇u0ψ = ∇u0J0 − ∇u0g0λ1

To solve (8), we use two commercial optimization
software packages: Knitro [52] and Matlab’s fmincon
function [53]. Knitro as well as fmincon, allows us to
use an interior point or an active-set methods. We use
up to 10 different initial guesses when running the opti-
mizations and we find similar qualitative results with both
software packages. Further, similar results are found with
interior point and active-set methods. When using Knitro
as well as fmincon, we select an interior point method
since we experience the lowest computation times with this
method. A local optimal solution is reported if the KKT
conditions are satisfied to within a relative and absolute tol-
erance of 10−6. The current best but non-optimal iterate is
also returned in cases when the optimization algorithm uses
more than 100 iterations. Similarly, the current best, but
non-optimal, iterate is also returned in the case of a relative
cost function or step size change less than 10−8. Further-
more, in our simulations we noted that normalizing the cost
function improved the convergence.

3.4 Certainty-equivalent and robust optimization

In certainty equivalent optimization, (8) is solved using the
expected value for the parameters, η = E[θ ], such that the
objective used in (8) is

ψCE = ψ
(
{uk}N−1

k=0 ; x̄0, η
)

(10)

[26] introduces robust optimization to reduce the effect
of geological uncertainties in the field development phase.
Robust optimization uses a set of realizations that reflect
the range of possible geological structures honoring the
statistics of the geological uncertainties. In reservoir mod-
els, geological uncertainty is generally profound because of
the noisy and sparse nature of seismic data, core samples,
and borehole logs. The consequence of a large number of
uncertain model parameters (θ ) is the broad range of pos-
sible models that may satisfy the seismic and core-sample
data. Nevertheless, in many cases, a single reservoir model
is adopted in which the uncertain parameters, θ , are con-
verted to deterministic parameters η by taking their expected
values (i.e. η = E[θ ]). However, because the NPV is
used as our measure of performance, we are more inter-
ested in the expected NPV over the uncertainty space, �

(spanned by the uncertain parameters θ ), than the mean
of the parameters. The expected NPV over the uncertainty
space, �, is in general not the same as the NPV com-
puted using the expected values of the uncertain parameters,
η = E[θ ], as NPV is a nonlinear function of the parameters,
θ . Consequently

Eθ

[
ψ
(
{uk}N−1

k=0 ; x̄0, θ
)]

�= ψ
(
{uk}N−1

k=0 ; x̄0, Eθ [θ ]
)

, θ ∈ � (11)
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Consider a discretization, �d = {θ1, . . . , θnd }, of the
uncertainty space, �, such that expected NPV may be
approximated by

Eθ

[
ψ
(
{uk}N−1

k=0 ; x̄0, θ ∈ �
)]

≈ Eθ

[
ψ
(
{uk}N−1

k=0 ; x̄0, θ ∈ �d

)]
(12)

This approximation of the expected NPV is a better approx-
imation than the NPV computed using the expected param-
eters, η. In the special case of equiprobable realizations, the
right-hand side of (12) is the arithmetic average

Eθ

[
ψ
(
{uk}N−1

k=0 ; x̄0, θ ∈ �d

)]

= 1

nd

nd∑

i=1

ψ
(
{uk}N−1

k=0 ; x̄0, θ
i
)

(13)

The robust optimization method uses the ensemble average
as its objective function in (8)

ψ rob = 1

nd

nd∑

i=1

ψ
(
{uk}N−1

k=0 ; x̄0, θ
i
)

= 1

nd

nd∑

i=1

ψ i (14)

The corresponding gradients may be computed by

∇ukψ rob = 1

nd

nd∑

i=1

∇ukψ
(
{uk}N−1

k=0 ; x̄0, θ
i
)

k ∈ N

(15)

Compared to a certainty-equivalent computation, the com-
putation of the robust cost function (14) and its gradient (15)
results in an increased computational effort by a factor nd .
As the addends in these computations are decoupled, they
can be computed in parallel.

3.5 Permeability field

In our study, the uncertainty lies in the permeability field.
We generate 100 permeability field realizations of a 2D
reservoir in a fluvial depositional environment with a known
vertical main-flow direction, see Fig. 3. To generate the per-
meability fields we started by creating a set of 100 binary
(black and white) training images by using the sequential
Monte Carlo algorithm ’SNESIM’ [54]. Then a Kernel PCA
[55] procedure is used to preserves the channel structures
and smooths the original binary images. The realizations so
obtained are quite heterogeneous with permeabilities in the
range 6 − 2734 mD.

4 Ensemble Kalman filter

We use the Ensemble Kalman filter (EnKF) for estimating
the permeability field based on production data measure-
ments. The EnKF is a Monte Carlo implementation of the

Kalman filter [13, 56–58] using an ensemble of nd realiza-
tions to represent the necessary first and second moments
(means and covariances). In this section we describe the
EnKF.

Consider the discrete time system

xk+1 = F(xk,uk,θ ) (16a)

yk = G(xk,uk ) + vk vk ∼ N(0, R) (16b)

The dynamic equation (16a) is a representation of the model
dynamics (5c) in explicit form. It should be noted that in this
representation we do not consider stochastic model errors
(process noise) [20]. The uncertain parameters θ are the log-
arithm of the permeability field, θ = log(K). The states
are the pressure and water saturation in each grid block,
x = [P ; Sw]. The initial states, x0, can also be consid-
ered uncertain. However, in this work we fix them to their
average value. uk is the control input which represents the
borehole pressures.

The measurements, y, are the fractional flow for each pro-
ducer well and the water injection rate for each injector well.
In the measurement equation (16b), G(xk, uk) includes the
Peaceman well model (4) as well as the equations relat-
ing fractional flow to pressures and water saturations. vk is
measurement noise that we assume is normally distributed.

4.1 Basic Ensemble Kalman filter

(16a) includes the states, x, and the parameters, θ . There-
fore, we form the augmented state space model

xk+1 = F(xk, uk, θk) (17a)

θk+1 = θk (17b)

and apply the EnKF to the dynamic equation (17a) and the
measurement equation (16b). In the EnKF all means and
covariances are represented by samples of the stochastic
variables. Therefore, the initial mean and covariance of the
augmented states, [xk, θk], are represented by

{xi
0|0, θ

i
0|0}nd

i=1 =
{
x0, θ

i
0|0
}nd

i=1
(18)

It should be noted that the initial states, x0, in our case are
assumed to be known exactly. Only the parameters, θ , are
uncertain. Index i refers to each of the nd members of the
ensemble, i.e. each realization.

In the following we describe the algorithm for discrete
time instant k = 1, 2, . . .. In general, at discrete time instant
k, both the states and the parameters from the previous
instant, k − 1, are uncertain. This is denoted
{
xi
k−1|k−1, θ

i
k−1|k−1

}nd

i=1
k = 1, 2, . . . (19)
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Fig. 3 A selection of realizations from the ensemble of 100 permeability fields. The realizations are quite heterogeneous, values are in the range
6 − 2734 mD

In the EnKF, the one-step prediction step is conducted by
passing each ensemble member through the dynamics (17a)
such that for i = 1, 2, . . . , nd

xi
k|k−1 = F

(
xi
k−1|k−1, uk−1, θ

i
k−1|k−1

)
, (20a)

θ i
k|k−1 = θ i

k−1|k−1, (20b)

where the previous input, uk−1, is known. Then the output,
zi
k|k−1, and the measurement, yi

k|k−1, at discrete time k may
be computed as

zi
k|k−1 = G

(
xi
k|k−1, uk−1

)
i = 1, 2, . . . , nd (21a)

yi
k|k−1 = zi

k|k−1 + vi
k i = 1, 2, . . . , nd (21b)

To obtain the correct covariances of the state estimates in the
EnKF, it is important that each ensemble member, yi

k|k−1,

contain measurement noise, vi
k|k−1 [59]. It should also be

noted that uk−1 is used in the evaluation of G in (21a). The
explanation for the use of uk−1 is that we use a zero-order-
hold representation of u(t), i.e. u(t) = uk−1 for tk−1 ≤ t <

tk , and that we assume the measurement is conducted at time
t−k = limt<tk t . Then, at time tk , the EnKF and optimal con-
trol computations are conducted infinitely fast such the next
decisions, u(t) = uk for tk ≤ t < tk+1, can be implemented
at time tk .

The innovation, ei
k , for each ensemble member is com-

puted using the actual measurement, yk , and the predicted
measurement

εi
k = zi

k|k−1 − yk i = 1, 2, . . . , nd (22a)

ei
k = yk − yi

k|k−1 = −εi
k − vi

k i = 1, 2, . . . , nd (22b)

In these equations, yk is the actual measurement and there-
fore a deterministic variable. In the EnKF, the realized
trajectory of the system and an ensemble of different
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Table 1 Parameters for the
two phase model, the
discounted state cost function
(6), and the measurement noise

Symbol Description Value Unit

φ Porosity 0.2 −
cr Rock compressibility 0 Pa−1

ρo Oil density (300 bar) 700 kg/m3

ρw Water density (300 bar) 1000 kg/m3

μo Dynamic oil viscosity 3 · 10−3 Pa · s

μw Dynamic water viscosity 0.3 · 10−3 Pa · s

Sor Residual oil saturation 0.1 −
Sow Connate water saturation 0.1 −
no Corey exponent for oil 2 −
nw Corey exponent for water 2 −
Pinit Initial reservoir pressure 300 bar

Sinit Initial water saturation 0.1 −
ro Oil price 120 USD/bbl

rwp Water production cost 20 USD/bbl

rwi Water injection cost 10 USD/bbl

d Discount factor 0 −
R Cov. matrix for measurements noises Diag( 5 · 10−3, 5 · 10−3, 5 · 10−3, 5 · 10−3, 30 )

state trajectories are considered. In the derivation of the
standard Kalman filter [13, 57, 58], it is the other way
around. A (infinite) number of system realizations are con-
sidered, while the filter is represented by one deterministic
trajectory (the mean).

The optimal linear estimator conditioned on the innova-
tions are [57]

xi
k|k = xi

k|k−1 + Kx,ke
i
k i = 1, 2, . . . , nd (23a)

θ i
k|k = θ i

k|k−1 + Kθ,ke
i
k i = 1, 2, . . . , nd (23b)

with the Kalman filter gains computed as

Kx,k = 〈xk|k−1, ek〉〈ek, ek〉−1 (24a)

Kθ ,k = 〈θk|k−1, ek〉〈ek, ek〉−1 (24b)

using the covariances

〈xk|k−1, ek〉 = 〈xk|k−1, εk〉 (25a)

〈θk|k−1, ek〉 = 〈θk|k−1, εk〉 (25b)

〈ek, ek〉 = 〈εk, εk〉 + 〈vk, vk〉 ≈ 〈εk, εk〉 + R (25c)

The Kalman gains may be based on direct computation of
the empirical estimates (〈xk|k−1, ek〉, 〈θk|k−1, ek〉, 〈ek, ek〉)
or the relations in (25a). We choose to base the computations

on (25a), the approximate first moments (means) computed
as

ẑk|k−1 = E{ẑk|k−1} ≈ 1

nd

nd∑

i=1

zi
k|k−1

ε̂k = E{εk} ≈ 1

nd

nd∑

i=1

εi
k = ẑk|k−1 − yk

x̂k|k−1 = E{xk|k−1} ≈ 1

nd

nd∑

i=1

xi
k|k−1

θ̂k|k−1 = E{θk|k−1} ≈ 1

nd

nd∑

i=1

θ i
k|k−1

log10(K) [Darcy]

−2

−1.5

−1

−0.5

0

Fig. 4 Permeability mean, θ̂0|0, of the ensemble given in Fig. 3
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Table 2 Key indicators for the
open-loop optimized cases.
Improvements are relative to
the nominal case

NO Reactive Certainty equivalent RO RO modified

106 USD 106 USD, % 106 USD, % 106 USD, % 106 USD, %

Eθ [ψ] 33.84 56.47, +66.9 42.72, +26.2 44.11, +30.3 58.18, +71.9

Std. dev. 26.35 6.05 18.27 13.19 6.25

and the approximate second moments (covariances) com-
puted by

〈xk|k−1, εk〉 ≈ 1

nd − 1

nd∑

i=1

(
xi
k|k−1 − x̂k|k−1

) (
εi

k − ε̂k

)′

〈θk|k−1, εk〉 ≈ 1

nd − 1

nd∑

i=1

(
θ i

k|k−1 − θ̂k|k−1

)(
εi

k − ε̂k

)′

〈εk, εk〉 ≈ 1

nd − 1

nd∑

i=1

(
εi

k − ε̂k

) (
εi

k − ε̂k

)′

The result of (23a) in this procedure is an ensemble
{
xi
k|k, θ

i
k|k
}nd

i=1
k = 1, 2, . . . (28)

representing the states and parameters at time k given mea-
surements up until time k. Using this ensemble, a robust
optimization may be performed or various statistics such as
the mean may be computed.

(23a) may result in non-physical updates. Therefore, we
modify the EnKF such that the ensemble (28) satisfies
physical constraints, e.g. that the permeabilities are in cer-
tain ranges. To mitigate such effects, we clip the solution
according to the constraints

θ i
k|k :=

⎧
⎪⎨

⎪⎩

θmin θ i
k|k < θmin

θ i
k|k θmin ≤ θ i

k|k ≤ θmax

θmax θ i
k|k > θmax

(29)

and compute the filtered states, x̂i
k|k , by solving the dynamic

model equations

xi
j+1|k = F

(
xi
j |k, uj , θ

i
k|k
)

, xi
0|k = x0,

j = 0, 1, . . . , k − 1 (30)

for each ensemble member, i ∈ {1, . . . , nd }, using the
clipped parameter estimates computed by (29). In this way,

state updates consistent with the model is guaranteed [35].
In particular, this eliminates the possibility of nonphysical
states (nonphysical pressures and saturations). The compu-
tational load can potentially be reduced by only doing the
initial-value simulation when the estimated saturation and
pressure changes passes a certain threshold [39]. The mod-
ifications (29) and (30) provides the ensemble (28) that is
used for the optimal control computations and for the initi-
ation of the EnKF at the next time step. Finally, the choice
of the ensemble size nd in the EnKF is a topic of research
itself [60]. It affects the performance of the filter. In reser-
voir engineering an ensemble’s size of 100 is a common
choice based on experience [4], [61]. However, this number
is problem dependent and in some cases good results can
also be obtained using ensembles with fewer members [61].

4.2 Performance metrics

To measure the convergence of the Kalman filter estimates,
we consider the mean standard deviation

σk =
√√√√ 1

np

(
1

nd − 1

nd∑

i=1

∥∥∥θ i
k|k − θ̂k|k

∥∥∥
2

2

)

(31)

of the parameters in the parameter vector, θk|k . σk mea-
sures the ensemble spread. We also consider the root-mean-
square-error of the parameter estimates compared to the true
parameters, θ0:

RMSEk =
∥∥∥θ̂k|k − θ0

∥∥∥
2√

np

(32)

θk can be computed for real as well as synthetic cases, while
RMSEk can only be computed for synthetic cases in which
the true parameters, θ0, are available.

Fig. 5 log10 K [D] of the first
two realizations of the ensemble
in Fig.3 and their ensemble
mean θ̂0|0
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In the ideal case, the spread (31) should converge to
a number related to the measurement noise and the root-
mean-square-error (32) should converge to 0. In practice,
(32) will not converge to zero due to e.g. factors like
model-plant mismatch. Cases with divergence of the root-
mean-square-error may indicate that the ensemble is too
small to represent the true uncertainty.

5 Case study

We consider a conventional horizontal oil field that can be
modeled as a two phase flow in a porous medium [62–64].
The reservoir size is 450 m × 450 m × 10 m. By spatial dis-
cretization this reservoir is divided into 45 × 45 × 1 grid
blocks. The permeability field is uncertain. We assume that
the ensemble in Fig. 3 represents the range of possible geo-
logical uncertainties. The configuration of injection wells
and producers is illustrated in Fig. 5(1). As indicated in
Fig. 5(1), the four producers are located in the corners of
the field, while the single injector is located in the center of
the field.

The reservoir’s petrophysical parameters are listed in
Table 1. The initial reservoir pressure is 300 bar every-
where in the reservoir. The initial water saturation is 0.1
everywhere in the reservoir. This implies that initially,
the reservoir has a uniform oil saturation of 0.9. The
manipulated variables are the bhp of the five wells (four
producers, one injector) over the life of the reservoir.
In this study, we consider a zero discount factor d in
the cost function (6). This means that we maximize NPV
at the final time, without caring about the shorter horizon
[11].

The case study is divided into an open-loop optimiza-
tion part and a closed-loop optimization part. In open-loop
optimization, we compute the control strategy without using
measurement feedback to update the parameters, i.e. the
ensemble in Fig. 3 is fixed in time. In closed-loop opti-
mization, we use production measurements and the EnKF
to estimate the permeability field parameters. To simulate
the reservoir and create production data, the first realization
of the permeability field, θ1

0|0, in Fig. 3 is used. This per-
meability field represents the true permeability field of the
reservoir.

In reality, we never know the true model when perform-
ing data assimilation with EnKF. We can only implicitly
assume that we can generate a reasonable approxima-
tion of the true reservoir. Since we focus on the opti-
mizer formulation and separate the effects of the qual-
ity in data assimilation from the quality of CE, RO and
reactive strategies as much as possible, we assume that
the true reservoir is contained in the ensemble of initial
guesses.
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Fig. 6 Profit evolutions for open-loop optimization of the two ensem-
ble case. The optimal trajectories computed using the true permeability
fields give the highest possible profit. The profit of the RO strategy
is below the profit of the reactive strategy for the first permeability
realization and slightly above the second permeability realization. On
average the RO strategy gives less profit than the reactive strategy. The
modified RO strategy produces for all cases a higher profit than the
reactive strategy

5.1 Open-loop optimization

We consider a prediction horizon of tN = 4 · 365 = 1460
days divided in N = 60 control periods (i.e. a control
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Fig. 7 Control trajectories for open-loop optimization of the two
ensemble case. The control trajectories for the considered optimization
strategies are very different

period Ts ≈ 24 days). We control the reservoir using five
different strategies that we call: the reactive strategy, the
nominal strategy (NO), the certainty equivalent strategy, the
robust optimization strategy (RO), and the modified robust
optimization strategy (modified RO).

The reactive strategy develops the field at the maximum
production rate (setting the producers at the lowest allowed
value of 290 bar and the injector at the maximum allowed
value of 350 bar) and subsequently shut-in each production
well when it is no longer economical. From the values in
Table 1, we observe that a producer well becomes uneco-
nomical when the fractional flow fw is above the value
120/(120 + 20) = 0.857. The nominal strategy is based
on a single realization. For each realization in the ensemble
we compute the optimal control trajectory. Then we apply
each of these 100 optimal control trajectories to each of
the ensemble members obtaining 100 NPV values for each
control trajectory. The certainty equivalent strategy is based
on solving problem (5a) using the certainty equivalent cost
function ψCE (10). It uses the mean of the ensemble as its
permeability field. Figure 4 illustrates the mean of the per-
meability field ensemble given in Fig. 3. The RO strategy is
based on solving problem (5a) using the robust cost func-
tion ψ rob (5a) and the robust gradient ∇ukψ rob (15). The
modified robust optimization is the RO strategy with an
added reactive strategy, i.e. we solve problem (5a) using
(14) and (15) but we shut in a producer well when it is non
economical. This means that when we solve the flow equa-
tions (5c), the number of active producer wells can change.
This in turn means that once a well is shut-in, its later con-
tribution to the NPV and its gradient will be zero. We could
say that for each realization we manipulate producer wells
bhps as long as they are profitable. Further, this strategy
stops the production of a reservoir when all wells are non-
economical. To our knowledge, there exist no extension of
robust optimization that includes reactive control. However,
the idea of adding reactive control has been used to improve
the NPV of a single reservoir model. In [65] they consider
production optimization in the absence of uncertainty by
including a watercut constraint on the well completions.
This results in increased NPV and a faster convergence of
the optimizer.

Simulations reveal that for the present case, the RO strat-
egy yields an higher expected NPV Eθ [ψ] and a lower
standard deviation of the NPV (see Table 2) compared to
the certainty equivalent strategy. However, both the RO and
the certainty equivalent strategies are worse than the reac-
tive strategy because of a much lower expected NPV Eθ [ψ]
with a much higher NPV standard deviation. The modified
RO strategy has a NPV standard deviation comparable to
the reactive strategy, but a higher expected NPV Eθ [ψ]. It is
important to stress that the results concerning the merits of
the different strategies are particular to this case study and
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Fig. 8 Profit evolution for open-loop optimization in the hundred
ensemble case

not universal. [26] presents a case in which the RO strat-
egy provides higher expected NPV and lower NPV standard
deviation than the reactive strategy. In making a compari-
son with [26], there are a number of things we should stress.
First of all, in [26] they are controlling directly the liquid
rates of 12 wells with no direct control on the bhp values. In
our test case, we control the bhp values of only 5 wells with
no direct control on the liquid rates. In [26], all the realiza-
tions are giving positive NPV for all the control strategies.
Further, they find that the reactive strategy is the worst to
use. In our test case, the NO strategy is the worst to use,
and it gives a substantial negative NPV contribution. Hence,
it seems like the test case in [26] facilitates optimal con-
trol strategies. In our case, however, the heterogeneities in
the ensemble realizations make it hard for optimal control
strategies to improve on a reactive strategy. To summarize,
the problems treated in [26] and in this paper have quite
different characteristics. Hence, different preferences with
respect to open-loop strategies is not necessarily surprising.

The results in our paper indicates the value of feedback.
The reactive strategy as well as the modified robust strategy
both use a simple form of feedback. The nominal strategy,
the certainty equivalent strategy, and the robust optimiza-
tion strategy are pure open-loop strategies that do not use
feedback.

To illustrate the results in a tutorial way, we split the
discussion of the open-loop optimization into a two ensem-
ble case and a hundred ensemble case. In the two ensemble
case, we present the results of open-loop optimization using
an ensemble of two realizations. Figure 5 illustrates the
two realizations of the uncertain permeability field for this
case. In the case with hundred ensemble members, we use
the entire ensemble in Fig. 3 to represent the uncertain
permeability field.

5.1.1 Case - ensemble with two members

In this subsection, we describe the performance of the RO
strategy for the case with an ensemble consisting of the two
permeability field realizations illustrated in Fig. 5. We com-
pare the results of the RO control strategy with the results
of the reactive, the modified RO and the optimal control
strategies. By the optimal control strategies for the two real-
izations in Fig. 5, we mean the optimal control strategies,
{uk}N−1

k=0 , that are computed by solving the optimization
problem (8) using the true permeability fields. These are

ψ = ψ
(
{uk}N−1

k=0 ; x̄0, θ
1
)

= ψ1

ψ = ψ
(
{uk}N−1

k=0 ; x̄0, θ
2
)

= ψ2

The NPVs computed using these optimal control strategies
act as an upper bound for the NPVs computed using the
other control strategies. To choose the two realizations to
use, we first compute optimal control trajectories for the
realizations in the ensemble of Fig. 3. Then we choose two
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Fig. 9 Profit evolution of the open-loop RO strategy and the open-loop modified RO-strategy for each realization of the permeability field. Some
scenarios in the RO strategy gives negative profits while the modified RO strategy avoids that by shutting in uneconomical producer wells
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realizations with large differences in the optimal production
strategies.

Figures 6(1), 6(2) and 6(3) show the terms ψ1, ψ2 and
Eθ [ψ] (13) for the reactive strategy, the RO strategy, and
the modified RO strategy, respectively. As expected, the
NPVs computed using the optimal control strategies give
the highest values for ψ1 and ψ2. Compared to the reactive
strategy, the RO strategy gives a lower NPV, ψ1, for realiza-
tion 1, and a higher NPV,ψ2, for realization 2. As illustrated
in Fig. 6(3), this results in a lower NPV mean, Eθ [ψ],
for the RO strategy compared to the reactive strategy. The

modified RO control strategy gives the highest NPVs for all
the realizations.

Furthermore, it is interesting to observe the difference
in production times for the different strategies. For the RO
strategy, the production continue for the entire time horizon
(1460 days) considered. In the reactive strategy, the produc-
tion lasts 949 days in the first realization (ψ2) and 1119
days in the second realization (ψ2). So there is an important
difference in the field developing time of the two realiza-
tions. In the modified RO strategy, the production lasts 1289
days in the first realization and 1240 days in the second
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Fig. 10 Saturation profiles of the first realization for the open-loop optimization strategies in the hundred ensemble case
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Fig. 11 Saturation profiles of the second realization for the open-loop optimization strategies in the hundred ensemble case

realization. We note that with the modified RO strategy, the
production time is longer than the production time of the
reactive strategy.

Figure 7 shows the control trajectories of the RO, the
modified RO and the optimal strategies. We note that
because of the heterogeneity between the realizations, the
resulting optimal control trajectory of one realization can be
very different and conflicting with the optimal control tra-
jectory for the other realization. To find a common optimal
control that takes all these differences into account can be
difficult if not impossible. Especially if we don’t allow for
changes in the configuration of active wells, e.g. producer
number 4 is producing at its minimum (310 bar) in the solu-
tion for ensemble 1 and at its maximum (290 bar) in the

solution for ensemble 2. The RO and modified RO solutions
for the producer number 4 stay in between the two optimal
trajectories.

In conclusion, the two-ensemble case demonstrates that
the optimizer produces the maximal profit for the optimal
cases. Therefore, the optimizer works well and the lower
profit of the RO strategy is not the result of lack of conver-
gence in the optimizer, but rather the result of heterogeneous
permeability fields giving conflicting control trajectories.

5.1.2 Case - ensemble with hundred members

In this subsection, we describe the results for the case
in which we do open-loop optimization using the entire
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Fig. 12 Control trajectories for open-loop optimization in the hundred
ensemble case
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ensemble with hundred members

ensemble of 100 realizations in Fig. 3. Figure 4 illu-
strates the mean permeability field for the ensemble of per-
meability fields in Fig. 3. Figure 8 shows the profit evolution
in the case of an ensemble consisting of 100 permeabil-
ity fields for the certainty equivalent strategy, the reactive
strategy, the RO strategy, and the the modified RO strategy.

Table 2 reports the corresponding key performance indi-
cators (expected NPV Eθ [ψ] and standard deviation of the
NPV). As in the two ensemble case, the reactive strategy
yields both a larger expected NPV and a smaller standard
deviation for the NPV compared to the certainty equiva-
lent and the the RO strategies. The reasons for the inferior
performance of the RO strategy should be searched in the
conflicting controls required for the different realizations.
Figure 9(1) shows that the RO strategy cannot avoid that
some ψ i gives a negative contribution to the expected NPV
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Fig. 14 Profit evolution for the closed-loop optimization strategies.
The profit evolution of the true model controlled by different strategies
based on the ensemble in Fig. 3. Both the RO and the certainty equiv-
alent strategies give a higher NPV than the the reactive strategy. The
optimal control strategy represents the best possible solution. By using
the RO strategy and the certainty equivalent strategy we get profits
close to the maximum possible profit
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Table 3 Key indicators for the closed-loop optimized cases. Improvements are relative to the reactive case

Meas. noise Reactive Certainty equivalent RO Optimal

106 USD 106 USD, % 106 USD, % 106 USD, %

5 · R 51.24 59.13, +15.4 58.34, +13.9 60.41, +17.3

R 51.24 59.79, +16.7 59.09, +15.3 60.41, +17.3

5−1 · R 51.24 59.84, +16.8 59.52, +16.2 60.41, +17.3

5−2 · R 51.24 59.95, +17.0 59.56, +16.2 60.41, +17.3

Eθ [ψ]. In contrast, as illustrated in Fig. 9(2), the modi-
fied RO strategy does not produce realizations with negative
profit. Furthermore, each realization of the modified RO
strategy seems to increase the profit compared to the RO
strategy. The reactive strategy performs better than both the
RO and ceratinty equivalent strategies because it can shut in
a well when it is no longer profitable to operate the well.
The modified RO strategy inherits the ability of the reac-
tive strategy to shut in unprofitable wells. This is in essence
a simple feedback mechanism. Figures 10 and 11 show the
saturation profiles of the first two realizations for the open-
loop strategies. We note that the reactive strategy and the
modified strategy inject a higher water quantity and displace
the oil more uniformly compared to the RO and the certainty
equivalent strategies.

Figures 12 shows the control trajectories of the RO, the
modified RO and the certainty equivalent strategies. Com-
pared to the the trajectories in Fig. 7, for the two ensemble
case, it seems that the RO and certainty equivalent strategies
include some averaging (smoothing) in the resulting con-
trol trajectories that limits their effectiveness. The result is
a control trajectory that produces less oil than the modified
RO strategy that can shut in uneconomical producer wells.

As indicated by Fig. 7, the RO control trajectories may be
the average of conflicting control trajectories and therefore
inefficient for the uncertain system.

Figure 13 shows the cumulative distribution function for
the different control strategies, i.e. the probability to get a
NPV � x. These curves are similar to the ones reported
in [26] with the difference that the NO and the certainty
equivalent strategies have a positive probability of giving
negative NPVs. Figure 13 confirms that the modified RO
strategy is superior to the other open-loop strategies.

5.2 Closed-loop optimization

The closed-loop optimization strategies are implemented
using the moving horizon principle. In this method, each
time new measurements from the real or simulated reservoir
are available, the EnKF uses these measurements to update
the estimates of the permeability field, and an open-loop
optimization problem is solved using the updated perme-
ability field. Only the first part of the resulting optimal
control trajectory is implemented. As new measurements
becomes available, the procedure is repeated. The sampling
time for the system is Ts = 146 days, i.e. the data assim-
ilation and optimization is performed every 146 days. The
open-loop optimization uses a prediction and control hori-
zon of 4 · 365 = 1460 days that is divided into N = 60
periods (the same as for the open-loop optimization strate-
gies). With this parametrization, the control steps for the
first six periods are implemented to the system, and then
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Fig. 15 Closed-loop. Water injected and produced oil trajectories for different optimization strategies. The values are normalized with respect to
the pore volume
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we receive new measurements to do new data assimilation
and optimization computations for a shifted time window. In
this paper, we consider 35 of these steps such that the total
production horizon is 146 · 35 = 5110 days.

We compare three closed-loop optimization strategies:
A reactive strategy, a certainty equivalent strategy, and a
RO strategy. We did not implement a modified RO strategy
because that would be complicated by the need to manage

Fig. 16 Saturation profiles of
the true field for the closed-loop
optimization strategies
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Fig. 17 Control trajectories for the closed-loop optimization
strategies

situations with a variable number of active wells and mea-
surements for different ensemble realizations. Further, it
would require a strategy to replace ensemble realizations
when all the producing wells are shut-in.

Figure 14 shows the NPV ψ
(
{uk}N−1

k=0 ; x0, θ
1
0|0
)

for the

reactive strategy, the closed-loop RO strategy, the closed-
loop certainty equivalent strategy, the optimal control strat-
egy, and the open-loop strategies introduced in the previous
section. The optimal control strategy is obtained solving
the optimization problem (7) using the true permeabil-
ity field (the first realization of the permeability field in
Fig. 3). The NPV computed by the optimal control strat-
egy represents the best possible operation of the reservoir.
Table 3 reports key indicators (expected NPV and improve-
ments compared to the reactive strategy) for the closed-
loop strategies at different levels of measurement noise.
Figure 14 and Table 3 shows that for all investigated cases,
both the closed-loop certainty equivalent strategy and the
closed-loop RO strategy yields significantly higher NPV
than the reactive strategy. As is also evident from Fig. 14
and Table 3, the closed-loop certainty equivalent strategy
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Fig. 18 Convergence measures for the EnKF with various levels of
measurement noise for the closed-loop certainty equivalent strategy.
(1) shows that the EnKF does not converge to the true parameters.
However, the estimate captures enough features to be useful. (2) illus-
trates that the parameter uncertainty decreases as more production data
is assimilated in the estimates
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Fig. 19 Estimates of the mean
permeability field as function of
time for the closed-loop
certainty equivalent strategy.
The initial estimate is a four
channel structure. The estimates,
θ̂k|k−1, converge towards the
true two-channel structure as
more measurements are
assimilated

(1) t=0

(36) t = 35 Δ T (37) true
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yields higher NPV than the closed-loop RO strategy. Fur-
thermore, the NPV of the closed-loop certainty equivalent
strategy is very close to the NPV of the optimal strategy.
Consequently, the closed-loop certainty equivalent strategy
is preferable over the closed-loop RO strategy as it yields
higher NPV and requires significantly less computational
effort. This observation is also confirmed when using the
second realization in Fig. 3 as the permeability field.

From Fig. 14 we note also that the modified RO is the
best open-loop strategy and that the closed-loop strategies
CE and RO provide better results compared to the modi-
fied RO starting from the assimilation steps 13 (t ≈ 1898
days) and 16 (t ≈ 2336 days), respectively. Figure 15 shows
the cumulative water injection and the cumulative oil pro-
duction for different strategies. The slope of the curves is
the reservoir injection/production rate. In general, we note
that the closed-loop strategies are injecting at a lower rate
compared to the open-loop strategies. This happens since
we use a zero discount factor, i.e. we focus on long term
behaviour. Moreover, there are no direct bounds on the liq-
uid rates. We note that the open-loop strategies, so as the
optimal strategy, have an upward concavity. This means
that the water injection rate is increasing with time: these
strategies increase the injection at the final time to exploit
the high oil-to-water price ratio. The closed-loop strategies,
instead, have a downward concavity. At the beginning (first
300 days) the closed-loop strategies are injecting at a sim-
ilar pace as their open-loop counterparts (same slope in
the initial part of the curves). However, as the data assim-
ilation proceed, and a better estimate of the true field is
given, the closed-loop strategies try to inject/produce as
much as the optimal strategy (black curves in figure). This
explains the change in concavity of the closed-loop strate-
gies i.e. why the closed-loop strategies reduce the water
injection rate with time. Figure 16 illustrates the satura-
tion profiles of the true field for the closed-loop strategies.
We note that they have similar field sweep at the final
time. Figure 17 shows the corresponding control trajec-
tories of the different closed-loop control strategies. It is
evident that the control trajectories of the optimal control
strategy are very different from the control trajectories for
the closed-loop certainty equivalent and the closed-loop RO
strategies.

Figure 18 illustrates the RMSE (32) and the ensemble
spread (31) of the EnKF when applied together with the
certainty equivalent strategy. The RMSE indicates whether
the permeability parameter estimate of the EnKF converges
toward the true permeability parameters. The ensemble
spread indicates the uncertainty in the estimated perme-
ability parameters. The RMSE and the ensemble spread
sequences are computed for different levels of measure-
ment noise, i.e. different values of R in (16b). Figure 18(2)
indicates that decreasing levels of measurements noise, R,

decrease the ensemble spread (31). This decrease does not
always results in a lower RMSE (32) value. However, as is
evident from Fig. 18(2), in most of the cases, lower mea-
surement noise levels reduce the RMSE. In this case study
there is no ensemble collapse. In fact, Fig. 20 shows that
the ensemble realizations have different distances at the last
assimilation time, this is an index of the variability in the
ensemble of realizations.
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Fig. 20 Closed-loop. Distance of the ensemble realizations of the per-
meability field respect to the true permeability field for (1) the initial
ensemble, (2) the final ensemble with a measurement noise of 5 R and
(3) the final ensemble with a measurement noise of R/5. We note that
also in the case with the lowest measurement noise, the ensemble is
not collapsing
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In the EnKF, at each data assimilation step, we update
the estimated permeability field for each ensemble mem-
ber. Figure 19 illustrates the time evolution of the mean,
θ̂k|k−1, of these estimated permeability field ensembles for
the closed-loop certainty equivalent optimization strategy.
Figure 19 indicates that the estimated mean permeability
field captures the main features of the true permeability
field. We start out with a mean permeability field having
four channel structures and converge towards the correct
two channel structure. Figure 20 illustrates the associated
uncertainty with this permeability estimate.

6 Conclusions

In this paper, we demonstrate the open-loop and the closed-
loop performance of the certainty equivalent strategy and
the RO strategy. For the open-loop case we present a mod-
ified RO strategy that performs significantly better than the
other open-loop strategies. In the closed-loop situation for
the case studied, we arrive at the surprising conclusion that
the certainty equivalent strategy is slightly better than the
RO strategy.

For the case presented, the open-loop RO strategy yields
3 % higher expected NPV and 28 % lower NPV standard
deviation than the open-loop certainty equivalent strategy.
Yet, the reactive strategy performed even better than the
open-loop RO strategy. Simulations indicate that the infe-
rior performance of the open-loop RO strategy compared to
the reactive strategy is due to the inability of the RO strategy
to efficiently encompass ensembles with very different and
conflicting optimal control trajectories. We propose a mod-
ified RO strategy that allow shut in of uneconomical wells.
The modified RO strategy performs significantly better than
the other open-loop strategies and the reactive strategy. The
modified RO optimization strategy yields an expected NPV
that is 36 % higher than the expected NPV of the open-
loop certainty equivalent strategy and 3 % higher than the
expected NPV for the reactive strategy. The NPV standard
deviation of the modified RO strategy is similar to the NPV
standard deviation of the reactive strategy. These observa-
tions are non-trivial, as previous literature suggests that the
open-loop RO strategy performs better than the reactive
strategy [26]. The improved economic performance of the
open-loop modified RO strategy justifies the computational
effort used in determining the trajectories for this strategy.

The simulations for the closed-loop strategies, reveal
that the RO strategy and the certainty equivalent strategy
yields significantly higher NPV than the reactive strat-
egy. Surprisingly, the closed-loop certainty equivalent strat-
egy yields a higher NPV than the closed-loop RO strat-
egy for the case studied. The uncertainty reduction of
the permeability field estimate due to data assimilation

explains the good performance of the closed-loop certainty
equivalent optimization strategy. Consequently, in closed-
loop, the increased computational effort of the RO strategy
compared to the certainty equivalent strategy is not justified
for the particular case studied in this paper.

Future work will include a test of the strategies discussed
in this paper on a more complex scenario (many wells,
3D grid, state/output constraints, spurious correlations), and
we plan to work on the “Brugge field” [28]. In open-loop
simulations, we expect that the modified RO strategy will
improve the RO strategy as seen here. This result is in some
way anticipated in [65], where, despite they do not con-
sider uncertainty in the reservoir parameters, they get an
increased NPV for the ”Brugge field” by adding a reac-
tive control to an optimal control strategy. In closed-loop
simulations, we expect to obtain similar results for the RO
and the CE strategies provided the data assimilation con-
verges properly, as in the case showed in this paper. Finally,
the optimization strategies presented in this paper and to
our knowledge all literature on closed-loop reservoir man-
agement deals with optimization of the expected NPV. The
approaches only implicitly considers risk and variance of
the NPV. Future approaches should more directly include
risk and variance of the NPV in the optimization.
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