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Efficient Implementation of the Riccati Recursion for Solving

Linear-Quadratic Control Problems

Gianluca Frison, John Bagterp Jørgensen

Abstract— In both Active-Set (AS) and Interior-Point (IP)

algorithms for Model Predictive Control (MPC), sub-problems

in the form of linear-quadratic (LQ) control problems need to

be solved at each iteration. The solution of these sub-problems

is typically the main computational effort at each iteration. In

this paper, we compare a number of solvers for an extended

formulation of the LQ control problem: a Riccati recursion

based solver can be considered the best choice for the general

problem with dense matrices. Furthermore, we present a novel

version of the Riccati solver, that makes use of the Cholesky

factorization of the P

n

matrices to reduce the number of flops.

When combined with regularization and mixed precision, this

algorithm can solve large instances of the LQ control problem

up to 3 times faster than the classical Riccati solver.

I. INTRODUCTION

The linear-quadratic (LQ) control problem can be consid-
ered the core problem in Model Predictive Control (MPC). It
represents an unconstrained optimal control problem where
the controlled system is linear and the cost function is
quadratic. This problem formulation is especially important
because it arises as sub-problem in Active-Set (AS) and
Interior-Point (IP) algorithms for MPC, where a problem
of this form has to be solved at each iteration [1], [2].
The solution of these sub-problems is typically the main
computational effort at each iteration, and this explain the
need for efficient solvers.

The LQ control problem is a special instance of equality
constrained quadratic program. The related KKT system is
sparse and structured, and this structure can be exploited to
implement more efficient solvers. We can distinguish two
main approaches to the solution of this KKT system, that
differ on the choice of the optimization variables.

The first approach considers as optimization variables
the sole controls: by exploiting the dynamic system linear
equation, the large, sparse KKT system is rewritten into a
smaller, dense form. The reduced KKT system is typically
solved by using the Cholesky factorization of the (positive
definite) Hessian. The cost of this approach is O(N3n3

u

)

(plus the cost of the condensing phase), and then suitable
for problems with small N and n

u

[3].
The second approach considers as optimization variables

also the states: larger systems where the sparsity is preserved
are solved. Well known examples are general purpose sparse
solvers, Riccati recursion based solver, Schur complement
based solver, and sparse iterative methods: in case of dense
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matrices in the LQ control problem, the complexity is
typically O(N(n

x

+n
u

)

3
), and they are suitable for problems

with long control horizon [3].
In this paper we consider only solvers in this second

group. In particular, we will focus our attention on the
Riccati solver, that is known to be an efficient method for
the solution of the LQ control problem [1]. We present
a novel implementation, where the recursion matrix is no
longer P

n

, but its Cholesky factor L
n

: this allows a reduction
in the number of flops. Furthermore, we propose the use
of regularization, iterative refinement and mixed precision
in a Riccati solver able to solve large instances of the
LQ control problem up to 3 times faster than the classical
implementation.

The paper is organized as follows. Section II introduces
the extended LQ control problem and states necessary and
sufficient conditions for its solution. In section III we present
and compare methods for the solution of the extended LQ
control problem: direct sparse solvers, Schur complement
solver and Riccati solver. In section IV we present our
implementations of the Riccati solver, and analyze their
theoretical complexity. In section V we compare each other
the Riccati solvers presented in this paper. Finally, section
VI contains the conclusion.

II. THE EXTENDED LQ CONTROL PROBLEM

The extended LQ control problem is an generalization
of the classical LQ control problem. The cost function has
quadratic, linear and constant terms, and the constraints are
affine. Furthermore, all matrices are time variant. Its structure
is flexible enough to describe a wide range of problems [4].
In particular, it can be used as a routine in AS and IP methods
[2].

Problem 1: The extended LQ control problem is the
equality constrained quadratic program

min

u

n

,x

n+1

� =

N�1X

n=0

l
n

(x
n

, u
n

) + l
N

(x
N

)

s.t. x
n+1 = A

n

x
n

+B
n

u
n

+ b
n

(1)

where n 2 {0, 1, . . . , N � 1} and

l
n

(x
n

, u
n

)=

1

2

⇥
x0
n

u0
n

⇤Q
n

S0
n

S
n

R
n

�
x
n

u
n

�
+

⇥
q0
n

s0
n

⇤x
n

u
n

�
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n

l
N

(x
N

)=

1

2

x0
N

ˆPx
N

+ p̂0x
N

+ ⇢̂
N

The state vector x
n

has size n
x

, the input vector u
n

has size
n
u

, and N is the control horizon length.
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Problem (1) can be rewritten in a more compact form as

min

x

� =

1

2

x0Hx+ g0x

s.t. Ax = b
(2)

where (in the case of N = 3)

x=

2

6666664

u0

x1

u1

x2

u2

x3

3

7777775
, H=

2

6666664

R0

Q1 S0
1

S1 R1

Q2 S0
2

S2 R2
ˆP

3

7777775
, g=

2

6666664

s̃0
q1
s1
q2
s2
p̂

3

7777775

A =

2

4
�B0 I

�A1 �B1 I
�A2 �B2 I

3

5 , b =

2

4
˜b0
b1
b2

3

5

where s̃0 = S0x0+ s0 and ˜b0 = A0x0+ b0. The matrices H
(of size (n

x

+ n
u

)N ⇥ (n
x

+ n
u

)N ) and A (of size n
x

N ⇥
(n

x

+ n
u

)N ) are large and sparse; furthermore, H is block
diagonal.

The following theorem gives necessary conditions for the
solution of problem (2).

Theorem 1 (KKT (necessary) conditions): If x⇤ is a solu-
tion of problem (2), then a vector ⇡⇤ of size Nn

x

exists such
that 

H �A0

�A 0

� 
x⇤

⇡⇤

�
= �


g
b

�
(3)

System (3) is the KKT system associated with problem (2),
and in the case of the extended LQ control problem the KKT
matrix is large (of size (2n

x

+ n
u

)N ⇥ (2n
x

+ n
u

)N ) and
sparse.

Sufficient conditions for existence and uniqueness of the
solution of problem (2) are given in the following theorem.

Theorem 2 (Sufficient conditions): Let the matrices P and
Q

n

S0
n

S
n

R
n

�
be positive semi-definite, and the matrices R

n

be

positive definite for all n 2 {0, 1, . . . , N � 1}, then problem
(2) has one and only one solution, given by the solution of
the KKT system (3).
The proof of both theorems can be found in [3].

If the hypothesis of theorem 2 are satisfied and if the
matrices Q

n

, R
n

and P are symmetric, then the KKT system
(3) is a symmetric indefinite system of linear equations.

The KKT system (3) can be rewritten in the band diagonal
form [1]
2

6666666664
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u0
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x2
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⇡3

x3
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=
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�b̃0

�q1

�s1

�b1

�q2

�s2

�b2

�p̂

3

7777777775

(4)
and then it can be solved in time O(N(n

x

+ n
u

)

3
) using a

generic band diagonal solver.

III. SOLUTION METHODS FOR THE KKT SYSTEM

In this section we briefly introduce a number of well-
known methods for the solution of the KKT system (3).
The asymptotic complexity is O(N(n

x

+ n
u

)

3
) (linear in

the horizon length N and cubic in the number of states
and inputs) for all solvers, but in practice the difference in
performance between them can be more than an order of
magnitude.

A. Direct sparse solvers

One approach is the use of general purpose sparse solvers
for the direct solution of the KKT system in the band
diagonal form (4). We consider two of the best solvers for
the solution of sparse symmetric systems of linear equations:
MA57 and PARDISO.

MA57 is a direct solver for symmetric sparse systems of
linear equations. It is part of HSL [5] software. The code
consists in routines for initialization, analysis, factorization
and solution of the linear system, in both single and double
precision. We tested version 3.7.0 of the software.

PARDISO [6] is a software package for the solution of
large sparse systems of linear equations, both symmetric
and non-symmetric. The solution process is divided into 3
phases: analysis, numerical factorization and solution. We
tested version 4.1.2 of the software.

Both solvers use of the same optimized BLAS implemen-
tation. Times are relative to factorization and solution phases,
since in MPC analysis phase is performed off-line.

The main advantage in the use of direct sparse solvers
is that sparsity in the problem matrices A

i

, B
i

, Q
i

, S
i

, R
i

can be exploited. Anyway, if these matrices are dense (as in
the case of our tests), other methods are more efficient. Our
numerical tests show that MA57 is roughly 4 times faster
than PARDISO in solving (4).

B. Schur complement based solver

The Schur complement method for solving the KKT
system (3) requires the matrix H to be invertible (and then
positive definite). The method has been recently used in [7]
for the fast computation of the Newton step.

An analytic expression for the solution of (3) is

(AH�1A0
)⇡ = b+AH�1g

Hx = A0⇡ � g
(5)

where the matrix  = AH�1A0 (the Schur complement
of the matrix H in the KKT matrix) is positive definite,
since H�1 is positive definite and the matrix A has full row
rank. All matrices are large, but the sparsity is preserved:
for example, the  matrix is block tridiagonal, with dense
blocks of size n

x

⇥ n
x

. It is possible to exploit the matrices
structure and use routines for dense linear algebra (e.g. BLAS
and LAPACK) on the blocks.

A detailed description of our implementation can be found
in [3]. It has complexity N(

19
3 n3

x

+8n2
x

n
u

+3n
x

n2
u

+

2
3n

3
u

)

flops, that is O(N(n
x

+ n
u

)

3
).
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The main advantage of this method is that it can be
simplified in case of diagonal H matrix: the complexity
reduces to N(

10
3 n3

x

+ n2
x

n
u

) flops, that is linear in n
u

.
In the general case of dense H matrix, the Schur comple-

ment based method is faster than direct sparse solvers, but
slower than the Riccati recursion based method.

C. Riccati recursion based solver
The Riccati recursion is a well known method for the

solution of the classical LQ control problem, and can be
easily adapted to the solution of the extended formulation
(1) [3], [8]. Several derivations exist: particularly important
for the following of the paper is the interpretation of the
Riccati recursion as a factorization procedure for (4) [1].

The Riccati recursion method is not able to exploit special
problem properties (such as diagonal H matrix or time-
invariant system), but in the general case it is more efficient
than all previously considered methods: it is then particularly
suitable as general solver for problem (1).

Some variants of the algorithm are presented in details in
the next section.

D. Comparison of solvers
All algorithms considered above have been implemented

in C code and compared each other in the solution of a
general instance of problem (1).

The tests have been preformed on a laptop equipped with
an Intel Pentium Dual-Core T2390 @ 1.86 GHz processor.
To perform linear algebra operations, we used the BLAS and
LAPACK libraries are provided by Intel MKL.

The tests confirmed the theoretical complexity of
O(N(n

x

+ n
u

)

3
) for all solvers. It should be noted that the

cubic growth in n
x

and n
u

is observed only for respectively
n
x

� n
u

and n
u

� n
x

: in fact, as long as n
x

� n
u

, changes
in the value of n

u

do not affect much the computation time.
In figure 1 there is a comparison of the computation time

in the case where only n
x

is varied (i.e. for fixed N and n
u

):
as already said, the fastest method is the Riccati recursion,
followed by Shur complement. Both method are tailored for
the special form of problem (1), and outperform general-
purpose direct sparse solvers.

IV. EFFICIENT IMPLEMENTATION OF THE RICCATI
RECURSION BASED SOLVER

As seen in the previous section, the Riccati recursion
based solver is particularly well suited as general solver for
problem (1). In this section we present two versions of the
algorithm, and show how to efficiently implement the second
one. The result will be a solver up to 3 times faster (for
systems with many states) than the classical implementation
of the algorithm.

For our purposes, it is convenient to interpret the Riccati
solver as a factorization method for (4): in particular, the
method can be divided into a factorization phase (where
the KKT matrix is factorized) and a solution phase (where
the KKT system is solved). The factorization phase is the
main computational effort of the algorithm: its complexity is
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Fig. 1: Comparison of solvers PARDISO, MA57, Schur
complement and Riccati recursion, for problem (1).

O(N(n
x

+n
u

)

3
), while the solution phase is only O(N(n

x

+

n
u

)

2
), quadratic in n

x

and n
u

.

A. Classical version
What follows is a careful implementation of the classical

Riccati solver. In this version we only use the BLAS routines
dgemm, dtrsm (and vector counterparts), and dpotrf: the
algorithm can thus be easily implemented also in Matlab.

Particular attention is given in accessing contiguous data
in memory: since all matrices are stored in column-major (or
Fortran-like) order, the better performance in matrix-matrix
multiplications is obtained when the left matrix is transposed
and the right one is not.

1) Factorization phase: The factorization phase is given
by the classical Riccati (backward) recursion, the algorithm
is presented in Algorithm 1. In the common case of n

x

> n
u

,
the most expensive operation is the computation of the term
A0

n

P
n+1An

, requiring 4n3
x

flops.
To improve performance, A

n

and B
n

are packed in the
matrix [A

n

|B
n

], of size n
x

⇥ (n
x

+ n
u

): this reduces the
number of calls to dgemm and improves data reuse. The three
matrix-matrix multiplications in lines 3,4,5 totally require
4n3

x

+ 4x
x

n2
u

+ 2n
x

n2
u

flops. Notice that the left matrices
are always transposed (by exploiting the symmetry of P

n+1)
and the right ones are never.

The Cholesky factorization in line 6 is performed using
the blocked LAPACK routine dpotrf, and requires 1

3n
3
u

flops. The triangular system solution in line 7 is performed
using the BLAS routine dtrsm, and requires n

x

n2
u

flops.
The matrix-matrix product in line 8 is performed using the
BLAS routine dgemm, requiring 2n2

x

n
u

flops.
Numerical evidence shows that line 9 may improve the

stability of the algorithm, in case of unstable systems [8].
It is implemented as a blocked algorithm, to reuse data in
cache.

The overall algorithm requires

N
�
4n3

x

+ 6n2
x

n
u

+ 3n
x

n2
u

+

1
3n

3
u

�
[flops].
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Algorithm 1 Factorization phase, classical version

1: P
N

 ˆP
2: for n = N � 1! 0 do

3: [PA|PB] P 0
n+1 · [An

|B
n

]

4: [B0PA|B0PB] B0
n

· [PA|PB]

5: A0PA A0
n

· PA
6: ⇤

n

 cholL(Rn

+B0PB)

7: L
n

 ⇤

�1
n

(S
n

+B0PA)
8: P

n

 Q
n

+A0PA� L0
n

· L
n

9: P
n

 0.5(P
n

+ P 0
n

)

10: end for

2) Solution phase: In the solution phase, we need the
matrices sequences L

n

, ⇤
n

and P
n

computed in the previous
factorization phase. The algorithm is presented in Algorithm
2. It consists of a backward loop and a forward loop.
All matrix-vector multiplications are implemented using the
BLAS routine dgemv, while the system solutions at lines
3 and 8 using the BLAS routine dtrsv. The cost of the
algorithm is

N
�
8n2

x

+ 8n
x

n
u

+ 2n2
u

�
[flops].

Algorithm 2 Solution phase
1: p

N

 p̂
2: for n = N � 1! 0 do

3: l
n

 ⇤

�1
n

(s
n

+B0
n

· (P 0
n+1 · bn + p

n+1))

4: p
n

 q
n

+A0
n

· (P 0
n+1bn + p

n+1)� L0
n

· l
n

5: end for

6: ⇡0  P0 · x0 + p0
7: for n = 0! N � 1 do

8: u
n

 �(⇤0
n

)

�1
(L

n

· x
n

+ l
n

)

9: x
n+1  A

n

· x
n

+B
n

· u
n

+ b
n

10: ⇡
n+1  P 0

n+1 · xn+1 + p
n+1

11: end for

B. Factorized version

In this version we aim at reducing the theoretical number
of flops as much as possible. The algorithm is presented in
Algorithm 3.

This version requires that all matrices in the sequence P
n

must be (strictly) positive definite: a sufficient condition for
this is the further hypothesis that all matrices Q

n

and P are
positive definite [3]. This could restrict the applicability of
the algorithm used in this form, or calls for some tricks to
use it in case of rank-deficient matrices, as shown later.

1) Factorization phase: The key idea in this version is to
write the recursion in terms of the Cholesky factor L

n

in
place of P

n

: this allows a reduction in the number of flops.
Furthermore, this permits to pack the matrices, reducing the
number of function calls and improving the reuse of data in
cache. The requirement about the positive definiteness of the
matrices P

n

is a technical condition needed for the use of
the Cholesky factorization.

The matrices A
n

and B
n

are packed in the n
x

⇥(n
x

+n
u

)

matrix [B
n

|A
n

]. The matrix L
n+1 is the lower triangular

Cholesky factor of P
n+1, and then the product at line 3

is performed using the BLAS routine dtrmm, requiring
n2
x

(n
x

+n
u

) flops. The lower triangular part of the matrices
A0PA and B0PB and the matrix A0PB are built all together
thank to the matrix-matrix product at line 4, performed using
the BLAS routine dsyrk, requiring n

x

(n
x

+ n
u

)

2.
Finally, the matrices ⇤

n

, L
n

and L
n

are build all to-
gether thanks to a call to the Cholesky factorization routine
dpotrf, requiring 1

3 (nx

+ n
u

)

3. In fact, if we perform a
block Cholesky factorization on the right-hand-side matrix
at line 5, we get (compare lines 6,7,8 of Algorithm 1)

⇤

n

 cholL(Rn

+B0PB)

L0
n

 (S0
n

+A0PB)(⇤

0
n

)

�1

L
n

 cholL(Qn

+A0PA� L0
n

· L
n

)

The total cost of the algorithm is

N
�
7
3n

3
x

+ 4n2
x

n
u

+ 2n
x

n2
u

+

1
3n

3
u

�
[flops],

lower than the cost of the classical version. In case of n
x

large and n
x

� n
u

, the theoretical cost of the classical
version is roughly 12

7 = 1.71 times the cost of the factorized
version.

Algorithm 3 Factorization phase, factorized version

1: L
N

 cholL(
ˆP )

2: for n = N � 1! 0 do

3: [L0B|L0A] L0
n+1 ·dtrmm

[B
n

|A
n

]

4:


B0PB
A0PB A0PA

�
 [L0B|L0A]

0 ·
dsyrk

[L0B|L0A]

5:


⇤

n

L0
n

L
n

�
 cholL

⇣
R

n

+B0PB
S0
n

+A0PB Q
n

+A0PA

�⌘

6: end for

2) Solution phase: The algorithm is almost identical to
the one presented in Algorithm 2. The only difference is
that now we have the lower Cholesky factor L

n+1 of P
n+1:

the product in the innermost bracket at line 3 is computed as
L
n+1 · (L0

n+1 ·bn)+p
n+1 (using the triangular matrix-vector

product routine dtrmv), and similarly for the product at line
10. The cost of the algorithm is the same.

3) Static and dynamic regularization: The main disad-
vantage of the factorized version is the requirement for the
positive definiteness of the sequence of matrices P

n

: this may
limit the applicability of the algorithm, and it may happen
that, due to round off error, a theoretically positive definite
matrix actually has a negative or null leading minor. To
overcome this limitations, we use regularization. We present
two different approaches.

The first one consists in a combination of dynamic regu-
larization of the matrix Q

n

+ A0PA and a modification of
the Cholesky factorization routine. In details, the diagonal
elements a

jj

of Q
n

+ A0PA are checked, and if a
jj

< ✏,
then we set a

jj

= ✏, with ✏ = 10

�14. This is justified by the
fact that the strict positiveness of the diagonal elements is a
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necessary (even if not sufficient) condition for the positive
definiteness of a matrix. Furthermore, the LAPACK routine
dpotf2 is modified such that, if the next diagonal element
to be processes a

jj

is too small or non-positive, it is replaced
by a small positive number:

. . .
if a

jj

< 10

�14
then

a
jj

 10

�14

end if

a
jj

 pa
jj

. . .

The combination of dynamic regularization and modification
of the Cholesky factorization routine is an heuristic that gives
a good trade-off between stability and performance: in all our
tests, it allowes to successfully complete the factorization,
and if the matrix is already positive definite, no regularization
is performed.

The second approach is more conservative, and it consists
in a static regularization of the (in general only positive semi-
definite) Q

n

matrix, that is replaced with Q
n

+ ✏I with
✏ = 10

�14. This should ensure that the resulting matrix
is positive definite, but the matrix is modified also if it
is already positive definite. For extra safety, the modified
Cholesky factorization may be used.

If regularization is performed, the algorithm commits an
approximation error in the solution of (4): anyway, our
numerical tests show that typically the approximate solution
is only one order of magnitude less accurate than the solution
computed by means of the classical version.

4) Iterative refinement: The accuracy of the approximate
solution computed in case of regularization can be improved
by using iterative refinement [9].

The idea is the following: we look for the solution of the
system My = m, but in the solution process we prefer to
use the matrix fM , close to M but easier to factorize. This
means that we actually solve the system fMỹ = m, where
the solution ỹ is only an approximation of y: the residuals
are r1 = m�Mỹ 6= 0.

We can look for a correction term �y1 such that M�y1 =

r1, that means M(ỹ+�y1) = m�r1+r1 = m. Again, in the
solution process we prefer the use of fM , and then we solve
the system fM�ỹ1 = r1, obtaining the new approximate
solution ỹ+�ỹ

i

. The new residuals r2 = m�M(ỹ+�ỹ1)
are smaller than r1, and the procedure can be iterated until
the desired accuracy is reached.

5) Residual computation: In an iterative refinement step,
the two most expensive operations are the system solution
and the computation of the residuals (since the matrix has
already been factorized).

The residual computation in the case of problem (1)
is presented in Algorithm 4. Matrix-vector products are
performed by using the BLAS routines dgemv and dsymv.
The cost of the algorithm is

N
�
6n2

x

+ 8n
x

n
u

+ 2n2
u

�
[flops].

Notice that the algorithm can be simplified in case of
diagonal H .

Algorithm 4 Residual computation

1: rs0  �(S0x0 +R0u0 +B0
0⇡1 + s0)

2: rb0  x1 � (A0x0 +B0u0 + b0)
3: for n = 1! N � 1 do

4: rq
n

 ⇡
n

� (Q
n

x
n

+ S0
n

u
n

+A0
n

⇡
n+1 + q

n

)

5: rs
n

 �(S
n

x
n

+R
n

u
n

+B0
n

⇡
n+1 + s

n

)

6: rb
n

 x
n+1 � (A

n

x
n

+B
n

u
n

+ b
n

)

7: end for

8: rq
N

 ⇡
N

� (Px
N

+ p)

6) Mixed precision: In most current computer architec-
tures, there is significant performance advantage in using
single instead of double precision floating point numbers. In
particular, this is true for SIMD instructions of conventional
processors, that can process twice as many floats as doubles
per clock cycle. Hence the use of mixed precision techniques,
to speed up the computation while maintaining the double
precision of the resulting solution [10].

In our case, it is particularly advantageous to adopt this
approach, and correct at the same time the errors due to
the regularization and to the single precision. The overall
algorithm is summarized in Algorithm 5. In single precision,
we use as regularization parameter ✏ = 10

�6 in static and
dynamic regularization and modified Cholesky factorization.

Algorithm 5 Riccati recursion based solver, mixed precision
factorized version with regularization

1: Factorize the KKT matrix in single precision using
Algorithm 3 with regularization

2: Solve the KKT system in single precision using Algo-
rithm 2, obtaining x, u,⇡

3: Compute the residuals in double precision using Algo-
rithm 4

4: while the residuals are not small enough do

5: Solve the KKT system in single precision using Algo-
rithm 2 and the residuals as right hand side, obtaining
�x,�u,�⇡

6: Update the solution (x, u,⇡)  (x, u,⇡) +

(�x,�u,�⇡)
7: Compute the residuals in double precision using Al-

gorithm 4
8: end while

V. NUMERICAL RESULTS

As test problem, we used a system of q =

n

x

2 equal masses
connected in a row by springs, and to walls at the ends. Each
mass is 1 Kg, and the spring constant is 1 N/m. There are
4 actuators that can exert a force on the first 4 masses. A
continuous-time state-space system is obtained by choosing
the masses displacement as the first q states and the masses
velocity as the remaining q states. This system is sampled
with sampling time T

s

= 1 sec to obtain a discrete-time
space-state system. There are no constraints on the masses
displacement or on the forces. The cost function is chosen
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Fig. 2: Run-time. Proposed Algorithm 3 (dfac) is faster
than classical Algorithm 1 (dge). Mixed precision versions
mfac1 and mfac2 are faster than double precision version
dfac for large n

x

.

such that P = Q
n

= [I
q

0]

0
[I

q

0], S
n

= 0, R
n

= I4, p =

q
n

= 0, s
n

= 0. Notice that the sampling procedure will
produce subnormal values for large n

x

, and that they will
heavily influence the performance if not flushed to zero.

The test machine is a laptop equipped with Intel i5-
2410M CPU @ 2.30GHz, running Xubuntu 12.10. The
processor supports the AVX instruction set, and can pro-
cess a vector of 4 doubles or 8 floats per cycle. The
code is written in C, and compiled with gcc 4.7.2. The
flush-to-zero mode is activated by using the command
MM SET FLUSH ZERO MODE( MM FLUSH ZERO ON) in

the main. The BLAS and LAPACK libraries are provided
by OpenBLAS 0.2.6, an highly optimized implementation
released with the BSD license [11]: this allowed us to modify
the dpotf2 routine and still have high performances. All
tests are performed in single thread mode.

We performed a test varying the number of states n
x

in
a wide range. We tested the algorithms: double precision
classical version (dcl), double precision factorized version
(dfac), single precision factorized version (sfac), mixed
precision factorized version with 1 (mfac1) and 2 (mfac2)
refinement steps, single precision solution phase (ssol) and
double precision residual computation (dres). Results are
in Figure 2 and Table I. In double precision, the factorized
version is almost always faster than the classical one (except
for n

x

= 32), with a speed-up of roughly 1.5 times for large
n
x

. About the mixed precision version, it is slow for small
n
x

, since the cost of even a single refinement step is of the
same order of magnitude as the factorization. But for medium
to large n

x

it gets quickly faster, with a speed-up of up to 3
with respect to the classical version.

Table II shows an accuracy test: the mixed precision
factorized version is already very accurate with 1 refinement
step, and as accurate as the double precision classical version
with 2 steps.

n
x

dfac sfac mfac1 mfac2
8 1.16 1.16 0.66 0.46
16 1.17 1.27 0.78 0.56
32 0.93 1.06 0.80 0.65
64 1.10 1.37 1.15 1.00

128 1.21 1.83 1.65 1.50
256 1.37 2.44 2.28 2.14
512 1.49 2.87 2.71 2.58
1024 1.56 3.00 2.87 2.75
2048 1.61 3.14 3.06 2.99

TABLE I: Speedup of double (dfac), single (sfac) and
mixed (mfac1, mfac2) precision versions of proposed
Algorithm 3 with respect to double precision version dcl
of classical Algorithm 1.

n
x

dcl dfac sfac mfac1 mfac2
32 3.55e-14 5.59e-14 1.78e-05 2.23e-11 3.02e-14

TABLE II: || · ||1 of residuals. Mixed precision version is
already very accurate with 1 refinement step (mfac1), as
accurate as double precision with 2 steps (mfac2).

VI. CONCLUSION

In this paper we have seen that a Riccati recursion based
solver is an efficient solver for LQ control problems in the
general form (1), being faster than other widely-used solvers.

The main contribution of the paper is a novel implemen-
tation of the Riccati solver, that makes use of Cholesky
factorization of the P

n

matrices to reduce the number of
flops. When combined with regularization, iterative refine-
ment and mixed precision, the resulting algorithm can solve
large instances of the LQ control problem up to 3 times
faster than the classical version, and maintaining the same
accuracy.
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Abstract: In both Active-Set (AS) and Interior-Point (IP) algorithms for Model Predictive
Control (MPC), sub-problems in the form of linear-quadratic (LQ) control problems need to be
solved at each iteration. The solution of these sub-problems is usually the main computational
e↵ort. In this paper an alternative version of the Riccati recursion solver for LQ control problems
is presented. The performance of both the classical and the alternative version is analyzed from
a theoretical as well as a numerical point of view, and the alternative version is found to be
approximately 50% faster than the classical one, for systems with many states. A number of
parallel implementations of the alternative version has been proposed and tested.
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1. INTRODUCTION

The linear-quadratic (LQ) control problem can be consid-
ered the core problem in Model Predictive Control (MPC).
In its classical formulation, it represents an unconstrained
optimal control problem where the controlled system is
linear time-invariant and the cost function is quadratic.
This problem formulation is especially important because
it arises as a sub-problem in Active-Set (AS) and Interior-
Point (IP) algorithms for MPC (Wright (1997); Rao et al.
(1998); Jørgensen et al. (2004)). The solution of these sub-
problems is typically the main computational e↵ort at each
iteration, and this explains the need for e�cient solvers.

From a mathematical point of view, the LQ control prob-
lem is an equality constrained quadratic program, and
it can be solved using general solvers for this class of
problems. The cost of this approach is O(N3(n

x

+ n
u

)3),
where N is the control horizon length, n

x

is the number
of states and n

u

is the number of controls (or inputs).

However, it is well known that the KKT system associated
with the LQ control problem is sparse and highly struc-
tured, and this structure can be exploited to obtain more
e�cient solvers. In case of dense controlled systems, the
Riccati recursion based solver is known to be the fastest
among a large class of solvers (Frison et al. (2013)).

In this paper, we present two versions of the Riccati
recursion based solver for an extended formulation of
the LQ control problem. For both the classical and the
alternative (called ’factorized’ in Frison et al. (2013))
version, we state a detailed description of the algorithm,
and we suggest and test the use of numerical libraries for
their parallel implementation on shared memory machines.
The implementation of the classical version scales quite
well with the number of threads, since its key routine
(the matrix-matrix multiplication routine) is particularly

parallel friendly. On the contrary, the key routine of the
factorized version (the Cholesky factorization routine) is
not so parallel friendly, and this a↵ects the scalability
of the factorized version. Therefore, we tested a number
of implementations of the factorized version, aiming at
improving its scalability.

The paper is organized as follows. In section 2 we present
an extended formulation of the LQ control problem, and
we state conditions for its solution. In section 3 we present
a general formulation of the Riccati recursion based solver
for the extended LQ control problem. E�cient implemen-
tation of both the classical and the factorized version of
this Riccati solver are presented in section 4. In section 5
we present the libraries used in our tests, and the result
and the discussion of these tests are reported in section 6.
Finally, section 7 contains the conclusion.

2. THE EXTENDED LQ CONTROL PROBLEM

In this paper we consider an extended version of the
classical LQ control problem: in this formulation, the cost
function has a quadratic, a linear and a constants term,
and the constraint (given by the equation describing the
dynamic system) is a�ne. Furthermore, all matrices are
time variant. The classical and the extended LQ control
problems can be solved by means of Riccati recursion
based solvers at the same asymptotic cost: the cubic
(dominant) terms in the respective cost functions are
identical. The main advantage of the extended formulation
is that it is flexible enough to describe a wide range of
problems (Jørgensen et al. (2012)): in particular, it can be
used as sub-routine in AS and IP methods.

Problem 1. The extended LQ control problem is the equal-
ity constrained quadratic program
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The state vector x
n

has size n
x

, the input vector u
n

has
size n

u

, and N is the control horizon length.

Problem (1) can be rewritten in a more compact form as

min
x

� =
1

2
x0Hx+ g0x

s.t. Ax = b
(2)

where (in the case of N = 3)
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#
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4
b̃0
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3

5

where s̃0 = S0x0 + s0 and b̃0 = A0x0 + b0. The matrices
H and A are large and sparse; in particular, H is block
diagonal.

Theorem 1. (KKT (necessary) conditions). If x⇤ is a solu-
tion of problem (2), then there exists a vector ⇡⇤ of size
N · n

x

such that

H �A0

�A 0

� 
x⇤

⇡⇤

�
= �


g
b

�
(3)

System (3) is the KKT system associated with problem
(2), and in the case of the extended LQ control problem the
KKT matrix is large (of size (2n

x

+n
u

)N ⇥ (2n
x

+n
u

)N)
and sparse.

Su�cient conditions for existence and uniqueness of the
solution of problem (2) are given in the following theorem.

Theorem 2. (Su�cient conditions). Let the matrices P

and


Q

n

S0
n

S
n

R
n

�
be positive semi-definite, and the matrices

R
n

be positive definite for all n 2 {0, 1, . . . , N � 1}, then
problem (2) has one and only one solution, given by the
solution of the KKT system (3).

The proof of both theorems can be found in Frison (2012).

If the hypothesis of theorem 2 are satisfied and if the ma-
trices Q

n

, R
n

and P are symmetric, then the KKT system
(3) is a symmetric indefinite system of linear equations. In
the following we assume that these hypothesis hold.

3. RICCATI RECURSION FOR SOLVING LQ
CONTROL PROBLEMS

As shown in Wright (1997), the KKT system (3) can be
rewritten in band diagonal form as
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and solved in time O(N(n
x

+ n
u

)3) by using the Riccati
recursion to factorize the KKT system. A Riccati recursion
based solver for problem (1) is summarized in Algorithm
1 (see Frison (2012); Jørgensen (2005)).

Algorithm 1 Riccati recursion based solver for the ex-
tended LQ control problem (1)
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end for

4. EFFICIENT IMPLEMENTATION OF THE
RICCATI RECURSION BASED SOLVER

In this section we present a detailed description of two
di↵erent implementations of the Riccati recursion based
solver.

We will focus our attention to the case n
x

> n
u

: this
means that, at each iteration, the most expensive part is
the computation of the term A0

n

P
n+1An

. This expression
has some structure: the left matrix A0

n

is equal to the
transpose of the right matrix A

n

; furthermore, the central
matrix P

n+1 is symmetric and positive semi-definite (proof
in Frison (2012)). It is possible to exploit this structure,
as shown in the following.

We assume that all matrices are stored in memory in
column-major (Fortran-like) order, and we make use of
optimized BLAS and LAPACK routines for linear algebra
operations. The following discussion can be easily adapted
to the case of row-major (C-like) order, using C wrappers
to BLAS and LAPACK.

4.1 Classical version

In this version, the term A0
n

P
n+1An

is implemented as



A0
n

· (P 0
n+1 ·An

)

by exploiting the symmetry of the P
n+1 matrix: since the

matrices are stored in column-major order, the best per-
formance in the matrix-matrix multiplication is obtained
if the left matrix is transposed and the right is not. The
two matrix-matrix multiplications are performed using the
BLAS general matrix-matrix multiplication routine dgemm.
The computation of the expression requires roughly 4n3

x

flops.

The expressions B0
n

P
n+1Bn

and B0
n

P
n+1An

are computed
in a similar way, as B0
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· (P 0
n+1 ·B0

n

) (cost 2n2
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n
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+ 2n
x

n2
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flops) and (P 0
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)0 · A
n

(cost 2n2
x

n
u

flops, re-using the
already computed expression P 0

n+1Bn

).

The matrix R
e,n

is symmetric positive definite (since R
n

is
symmetric positive definite, and B0

n

P
n+1Bn

is symmetric
positive semi-definite): it can be factorized using the LA-
PACK Cholesky factorization routine dpotrf, obtaining
the lower triangular factor ⇤

n

. This costs 1
3n

3
u

flops.

About the computation of the term K 0
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. The
operation ⇤�1

n

M
n

is performed using the BLAS routine
dtrsm, requiring n

x

n2
u

flops.

The equations for updating vectors are implemented in
a similar way, even if their contribution to the total
computation time is negligible.

In case of unstable systems, numerical evidence shows that
the stability of the algorithm is improved by ensuring
the symmetry of matrix P

n

by means of the term P
n

 
0.5(P

n

+ P 0
n

) (Jørgensen (2005)). There is not a BLAS
or LAPACK routine implementing this operation, and we
suggest to implement a blocked version in order to reduce
cache misses, with block size equal to the cache line size.

The overall algorithm requires
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flops. The algorithm is summarized in Algorithm 2.

Algorithm 2 E�cient implementation of Riccati recur-
sion based solver solver, classical version
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4.2 Factorized version

This version requires all matrices P
n

to be positive definite:
a su�cient condition for this is the further hypothesis that
all matrices Q

n

and P are positive definite Frison (2012).

The term A0
n

P
n+1An

is implemented as
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)

where L is the lower triangular factor of the Cholesky fac-
torization of P

n+1. The advantage of this implementation
is that the product L0
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can be computed using the
BLAS routine dtrmm, requiring n3

x

flops, and the product
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)0 · (L0
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) of a matrix and its transposed can
be computed using the BLAS routine dsyrk, requiring
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flops. Since the cost of the Cholesky factorization is
roughly 1

3n
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x

flops, the total complexity is roughly 7
3n

3
x

flops.

Using the LAPACK routine dpotrf, the computation of
the lower factor is slightly less e�cient than the compu-
tation of the upper factor; on the other hand, the lower
factor gives the advantage that in each matrix-matrix
multiplication the left matrix factor is transposed and the
right matrix factor is not, exploiting the data order in
memory.

In a similar way, the term B0
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is computed as
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The term K 0
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R
e,n
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is computed again as in the classical
version, except that the term L0

n

·L
n

is computed using the
BLAS routine dsyrk instead of dgemm. The use of dsyrk
implies that only the lower triangular part of P

n+1 can be
referenced: the terms P

n+1 · bn and P
n+1 · xn+1 are then

computed using the BLAS routine dsymv instead of dgemv.

The total cost of the algorithm is
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flops, lower than the cost of the classical version. In the
case of n

x

large and n
x

� n
u

, the theoretical cost of the
classical version is approximately 12

7 = 1.71 times the cost
of the factorized version. The algorithm is summarized in
Algorithm 3.

5. LIBRARIES

In this section we want to briefly describe the libraries used
in the code to perform linear algebra operations.

5.1 OpenBLAS

The BLAS (Basic Linear Algebra Subprograms) and LA-
PACK (Linear Algebra PACKage) libraries are provided
by OpenBLAS 1 , version 0.2.6. OpenBLAS is an open-
source project (BSD license) that aims to extend Goto-
BLAS to the most recent architectures (e.g. Intel Sandy-
Bridge with AVX instruction set). It provides an optimized
implementation of all BLAS and part of LAPACK rou-
tines: in particular, it provides an optimized implemen-
tation of the Cholesky factorization routine dpotrf. The
1 see http://xianyi.github.com/OpenBLAS/
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remaining part of LAPACK is the library version 3.4.2
build using OpenBLAS as BLAS library.

OpenBLAS provides a parallel implementation of BLAS
for shared memory machines, and makes use of Pthreads
by default. The number of threads can be chosen by means
of the environment variable OPENBLAS NUM THREADS, or at
run time by using the function openblas set num threads()
in the code. This second option has the advantage to allow
di↵erent number of threads in di↵erent parts of the code.
Alternatively, it is possible to directly build a sequential
library (without support for multi-threading): if possible,
this second option should be preferred, since it avoids the
overhead associated with the creation and destruction of
threads at run-time.

LAPACK relies upon BLAS for parallelization: in fact,
the LAPACK libraries has been written having in mind
sequential machines, and can exploit parallelism only by
calling parallel implementations of BLAS. This approach,
however, limits the scalability of the code with the number
of threads, especially for medium size problems.

5.2 PLASMA

PLASMA 2 (Parallel Linear Algebra for Scalable Multi-
core Architectures) is a project that aims to provide
e�cient parallel implementation of linear algebra routines
on shared memory machines. It is released with BSD
license. We tested the version 2.5.0 of the library. The
approach is completely di↵erent compared to LAPACK’s
one: the parallelization is not hidden in the BLAS, but
it is performed to an higher level. PLASMA needs a
sequential implementation of BLAS, and explicitly takes
care of parallelization, making use of Pthreads.

The main features are: tile matrix layout (the matrices are
stored in memory in sub-matrices of contiguous elements),
tile algorithms (exploiting the tale matrix layout, reducing
the cache and TLB misses, and optimizing reuse of data
in cache), dynamic scheduling (the assignment of the
parallel tasks to the processors is made at run time) and
asynchronous algorithms (returning before completion,
2 see http://icl.cs.utk.edu/plasma/

and then allowing a routine to start on the idle processors
even if the previous routine has not completed yet).

PLASMA is under active development and currently pro-
vides many important LAPACK routines (and in partic-
ular the Cholesky factorization routine dpotrf) together
with a tile and asynchronous version of all level 3 BLAS:
this allows us to write the entire Riccati recursion algo-
rithm in tile format.

6. NUMERICAL RESULTS

In this section we consider a number of parallel imple-
mentations of algorithms (2) and (3) on shared memory
machines. We decided to test the following algorithms,
that for simplicity we call v1 to v5:

v1 implementation of algorithm (2), with BLAS and
dpotrf provided by parallel OpenBLAS.

v2 implementation of algorithm (3), with BLAS and
dpotrf provided by parallel OpenBLAS.

v3 implementation of algorithm (3), with BLAS pro-
vided by parallel OpenBLAS and dpotrf provided
by PLASMA (that makes use of sequential Open-
BLAS; in this case sequential and parallel OpenBLAS
are given by the same library, and the switch be-
tween the two is made at run-time by means of
openblas set num threads()).

v4 implementation of algorithm (3), with level 3 BLAS
and dpotrf provided by tile version of PLASMA (that
makes use of sequential OpenBLAS).

v5 implementation of algorithm (3), with level 3 BLAS
and dpotrf provided by tile and asynchronous version
of PLASMA (that makes use of sequential OpenBLAS);
routines working on independent data are gathered
together into sets, and explicit barrier is used among
sets.

The test machine is a HPC node equipped with dual Intel
Xeon X5550 processor (in total 8 cores running at 2.66
GHz, 8 MB level 3 cache per socket) running Scientific
Linux version 6.1. The processor supports the SSE, SSE2,
SSSE3, SSE4 1, SSE4 2 instruction sets.

In figure (1) there are results of numerical tests. About the
test problem, the linear system is a randomly-generated
time-invariant asymptotically-stable one, while the cost
function is strictly quadratic with identity as Hessian: any-
way, the special structure of this test problem has not been
exploited. In all tests only the number of states has been
varied: we investigated the behavior of the proposed algo-
rithms for n

x

2 {4, 8, 16, 32, 64, 128, 256, 1024, 2048, 4096}.
The number of inputs was fixed to n

u

= 2 (its actual value
does not influence the performance, as long as n

u

⌧ n
x

),
and the horizon length to N = 10 (its actual value does
not influence the results of tests since Riccati recursion is
linear in N).

The block size for the tile matrix layout in PLASMA has
been chosen equal to NB = 128: this is a good trade
o↵ between fine-grid parallelism and performance of the
sequential BLAS on matrices of size NB. For values of
n
x

 NB the PLASMA routines clearly will reduce to a
call to the sequential BLAS, with some overhead. Anyway
the largest matrices, of size 4096, are decomposed into
16·16 = 256 blocks, enough to have a fine-grid parallelism.
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Fig. 1. Comparison of the di↵erent implementations of the Riccati recursion based solver, for the solution of problem
(1), for 1,2,4 or 8 threads. Problem size: N = 10, n

x

varied, n
u

= 2.

In the test in figure (1a) 1 thread was used. As expected,
the implementations making use of PLASMA (i.e. v3,
v4, v5) su↵er a certain overhead for small matrices. For
large matrices, all implementations of algorithm 3 (i.e.
v2, v3, v4, v5) behave in a very similar way, and are
faster than the implementation of algorithm 2 (i.e. v1),
as expected from the theoretical complexity. Anyway, for
very small problems, the latter is the fastest, due to the
better performance of dgemm on small matrices compared
to the others level 3 BLAS and dpotrf routines. The tile
asynchronous implementation v5 is always slightly faster
than the tile synchronous one v4, and this is true also for
a larger number of threads.

As the number of threads increases to 2, in figure (1b),
the overhead associated with implementations making use
of PLASMA (i.e. v3, v4, v5) increases of an order of
magnitude, and it seems proportional to the number of
PLASMA routines used per iteration (1 for v3, 9 for v4 and
v5). For n

x

2 {256, 512} the tile implementations v4 and

v5 are slightly faster than the implementation v2 making
use of parallel OpenBLAS. Anyway for larger systems their
performance is almost identical.

As the number of threads further increases to 4 (figure
(1c)) and 8 (figure (1d)), the trend remains unchanged.
In fact, the overhead associated with the use of PLASMA
routines increases, and then they become competitive with
respect to parallel OpenBLAS only for increasingly larger
systems. For large n

x

the performance of v4 and v5 is
almost identical to the one of v2, while v3 is slightly
slower. Also the cross-over point between the parallel
OpenBLAS implementations of algorithm 2 and algorithm
3 (respectively v1 and v2) moves toward larger values of
n
x

, since dgemm (the key routine in v1) is particularly
parallel friendly, while dpotrf (the key routine in v2) is
not.

As a result, on the tested machine implementation v2
making use of OpenBLAS and implementations v4, v5
making use of PLASMA shows an almost identical per-



number of threads
n
x

1 2 4 8

4 0.89 0.58 0.58 0.56
8 0.81 0.82 0.83 0.84
16 0.85 0.92 0.81 0.78
32 0.92 0.88 0.86 0.81
64 1.13 0.78 0.69 0.70
128 1.34 0.94 0.83 0.72
256 1.48 1.08 1.00 0.90
512 1.58 1.28 1.18 1.09
1024 1.64 1.55 1.48 1.34
2048 1.68 1.55 1.60 1.52
4096 1.69 1.67 1.64 1.54

Fig. 2. Speed-up of v2 with respect to v1, computed as
time

v1/time
v2. Problem size: N = 10, n

u

= 2.

formance. Anyway the result can be di↵erent on shared
memory machines with more cores (e.g. PLASMA docu-
mentation reports test on machines with 16 or 32 cores).
We also notice that, in case of loaded machine, PLASMA
shows a smaller decrease in performance compared to
OpenBLAS.

In the following we thus analyze more deeply the per-
formance of implementations v1 (implementing the clas-
sical version in algorithm 2) and v2 (implementing the
factorized version in algorithm 3), both making use of
OpenBLAS.

In figure 2 there is a table showing the relative speed-
up of implementation v2 compared to v1, as function of
the number of states n

x

and the number of threads. For
a given number of threads, implementation v1 is more
e�cient for small n

x

, while v2 is more e�cient for large
n
x

. The cross-over points moves toward lager values of n
x

as the number of threads increases: this means that v1
scales better with the number of threads compared to v2.
Looking at the rows of the table, we can arrive at the same
conclusion. In particular it is interesting to notice as, for
n
x

= {64, 128, 256}, implementation v2 is faster in case of
1 thread, but slower in case of 8.

In figure 3 there is a table showing, for both v1 and v2,
the speedup obtained using more threads, with respect to
the sequential code. The parallel code is faster than the
sequential one for n

x

� 64 for v1, and n
x

� 128 for v2.
The e�ciency in the use of all available cores increases
with the problem size, and again we notice as v1 has a
better scalability than v2.

7. CONCLUSION

In this paper we presented two version of Riccati recursion
based solver for an extended formulation of the LQ control
problems. Algorithm 2 has a worst theoretical complexity
but it performs better for small instances; algorithm 3 has
a better theoretical complexity, that gives it an advantage
for large instances. As the number of threads increases,
implementations of algorithm 2 scale better than imple-
mentations of algorithm 3. This is due to the fact that the
key routine in algorithm 3, the Cholesky factorization, is
not parallel friendly.

We tested a number of implementations of algorithm 3,
one making use of OpenBLAS, 3 making use of PLASMA

v1 v2
number of threads number of threads

n
x

2 4 8 2 4 8

4 0.61 0.59 0.61 0.40 0.39 0.39
8 0.25 0.25 0.21 0.26 0.26 0.21
16 0.33 0.31 0.31 0.36 0.30 0.29
32 0.60 0.61 0.50 0.57 0.57 0.44
64 1.24 1.63 1.29 0.86 0.99 0.80
128 1.61 2.53 2.43 1.13 1.58 1.31
256 1.77 3.07 3.36 1.30 2.08 2.04
512 1.88 3.50 5.75 1.53 2.63 3.97
1024 1.91 3.65 6.29 1.81 3.28 5.13
2048 1.96 3.78 7.03 1.81 3.60 6.38
4096 1.95 3.83 7.41 1.92 3.70 6.76

Fig. 3. Speed-up obtained using multiple threads, com-
pared to sequential code. Problem size: N = 10,
n
u

= 2.

(in the combinations synchronous/asynchronous tile al-
gorithms, and making use or not of the parallel level 3
BLAS provided by PLASMA). On the test machine (with
8 cores), the use of PLASMA does not give significant
advantages with respect to OpenBLAS.

As future work, further tests may be performed on ma-
chines with a larger number of cores.
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A Fast Condensing Method for Solution of
Linear-Quadratic Control Problems

Gianluca Frison, John Bagterp Jørgensen

Abstract— In both Active-Set (AS) and Interior-Point (IP)
algorithms for Model Predictive Control (MPC), sub-problems
in the form of linear-quadratic (LQ) control problems need to
be solved at each iteration. The solution of these sub-problems
is usually the main computational effort. In this paper we
consider a condensing (or state elimination) method to solve
an extended version of the LQ control problem, and we show
how to exploit the structure of this problem to both factorize the
dense Hessian matrix and solve the system. Furthermore, we
present two efficient implementations. The first implementation
is formally identical to the Riccati recursion based solver
and has a computational complexity that is linear in the
control horizon length and cubic in the number of states. The
second implementation has a computational complexity that is
quadratic in the control horizon length as well as the number
of states. When the state dimension is high, this implementation
is faster than the Riccati recursion based implementation.

I. INTRODUCTION

The linear-quadratic (LQ) control problem can be consid-
ered the core problem in Model Predictive Control (MPC).
In its classical form, it represents an unconstrained optimal
control problem where the controlled system is linear time-
invariant and the cost function is quadratic. This problem
formulation is especially important because it arises as a
sub-problem in Active-Set (AS) and Interior-Point (IP) algo-
rithms for MPC [1]–[3]. The solution of these sub-problems
is typically the main computational effort at each iteration,
and this explains the need for efficient solvers.

From a mathematical point of view, the LQ control prob-
lem is an equality constrained quadratic program, and it can
be solved by factorizing its KKT matrix with dense linear
algebra. The cost of this approach is O(N3

(n
x

+ n
u

)

3
),

where N is the control horizon length, n
x

is the number of
states and n

u

is the number of controls (or inputs). However,
the KKT system associated with the LQ control problem is
sparse, and its special structured can be exploited to obtain
more efficient solvers. Classical structure-exploiting solvers
may be divided into two groups, depending on whether the
states are considered as optimization variables or not.

In the first group, only the inputs are considered as
optimization variables. The large, sparse KKT system is
rewritten into a smaller, dense form, that can be solved
using dense linear algebra. Since the Hessian of the dense
formulation is positive definite, these solvers typically make
use of dense Cholesky factorization to factorize the Hessian.
The cost of this approach is O(N3n3

u

), plus the cost of the

G. Frison and J.B. Jørgensen are with Technical University of Den-
mark, DTU Compute - Department of Applied Mathematics and Com-
puter Science, DK-2800 Kgs Lyngby, Denmark. {giaf , jbj} at
imm.dtu.dk

condensing phase. The solvers in this first group, that can
be referenced as condensing (or state elimination) methods,
can be used to solve problems with a short control horizon
[5].

In the second group, also the states and co-states are con-
sidered as optimization variables, and larger systems where
the sparsity is preserved are solved. Well known examples
are general purpose sparse solvers, Riccati recursion based
solver and Schur complement based solvers. The complexity
of all solvers is O(N(n

x

+ n
u

)

3
), and they can be used to

solve problems with a long control horizon [5].
A recent paper [6] presents a connection point between the

two groups. The authors show that the Riccati recursion, tra-
ditionally used to efficiently factorize the large sparse KKT
system, can also be used to exploit the remaining structure
of the small dense Hessian of condensing methods, and to
factorize it in time O(N2

) (instead of O(N3
) using the

usual Cholesky factorization). However, this hybrid method
will never be faster than the Riccati recursion, and it has a
complexity that is quadratic in N and cubic in n

x

.
In this paper, we consider a condensing method where

the special structure of the LQ control problem is exploited
not only in the factorization of the small dense Hessian
matrix, but also in the solution of the system. Furthermore,
we present two efficient implementations of this method: the
one is formally identical (at least regarding the matrix-matrix
operations) to the Riccati solver for the sparse KKT system,
and then linear in N and cubic in n

x

, while the other is
quadratic in both N and n

x

. This second implementation is
faster than the Riccati solver in case of a large n

x

and a
moderate N .

The paper is organized as follows. Section II introduces
an extension to the classical LQ control problem, and states
necessary and sufficient conditions for its solution. In section
III the small, dense formulation of the LQ control problem
is computed by condensing the KKT system. Section IV
presents a method for structure-exploiting factorization and
system solution. In section V two efficient implementations
of the method are presented, and results of numerical tests
are presented in section VI. Finally, section VII contains the
conclusion.

II. THE EXTENDED LQ CONTROL PROBLEM

The extended LQ control problem is a generalization of
the classical LQ control problem. The cost function has
quadratic, linear and constant terms, and the constraints are
affine. Furthermore, all matrices are time variant. Its structure
is flexible enough to describe a wide range of problems [7].
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In particular, it can be used as a sub-routine in AS and IP
methods.

Problem 1: The extended LQ control problem is the
equality constrained quadratic program

min

un,xn+1
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The state vector x
n

has size n
x

, the input vector u
n

has size
n
u

, and N is the control horizon length.
Problem (1) can be rewritten in a more compact form as

min

y
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s.t. Ay = b
(2)

where (for N = 3)
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and s̃0 = S0x0 + s0 and ˜b0 = A0x0 + b0.
Theorem 1 (KKT (necessary) conditions): If y⇤ is a solu-

tion of problem (2), then there exists a vector ⇡⇤ of size
N · n

x

such that

H �A0

�A 0

� 
y⇤

⇡⇤

�
= �


g
b

�
. (3)

Proof: See [4].
System (3) is the KKT system associated with problem

(2), and in the case of the extended LQ control problem the
KKT matrix is large (of size (2n

x

+ n
u

)N ⇥ (2n
x

+ n
u

)N )
and sparse.

Theorem 2 (Sufficient conditions): Let the matrices P
N

and

Q

n

S0
n

S
n

R
n

�
be positive semi-definite, and the matrices

R
n

be positive definite for all n 2 {0, 1, . . . , N � 1}, then
problem (2) has one and only one solution, given by the
solution of the KKT system (3).

Proof: See [5].
In the following, we assume that conditions holds such that

theorems 1 and 2 apply. We also assume that the matrices
P
N

, Q
n

and R
n

are symmetric.

III. CONDENSING OF THE KKT SYSTEM

There exist several methods to solve the KKT system (3).
In this paper we consider a condensing (or state elimination)
method. It consists in the elimination of the explicit depen-
dence of the KKT system (or equivalently of problem (1))
from x and ⇡. The result is a smal dense system of linear
equations.

By using the definition of y, the KKT system (3) can be
re-written as2
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Since the squared matrix ¯A
N

has full rank, it is invertible,
and then it is possible to eliminate ⇡ from (4), obtaining
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where �

N

=

¯A�1
N

¯B
N

is lower block-triangular. Again, since
¯A
N

is invertible, it is possible to eliminate x from (5),
obtaining

(H
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)u = �f (6)

where
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The dense KKT matrix H
N

(that is also the Hessian of
the dense formulation of problem (1)) is small (of size
Nn

u

⇥Nn
u

) and dense. Notice that ¯S
N

�

N

is lower block-
triangular, with zero block-diagonal.

According to theorem 2, the matrix H
N

is positive definite
[5], and it can be factorized using Cholesky factorization.

IV. DERIVATION

In this section, we present a structure-exploiting proce-
dure to factorize the Hessian matrix H

N

and solve system
(6). There are two equivalent approaches: a Cholesky-like
factorization of the matrix H

N

, or a standard Cholesky fac-
torization of a properly permuted matrix ˆH

N

(see appendix
A). We prefer the second approach for the reason that it
requires only standard software (e.g. BLAS and LAPACK,
of which there exist highly optimized implementations).

Let us consider the permutation matrix (for N = 3)

M
x

= M0
x

= M�1
x

=

2

4
I
x

I
x

I
x

3

5

of size Nn
x

(where I
x

is the identity matrix of size n
x

) and
the permutation matrix M

u

of size Nn
u

(where the identity
matrices I

u

have size n
u

). The permuted system is
ˆH
N

û = (M
u

H
N

M
u

)(M
u

u) = �M
u

f = � ˆf.

In the following we will use the hat to indicate permuted
matrices and vectors.
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A. Structure-exploiting factorization of ˆH
N

In this part we describe a procedure equivalent to the
Cholesky factorization of the matrix ˆH

N

, but that requires
less than O(N3

) flops. At each iteration, one block-row is
factorized, and the correction of the part of the matrix that
has not yet been factorized (see appendix A) is substituted
with the update of one of the matrices Q

n

.
The permuted problem matrices are (for N = 3)

ˆQ
N

=

2

4
P3

Q2

Q1

3

5 , ˆS
N

=

2

4
0 S2

0 S1

0

3

5 ,

ˆR
N

=

2

4
R2

R1

R0

3

5 , q̂=

2

4
p3
q2
q1

3

5 , ŝ=

2

4
s2
s1
s0

3

5 , û=

2

4
u2

u1

u0

3

5 ,

ˆA
N

=

2

4
I �A2

I �A1

I

3

5 , ˆB
N

=

2

4
B2

B1

B0

3

5 ,ˆb=

2

4
b2
b1
b0

3

5 .

We define the matrix

ˆQ⇤
N

=

2

4
Q⇤

3

Q2

Q1

3

5

where Q⇤
3 = P3.

The permuted matrix ˆH
N

and vector ˆf take the form

ˆH
N

=

ˆR
N

+

ˆ

�

0
N

ˆS0
N

+

ˆS
N

ˆ

�

N

+

ˆ

�

0
N

ˆQ⇤
N

ˆ

�

N

(9)
ˆf = ŝ+ ˆ

�

0
N

q̂ + (

ˆS
N

+

ˆ

�

0
N

ˆQ⇤
N

)

ˆA�1
N

ˆb (10)

where ˆ

�

N

=

ˆA�1
N

ˆB
N

is block upper triangular.
We want to emphasize the structure of the first block-row

by decomposing all matrices. In particular, the matrix ˆA
N

is

ˆA
N

=


I
x

�A
N�1EN�1
ˆA
N�1

�

where E
N�1 =

⇥
I
x

O
⇤
, where O is a zero matrix of size

nx ⇥ ((N � 1) � 1)n
x

and I
x

is an identity matrix of size
n
x

. Notice that ˆA1 = I
x

. The inverse ˆA�1
N

is

ˆA�1
N�1 =


I
x

A
N�1EN�1

ˆA�1
N�1

ˆA�1
N�1

�

and then ˆ

�

N

=

ˆA�1
N

ˆB
N

is

ˆ

�

N

=


B

N�1 A
N�1

ˆE
N�1

ˆ

�

N�1
ˆ

�

N�1

�
.

Notice that ˆ

�1 = B0. Similarly for ˆQ⇤
N

, ˆR
N

and ˆS
N

ˆQ
N

=


Q⇤

N

ˆQ
N�1

�
, ˆR

N

=


R

N�1
ˆR
N�1

�

ˆS
N

=


0 S

N�1EN�1
ˆS
N�1

�

The block upper triangular part of the matrix ˆ

�

0
N

ˆQ⇤
N

ˆ

�

N

is (using 3 = N and 2 = N � 1 for space issues)

ˆ

�

0
3
ˆQ⇤
3
ˆ

� =


B0

2Q
⇤
3B2 B0

2Q
⇤
3A2E2ˆ�2

⇤ ˆ

�

0
2
ˆQ2

ˆ

�2 +
ˆ

�

0
2E 0

2A
0
2Q

⇤
3A2E2�2

�
.

Similarly, the matrix ˆS
N

ˆ

�

N

is

ˆS2
ˆ

�3 =


0 S2E2ˆ�2

ˆS2
ˆ

�2

�

In the following we consider only the block upper trian-
gular part of the matrix ˆH

N

, that is

ˆH3 =


H11 H12

⇤ H22

�
=

ˆR3 +
ˆS3
ˆ

�3 +
ˆ

�

0
3
ˆQ⇤
3
ˆ

�3 =


R2 +B0

2Q
⇤
3B2 (S2 +B0

2Q
⇤
3A2)Ê2�̂2

⇤ R̂2 + Ŝ2�̂2 + �̂0
2Q̂2�̂2 + �̂0

2Ê 0
2A

0
2Q

⇤
3A2Ê2�̂2

�

The symmetric positive definite matrix D
N�1 = H11 can be

factorized using the Cholesky factorization, as

D
N�1 = R

N�1 +B0
N�1Q

⇤
N

B
N�1 = U 0

N�1UN�1. (11)

where U
N�1 is the U11 matrix in (27). The rectangular

matrix U12 in (27) is obtained as

U12 = (U 0
N�1)

�1H12 = L
N�1EN�1

ˆ

�

N�1

where
L
N�1 = (U 0

N�1)
�1M

N�1. (12)

and
M

N�1 = S
N�1 +B0

N�1Q
⇤
N

A
N�1 (13)

The correction term �U 0
12U12 is

�U 0
12U12 = �ˆ

�

0
N�1E 0

N�1L
0
N�1LN�1EN�1

ˆ

�

N�1

and then the corrected bottom-right matrix is

H22�U 0
12U12 =

ˆR
N�1+

ˆS
N�1

ˆ

�

N�1+
ˆ

�

0
N�1

ˆQ⇤
N�1

ˆ

�

N

+

+

ˆ

�

0
N�1E 0

N�1A
0
N�1Q

⇤
N

A
N�1EN�1

ˆ

�

N�1 (14)

where
ˆQ⇤
N�1 =


Q⇤

N�1
ˆQ
N�2

�

and
Q⇤

N�1 = Q
N�1 � L0

N�1LN�1. (15)

Notice that the corrected term H⇤
22 = H22 � U 0

12U12,
is exactly in the same form as H22, with the corrected
matrix Q⇤

N�1 in place of Q
N�1. The correction of the not-

factorized-yet matrix H22 is equivalent to the correction of
Q⇤

N�1, and the use of the latter to compute H⇤
22.

The procedure to factorize one row of the matrix ˆH
N

reduces to the factorization of the block-diagonal element
H11 = U 0

N�1UN�1, the computation of the remaining of the
row by solving the triangular system U12 = (U 0

N�1)
�1H12,

and the computation of Q⇤
N�1 = Q

N�1 � L0
N�1LN�1 in

place of the correction term �U 0
12U12.

The upper Cholesky factor computed so far is

U11 U12

H22 � U 0
12U12

�
=


U
N�1 L

N�1row1(
ˆ

�

N�1)

H⇤
22

�

where row1(
ˆ

�

N�1) = E
N�1

ˆ

�

N�1 is the first block row of
ˆ

�

N�1). Notice that the first-block row is factorized, and
the matrix H⇤

22 can be factorized by repeating the same
procedure.
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Let us define the matrix ˆH⇤
N

as

ˆH⇤
N

=

ˆR
N

+

ˆS
N

ˆ

�

N

+

ˆ

�

0
N

ˆS0
N

+

ˆ

�

0
N

ˆQ⇤
N

ˆ

�

N

where (for N = 3)

ˆQ⇤
N

=

2

4
Q⇤

3

Q⇤
2

Q⇤
1

3

5 .

The Cholesky factorization of the matrix ˆH
N

is then equiv-
alent to the following procedure on the matrix ˆH⇤

N

: for
each block-row, Cholesky factorization of the block-diagonal
element, and triangular system solution to compute the
remaining of the block-row.

At the end of the factorization procedure, the upper block-
triangular factor ˆU is (for N = 3)

ˆU =

2

4
U2 L2B1 L2A1B0

U1 L1B0

U0

3

5
=

ˆU
N

+

ˆL
N

ˆA�1
N

ˆB
N

(16)

where

ˆU
N

=

2

4
U2

U1

U0

3

5 , ˆL
N

=

2

4
0 L2

0 L1

0

3

5 . (17)

Notice that the matrix ˆL
N

ˆA�1
N

ˆB
N

is upper block-triangular,
with zero block-diagonal.

B. Structure-exploiting system solution

The factorized system

ˆU 0
ˆU û = � ˆf (18)

may be solved using forward and backward substitutions.
The input vector is then computed as u = M

u

û. Anyway
also in this case it is possible to exploit the form of the
problem, and in particular of the upper factor ˆU in (16).

System (18) may be rewritten as

ˆU 0ŷ = �ĝ (19)

where we define
ˆU û = ŷ. (20)

The first step is then the solution of the lower block-
triangular system (19) using forward substitution. Inserting
(16) in (19) we have

ŷ = �(

ˆU 0
N

)

�1
⇣
ĝ + ˆB0

N

(

ˆA0
N

)

�1
ˆL0
N

ŷ
⌘

(21)

that in the case N = 3 looks like
2

4
y2
y1
y0

3

5
=

2

4
�(U 0

2)
�1

(g2)
�(U 0

1)
�1

(g1 +B0
1L

0
2y2)

�(U 0
0)

�1
(g0 +B0

0A
0
1L

0
2y2 +B0

0L
0
1y1)

3

5 .

The second step is the solution of the upper block-
tridiagonal system (20) using backward substitution. Insert-
ing (16) in (20) we have

û =

ˆU�1
N

⇣
ŷ � ˆL

N

ˆA�1
N

ˆB
N

û
⌘

(22)

that in the case N = 3 looks like
2

4
u2

u1

u0

3

5
=

2

4
U�1
2 (y2 � L2B1u1 � L2A1B0u0)

U�1
1 (y1 � L1B0u0)

U�1
0 (y0)

3

5 .

Equations (21) and (22) imply that it is not necessary
to explicitly build the ˆU matrix (16). Solution of (18) only
requires the computation of the matrices ˆU

N

and ˆL
N

in (17).

C. Computational cost

The cost of the matrix-matrix operations in the factoriza-
tion and solution of system (18) is then

1
3Nn3

u

+ (N � 1)n
x

n2
u

+ (N � 1)n2
x

n
u

(23)

flops, where the first term comes from the Cholesky factor-
ization of the block-diagonal elements (11), the second term
from the solution of system (12) and the third term from the
computation of (15).

The cost to solve problem (1) is 1
3Nn3

u

+(N � 1)n
x

n2
u

+

(N � 1)n2
x

n
u

plus the cost to build the matrix ˆH⇤
N

.

V. IMPLEMENTATION

In this section, we present two implementations of the
procedure described in section IV, characterized by different
asymptotic complexity. The basic difference between the two
implementations is the procedure to build the matrix ˆH⇤

N

.
The first procedure is formally equivalent to the Riccati

solver for the sparse KKT system, and then problem (1) can
be solved in time O(N(n

x

+ n
u

)

3
).

The second procedure can be used to solve problem (1)
in time O(N2n2

x

n
u

+Nn
x

n2
u

+Nn3
u

), and it is faster than
Riccati recursion if roughly n

x

> Nn
u

.
The key to build the matrix ˆH⇤

N

is the exploitation of the
special structure of ˆA�1

N

(see appendix B).

A. Riccati-like solver

The key idea of this implementation is to perform a
number of operations linear in N . This solver is formally
identical to the Riccati solver for the sparse KKT system:
the only difference is in the matrix-vector operations.

Let us define P
N

= Q
N

. The upper block-triangular part
of the matrix ˆH⇤

N

is (for N = 3)

ˆH⇤
3 =

ˆR3 +
ˆS3
ˆ

�3 +
ˆ

�

0
3
ˆQ⇤
3
ˆ

�3 =


H11 H12

⇤ H22

�
=


R2 +B0

2P3B2 (S2 +B0
2P3A2)Ê2�̂2

⇤ R̂2 + Ŝ2�̂2 + �̂0
2Q̂

⇤
2�̂2 + �̂0

2Ê 0
2A

0
2P3A2Ê2�̂2

�
=


R2 +B0

2P3B2 (S2 +B0
2P3A2)

ˆE2ˆ�2

⇤ ˆR2 +
ˆS2
ˆ

�2 +
ˆ

�

0
2
ˆP2
ˆ

�2

�

where ˆP
N�1 is ˆQ⇤

N�1 with P
N�1 in place of Q⇤

N�1, and

P
N�1 = Q⇤

N�1 +A0
N�1PN

A
N�1 =

= Q
N�1 +A0

N�1PN

A
N�1 � L0

N�1LN�1.
(24)

Notice that (24) is the well-known Riccati recursion, and that
with this definition matrix H22 is in the exact same form
as ˆH⇤

N

. As a consequence the procedure can be repeated
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for the matrix H22=̇
ˆH⇤
N�1. The recursion ends for ˆH1 =

R0 +B0
0P1B0.

The matrix ˆH⇤
N

can be build in 7
3n

3
x

+ 3n2
x

n
u

+ n
x

n2
u

flops. In fact, as shown in [8], the term A0
n

P
n+1An

can be
computed in 7

3n
3
x

flops, the matrix D
n

= R
n

+B0
n

P
n+1Bn

in n2
x

n
u

+n
x

n2
u

flops, and the matrix M
n

= S
n

+B0
n

P
n+1An

in 2n2
x

n
u

flops.
Adding the costs (23), problem (1) can be solved with a

computational cost of roughly

N
�
7
3n

3
x

+ 4n2
x

n
u

+ 2n
x

n2
u

+

1
3n

3
u

�
(25)

flops. That is the exact same cost of the Riccati recursion
implementation in [8].

B. Pure condensing solver

The key idea of this implementation is to avoid operations
cubic in n

x

, even at the cost of more operations in N . This
solver is efficient for large values of n

x

.
The matrix ˆ

�

N

is formed explicitly, and it can be com-
puted efficiently by using a multiplication-cascade procedure,
in N(N�1)

2 2n2
x

n
u

⇡ N2n2
x

n
u

flops. For N = 3, it is like

ˆ

�

N

=

2

4
B2 A2B1 A2A1B0

B1 A1B0

B0

3

5 .

We do not have to explicitly compute ˆH⇤
N

, but we only need
ˆD
N

and ˆM
N

. ˆD
N

can be computed in time O(N2
) as

ˆD
N

=

ˆR
N

+

ˆB0
N

· diag
⇣
(

ˆA0
N

)

�1
(

ˆQ⇤
N

ˆ

�

N

)

⌘
.

Notice that matrix ˆD
N

is build one row at a time, as soon
as the updated matrices Q⇤

n

are computed. The procedure
requires N(N+1)

2 2n2
x

n
u

flops for the computation of ˆQ⇤
N

·ˆ�
N

,
N(N�1)

2 2n2
x

n
u

flops for the computation of the upper block-
triangular part of (

ˆA0
N

)

�1 · ( ˆQ⇤
N

ˆ

�

N

), and N2n
x

n2
u

for the
computation of ˆB0

N

· diag(. . . ). This procedure requires
O(N) function calls to the BLAS routine dgemm. The
overall cost is roughly 2N2n2

x

n
u

+ 2Nn
x

n2
u

flops.
ˆM
N

can be computed as

ˆM
N

=

ˆS
N

+

⇣
diag

⇣
(

ˆA0
N

)

�1
(

ˆQ⇤
N

ˆ

�

N

)

⌘⌘0
· ˆA

N

in 2(N � 1)n2
x

n
u

flops, where for N = 3

ˆA
N

=

2

4
0 A2

0 A1

0

3

5 .

The cost to solve problem (1) by using this solver is roughly

2N2n2
x

n
u

+ 3Nn
x

n2
u

+

1
3Nn3

u

(26)

flops, plus the computation of ˆ

�

N

, requiring N2n2
x

n
u

flops,
but that can be performed off-line in an IP method.

VI. NUMERICAL RESULTS

The two implementations presented in section V have been
implemented in C code and compared to each other. The
tests have been performed on a laptop equipped with Intel
i5-2410M @ 2.30 GHz, running Ubuntu 12.04 version 64 bit.
OpenBLAS version 0.2.4 provides the BLAS and LAPACK
libraries. The number of threads is set to one.

As test problem, we used a randomly generated linear
system, while in the cost function Q

n

and R
n

are identities
and S

n

, s
n

and q
n

are zero matrices.
Figure 1a shows the computation time as function of n

x

.
For large values of n

x

, the pure condensing solver is faster
than the Riccati-like one, since it is quadratic instead of cubic
in n

x

.
Figure 1b shows the computation time as function of

n
u

. The pure condensing solver is almost linear for a wide
range of values of n

u

: in fact, the dominant term in (26) is
2N2n2

x

n
u

, unless n
u

is really large. The Riccati-like solver
is almost insensitive to the value of n

u

as long as n
u

< n
x

,
but it becomes quickly cubic in n

u

as soon as n
u

> n
x

.
Figure 1c shows the computation time as function of N .

As expected, the Riccati-like solver is linear in N , while the
pure condensing solver is quadratic in N .

VII. CONCLUSION

In this paper we present a method for the solution of
(1) that is based on condensing (i.e. state elimination). The
method exploits the special form of problem (1) in both
factorization of matrix (9) and solution of system (18). This
method is interesting from a theoretical point of view, and
furthermore it leads to two efficient implementations. The
one is formally identical to the Riccati solver for the sparse
KKT system (linear in N and cubic in n

x

). The other
(quadratic in both N and n

x

) is faster than the Riccati solver
for large n

x

and moderate N .

APPENDIX

A. Cholesky factorization

The standard Cholesky factorization is used to factorize a
symmetric positive definite matrix H in the form H = LU ,
where the left matrix L is lower triangular, the right matrix
U is upper triangular and U = L0 (or L = U 0).

A basic algorithm to compute the upper triangular
Cholesky factor is found by considering the expression

H=


H11 H12

H21 H22

�
= U 0U =


U 0
11

U 0
12 U 0

22

� 
U11 U12

U22

�

=


U 0
11U11 U 0

11U12

U 0
12U11 U 0

22U22 + U 0
12U12

� (27)

The factorization procedure consist in the factorization of
H11 to obtain U11, the solution of the triangular system
U12 = (U 0

11)
�1H12 to obtain U12, the computation of

the correction term �U 0
12U12, and the factorization of the

corrected term H⇤
22 = H22 � U 0

12U12 to obtain U22.
The ’Cholesky-like factorization’ is a factorization ana-

logue to Cholesky one, with the difference that the matrix
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Fig. 1: Time to solve problem (1) by using the Riccati-like
(red) and condensing (blue) solvers described in this paper.

H is factorized in the form H = UL, where this time the
left matrix U is upper triangular and the right matrix L is
lower triangular, while as usual U = L0 (or L = U 0).

A basic algorithm to compute the lower triangular
Cholesky like factor is found by considering the expression

H =


H11 H 0

21

H21 H22

�
= L0L =


L0
11 L0

21

L0
22

� 
L11

L21 L22

�
=

=


L0
11L11 + L0

21L21 L0
21L22

L0
22L21 L0

22L22

�
.

B. Structure of ˆA�1
N

The shape of the matrix ˆA�1
N

plays an important role in
the method considered in this paper. For N = 3, it looks like

ˆA�1
N

=

2

4
I �A2

I �A1

I

3

5
�1

=

2

4
I A2 A2A1

I A1

I

3

5 .

As we can see, ˆA
N

is sparse (it has 2N�1 block-elements),
while ˆA�1

N

is full (it has N(N+1)
2 block-elements).

Let us consider the product ↵̂ =

ˆA
N

ˆ�:
2

4
↵2

↵1

↵0

3

5
=

2

4
I �A2

I �A1

I

3

5

2

4
�2

�1

�0

3

5
=

2

4
�2 �A2�1

�1 �A1�0

�0

3

5 .

This means that a term in the form ˆ� =

ˆA�1
N

↵̂ can be
computed in N steps by using the backward recursion
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Similarly, a term in the form ˆ� = (
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computed in N steps by using the forward recursion
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High-Performance Small-Scale Solvers
for Linear Model Predictive Control

Gianluca Frison, Hans Henrik Brandenborg Sørensen, Bernd Dammann, John Bagterp Jørgensen

Abstract— In Model Predictive Control (MPC), an optimiza-
tion problem needs to be solved at each sampling time, and
this has traditionally limited use of MPC to systems with slow
dynamic. In recent years, there has been an increasing interest
in the area of fast small-scale solvers for linear MPC, with
the two main research areas of explicit MPC and tailored
on-line MPC. State-of-the-art solvers in this second class can
outperform optimized linear-algebra libraries (BLAS) only for
very small problems, and do not explicitly exploit the hardware
capabilities, relying on compilers for that. This approach can
attain only a small fraction of the peak performance on
modern processors. In our paper, we combine high-performance
computing techniques with tailored solvers for MPC, and use
the specific instruction sets of the target architectures. The
resulting software (called HPMPC) can solve linear MPC
problems 2 to 8 times faster than the current state-of-the-art
solver for this class of problems, and the high-performance is
maintained for MPC problems with up to a few hundred states.

I. INTRODUCTION

In recent years, there has been an increasing interest in
fast small-scale solvers for linear Model Predictive Control
(MPC). This is due to both the need of extend the use of MPC
to faster systems (with KHz sampling frequencies), and to
the use of decomposition algorithms (where a large number
of small problems has to be solved). The two main research
areas in fast MPC are explicit MPC [1] and tailored solvers
for on-line MPC [10]. In turn, solvers for on-line MPC
can be divided into two classes: first order methods (e.g.
gradient methods) and second order methods (e.g. interior-
point methods). In our paper, we will focus on interior-point
methods for on-line MPC, that have the useful property of
converging in a number of iterations almost independent of
the problems size and conditioning.

Second order methods make use of matrix-matrix linear-
algebra operations (level 3 BLAS), that require O(n3)
floating-point operations (flops) while using O(n2) storage
space: thus each matrix element is accessed O(n) times.
In modern architectures the cost of a memory operation
(memop) is much higher that the cost of a floating-point op-
eration (flop). Furthermore, most instructions are pipelined,
and their latency can be effectively hidden if enough indepen-
dent operations are present in the code. As a consequence,
an implementation of a linear-algebra routine only concerned
in reducing the number of flops would attain a low perfor-
mance, since the processor would be idle most of the time,
waiting for operands to be fetched from main memory or

Authors are with Technical University of Denmark, DTU Compute -
Department of Applied Mathematics and Computer Science, DK-2800 Kgs
Lyngby, Denmark. Email: giaf at imm.dtu.dk

for dependent instructions to complete. A technique used to
mitigate both issues is blocking for registers.

High-performance implementations of level 3 BLAS can
attain performances very close to the theoretical peak for
large-enough matrices [4]. This performance is obtained
by employing different levels of blocking (e.g. for reg-
isters, level 2 cache, etc.), copying data in contiguous
memory, and using assembly code for the innermost loops
and architecture-specific SIMD (Single-Instruction Multiple-
Data) instructions (e.g. SSE, AVX in Intel and AMD pro-
cessors). However, compilers are not very good at producing
blocked code, nor at using SIMD, so this is still something
that should be done by the programmer.

The drawback of the approach employed in high-
performance BLAS is that, for small matrices, the cost of all
these memory copies and different levels of blocking would
be totally dominant. Thus, in recent years there has been
much research about the possibility of improving the speed
of small-scale MPC solvers, studying alternatives to BLAS.

CVXGEN [5] is a well-known small-scale solver for
convex optimization problems, that can solve many MPC
problems. It employs a predictor-corrector Interior-Point (IP)
method, and a sparse LDL factorization for the solution
of the KKT system at each iteration of the IP method.
The approach used to implement the linear algebra is code
generation: a tailored solver is generated for the size and
the form of each individual problem. The output of the
code generation process is a set of C source files, where
all the single operations are written down, without loops.
In a following step, the compiler has the task to convert
this C code into an executable. The main advantages of
this approach are that there are no loops nor function calls
(and then no associated overhead) and branches (and then
no branch misprediction). The main disadvantages are that
instruction cache is not exploited (since each instruction is
executed only once), and that the code size grows with the
cube of the matrices size, becoming quickly intractable.

FORCES [2] is a numerical optimization framework for
convex multistage problems, that can solve a wide class of
MPC problems. It employs a predictor-corrector IP method,
and a tailored solver for the KKT system, based on a block
Cholesky factorization of the Schur complement of the KKT
matrix. This tailored solver has been previously employed in
the Fast-MPC [10] solver. FORCES uses a different approach
to code generation: instead of writing down all the single
operations, it uses nested triple-loops, where the loops size
is tailored for each individual problem and fixed at compile
time. This enables the compiler to perform loop unrolling

2014 European Control Conference (ECC)
June 24-27, 2014. Strasbourg, France

978-3-9524269-2-0 © EUCA 128



when it is most profitable, while keeping the size of the
executable approximately constant. The main advantage of
this approach is that the performance scales much better with
the problem size. The main disadvantage is that a triple-loop
based approach can attain only a small fraction of the peak
performance of the processor.

In this paper, we propose a novel approach to implement
solvers for linear MPC problems, combining the imple-
mentation techniques of high-performance optimized BLAS
libraries with the small-scale speed of code-generation and
solvers specially tailored for MPC problems.

The proposed algorithm for the solution of the KKT
system of MPC problems is similar to the one presented
in [3], with the difference that it moves the integration
process one step further: the factorization and the backward
recursion of the solution are fused. This allows us to reduce
the number of function calls to linear-algebra routines to 3
in the factorization and 3 in the solution, for each iteration
of the Riccati-like recursion.

About the implementation, we use an approach somehow
similar to the one proposed in the BLIS [9] framework, with
the difference that we only block for registers and add code-
generation. More specifically, we write the innermost loop
as a separate (and optimized) micro-kernel, and block for
the size of the registers. Furthermore, we employ a partial
code-generation approach: only the two outermost loops
around the micro-kernel are totally unrolled. This give a
good balance between speed and code size, and in any case a
library version of the code is available too. The performance
for small-scale problems is up to one order of magnitude
higher than the one obtained using optimized BLAS, and
the cross-over point is for problems with several hundreds
states and controls, large enough for most MPC applications.
Furthermore, our tests in section VI show that our solver is
from 2 (for the smaller problem) to 8 (for the larger) times
faster than the current state-of-the-art solver for linear MPC.

The small number of function calls means that we need to
write and optimize only 6 linear algebra routines. Actually,
good performance can be obtained using the reference ver-
sion of the code and optimizing only the matrix-matrix mul-
tiplication micro-kernel. This approach is portable, since the
only code that needs to be optimized on a new architecture is
this micro-kernel. The BLIS framework will make available
highly optimized micro-kernels for a number of architectures
[8], and at that time it will be possible to combine our solver
with these micro-kernels, to obtain high performance on an
even wider range of architectures.

We will publish the HPMPC code as open-source, so our
optimized solver can be used out of the box on most Intel
and AMD machines.

II. PROBLEMS

In this paper, we focus our attention on efficient solvers
for the Linear-Quadratic (LQ) control problem, that can be
considered the core problem in MPC. In fact, it is a rather
general formulation that can represent a number of problems
in optimal control and estimation, and in particular it arises

as sub-problem in Interior-Point (IP) methods for MPC.
High-performance of a solver for the LQ control problem
immediately translates in high-performance for solvers for a
wider class of problems.

A. LQ control problem

The LQ control problem (LQCP) is the equality con-
strained quadratic program
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All matrices in this formulation can be dense and time
variant. We assume that all matrices Q

n

and P are symmetric
positive definite.

B. Linear MPC problem

The linear MPC problem with linear constraints is the
quadratic program
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III. SOLVER FOR THE LQ CONTROL PROBLEM

In this section we want to show a solution procedure
for the LQ control problem (1) equivalent to the classical
Riccati recursion, but with important advantages on the
implementation side.

A. Derivation

It is well known from literature that the LQ control
problem can be solved by using dynamic programming. Here
we do not want to repeat the proof, but only to show a
procedure to optimize the stage cost that leads to an efficient
implementation in practice.

The optimal stage cost at the generic stage n+ 1 is
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the optimal stage cost becomes
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If the matrix P
n+1 is positive definite, it can be factorized

using Cholesky factorization, as
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that can be build efficiently by exploiting the symmetry and
the fact that L

n+1 is a lower triangular matrix.
The stage cost at the stage n (dropping the indexes n and

n+ 1 in the last equation)
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is a function of x
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, and can be easily minimized with
respect to u

n

in the following way. The matrix is positive
definite (since it is the sum of a positive definite matrix and a
positive semi-definite matrix), and then the stage cost can be
factorized by using the Cholesky factorization of the matrix,
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as in the classical formulation of the dynamic programming
for the LQ control problem. Notice that the procedure gives
a factorization of the matrix P
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that can be used at the
following stage to efficiently compute A0

n�1Pn

A
n�1.

The value of u
n

in (4) can be rewritten as

u
n

=�(R
n

+B0
n

P
n+1Bn

)�1
�
(S

n

+B0
n

P
n+1An

)x
n

+

+ s
n

+B0
n

(P
n+1bn+p

n+1)
�
= K

n

x
n

+ k
n

that is the usual expression of u
n

as time varying affine
state feedback given by the Riccati recursion. However, the
procedure to compute u

n

as in (4) is more efficient from
a computational point of view. Also notice that the recur-
sion matrix P

n

of the Riccati recursion is never computed
explicitly in the above solution procedure.

B. Algorithm

The Riccati-like procedure presented in the previous sec-
tion leads to an efficient algorithm in practice, summarized
in Algorithm 1.

The classical Riccati recursion for the solution of the LQ
control problem consist of a backward recursion for the KKT
matrix factorization (with cubic complexity in the matrices
size) and backward and forward substitution for the KKT
system solution (with quadratic complexity in the matrices
size). For small systems, the cost for the factorization and
the cost for the solution have the same order of magnitude.

In the proposed algorithm the factorization and the back-
ward substitution are fused in a single backward loop. The
number of function calls to BLAS per backward iteration is
only 3, thanks to the packing of matrices. This reduces the
function calls overhead and the data movement.

The proposed algorithm does not contain calls to level
2 BLAS functions in the backward loop, that have been
replaced by packing the vectors s

n

and q
n

with the matrices
R

n

, S
n

and Q
n

, and the vector b
n

with the matrices A
n

and B
n

to perform calls to level 3 BLAS on a single larger
matrix. As a result, the calls to level 2 BLAS in the backward
substitution of the the classical Riccati recursion come almost
for free, since the matrix operands are already loaded in the
registers.

Algorithm 1 Solution procedure for the LQ control problem
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IV. IMPLEMENTATION DETAILS

In this section we present the techniques used in the
implementation of our software.

A. Blocking for registers

The most important technique is certainly blocking for
registers: this reduces the number of memops, and helps
hiding the latency of operations. We will explain the idea
with an example. Suppose that we want to compute the
product of two squared matrices A and B of size n, and
use the result to update the square matrix C of size n:

C = C +A ·B
If we use the definition of matrix-matrix product, we can
compute each element c

ij

of C as

c
ij

= c
ij

+
n�1X

k=0

a
ik

· b
kj

. (5)

If we store the element c
ij

in a register, the computation of
one element of C requires 2n flops (n multiplications and
n sums) and 2n + 2 memops (1 load and 1 store of c

ij

, n
loads of both a

ik

and b
kj

). In total, the matrix-matrix product
would require approximately 2n3 flops and 2n3 memops,
with a ratio flops/memops of 1.

If we use more registers to store elements of C, we can
improve this ratio. If for example we store a 2⇥2 sub-matrix
of C, then, for each k, we can load 2 element of A and 2
elements of B, to update 4 elements of C, as

b0 b1
a0 c00 + a0 · b0 c01 + a0 · b1
a1 c10 + a1 · b0 c11 + a1 · b1

(6)

Once loaded in the registers, each element of A and B is
used twice: the ratio flops/memops is then about 2.

In general, if we can store a sub-matrix of C of size n
r

,
the ratio flops/memops is about n

r

. In practice, the number
of available registers is limited, and the size of the sub-matrix
of C stored in the registers has to be chosen accordingly.

The same idea can be applied to other memory levels,
for example blocking for level 2 or 3 cache. However, since
our target are small-scale problems that can already fit in
cache, we did not implement blocking for cache, but we store
the elements of the matrices in the same order as they are
accessed by the matrix-matrix multiplication micro-kernel.

Furthermore, notice that the 4 multiply-accumulate in (6)
are totally independent, and could be performed in parallel,
while this is not the case unrolling the loop in (5). Thus
blocking for registers can be used to get enough independent
operations to keep the execution units busy, since most
floating-point instructions are pipelined, and their throughput
is lower than the latency.

B. SIMD instructions

SIMD (Single-Instruction Multiple-Data) are instruction
that perform the same operation in parallel on all elements
of small vectors of data. In theory, an operation on a vector
of size n

v

can improve the performance up to n
v

times.

In our implementation, we make use of SSE-SSE2-SSE3
instructions (that operates on 128-bit-wide vectors, storing
2 doubles) and AVX instructions (that operates on 256-bit-
wide vectors, storing 4 doubles). We mainly use the intrinsics
version of the instruction: this makes the programming much
easier, since the compiler takes care of registers allocation
and instruction scheduling.

If we want to implement (6) using SSE3 instructions, it is
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where the squred brackets indicates the small vectors. As a
result, the number of operations is halved.

SIMD instructions often have alignment requirements to
obtain high performance: for example, SSE instructions
can efficiently load and store data that is 128 bits (or 16
bytes) aligned, while for the AVX instructions the alignment
requirement is 256 bits (or 32 bytes). In our LQ control
problem solver, we require the data to be already aligned,
and we deal with this in the IP method.

C. Customized BLAS

In order to obtain the highest performance for small
problems, we implemented the few BLAS routines needed
by our solver using the techniques presented above.

More in detail, we implemented a simplified version of the
needed BLAS routines, with one only option per routine (e.g.
we only work with lower triangular matrices). The innermost
loop of each BLAS routine is implemented as a separate
micro-kernel, coded using blocking for registers and SIMD.

We employ a partial code-generation approach, where the
innermost loop is coded as a function (kernel), and the
two outermost loops are totally unrolled. This gives a good
trade-off between performance (fewer branches and indexes
computation) and code size. A library version of the code is
also available, and usually it is faster for system with more
than about 30 states.

V. IP METHOD FOR THE LINEAR MPC PROBLEM

The linear MPC problem in (3) can be solved using an IP
method. In this paper, we employ a primal-dual IP method
[6]. Let us consider the general quadratic program
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a linear system of equations of the form
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where t
k

are the slack variables, ⇡
k

and �
k

are the La-
grangian multipliers associated with the equality and inequal-
ity constraints, µ

k

is the duality measure, � is a centering
parameter and e is a vector of ones. In the case of the linear
MPC problem, it can be shown [7] that (7) is the KKT system
of an instance of the LQ control problem (1). This means
that at each iteration of the IP method we can use our solver
for the LQ control problem to solve the linear system of
equations (7), that is the main computational effort at each
iteration.

VI. RESULTS

In this section we present the results of two series of test:
in the one we compared the relative performance of different
implementations of our solver for the LQ control problem;
in the second one we compared our IP method for linear
MPC with the current state-of-the-art solver for linear MPC.
In case of multi-core machines, only one core is used.

A. LQ control problem

To assess the performance of the different implementations
of our solver for the LQ control problem, we tested a version
using for the linear-algebra BLAS and LAPACK provided
by OpenBLAS 0.2.6 [11]; a version using tailored triple-
loop based linear algebra and code generation; and three
versions implemented using the techniques presented in this
paper, and coded respectively in C code, SSE3 instructions
and AVX instructions. All tests have been performed on a
Laptop equipped with an Intel i5 2410M processor (2.3 GHz,
up to 2.9 GHz in turbo mode), running Xubuntu 13.04; the
compiler is gcc 4.7.3. In figure 1 we plot the performance
in Gflops obtained using the different approaches, and com-
pared with the theoretical peak performance of the processor
(that has been computed assuming that it operates at the
maximum turbo frequency, as 2.9 GHz * 2 floating-point
instructions per clock (one add and one mult) * 4 flops per
floating-point instruction (AVX) = 23.2 Gflops).

When our solver is linked to OpenBLAS, the performance
is good for large problems (close to the theoretical peak), but
it is poor for small problems. The approach making use of
triple-loop and code generation is faster for small systems,
but can only attain a small fraction of the theoretical peak: as
a consequence, it can outperform OpenBLAS only for very
small problems. The version written in C code and employing
blocking for registers doubles the performance with respect
to the triple-loop one.

The version using micro-kernels coded with SSE3 in-
structions and blocking for registers doubles again the per-
formance. For very small problems, the performance is
almost 10 times the one obtained using OpenBLAS. The
version using micro-kernels coded with AVX instructions and
blocking for registers almost doubles the performance again.
In this test, the performance keeps increasing with n

x

, and
the maximum performance is 80.6% (18.7 Gflops) of the
theoretical peak performance at turbo frequency. On the test
machine, the dgemm micro-kernel has a steady performance
above 90% of the peak for matrices of size up to about 340:
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Fig. 1: Performance test of different implementations our
LQCP solver. The test machine is the Intel Core i5 2410M.
The x-axis is the number of states; n

u

= 2 and N = 10.
Figure (a) is scaled on the y-axis such that the top to the
figure represents the turbo peak performance (23.2 Gflops).

for larger matrices, the memory footprint exceeds L3 cache,
and the performance decreases. However, this matrix size is
large enough for most MPC problems.

B. Linear MPC problem

In this section we compare the IP solver part of our
HPMPC toolbox with FORCES (to our knowledge the state-
of-the-art solver for linear MPC), running the mass-spring
test in table VI in the paper [2]. The tests are performed
on several x86 and x86 64 machines, all running different
flavors of Linux (mainly Ubuntu-based) and using gcc as C
compiler: results are in table I.

The versions using SSE3 and AVX could be compared
each other on two laptops, one equipped with the CPU Intel
Core i7 3520M (Ivy Bridge) at 2.9 GHz (3.6 GHz in turbo
mode), the other with the CPU Intel Core i5 2410M (Sandy
Bridge) at 2.3 GHz (2.9 GHz in turbo mode). On both
machines, our IP solver is from about 2 (for the smaller
tests) to 8 (for the larger test) times faster than FORCES.
The better performance is obtained exploiting the wider AVX
instruction set. The version using OpenBLAS is faster than
FORCES starting from the third problem.
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We tested our code also on a laptop equipped with the
older Intel Core 2 Duo P8600 at 2.4 GHz. This architecture
(named Penryn) features the SSE4.2 instruction set, but not
AVX. This time the maximum speed-up with respect to
FORCES is about 5, lower than using AVX.

Instead the embedded system equipped with of Intel Atom
Z530 in [2], we used a netbook equipped with the equivalent
Intel Atom N270 processor (1.6 GHz). This architecture is
different compared to all the others considered in our tests.
In fact, the processor is 32-bit (and then there are only 8
SSE registers, instead of 16), the cache is smaller (24 KB
L1 data cache, 512 KB L2 cache, no L3 cache), and the
processor performs in-order-execution (and then the order of
the instructions matters): the resulting performance is thus
quite low, and it is much more difficult to write fast code.
The best code was obtained using scalar SSE2 instructions
(no SIMD) in inline assembly. Also in this case the maximum
speed-up with respect to FORCES is about 5.

We also tested our code on a machine equipped with the
AMD processors Opteron 6168 (1.9 GHz, K10 architecture,
SSE3 instruction set): again, the results are similar, with a
speed-up of about 6 times with respect to FORCES.

The tests show as our code implementation combines
and improves two approaches: the small-scale speed of tai-
lored solvers and code-generation, with the large-scale high-
performance of optimized BLAS libraries. Furthermore, our
code is better than architecture-agnostic solvers as FORCES
in exploiting the advanced features of recent hardware (e.g.
AVX instructions).

VII. CONCLUSION

In this paper, we reviewed current state-of-the-art solvers
for linear MPC, and we proposed a novel approach for
this class of problems. We presented a solver for the LQ
control problem with good asymptotic complexity, imple-
mented using a very small number of function calls to linear-
algebra routines. This allows us to write and optimize only
a small subset of BLAS, combining code-generation with
high-performance techniques and exploiting the hardware
specific instructions: the innermost loop of each linear-
algebra routine is implemented as a separate micro-kernel,
and coded using the available SIMDs. As a result, our solver
outperforms both state-of-the-art linear MPC solvers and
optimized BLAS libraries, attaining a performance close to
the theoretical peak for a wide range of problem sizes.
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Abstract: In Model Predictive Control (MPC), an optimization problem has to be solved at
each sampling time, and this has traditionally limited the use of MPC to systems with slow
dynamic. In this paper, we propose an e�cient solution strategy for the unconstrained sub-
problems that give the search-direction in Interior-Point (IP) methods for MPC, and that usually
are the computational bottle-neck. This strategy combines a Riccati-like solver with the use of
high-performance computing techniques: in particular, in this paper we explore the performance
boost given by the use of single precision computation, and techniques such as inexact search
direction and mixed precision computation. Finally, we test our HPMPC toolbox, a family of
high-performance solvers tailored for MPC and implemented using these techniques, that is
shown to be several times faster than current state-of-the-art solvers for linear MPC.

1. INTRODUCTION

Model Predictive Control (MPC) has bee traditionally
limited to systems with slow dynamic, with sampling times
of seconds or minutes. This is due to the fact that an
optimization problem needs to be solved at each sampling
time. Nowadays, thanks to algorithmic as well as hardware
improvements, this is no more the case, and recent works
show that, in case of small systems, even control frequency
of milliseconds are possible. The two main approaches
for fast MPC are explicit (see Bemporad et al. [2002])
and structure-exploiting on-line MPC (see e.g. Rao et al.
[1998],Wang et al. [2010]).

In recent years, several approaches have been proposed to
the fast on-line solution of small-scale linear MPC prob-
lems, as flat code generation (CVXGEN, Mattingley et al.
[2012]) and customized triple-loop based BLAS (FORCES,
Domahidi et al. [2012]). However, these solvers do not fully
exploit the hardware capabilities of modern architectures,
and rely on compilers for the code optimization. As a
result, typically they can attain only a small fraction of
processor peak performance.

In this paper, we propose an e�cient solver for the Linear-
Quadratic Control Problem (LQCP), that is a common
sub-problem in optimal control and estimation, and in
particular it gives the search direction in Interior-Point
(IP) methods for linear MPC. Our solver for LQCP only
requires 3 calls to linear-algebra routines for the factoriza-
tion of the KKT system: this decreases the data movement,
and allows us to hand optimize these few routines. In
particular, we make use of high-performance techniques
such as blocking for registers, SIMD instructions, cus-
tomized BLAS and mixed precision computation. The
latter exploits the fact that on the target architecture (in
this paper, an Intel’s processor) the peak performance of
single precision computation is twice as much as in double

precision. The resulting solver for LQCP is shown to attain
a large fraction of the peak performance for a wide range
of problem sizes.

This high-performance solver is used as a routine in
primal-dual and Mehrotra’s predictor-corrector IP meth-
ods for linear MPC. Furthermore, we propose the use of
inexact IP methods, where the search directions are found
by solving the LQCP sub-problems in single precision in
early iterations. These IP methods can produce a solution
in double precision in a time that is only slightly larger
than in single precision. The resulting solver is several
times faster than state-of-the-art solvers for linear MPC
(see Domahidi et al. [2012] as a reference), and the high-
performance is attained for a wider range of problem sizes.

The paper is organized as follows: section 2 describes
the LQCP and linear MPC problems. Section 3 presents
high-performance solvers for the LQCP, in single, double
and mixed precision. Section 4 briefly introduces primal-
dual and Mehrotra’s predictor-corrector IP methods, and
proposes the inexact IP. Section 5 presents the results of
some numerical test, and Section 6 contains the conclusion.

2. PROBLEMS DESCRIPTION

In this paper, we focus our attention on e�cient solvers
for the LQCP. This is a rather general formulation that
can represent several problems in optimal control and
estimation, and in particular it gives the search direction
in Interior-Point (IP) methods for MPC. Thus an high-
performance implementation of a solver for the LQCP
can boost the performance of solvers for a wide class of
problems.

2.1 Linear-quadratic control problem

The LQCP is the equality constrained quadratic program

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 3074



min
un,xn+1

� =
N�1X

n=0

'
n

(x
n

, u
n

) + '
N

(x
N

)

s.t. x
n+1 = A

n

x
n

+B
n

u
n

+ b
n

(1)

where

'
n

(x
n

, u
n

) =

"
u
n

x
n

1

#0 2

4
R

n

S
n

s
n

S0
n

Q
n

q
n

s0
n

q0
n

⇢
n

3

5
"
u
n

x
n

1

#
= X 0

n

Q
n

X
n

'
N

(x
N

) =

"
u
N

x
N

1

#0 2

4
0 0 0
0 P p
0 p0 ⇡

3

5
"
u
N

x
N

1

#
= X 0

N

PX
N

(2)

All matrices can in general be dense and time variant. In
this paper, we assume that the matrices Q

n

are symmetric
positive definite.

2.2 Linear MPC problem

The linear MPC problem with linear constraints is the
quadratic program
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where '
N

(x
N

) are defined as in (2). Again, all matrices
can in general be dense and time variant.

3. SOLVERS FOR THE LQ CONTROL PROBLEM

In this section we present algorithms (and relative imple-
mentation) to e�ciently solve LQCP. These algorithms
can be used as building blocks in di↵erent IP methods.

3.1 Solution strategies

There exists several solution strategies for the LQCP (1).
In the following of the paper we will consider two of them.

The first solution strategy is based on the fact that
the LQCP (1) is an instance of the equality constrained
quadratic program

min
x

� = 1
2z

0Hz + g0z

s.t. Az = b
(4)

The (in general only necessary) optimality conditions for
(4) are the well-known KKT conditions, that can be
written in matrix notation as

H �A0
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⇡⇤
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g
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that is called the KKT system associated with (4). In
the case of the LQCP, it can be proved that, if the

matrices


R

n

S
n

S0
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Q
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�
and P are positive definite, then the

KKT conditions are also su�cient and (5) has an unique
solution. The KKT system of the LQCP is large and
sparse, and has a special structure that can be exploited
to obtain e�cient solvers, see Rao et al. [1998]. The fact
that the solution of the LQCP can be obtained by means
of the solution of a system of linear equations (i.e. through

factorization of the matrix and backward and forward
substitutions) implies that we can use mixed precision to
perform the computations, as shown later.

Another solution strategy is based on dynamic program-
ming. We do not want to present the theory again (that
can be found for example in Jørgensen [2005]), but only
show that this leads to an e�cient solver in practice, where
the factorization and backward substitution in the solution
of (5) are fused, as shown in section 3.2.

To implement the IP methods, we need routines to fac-
torize and solve the KKT system, to solve an already
factorized KKT system, and to compute the residuals.
These routines can be seen as building blocks to implement
a number of di↵erent IP methods.

3.2 Factorization and solution of the KKT system

The dynamic programming approach can be used to de-
rive an e�cient solver, analogue to the classical Riccati
recursion but more e�cient in practice, where the factor-
ization and the backward substitution are fused together:
see Frison et al. [2014] for the details of the derivation.
The algorithm (together with the calls to BLAS func-

tions) is presented in Algorithm 1 (where M1
/2
n

is the
lower triangular Cholesky factor of matrix M

n

, parti-
tioned as Q

n

in (2)), and only requires 3 function calls
per backward iteration and 3 per forward iteration: this
reduces the overhead associated with the function calls, as
well as the data movement. The cost of the algorithm is
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) if ⇡ is needed (as e.g. in
mixed precision).

Algorithm 1 Factorization and solution of LQCP

1:

h
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. potrf

2: for n N ! 0 do
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5:
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#
 M1/2

n . potrf

6: end for

7: if PI = 1 then

8: ⇡0  L0,22(L
0
0,22x0 + L

0
0,32) . trmv

9: end if

10: for n 0! N do

11: un  �(L0
n,11)

�1
(L

0
n,21xn + L

0
n,31) . gemv & trsv

12: xn+1  Anxn +Bnun + bn . gemv

13: if PI = 1 then

14: ⇡n+1  Ln+1,22(L
0
n+1,22x0 + L

0
n+1,32) . trmv

15: end if

16: end for

3.3 Solution of the (factorized) KKT system

In a predictor-corrector IP, the corrector step is computed
by solving a system of linear equations (in the form (5))
that has the same left hand side as the system giving
the predictor step, but a di↵erent right hand side. And
similarly, in mixed precision we need to solve multiple
systems with the same left hand side.
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An e�cient algorithm to solve (5) for the LQCP exploiting
the already factorized l.h.s. matrix can be obtained by ex-
ploiting the analogy between Algorithm 1 and the classical
Riccati recursion, i.e. that L

n,22 is the lower triangular
Cholesky factor of the Riccati recursion matrix P

n

. The
algorithm is presented in Algorithm 2. The cost of the
algorithm is N(8n2

x

+ 8n
x

n
u

+ 2n2
u

) flops, plus eventually
N(2n2

x

) if ⇡ is needed.

Algorithm 2 Solution of (factorized) LQCP
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10: end if

11: for n 0! N do
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16: end if

17: end for

3.4 Residuals computation

To solve a system of linear equations using mixed precision,
we need a routine for the computation of the residuals, that
in the solution of (5) are defined as
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If system (5) was solved exactly, the residuals would
be zero. However, because of the finite precision of the
computations, in practice residuals are generally not zero.
An algorithm for the computation of the residuals for
LQCP is presented in Algorithm 3. The cost of the
algorithm is N(6n2
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Algorithm 3 Residuals of LQCP
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6: end for

7: rq,N  ⇡N � (PxN + p) . symv

3.5 Implementation details

For each algorithm, we implemented two versions: one
calling BLAS, and the other calling tailored linear algebra
routines written in C using the following HPC techniques:
see Frison et al. [2014] for more details.

Blocking for registers. This is the single most important
technique, and can be used on all machines. It has a

double aim: reduce the number of memory operations,
and hide latency of floating-point operations. On modern
architectures, the CPU is much faster than the main
memory: as a consequence the cost of a memop is much
higher that the cost of a flop. A hierarchy of smaller
and faster memories (registers, caches) is used to mitigate
this di↵erence in speed, and the programmer should re-
use data already present in faster memories. As an idea,
blocking is a technique that consist of loading a sub-matrix
in a certain memory level (O(n2) memops), to perform
the required operation on that sub-matrix (O(n3) flops
for level-3 BLAS). In this way, the ratio flops/memops
is increased. In our implementation we only block for
registers, since for matrices too large to fit in cache BLAS
is high-performing, and thus we can switch to the version
calling BLAS. Blocking for registers is also used to hide
the latency of operations: for example, on most Intel
machines floating-point add and mul are pipelined and
can be issued every clock cycle, but their result is available
after respectively 3 and 5 clock cycles.

SIMD instructions. SIMD (Single-Instruction Multiple-
Data) are instructions that perform the same operation
in parallel on all elements of small vectors of data: this
reduces the number of operations, and can improve per-
formance up to n

v

times for small vectors of size n
v

. Nowa-
days many architectures implement SIMD instructions: as
an example, Intel and AMD have the SSE instructions
(that operates on 2 doubles or 4 floats at a time) and
AVX instructions (that operates on 4 doubles or 8 floats at
a time). The size of the small vectors suggests that, using
SIMD instructions, the theoretical performance in single
precision is twice as much as the theoretical performance
in double precision. The drawback is that usually SIMD
are more di�cult to program, and they have alignment
requirements: SSE instructions can e�ciently load and
store data that is 16 bytes aligned, while for AVX instruc-
tions the alignment requirement is 32 bytes. The alignment
requirements limit the possibility for a compiler to use
SIMD. We explicitly deal with alignment requirements in
the IP methods, such that the data passed to LQCP solvers
is already aligned.

Customized BLAS. In our LQCP solvers, we need only
a small subset of BLAS, and then there is no need to
implement it all. The innermost loop of each linear-algebra
routine is implemented as a separate micro-kernel, hand
optimized using block for registers and SIMD intrinsics.
Furthermore, in the code used for this paper the size of all
matrices is fixed at compile time: this reduces the number
of branches, and allows the compiler to further optimize.

Single/double/mixed precision. On the target architecture
one SIMD instruction can operate on twice as many floats
as doubles. This, together with the fact that floats occupy
half the space in memory (including registers and caches)
and use half the memory bandwidth, gives that the perfor-
mance in single precision is about twice the performance
in double precision. Hence the reason for using single pre-
cision whenever possible. Mixed precision iterative refine-
ment is a technique that allows to solve a system of linear
equations exploiting the higher performance of single pre-
cision in the most expensive parts while maintaining the
double precision of the final result, see Buttari et al. [2007].
A mixed precision algorithm for the solution of LQCP is
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presented in Algorithm 4. The algorithm can be seen as
an iterative algorithm, where the l.h.s. factorized in single
precision is used as a good preconditioner. Our numerical
tests show that in most cases 1 iterative refinement step is
enough to have almost double precision. For small systems,
the mixed precision algorithm is slower than the double
precision one, due to the cost of the additional solutions
and residuals computations; anyway, for large systems the
performance is close to the single precision one.

Algorithm 4 Factorization and solution of LQCP (mixed
precision)

1: factorize and solve LQCP in single precision using Algorithm 1

with PI = 1, obtaining (x, u,⇡)

2: for it ref  1! IT REF MAX do

3: compute the residuals in double precision using Algorithm

3, obtaining (rs, rq , rb)

4: Solve LQCP in single precision using Algorithm 2 with PI =

1 and (s, q, b) = (rs, rq , rb) as r.h.s, obtaining (�x,�u,�⇡)

5: update the solution in double precision (x, u,⇡) (x, u,⇡)+

(�x,�u,�⇡)

6: end for

4. IP METHODS FOR THE LINEAR MPC PROBLEM

The linear MPC problem (3) is an instance of the general
quadratic program

min
z

1
2z

0Hz + g0z

s.t. Az = b

Cz � d

that can be solved by means of an interior-point (IP)
method. In this paper, we consider the primal-dual IP
and Mehrotra’s predictor-corrector primal dual IP (in the
following, predictor-corrector IP), see Nocedal et al. [2006]
for details about the algorithms.

4.1 Primal-dual IP method

In the primal-dual IP, at each iteration k of the IP method
it has to be solved a system of linear equations in the form


H + C 0(T�1

k

⇤
k

)C �A0

�A 0

� 
y
k

⇡
k

�
=

= �

g � C 0(⇤

k

e+ T�1
k

⇤
k

d+ T�1
k

�µ
k

e)
b

�
(6)

where t
k

are the slack variables, ⇡
k

and �
k

are the La-
grangian multipliers of the equality and inequality con-
straints, µ

k

is the duality measure, � is a centering pa-
rameter and e is a vector on ones. In case of the linear
MPC problem, (6) is the KKT system of an instance of
the LQCP (1), see Rao et al. [1998]. This means that (6)
can be solved using Algorithm 1.

4.2 Predictor-corrector IP method

In case of the predictor-corrector method, at each iteration
of the IP method two systems of linear equations have to
be solved, respectively for the computation of the predictor
and of the corrector search directions. These systems are
similar to (6), and di↵er only for the right hand side:
this means that the factorization has to be performed
only once, and that they can be solved respectively using
Algorithm 1 and Algorithm 2.

4.3 Inexact IP methods

In Fig. 1 we show the result of a convergence test for
the duality measure in case of single, double and mixed
precision used in the computation of the search direction,
for both primal-dual and predictor-corrector IP methods.
The fact that the single precision solution behaves as the
higher precision ones till approximately 10�6 suggest that
we can implement an inexact IP method (proposed for
MPC problems by Shahzad et al [2010], with MINRES to
compute the search direction), where the inexact search
direction is computed by solving the LQCP subproblems
using Algorithm 1 in single precision, exploiting the higher
performance of single precision computation. Numerical
tests shows that a value of the duality measure of 10�5 is
a good threshold value between single and higher precision.

5. NUMERICAL RESULTS

In this section we test the HPMPC toolbox, that is our im-
plementation of the solvers family presented in this paper.
In a first part, we compare di↵erent implementations of
the proposed solver for the LQCP; in the second part, we
assess the performance of the proposed IP methods for the
linear MPC problem. The test problem is the mass-spring
system, see Domahidi et al. [2012].

The test machine is a laptop equipped with the processor
Intel Core i7 3520M @ 2.9 GHz (up to 3.6 GHz in turbo
mode), running Linux Xubuntu 13.04. The compiler is gcc
4.7.3. All tests are performed on one core.

In Frison et al. [2014] we have already shown that the
approach based on SSE and AVX micro-kernels gives high-
performance on a number of Intel and AMD architectures.

5.1 LQ control problem

In this part we compare di↵erent approaches to implement
the solver for LQCP proposed in Algorithm 1: a version
making use of an highly-optimized BLAS (OpenBLAS ver-
sion 0.2.6), a version using customized BLAS-like routines
and AVX micro-kernels, and a version using customized
BLAS-like routines and triple-loops, all of them in double,
single and mixed precision with 1 iterative refinement step.

The results are in Fig. 2, where we assess the perfor-
mance in Gflops of the di↵erent implementations. The
processor theoretical peak performance in single precision
is computed as 3.6 GHz * 2 floating-point instructions
per clock (one add and one mul) * 8 flops per floating-
point instruction (single precision, AVX instructions) =
57.6 Gflops. In double precision, AVX instructions can
perform 4 flops per floating-point instruction, so the peak
performance is the half, 28.8 Gflops.

The use of an highly-optimized BLAS library gives high-
performance only for large systems, since it needs to
perform a number of operations (e.g. copies of data in
contiguous and aligned memory, blocking for di↵erent
memory levels) that heavily impact performance for small
matrices, while are well amortized for large ones. As a
result, the performance is really poor for small systems.
The code is implemented making explicit use of SIMD
instructions, so the performance in single precision is
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Fig. 1. Convergence test for the proposed IP methods, where the search direction is computed in single, double or mixed
(with 1 iterative refinement step) precision. The test problem is the mass-spring system with n

x

= 8, n
u

= 3, N = 10.
The combination of single precision above µ = 10�5 and higher (double or mixed) precision below is an inexact IP
method that gives the same solution as an exact IP method, but requires less computation time.

higher that in double; the cross-over between mixed and
double precision is around n

x

= 60.

The triple-loop based approach can reach only a small
fraction of the peak performance (even if the loops size
is fixed at compile time), and the obtained performance
is almost identical in single and in double precision. As
a consequence, it can outperform BLAS only for very
small systems. Furthermore, there is no advantage in using
mixed precision, that would be always worse that double.

The proposed AVX micro-kernel based approach can at-
tain a large fraction of the peak performance in both
single and double precisions for a wide range of problem
sizes. For small problems, this approach outperforms both
optimized BLAS and triple-loop bases approach, and the
performance increases quickly with the problem size. The
maximum performance is attained at n

x

= 160 in double
precision (19.89 Gflops, 69% of peak) and n

x

= 128
in single (40.19 Gflops, 70% of peak) and mixed (34.37
Gflops, 60% of peak) precisions. For larger problems, there
is a certain degradation in performance, since memory
footprint exceeds cache size, and our code does not perform
blocking for cache. Anyway, for this size BLAS is high-
performing, and the algorithm calling BLAS can be used
instead.

5.2 Linear MPC problem

Here we assess the performance of the di↵erent IP methods
for the linear MPC problem (3). We tested exact IP
methods in single, double and mixed, and inexact ones
in single+double and single+mixed precisions, where the
threshold between single and higher precisions is ⌧ = 10�5,
for both primal-dual and predictor-corrector IP methods.

The results are in the table in Fig. 3. Since the factor-
ization of the KKT matrix is the most expensive part
in IP algorithms, the behavior of the IP methods closely
resembles the behavior of Algorithm 1 in the di↵erent
precisions. Single precision is always the fastest. Among
higher precisions, the best results are usually obtained for
inexact IP methods with the combination single+double

for small problems, and single+mixed for large problems.
For the largest problem, the use of inexact IP method
and mixed precision requires a computational time slightly
larger than the single precision, with the same accuracy as
the double precision.

Whether primal-dual IP or predictor-corrector IP is the
most e�cient choice is problem dependent: the one has a
lower cost per iteration, the other requires less iterations.
Anyhow, in general primal-dual IP may be the best choice
for small problems, and it takes more advantage of mixed
precision computation.

Comparing the results in the table in Fig. 3 with the ones
in Domahidi et al. [2012], we can see that the solvers of
our HPMPC solvers family are several times faster than
state-of-the-art solvers such as FORCES, CVXGEN and
CPLEX, and that the performance gap increases with the
problem size.

6. CONCLUSION

In this paper, we presented an e�cient algorithm for the
solution of the linear-quadratic control problem (LQCP).
The fact that this algorithm performs only few function
calls to linear-algebra routines was exploited to imple-
ment them using high-performance computing techniques,
such as blocking for registers, SIMD instructions and
customized BLAS. These high-performance routines were
used as building blocks in solvers for the LQCP in single,
double and mixed precision. In turn, the LQCP solvers
were used as routines in IP methods, and in particular we
proposed the use of inexact IPs where the inexact search
direction is obtained solving the LQCP in single precision.
This approach gives a solution in double precision, while
exploiting the higher performance of single precision com-
putation on modern architectures. An implementation of
these solvers, HPMPC, is several times faster than state-
of-the-art solvers for MPC. As future work, we plan to add
multi-thread support, and optimize the code for embedded
architectures (e.g. Intel Atom, ARM, PowerPC).
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Fig. 2. Performance of di↵erent implementations of the proposed LQCP solver: triple-loop based, micro-kernel based
and optimized BLAS based, in single, double and mixed precision. Figure (a) (respectively (b)) is scaled along the
y axis to have theoretical single (respectively double) precision peak performance at turbo frequency at the top of
the picture, 57.6 Gflops (respectively 28.8 Gflops).

HPMPC: primal-dual IP HPMPC: predictor-corrector IP FORCES#

n
x

n
u

N s d m s+d s+m s d m s+d s+m s d

4 1 10 0.04 0.04 0.06 0.04 0.04 0.05 0.05 0.10 0.05 0.08 0.08 0.11
8 3 10 0.09 0.09 0.16 0.09 0.11 0.14 0.14 0.26 0.14 0.20 0.29 0.33
12 5 30 0.41 0.51 0.71 0.44 0.48 0.60 0.71 1.13 0.65 0.84 1.67 2.00
22 10 10 0.41 0.55 0.62 0.45 0.47 0.53 0.70 0.91 0.62 0.73 2.90 3.25
30 14 10 0.80 1.09 1.16 0.90 0.92 0.99 1.34 1.63 1.18 1.32 6.70 7.23
60 29 30 10.05 18.23 14.11 12.45 11.23 11.58 20.35 18.42 16.16 15.02 153.02 143.80
90 44 30 29.80 60.04 42.23 38.53 33.57 32.67 65.59 52.67 50.54 43.05 * *

Fig. 3. Proposed primal-dual and predictor-corrector IP methods (run time in [ms] for 10 iterations, averaged over 100
random initial states): exact IP methods in single (s), double (d) and mixed (with 1 iterative refinement step)
(m) precision; inexact IP methods in double (s+d) and mixed (with 1 iterative refinement step) (s+m) precision,
where the threshold between single and higher precisions is µ = 10�5. Bold represents the fastest high-precision
solver for each problem size. Notice that the first 6 problems are taken from Domahidi et al. [2012]: the proposed
predictor-corrector IP method is from 2 (1st problem) to about 10 (6th problem) times faster than FORCES, that
in turns is faster that CPLEX and CVXGEN. # FORCES code is compiled using gcc 4.6.3, with optimization flags
-O2 -mavx -funroll-loops. * The code for the larger problems could not be downloaded, since the connection to the
server drops due to the long code generation time.
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Efficient Implementation of Solvers for Linear Model Predictive

Control on Embedded Devices

⇤

Gianluca Frison1, D. Kwame Minde Kufoalor2, Lars Imsland2, and John Bagterp Jørgensen1

Abstract— This paper proposes a novel approach for the

efficient implementation of solvers for linear MPC on embedded

devices. The main focus is to explain in detail the approach used

to optimize the linear algebra for selected low-power embedded

devices, and to show how the high-performance implementation

of a single routine (the matrix-matrix multiplication gemm)

can speed-up an interior-point method for linear MPC. The

results show that the high-performance MPC obtained using

the proposed approach is several times faster than the current

state-of-the-art IP method for linear MPC on embedded devices.

I. INTRODUCTION

Embedded Model Predictive Control (MPC) is about im-
plementing MPC algorithms on embedded hardware. This is
in contrast to the traditional approach where MPC is regarded
as a high-level controller implemented in a PC or server-
based technology. Due to the high computational demands
of MPC and the comparably limited computational resources
on embedded devices, obtaining a high performance MPC
is not a trivial task. The key to overcome the challenges of
embedded MPC on resource-limited devices is to employ ef-
ficient algorithms that exploit the computational performance
capabilities of the target platform.

In the MPC literature, there are three approaches to obtain
a fast online solution of linear MPC problems: explicit
MPC, first-order methods, and second-order methods. Ex-
plicit MPC [1] exploits the fact that the solution of the MPC
problem is piecewise affine over a polyhedral partition, and
that it can be computed off-line for all possible initial states.
As a drawback, the number of regions grows exponentially
with the problem size, making this approach feasible only
for problems with very few states and a short horizon.

First-order methods are variants of the gradient method
[9]. The main advantages of this class of solvers are that
each iteration is extremely cheap (the most expensive part is
a matrix-vector multiplication), and they are easy to warm-
start. First-order methods can also easily exploit sparsity of
the QP problem arising from MPC and their computations
are easy to parallelize. However, the number of iterations can

1 Technical University of Denmark, DTU Compute - Department of Ap-
plied Mathematics and Computer Science, DK-2800 Kgs Lyngby, Denmark.
{giaf,jbjo}@dtu.dk

2 Department of Engineering Cybernetics, Norwegian University of Sci-
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Optimization. The financial support offered by the Research Council of
Norway and Statoil for D. K. M. Kufoalor’s research work is also gratefully
acknowledged.

vary orders of magnitude for different initial states. Also, the
matrix-vector multiplication is memory-bounded (i.e. limited
by the memory operations involved and thus the memory
access speed) in modern computer architecture, and hence it
can attain only a low fraction of peak performance. High-
performance gradient methods have been implemented on
FPGAs [7], and an efficient primal-dual first-order method
for MPC is implemented on a PLC in [8].

Second-order methods (such as the interior point (IP)
method proposed in this paper and active-set methods) are
based on the Newton method. Making use of second-order
information in the computation of the search direction, they
usually need less iterations to converge, and the number
of iterations does not change much with the initial state
(especially for IP methods). On the other hand, each iteration
requires a considerable amount of work compared to first-
order methods: if BLAS is used, level 3 BLAS is required.
This means that the linear algebra is more complex, but it can
be optimized to attain a large fraction of peak performance
on modern processors, and to take advantage of multiple
cores. Implementation itself is thus very important for this
class of solvers.

In this paper we explicitly target embedded devices.
Thanks to the widespread diffusion of mobile computing,
there is a race to build increasingly faster, low-power
processors. In particular, the mass-market of smartphones
has the potential to provide the scientific community with
plenty of cheap and powerful embedded devices. In this
paper, we consider three architectures: the low-power x86
Intel Atom (found in many netbooks), the ARM Cortex A9
(found in many smartphones and development boards), and
the PowerPC 603e (an old architecture, but still present in
many embedded devices for control). This paper has two
key contributions: it explains how to optimize the linear
algebra for these embedded devices; and it shows that a
high-performance implementation of a single routine (the
matrix-matrix multiplication gemm) can speed-up the entire
IP method for the linear MPC. The resulting software (that
we call HPMPC) is several times faster than the current state-
of-the-art IP method for linear MPC on embedded devices,
FORCES [2], for a suite of benchmark test problems.

The paper is organized as follows. Section II introduces
the linear MPC problem and the unconstrained sub-problem.
Section III summarizes the main implementation techniques
employed to optimize the gemm micro-kernel. Section IV
describes in detail the test architectures. Section V contains
the results of comparison tests with FORCES, and finally
section VI contains the conclusion.
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II. PROBLEMS

A. LQ control problem

The LQ control problem (LQCP) is formulated as
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All matrices can be dense and time variant. We assume that
the matrices Q

n

and P are symmetric positive definite.

B. Linear MPC problem

Using the same definitions in (1) and (2), the linear MPC
problem with linear constraints is the quadratic program
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III. IMPLEMENTATION TECHNIQUES

This section briefly describes the main optimization tech-
niques used to implement our code: more details can be
found in [3].

A. Computation bottleneck: gemm micro-kernel

In this paper, we employ an interior-point (IP) method
for the solution of the linear MPC problem (3). The main
computational bottleneck in an IP method is typically the
computation of the search direction. In the linear MPC
problem, this can be computed by solving LQCPs in the
form (1). In turn, the LQCPs can be solved by means of
the Riccati-like recursion presented in [4], where the most
expensive linear algebra routines are part of level 3 BLAS.

All cubic operations in level 3 BLAS can be implemented
as two loops around a gemm (general matrix-matrix mul-
tiplication) micro-kernel, following the approach proposed
in [10]. The gemm computes C := AB + C, where C 2
Rm⇥n

, A 2 Rm⇥k, and B 2 Rk⇥n. This micro-kernel
corresponds to the innermost loop in the classical triple-
loop implementation of level 3 BLAS, and it is the only
part of the code that needs to be carefully optimized for the
specific architecture. In our implementation, all the rest of the
linear MPC solver is built around this assembly-coded micro-
kernel, that is used for the most expensive computations.

B. Blocking for registers

This is the most important optimization and has a dual
aim: reduce memory movements and hide operations latency.

In modern architectures, the cost (time) to move data
(in the following memop, memory operation) from main
memory to the CPU is much higher than the cost to perform
a floating-point operation (flop). Level 3 BLAS performs
O(n3) flops on O(n2) data, and thus every matrix element
is accessed O(n) times: if each access needs a fetch from
main memory, the implementation is memory-bounded. On
the other hand, if faster memories such as registers and cache
are exploited to reuse data, the flops/memops ratio increases.

In our implementation we block for registers, and an
m ⇥ m sub-matrix stored in the registers increases the
flops/memops ratio by a factor m. We do not block for cache,
since this requires further information like Translation Look-
aside Buffer (TLB) entry capacities [6], and improves the
performance only for large matrix sizes, while embedded
MPC problems are usually small/medium in size.

About hiding operations latency, in modern architectures
floating-point operations are pipelined, and thus typically an
instruction can be issued at every clock cycle (throughput),
but the result is available only after a certain number of
clocks (latency). As a result, instructions can be performed
’in parallel’ keeping the pipeline busy only if there are no
dependencies between them. Blocking for registers can be
used to have enough independent instructions to hide latency
and keep the floating-point units busy.

C. Use of contiguous memory

The use of contiguous memory helps exploiting the avail-
able memory bandwidth and improves cache reuse. When an
element is fetched from memory, data is moved into cache in
chunks (called cache lines) of typically 32 or 64 bytes. This
means that the access to immediately following elements is
faster, since the corresponding cache line is already in cache,
and there is no need to fetch a new cache line for each
element. A technique used to better exploit cache is packing
of matrices such that elements are stored in memory in the
same order as they are accessed by the gemm micro-kernel.

D. Use of SIMD

Many modern architectures have single-instruction
multiple-data (SIMD) instruction sets: e.g. Intel and AMD
have SSE and AVX instruction sets, while ARM has NEON.
These are instructions that operate on small vectors of m

elements, improving the performance up to m times (if
the code is not memory-bounded). Regarding the machines
considered in this paper, Intel Atom has the 4-wide SSE,
and ARM Cortex A9 the 4-wide NEON, both capable of
operating on small vectors of 4 floats, while doubles are
processed as scalars. Thus the theoretical peak performance
is higher in single than in double precision [5]. The AltiVec
SIMD instruction set is available for some PowerPCs, but
not for the PowerPC 603e. Compilers are often not very
good in automatic vectorization, so there is an advantage in
making explicit use of SIMD.
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E. Target: embedded devices

The target processors are embedded devices. These are
typically low cost and low power machines, that lack ad-
vanced features. This means that lower-level details of the
architecture should be considered in the implementation.
Tested processors lack out-of-order execution and register
renaming, so instruction scheduling matters and should be
carefully chosen by writing the micro-kernel code in inline
assembly (or hope that the compiler makes a good job). They
lack hardware prefetch as well, so software prefetch should
be used to help hiding latency of L2 cache or main memory.

IV. TEST ARCHITECTURES

A. Intel Atom

In this paper we consider the original Intel Atom processor
(Bonnell micro-architecture). This is a relatively recent x86
architecture (2008), but has many features typical of older
architectures, used to reduce the power consumption.

Our test machine is a netbook equipped with the popular
N270 processor. It is a 32-bit processor with a thermal design
power (TDP) of 2.5 W, and runs at 1.6 GHz; there are 24
KB L1 data cache, 32 KB L1 instruction cache and 512 KB
L2 cache. The processor supports hyper-threading and has
the SSE, SSE2 and SSE3 instruction sets. It is an in-order
processor (i.e. instructions are performed in the same order
as in the source code).

A 32-bit x86 processor has 8 floating-point registers: 4 of
them are used to store a sub-matrix of C, while the other 4
are to store elements from A and B and intermediate results.

The double precision SIMD are implemented in the SSE2
instruction set that can operate on small vectors of 2 dou-
bles. However, in the Bonnell architecture the SSE2 vector
multiply instruction is implemented as two sequential scalar
multiplies. This means that SSE2 SIMD is actually slower
than scalar code, since scalar instructions can be better re-
ordered. Thus the best performance is obtained using scalar
code: 4 registers are used to store a 2 ⇥ 2 sub-matrix of C,
and then a 2⇥ 2 micro-kernel is chosen.

The single precision SIMD are implemented in the SSE
instruction set, that is implemented properly and can operate
on small vectors of 4 floats at a time. A 4⇥ 4 micro-kernel
is chosen since 4 registers can hold a 4⇥ 4 sub-matrix of C.

SSE or SSE2 instruction sets do not support fused
multiply-add, adding further instruction dependences. The
Atom architecture can issue an addition every cycle, but
a multiplication only every other cycle. This limits the
theoretical peak performance to 1 floating-point operation
per cycle because in linear algebra routines there is an equal
number of additions and multiplications. At 1.6 GHz it means
1.6 Gflops (where Gflops = [flops/cycle] · [clock in GHz]) in
double precision (scalar operations) and 6.4 Gflops in single
precision (4-wide SIMD).

The achieved performance is limited by the very small
number of registers. The processor does not support register
renaming, and thus only 4 registers are actually used to store
both intermediate results and elements of A and B, limiting
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Fig. 1: Performance test of different implementations of gemm for
squared n⇥n matrices, n 2 [4, 300], on an Intel Atom N270. Peak
performance in double (single) precision is 1.6 (6.4) Gflops.

the possibility to effectively hide latency. This limitation is in
part mitigated by the fact that the x86 architecture is CISC,
and one of the operands of additions and multiplication can
be in memory (but all instructions take two operands, and
thus one of the two is overwritten with the result).

Fig. 1 reports the performance in Gflops for different sin-
gle and double precision implementations of the routine for
matrix-matrix multiplication. In general, triple-loop shows a
poor performance (green), while blocking for registers and
packing the matrices into contiguous memory improves no-
tably the performance (magenta). In single precision, an im-
portant performance boost is achieved by the use of 4-ways
SIMD (cyan). Since the processor is in-order, the maximum
performance is obtained by carefully reordering instructions
in inline assembly (blue). However, when memory footprint
exceeds L1 cache (for size around 50 in double precision)
there is a certain degradation of performance. Using software
prefetch, it is possible to keep the same performance also for
matrices fitting in L2 cache (red). For larger matrices, the
performance drops significantly. Fortunately, this happens for
matrices that are larger than the matrices in most embedded
MPC applications.

Our best kernel reaches up to 83% (1.34 Gflops) of
theoretical peak performance in double precision and 72%
(4.63 Gflops) in single precision. It clearly outperforms
optimized BLAS libraries such as OpenBLAS [11].
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B. ARM Cortex A9

The ARM architecture is a quite different architecture
compared to x86. It is a RISC architecture (and thus supports
fewer addressing modes), but it has a rich set of instructions
and many registers, making code optimization easy.

Our test machine is a development board called Wand-
board Quad. It has a quad-core ARM Cortex A9 CPU
running at 1 GHz. The Cortex A9 processor supports out-
of-order execution and register-renaming only for general-
purpose registers, while the floating-point (FP) units perform
in-order execution without register-renaming. Each core has
32 KB L1 data and instruction caches, and all cores share 1
MB of L2 cache. In this paper, we address one CPU core.

The Cortex A9 core has a scalar FP unit (VFPv3), and
a SIMD unit (NEON) supporting only single-precision FP
numbers (4-way SIMD). There are 32 double-word FP
registers used by both VFP and NEON instructions. Each
register can hold a double (registers d0-d31), while only the
lower 16 registers can hold two scalar floats each (register
s0-s31, where e.g. s0 and s1 are the lower and upper half of
d0). Couples of consecutive d registers can be used to hold
128-bit wide vectors of 4 floats (registers q0-q15, where e.g.
d0 and d1 are the lower and upper half of q0). As a result,
there are 32 scalar registers (giving a 4 ⇥ 4 kernel for both
scalar double and single precision), and 16 4-wide NEON
registers (giving a 8⇥ 4 kernel for vector single precision).

The VFPv3 can operate on scalar doubles and floats. It
supports fused multiply-add (FMA). In double precision, it
can perform a FMA every other clock cycle, while in single
precision it can perform a FMA every clock cycle. At 1 GHz,
this gives for the VFP a theoretical peak performance of 1
Gflops in double and 2 Gflops in single precision.

In single precision, the NEON co-processor can be used
too, performing a 4-way FMA every other clock cycle, that
at 1 GHz gives a theoretical peak performance of 4 Gflops.

In double precision (Fig. 2a), the large number of registers
and the FMA instruction facilitate code optimization. The
4⇥4 kernel written in C can get about 80% if data fits in L1
cache (magenta). Reordering instructions such that memory
loads are performed in idle cycles between FMAs, the
performance arrives at 90%, if data fits in L1 cache (blue).
The use of software prefetch gives a steady performance for
data fitting in L2 cache, with maximum performance of 95%.

In single precision (Fig. 2b), if VFP is used, the perfor-
mance improves with respect to double (since FMA can
be performed every cycle), but does not double, since the
processor seems to be unable to perform a FMA and a load in
the same cycle (magenta). If NEON is used, the performance
increases even more, but the best achieved performance is
only about 68% of theoretical peak (blue): it looks like
there is a performance penalty in mixing FMAs and loads
(it is known that in the Cortex A9 there is a performance
penalty mixing VFP and NEON instructions, and the two
facts may be related). Again, the use of software prefetch
gives a steady performance for data fitting in L2 cache (red).
The achieved performance is competitive with respect to
OpenBLAS (black) that does not make use of NEON.
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Fig. 2: Performance test of different implementations of gemm for
squared n⇥n matrices, n 2 [4, 300], on an ARM Cortex A9. Peak
performance in double (single) precision is 1.0 (4.0) Gflops.

C. PowerPC 603e: G2 LE Core

The PowerPC target platform is the ABB AC500 PM592-
ETH programmable logic controller (PLC), which has a
Freescale MPC8247CVRTIEA microcontroller (SoC). The
core is the G2 LE implementation of the MPC603e micro-
processor. Our test PLC is equipped with 4MB RAM for user
program memory and 4MB integrated user data memory.

In recent times, the increase in computational resources
on PLCs and the emerging software support for the C/C++
programming language motivate the PLC implementation
of optimization-based algorithms (e.g. MPC). However, the
ABB PLC is a typical example of a target platform where
the programmer’s options for microprocessor performance
exploitation are limited by a restricted list of system pro-
gramming and runtime support libraries (implemented in a
firmware API). The PLC software development tool, ABB
PS501 Control Builder Plus 2.3 (based on the CoDeSys
platform), provides programming and runtime support con-
figurations for ANSI C89 and C99 code integrated into a
PLC software/runtime architecture with a restricted set of
C standard library functions. Therefore the PLC C code
application consists of an IEC 61131-3 function or function
block written in C. The GNU GCC 4.7.0 compiler toolchain
is used to compile the C code part of the PLC application.
Linking against external libraries (binaries) is not supported,
implying that a library-free C code is required.
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The G2 LE core is a low-power (1.5W) 32-bit RISC pro-
cessor running at 400 MHz. It is equipped with independent
on-chip 16 KB L1 caches for instructions and data, and on-
chip memory management units (MMUs).

Despite the low-power design, the PowerPC G2 LE core
can execute instructions out-of-order. Performance is further
boosted by the superscalar architecture. A pipelined FP unit
for all single-precision and most double-precision operations
is also implemented, and there are 32 64-bit FP registers,
each holding a single or double precision operand.

A single-precision FMA can be issued every clock cycle,
whereas its double-precision counterpart every other cycle.
Single-precision FMA instructions, therefore, operate faster
than double-precision ones. Note that our PowerPC does not
enjoy the luxury of having a floating-point SIMD instruction
set, which was carefully exploited for performance boost in
the Intel Atom and the ARM Cortex A9.

The features of the G2 LE core presented above suggest
a theoretical peak of 0.4 Gflops in double and 0.8 Gflops in
single-precision when the CPU is running at 400 MHz. We
choose a 4⇥ 4 kernel for both double- and single-precision,
and the tests results are presented in Fig. 3.

In double precision (Fig. 3a), the triple-loop version
(green) can attain a good performance only for very small
matrices, and performance drops significantly when the data
has to be fetched from main memory (and especially for
matrix size multiple of 32, due to the 4-way associativity of
cache). The use of a 4⇥ 4 kernel gives a slight performance
boost for matrices fitting into cache, but more importantly, it
helps considerably when the memory footprint exceed cache
size, since every element of A and B is used 4 times once
in registers. Interestingly, the assembly coded kernel does
not improve performance: FMA and the large number of
registers make optimization easy, so gcc with -O2 already
produces good code. Nevertheless, an optimized assembly
code helps in case the overall code cannot be compiled with
optimization flags. There are no advantages using prefetch.
The maximum performance is 0.28 Gflops (70% of peak).

In single precision (Fig. 3b), our tests give a quite different
picture compared to double precision. The first impression
is that the performance graphs are much flatter, without the
typical performance peak for data fitting in cache: the best
attained performance is 0.349 Gflops (43.6% of theoretical
peak). Our tests point toward the instruction fetching as
the bottleneck: in fact, for n = 32, leaving only FMAs in
the kernel loop coded in assembly, the performance ramps
up to 0.45 Gflops, but leaving only memory operations the
kernel execution time halves again, so memory movement is
not the bottleneck either. The G2 LE core reference manual
reports that the core can sustain 2 instruction fetches per
clock cycle, and a memory load and a FMA can execute in
parallel every clock cycle. In practice, however, the fact that
the combination of loads and FMAs is slower than each of
them alone is a strong argument that the core cannot co-issue
load and FMA. In this framework, the performance gain of
kernels compared to triple-loop is due to the lower number
of memory instructions, rather than memory movements.
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Fig. 3: Performance test of different implementations of gemm for
squared n ⇥ n matrices, n 2 [8, 64], on an PowerPC 603e. Peak
performance in double (single) precision is 0.4 (0.8) Gflops.

V. RESULTS

In this paper we employ an interior-point (IP) method for
the solution of the linear MPC problem. The current version
of the software (that we call HPMPC, for High-Performance
implementation of solvers for MPC) is a primal-dual IP,
supporting box constraints on both inputs and states. The
search direction is found by solving the LQCP (1) using the
Riccati-like algorithm proposed in [4].

The key element of our implementation is that the linear-
algebra routines in the LQCP solver are built around the
optimized gemm micro-kernel. In this way, most of the com-
putations are performed using a highly-optimized routine,
tailored for the specific architecture, and the performance
advantage with respect to triple-loop based implementations
increases with the problems size.

In this section, we compare the performance of our soft-
ware with the current (to our knowledge) state-of-the-art
IP solver for linear MPC on embedded devices, FORCES
[2]. FORCES makes use of code generation to build a
solver tailored for the special problem instance: in particular,
the linear-algebra routines are implemented as triple-loops,
where the loop size is fixed, and thus the compiler can unroll
the code where profitable, and perform other optimizations.

The constrained MPC problem for the comparison tests
entails the control of a chain of M number of masses
interconnected by springs.The problem size is defined by
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TABLE I: Run times [in ms] for 10 IP iterations. The tests are the same as in TABLE VI in [2]. #: problem data too big to fit in RAM.

Intel Atom N270 @ 1.6 GHz ARM Cortex A9 @ 1.0 GHz PowerPC 603e @ 0.4 GHz
HPMPC -O3 FORCES -O3 HPMPC -O3 FORCES -O3 HPMPC -O1 HPMPC no opt. FORCES no opt.

n

x

n

u

N double single double single double single double single double single double single double single
4 1 10 0.48 0.46 1.21 0.99 0.52 0.40 1.14 0.93 3.86 2.13 6.61 4.82 16.77 14.56
8 3 10 1.30 1.00 3.94 3.06 1.43 1.03 4.23 3.40 10.25 6.11 15.75 11.85 53.68 47.02

12 5 30 7.58 5.49 26.32 19.60 10.62 7.02 28.29 22.56 64.38 41.92 96.68 74.08 327.15 288.04
22 10 10 9.18 5.14 36.79 25.24 12.73 7.22 39.96 33.54 70.18 44.92 98.10 72.85 496.25 437.93
30 14 10 18.30 9.20 75.46 56.56 25.86 13.45 121.71 70.88 143.23 90.85 189.61 137.10 1120.54 988.38
60 29 30 332.72 130.59 1717.60 1468.38 531.34 225.07 1876.28 1373.46 # # # # # #

n

x

= 2M states, n
u

= M�1 control inputs, and the horizon
N . The benchmark problem instances and the same test data
used in [2] were prepared for our embedded platforms, table
I summarizes the results. The same optimization flags have
been used for both HPMPC and FORCES.

In the cases of Intel Atom N270 and ARM Cortex
A9, the tests were easy: they run Ubuntu based op-
erating systems (the compiler is gcc 4.6.3), and both
solvers worked without any hacking. The optimization
flags are -O3 -msse3 -mfpmath=sse -march=atom
for the Atom, and -O3 -marm -mfloat-abi=softfp
-mfpu=neon -mcpu=cortex-a9 for the Cortex A9.
For both architectures, the picture is alike: HPMPC is better
in exploiting the processors capabilities, especially in single
precision (where SIMD can be used), and the speed-up
increases with the problem size, from 2x for the smaller
problem up to 6x for the largest.

In case of the PowerPC 603e PLC, the tests were much
harder. The first limitation is that the code has to be library-
free and consist of a single C source file. Regarding HPMPC,
the required hacking consisted of adding all needed files
as ’headers’ to the ’main’. Besides setting the compiler
option -mcpu=603e, the maximum optimization level that
could be used is -O1. In case of FORCES, many more
hackings were needed to make the code work. The limi-
tation that required most work in preparing the FORCES
generated C code for the PLC is related to initialization of
pointers. A pointer cannot be initialized by the address of
another variable during declaration. That is, instructions like
float* myFloat 2 = &myFloat 1; are not allowed.
In the FORCES code, this means over 200 variable defi-
nitions must be modified, and a new function was written
for initializing (setting up) all the pointers in the required
format. Also, since the FORCES code generator is not open-
source, the above modifications had to be done manually for
each problem instance. At the end, FORCES could run on
the PLC, but without using any optimization flag, not even
-O1. Table I presents the results of 3 tests on the PLC:
FORCES (without optimization), HPMPC with -O1, and
for comparison HPMPC without optimization. The assembly
coded gemm kernel gives HPMPC a good performance even
without any optimization flag, and with -O1 gives a speed-
up from 7x to 10x compared to FORCES.

VI. CONCLUSION

In this paper, we proposed a novel approach to implement
solvers for linear MPC on embedded devices.

We presented implementation techniques for level 3 BLAS
linear algebra based on the use of optimized micro-kernels,
and compared its performance to classical triple-loop based
linear algebra. Furthermore, we described in detail how to
optimize these micro-kernels for three different embedded
architectures: Intel Atom, ARM Cortex A9 and PowerPC
G2. We could get similarly high performance-per-GHz for
the former two, despite being deeply different. For the latter,
we could not get such a performing implementation, but
we could point out the likely architectural bottleneck, and
still improve the performance considerably compared to the
triple-loop version.

The optimized micro-kernels have been used as the horse-
power for an IP method for linear MPC. A comparison of
our solver with the current state-of-the-art interior-point for
MPC on embedded devices shows a considerable speed-up.
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Efficient solvers for soft-constrained MPC

Gianluca Frison, John Bagterp Jørgensen

Abstract— The ability of easily and naturally handling con-
straints is certainly one of the winning features of Model
Predictive Control (MPC). The use of hard output constraints,
however, is often not physically necessary, and furthermore it
can lead to unfeasible optimization problems. One way to avoid
this issue is the use of soft-constraints on the outputs (and more
in generals on the states). In the soft-constrained formulation,
the constraint may be violated, but incurring in a penalty cost:
the optimization procedure thus avoid the violation of these
constraints whenever possible. Soft-constraints are traditionally
handled by introducing a decision variable for each slack
variable associated with the soft-constraints. This increases the
size of the dynamic system variables, and therefore the size
of the optimization problem, and it increases remarkably the
solution time. In this paper, we want to show that IP and
ADMM methods for box-constrained MPC can be modified
to handle the case of soft-constraints on the states, and at
a similar cost-per-iteration. This is obtained by exploit the
special structure of the KKT system of the soft-constrained
MPC problem, avoiding the introduction of additional control
variables. As a consequence, each iteration of the IP or ADMM
methods requires the solution of an unconstrained MPC sub-
problem with the same size as in the case of box-constrained
MPC.

I. INTRODUCTION

Model Predictive Control (MPC) is probably the most
successful advance control technique in industry [6]. It makes
use of a plant model to predict the future evolution of the
plant dynamic and compute an input sequence optimal with
respect to some cost function. At each sampling instant, only
the first input of this optimal sequence is applied to the plant,
before a new input sequence is computed using the latest
measurements: thus, at each sampling instant an optimization
problem has to be solved in real-time. This has traditionally
limited the use of MPC to system with slow dynamic, as
in process or chemical industry. In recent years MPC has
been successfully applied to system with fast dynamic, with
sampling times also in the micro-seconds range [4]: these
improvements are due to both faster hardware as well as the
use of structure-exploiting algorithms.

One of the winning features of MPC is certainly its
ability of easily and naturally handling constraints [5]. How-
ever, the presence of constraints makes computationally-
expensive the solution of optimization problems. Therefore,
algorithms exploiting special constraints formulations (e.g.
box constraints) have been proposed [1], [8]. One drawback
of the use of hard-constraints is that they may make the
optimization problem unfeasible: this is especially true in
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the case of output constraints. Furthermore, often the use of
hard-constraints is not physically necessary.

One way to avoid this issue is the use of soft-constraints
on the outputs (and more in general on the states). In this
formulation, the constraint may be violated, but incurring
on a penalty cost. This is usually obtained by introducing
slack variables associated with the soft constrained, and
heavily penalizing them: the optimization algorithm keeps
these slack variables to zero whenever possible, and violates
the constraints only if necessary. Soft-constraints are usually
handled by introducing a decision variable for each slack
variable associated with the soft-constraints. This approach
has the advantage of formulating the optimization problem
in the form of an hard-constrained one. However, this comes
at a cost from a computational point of view: the simple
constraint structure is lost (and thus algorithms for general
constraints must be employed), and furthermore the extra
decision variables enter in the optimization problem as
dynamic system variables, that typically contribute with a
cubic term in the flop count. Recently, a different formulation
has been proposed [7], avoiding the introduction of extra
optimization variables: however, this comes at the cost of
approximating of the soft constraint penalty

In this paper, we propose a different approach. We want to
show that both IP and ADMM methods for box-constrained
MPC can be modified to handle the case of soft-constraints
on the states, and that the flop count increases only by a
linear term. This is obtained by exploit the special structure
of the KKT system associated with the soft-constrained MPC
problem: new optimization variables are introduced for the
slack variables, but these are not additional control variables.
As a consequence, each iteration of the IP and ADMM
methods requires the solution of an unconstrained MPC sub-
problem (accounting for cubic and quadratic terms in the flop
count) with the exact same structure and size as in the case
of box-constrained MPC, and that can be solved efficiently
[2], [3].
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MPC Related Computational Capabilities of ARMv7A Processors

Gianluca Frison, John Bagterp Jørgensen

Abstract— In recent years, the mass market of mobile de-

vices has pushed the demand for increasingly fast but cheap

processors. ARM, the world leader in this sector, has developed

the Cortex-A series of processors with focus on computationally

intensive applications. If properly programmed, these proces-

sors are powerful enough to solve the complex optimization

problems arising in MPC in real-time, while keeping the

traditional low-cost and low-power consumption. This makes

these processors ideal candidates for use in embedded MPC.

In this paper, we investigate the floating-point capabilities of

Cortex A7, A9 and A15 and show how to exploit the unique

features of each processor to obtain the best performance,

in the context of a novel implementation method for the

linear-algebra routines used in MPC solvers. This method

adapts high-performance computing techniques to the needs of

embedded MPC. In particular, we investigate the performance

of matrix-matrix and matrix-vector multiplications, which are

the backbones of second- and first-order methods for convex

optimization. Finally, we test the performance of MPC solvers

implemented using these optimized linear-algebra routines.

I. INTRODUCTION

The aim of embedded Model Predictive Control (MPC)
is the implementation of MPC algorithms for embedded
hardware. This is a non-trivial task, requiring the repeated
solution in real-time of optimization algorithms on cheap
and low-power hardware. To overcome these challenges,
approaches focusing on the use of efficient algorithm [4], [5],
or unconventional hardware [3], [12] have been proposed in
recent years.

In this paper, we focus on the computational side of the
problem rather than on the algorithmic side, and on the
use of conventional and widespread hardware. The aim of
our work is to investigate the most efficient techniques to
implement the linear-algebra routines used in optimization
algorithms on embedded CPUs, in order to fully exploit
hardware computational capabilities. Therefore, our work is
complementary to the research effort focusing on new and
more efficient algorithms, since the combination of the two
would produce even faster solvers.

In the first part of the paper, we review existing imple-
mentation techniques for the linear-algebra routines arising
in first- and second-order optimization algorithms for MPC.
In particular, our work is based on the observation that
code-generated triple-loop linear-algebra routines currently
employed in embedded MPC are unable to adequately ex-
ploit the computational capabilities of modern processors.
Furthermore, highly-optimized BLAS libraries make use
of implementation techniques that can attain close-to-peak

Authors are with Technical University of Denmark, DTU Compute -
Department of Applied Mathematics and Computer Science, DK-2800 Kgs
Lyngby, Denmark. Email: {giaf,jbjo} at dtu.dk

performance, but they are optimized for large-scale problems,
and performs poorly on the small-scale problems typical of
embedded MPC applications. The implementation method
we propose is an attempt to adapt advanced implementa-
tion techniques recently developed in the High-Performance
Computing (HPC) community to the needs of embedded
optimization. The focus is on obtaining the best performance
for small-scale problems.

In this context, in the second part of the paper we inves-
tigate the computational capabilities of modern ARMv7A
processors, that are powerful, cheap and with low power
consumption. Therefore, they are widely employed in mobile
computing, and ideal candidates for use in real-time embed-
ded optimization. In particular, we present efficient imple-
mentations of the matrix-matrix and matrix-vector multipli-
cations, and show that their performance directly affects the
performance of second- and first-order optimization methods
for the solution of constrained MPC problems.

II. PROBLEMS DEFINITIONS

In this paper, we consider efficient solvers for the Linear-
Quadratic Control Problem (in the following, LQCP). It is
a rather general formulation, and it arises as a subproblem
in many optimization algorithm used in MPC: in particular,
we consider interior-point (IPM) and alternating direction
method of multipliers (ADMM) methods for linear MPC
with box constraints.

A. Linear-Quadratic Control Problem (LQCP)

The LQCP is the equality constrained quadratic program
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All matrices can be dense and time variant. Q

n

and P are
symmetric positive semi-definite matrices, R

n

are symmetric
positive definite matrices. The state and input vector dimen-
sions are n

x

and n

u

; the horizon length is N .
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B. MPC problem

The linear MPC problem with box constraints is the QP
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III. GENERAL OPTIMIZATION TECHNIQUES

In this section we present some general optimization tech-
niques for the gemm and gemv routines. A good reference
for matrix multiplication algorithms and definition of BLAS
levels is [9].

A. Recent history of optimized gemm

The gemm routine is the general matrix-matrix multiplica-
tion routine, used to multiply two matrices A and B without
assuming anything on their structure, i.e.

C  � · C + ↵ ·A ·B.

It is the most important level 3 BLAS routine, since all
level 3 BLAS routines (and as a consequence factorizations
in LAPACK) can be implemented calling gemm [11]. It is
commonly used as a benchmark to evaluate the performance
of linear-algebra libraries. Much work has been done in
researching the most efficient way to implement gemm, and
more in general linear-algebra routines. Here we review some
recent work to put our approach into perspective.

The ATLAS (Automatically Tuned Linear Algebra Soft-
ware) project [15] is an instantiation of the AEOS (Auto-
mated Empirical Optimization of Software) paradigm. It pro-
vides an optimized implementation of BLAS that typically
is much faster than the reference BLAS from Netlib [1].
The main idea is that the library depends on a number of
parameters to adapt to the different architecture features, such
as number of registers and cache size. During installation,
the performance is automatically and empirically tuned on
the specific machine by performing an optimization over
the parameter space. The code of the original library is
written in C and depends on compilers to exploit different
ISA (instruction set architecture); recent versions may use
also hand-optimized kernels. It employs block for registers
and for different levels of cache, copy of data into aligned
memory, and a block-wise matrix format (if matrices are
large enough to justify the copy). The original gemm kernel
is used to multiply squared sub-matrices fitting in L1 cache,
where the left operand is transposed and the right is not-
transposed. This scheme optimizes the memory access of
scalar instructions, but it is not effective in case of SIMD
instructions (present nowadays on all architectures).

A rather different approach is used in the GotoBLAS
library [10]. Here the focus in on using analytical insight

to choose relevant architecture parameters, on minimizing
TLB (Translation Lookaside Buffer) misses and streaming
panels (i.e. sub-matrices where one dimension is big and the
other is small) of data from L2 cache, instead of blocking
for L1 cache. This is obtained by using registers to hold a
sub-matrix of C (and thus reusing elements from A and B

once on registers) such that the memory bandwidth between
L2 cache and registers is large enough to hold the stream
of data. Furthermore, registers and software prefetch are
employed to hide latency of memory access from L2 cache.
TLB misses are minimized by carefully rearranging data
in memory such that elements are stored contiguously in
the same order as they are accessed by the gemm kernel,
and by considering TLB size in blocking for L2 cache.
The computationally most expensive part of the code (the
’inner-kernel’) is hand-written in optimized assembly for
different architectures. The GotoBLAS inner-kernel consist
of the three innermost loops of a layered approach, and
it is therefore relatively big. GotoBLAS is typically faster
than ATLAS and competitive with vendor’s implementations:
its performance is usually very close to the floating-point
(FP) theoretical peak performance. GotoBLAS is no more
under development, but a fork, OpenBLAS [16], provides
optimized BLAS for recent architectures.

A recent effort to simplify the development of high-
performance BLAS implementations is BLIS (BLAS-like
Library Instantiation Software) [14]. It aims at providing
a framework to quickly develop BLAS libraries for new
architectures by focusing on code-reuse and portability. BLIS
simplifies GotoBLAS’s approach by splitting the inner-kernel
in two: the micro-kernel (i.e. the innermost loop) and a
portable macro-kernel (consisting of two loops around the
micro-kernel). The micro-kernel computes a sub-matrix of
C by using two panels from A and B, and it is the only part
of the code that needs to be carefully hand-optimized. Only
one gemm variant is covered by the micro-kernel, namely
’NT’ (A not-transposed and B transposed): this is the optimal
variant using SIMD instructions, since it avoids reductions
and duplication operations in the innermost loop. This gemm
micro-kernel is used to implement all level 3 BLAS by
properly copying and transposing data matrices, and by using
small routines for the corner cases.

In optimized BLAS implementations, the focus is usually
on large-scale performance, and small-scale performance
can be poor due to the overhead of memory copy and
unnecessary blocking. Therefore, BLAS is not often used in
embedded MPC, since most problems in this field are small
to medium scale. An approach that has been widely used in-
stead in embedded MPC is code generation of linear-algebra
routines. It exploits knowledge from the MPC problem to
generate a solver tailored to a special problem size. Since the
size of each matrix is known, this knowledge can be used
to perform optimizations at both generation and compilation
time. Here we review two approaches that have been used
recently. For the purposes of this review of optimized gemm,
we are solely interested in the linear-algebra implementation
techniques.
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Code generation for embedded MPC gained widespread
attention thanks to CVXGEN [13]. Knowledge about prob-
lem size is used to fully unroll all loops in a Netlib-style
triple-loop implementation of linear-algebra routines. All
indexes are precomputed at generation time, and there are no
branches in the code. CVXGEN then relies on the compiler
to optimize the generated code for the target hardware. The
main disadvantage of this approach is that the code size
grows with the cube of the problem size, since all triple
loops are fully unrolled. This approach thus does not make
use of instruction cache (since there is no code reuse), and
compilation time can take a long time and possibly fail.

The FORCES [4] solver uses a different approach to code
generation. For the solution of the unconstrained MPC sub-
problems, it makes use of a block-wise Cholesky factoriza-
tion of a block tridiagonal matrix, where all blocks have
equal size n

x

⇥n

x

. Linear-algebra routines are implemented
using Netlib-style triple-loops, but loop sizes are fixed and
hard-coded at code-generation time. In this way, the compiler
can decide to unroll where profitable. The main drawback of
this approach is that it completely relies on the compiler for
the code optimization: even if loop sizes are fixed, compilers
are usually not able to properly optimize the code (e.g. gcc
is unable to vectorize it), and thus this approach can typically
attain only a small fraction of FP peak performance.

B. Implementing high-performance gemm for MPC

The approach we propose for implementation of the linear-
algebra is novel and it is an attempt to adapt the advanced
implementation techniques developed in the HPC community
to the needs of embedded MPC applications.

Problems solved in embedded MPC are usually small to
medium scale and need to be solved as fast as possible on
cheap hardware. In most cases, MPC solvers are called at
each sampling time for sequences of problems with constant
structure. This has been exploited in the code generation
framework by tailoring the solver to the specific problem.
However, this requires a new solver to be generated for each
problem instance, and this may be time-consuming.

Optimized BLAS implementations are typically libraries
working for all matrix size, and they can attain a large
fraction of the theoretical FP peak performance. However,
they are optimized for large-scale problems, and thus their
small-scale performance is usually poor. This is due to the
overhead of memory copy and unnecessary blocking for
caches.

We present an approach that is based on the following
observations:

• The implementation technique commonly employed in
embedded MPC (code-generated triple-loop based lin-
ear algebra) is unable to adequately exploit hardware
capabilities, since this compiled code can attain only a
small fraction of FP peak performance [6].

• Embedded MPC problems are small-medium scale,
such that their overall data structure can often fit in LLC
(last level cache), or at least each single data matrix can
fit in LLC (matrix size up to a couple hundreds).

• GotoBLAS shows that, in the gemm kernel, data can be
streamed from LLC fast enough to feed execution units,
if it is properly arranged in memory.

• Solution methods for constrained optimization such as
IPM or ADMM require many solutions to systems of
linear equations, reusing the same data matrices many
times. Therefore packing of matrices needs to be done
only once, well amortizing its cost.

Previous papers [6]–[8] document some of the interme-
diate steps leading to the approach we propose. However,
in the present paper we want to present the final result of
this research, and discuss the intermediate steps from this
perspective.

Due to the difficulty or inability of compilers to auto-
vectorize triple-loop linear algebra, the first step (in the
following, Step #1) has been to explicitly employ vector-
ization by means of instrinsics, together with a micro-kernel
based approach similar to the one employed in BLIS (this
approach is used for the tests in [8]). Common optimization
techniques such as block for registers have been employed.
This already requires detailed knowledge about the hardware
(e.g. ISA, number of registers, alignment requirements).
The performance shows a big improvement with respect to
triple-loop based implementations, but suffers from some
limitations. Vector instructions in many architectures require
memory to be aligned to 128- or 256-bit boundaries to be
efficiently loaded into registers. This requires data matrices to
have a special structure (first element aligned, and leading
dimension multiple of alignment requirement), or to copy
them into this format. Tests show that performance obtained
using this approach is good for data fitting in L1 cache,
but already decrease for data fitting in LLC. Furthermore,
performance can suddenly get very poor for some problem
sizes, due to cache associativity: for these matrix sizes,
elements in contiguous columns are mapped in the same
cache set, effectively acting as a reduction in cache size.
Performance is further affected by TLB misses, occurring
since non-contiguous memory is accessed by micro-kernels.

To overcome these limitations, we considered to rearrange
data in memory in a better way (Step #2). Since we assume
that data can fit in LLC, we do not employ blocking for
cache, but instead arrange matrix elements in the same order
such as the gemm kernel access them. Our gemm kernel is
analogous to BLIS’s micro-kernel, but with some important
differences. We decided to use a panel-wise matrix format
as the default matrix layout in all our code (also at MPC
solvers level), so the panel width (in the following b

s

, for
block size) has to be the same for all operand matrices. As
a consequence, the kernel size m

r

⇥ n

r

has the constraint
that m

r

has to be a multiple of n
r

, or the other way around.
The values of m

r

and n

r

are architecture-dependent and a
function of the number of registers as well as the SIMD
width. The value of b

s

is usually chosen as the smaller of
m

r

and n

r

, such that every time a cache line is accessed, it
is fully utilized.

Fig. 1 shows the panel-wise matrix layout and the behavior
of the gemm kernel. The gemm kernel computes the product
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Fig. 1: Matrix layout in memory: matrix elements are stored in
the same order such as the gemm kernel accesses them. The panels
width b

s

is the same for the left and the right matrix operand, as
well as for the result matrix.

only in the variant ’NT’ (i.e. C = C + A · B0, where
the left operand is not-transposed and the right operand is
transposed). This is the optimal variant in a SIMD machine,
and MPC algorithms are designed to naturally use this variant
as much as possible, or to explicitly transpose matrices when
strictly necessary. In the example in Fig. 1, b

s

= 2 and the
kernel is 4 ⇥ 2: this means that two panels of A and one
panel of B are streamed to compute 4 ⇥ 2 elements of C.
Notice that the result matrix C is automatically stored in
panel-wise format at no extra cost. In the MPC framework,
this means that only original data matrices eventually need
to be converted into panel-wise format, while all internal
matrices are automatically computed in this format.

Linear-algebra routines are implemented as two loops
around this gemm kernel, with level-2 BLAS specialized
routines handling corner cases and the solution phase in the
Cholesky factorization. This means that the only routine that
has to be hand-optimized to get good performance is the
gemm kernel, that is explicitly called by all level-3 BLAS
and LAPACK routines. The code used for numerical experi-
ments in [7], [8] employs this implementation scheme. This
approach gives steady and close-to-peak performance for
medium-scale problems, but for small-scale problems it does
not improve performance much compared to the approach
in Step #1. In fact, an optimal streaming of data from LLC
does not improve the performance for matrices already fitting
in L1 cache. For such small matrices, the performance is
influenced by the number of kernel calls, because of their
constant cost before (e.g. zero the accumulation registers)
and after (e.g. reductions or permutations of accumulation
registers, update and store of final result) the main loop (that
is the only part of the kernel accounting for flops).

This observation leads to the implementation scheme
currently employed in our code (Step #3). The focus in
on improving small-scale performance by merging linear-
algebra routines and by designing specialized kernels for
these merged linear-algebra routines, such that each element
of the result matrices is accessed only once. As an example,
let us consider the syrk and potrf operations in line 4 and
5 of Algorithm 1 in [6]. Using the approach presented in Step
#2, the first operation computes a matrix as the product of
a matrix and the transposed of the same matrix (one call to
gemm kernel for each L sub-matrix), that is then Cholesky

factorized (one call to gemm kernel and one call to either
Cholesky factorization or matrix system solution routines
for each L sub-matrix). In total, three routines are called
for each L sub-matrix, and as a consequence the relative
memory is loaded and stored three times. Instead, we can
consider the new merged routine syrk potrf, such that a
single kernel is used to compute and factorize each L sub-
matrix (and then the relative memory is loaded and stored
only once). In this approach, the gemm kernel is not called
explicitly, but it enters in the code of more complex kernels.
This implementation of Algorithm 1 in [6] shows a speed-
up of a factor 2 for small-scale problems, compared to the
approach in Step #2, without compromising the performance
for larger problems.

C. Implementing high-performance gemv for MPC

The gemv is the general matrix-vector multiplication
routine, used to multiply a matrix and a vector without
assuming anything about the structure of the matrix, i.e.

y  � · y + ↵ ·A · x.
Two variants are considered, namely ’N’ (the A matrix is not-
transposed) and ’T’ (the A matrix is transposed), and their
implementation takes into account the panel-wise matrix
format in Fig. 1. In the matrix-vector multiplication, there
is no reuse of the elements of the matrix A, while the
elements of the vector x are accessed several times. Since
this routine is usually memory-bounded (i.e. the bottleneck is
the memory bandwidth, and not the computation throughput),
performance can be improved by reusing each element of x
several times, once loaded into registers. This is achieved
by employing blocking for registers to compute multiple
elements of y at a time.

In the ’N’ variant, the A matrix is accessed in panels (and
thus the panel-wise format is optimal for this routine too).
Each element of y is computed using the scalar-times-vector
product: each x element has to be broadcast to an entire
vector register and multiplied by a column-vector from A.
No reduction is needed, but it may be necessary to use several
accumulation registers to hide the latency of FP operations.
Software prefetch is often beneficial, but processor with good
hardware prefetch should detect the regular access pattern.

In the ’T’ variant, the A matrix is accessed across panels
(and thus the panel-wise format is not optimal for this
routine), but (if several elements of y are computed at a
time) several columns in the same panel are used contigu-
ously, before moving to the next panel. Each element of
y is computed using the dot-product: each column-vector
from A is multiplied with a vector of consecutive elements
from x, and the result is stored in a different accumulation
register for each y element. At the end, reduction is needed
to compute the final value for each y element. Software
prefetch is fundamental, given the complex access pattern.
The performance of this variant is usually lower than the ’N’
variant, due to the need for reduction and the sub-optimal
matrix format.
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IV. OPTIMIZING LINEAR-ALGEBRA FOR THE ARMV7A
ARCHITECTURE

ARMv7 is the last 32-bit ARM architecture. It is divided
into three profiles: A (application), R (real-time) and M
(micro-controller). The A profile is intended for the most
computationally intensive applications and provides features
such as MMU (memory management unit) needed by modern
operating systems (OS). ARMv7A is a RISC architecture,
therefore it supports only simple addressing modes, and
the operands of algebraic and FP operations must be in
registers (and not memory). It has 16 32-bit GP (general
purpose) registers and it supports two ISA: ARM (32-
bit instructions encoding) and Thumb-2 (16-bit instruction
encoding, allowing for higher compiled code density). ARM
processors are well known for their low power consumption
and widely used in embedded applications.

FP support is not mandatory, but de-facto it is present
on all implementations for commercial devices such as
smartphones, tablets and development boards. The FP unit
can be considered a co-processor, having its own registers,
pipelines and data paths. There are two FP instruction sets:
VFP and NEON.

VFP give support to both double and single precision
scalar operations. The most widely used variant has a set
of 32 64-bit registers (d0-d31), each holding a double-
precision FP number. The lower 16 d-registers can dually
be seen as 32 32-bit registers (s0-s31).

NEON is a SIMD instruction set, providing vectorization
for 8-, 16-, 32- and 64-bit integers and for 32-bit FP numbers.
It operates on a set of 16 128-bit registers (q0-q15), each
consisting of a couple of consecutive d-registers. This dual
view of s-, d- and q- registers makes coding of corner cases
much easier and more natural than in x86, avoiding the need
for shuffle instructions and using the available register space
more effectively. NEON instructions can operate on small
vectors of 4 or 2 single-precision FP numbers. It provides
basic operations such as addition/subtraction, multiplication
and multiply-accumulate (MLA), but lack complex oper-
ations such as division and square root (VFP has to be
used instead for these operations). NEON implementation
in ARMv7A in not considered fully IEEE 754 compilant
since it only supports round-to-nearest mode and flushes
all denormals to zero. This is not a concern in code for
MPC, therefore we use NEON instructions where profitably.
BLAS libraries often do not target NEON: therefore in single
precision our code is much faster than OpenBLAS (Fig. 2).

In case of multicore CPU, only one core will be considered
in our performance tests.

A. Cortex A9

The Cortex A9 was the higher performing ARM processor
when introduced to the market (2010) as a replacement of
the Cortex A8. It can be found in many SoC equipping
smartphone, tablets and embedded devices.

It is a superscalar processor with an issue capability of
2 instructions per cycle (even if not all instruction combi-
nations can be co-issued). It is the first multicore processor
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Fig. 2: Performance test for gemm (blue), and gemv in ’N’
(magenta) and ’T’ (red) variants, on different ARMv7A processors.
The top of pictures is the theoretical peak performance.

from ARM, with up to 4 cache-coherent cores. There are 32
KB of both instruction and data L1 cache per core. There
may be an external L2 cache shared among cores. The cache
line size is 32 byte, corresponding to 4 doubles or 8 floats.

The processor supports speculative and out-of-order ex-
ecution and register renaming in GP registers. However,
these advanced features are not present in the FP pipeline
and registers. As a consequence, we decided to code the
micro-kernels using inline assembly to have full control over
register allocation and instruction scheduling. VFP is present
in the VFPv3 version, and FP datapath is 64-bit.

Our test machine is the development board Wandboard
Quad, equipped with the i.MX6 Quad SoC from Freescale:
the CPU is a quad-core Cortex A9 running at 1 GHz, and
there is 1 MB of L2 cache.

In double precision, in the implementation of the dgemm
kernel we use 16 out of 32 d-registers to hold a 4⇥ 4 sub-
matrix of C. As a consequence, we choose b

s

= 4, and one
panel from both A and B has to be streamed. The other 16
registers are used to prefetch elements from A and B. The
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Cortex A9 can issue a double-precision MLA every other
cycle, giving a theoretical peak performance of 1 flop per
cycle (1 Gflops at 1.0 GHz). Memory instructions are issued
in the idle cycle between two MLAs. Software prefetch has
to be used to hide L2 cache latency, since numerical tests
show that there is no effective hardware prefetch. Fig. 2a
shows that the performance of dgemm is as high as 95%
of theoretical peak for matrices fitting in L2 cache, while
performance starts to decrease for size about n = 200.

In the implementation of the dgemv kernels, for both
the ’N’ and ’T’ versions we decided to use 8 registers to
hold a 8 ⇥ 1 sub-vector of y. Given the large number of
registers even larger values could be used, but with the
chosen value each x element is already reused 8 times,
effectively made the stream of A the bottleneck. Software
prefetch is particularly important to have good performance,
especially in the ’T’ variant. Fig. 2a shows that the memory
bandwidth from L2 cache is large enough to stream data, and
that the peak performance is about 63% of theoretical peak.
This value is rather large: the memory system is designed to
feed the SIMD NEON units, while in double precision only
scalar instructions can be used, and therefore consuming data
at a lower rate.

In single precision, both the scalar VFP and the vector
NEON units can be used. A single-precision VFP MLA can
be issued every clock cycle (theoretical peak of 2 flops per
cycle), while a 4-wide NEON MLA can be issued every other
clock cycle (theoretical peak of 4 flops per cycle), as NEON
can effectively execute 64-bit per cycle. We choose to use the
vector NEON unit. Out ot 16 q-registers, we use 8 to hold
a 8⇥ 4 sub-matrix of C. We choose again b

s

= 4, meaning
that two panels from A and one from B need to be streamed.
It is well known that in the Cortex A9 there is performance
penalty in mixing VFP and NEON instructions, since the
FP pipeline need to be flushed when switching between the
two instructions sets. However, our numerical tests show that
there is a similar performance penalty in mixing memory
loads and NEON instructions. As a consequence, the best
performance in the sgemm kernel is obtained by loading all
needed memory with consecutive load instructions, and then
performing all MLAs on that data before loading new data.
This limits the performance that can be attained in practice
to about 68% (Fig. 2b), due to both the performance penalty
and the inability to hide latency by loading data in the idle
clock cycle between two MLAs.

In the sgemv implementation, we use again 8 registers to
hold a 8⇥1 sub-vector of y in both the ’N’ and ’T’ variants.
We employ software prefetch and we avoid mixing NEON
and load instructions. In single precision, the best achieved
performance is about 38% of the theoretical peak for both
variants for matrices fitting in L1 cache, while there is a
small performance decrease for matrices fitting in L2 cache.

B. Cortex A15

The Cortex A15 is the highest performing 32-bit processor
designed by ARM. Originally designed for use in servers,
it is present on the market since 2012. It can use up to 1

TB of memory thanks to the 40-bit Large Physical Address
Extensions. Nowadays, it can be found in many high-end
smartphones and tablets, either alone or in combination with
lower-power Cortex A7.

It is a superscalar processor that can issue 3 instructions
per cycle (and as an improvement over Cortex A9 can co-
issue FP instructions and load instructions). It supports spec-
ulative and out-of-order execution, and register renaming.
There can be up to 4 cores per cluster, with 32 KB of data
L1 cache and 32 KB of instruction L1 cache per core, and
up to 4 MB of integrated L2 cache per cluster. The cache
line size is 64 byte, corresponding to 8 doubles or 16 floats.

The Cortex A15 has two FP units per core: VFPv4 and
NEONv2. The main difference with respect to VFPv3 and
NEON present in older processors like Cortex A9 is the pres-
ence of fused-multiply-accumulate instructions where the
result is rounded only once, after the addition. However, this
instruction does not support the vector-times-scalar format,
and it has a lower throughput: we thus decide to use the
MLA instruction. FP datapath is 128-bit, twice as much as
Cortex A9.

Our test machine is the development board NVIDIA Jetson
TK1, equipped with the 32-bit NVIDIA Tegra K1 SoC: the
CPU is a quad-core Cortex A15 running at 2.3 GHz plus a
low-power companion core, and there are 2 MB of L2 cache.

In double precision (Fig. 2c), the code for both dgemm and
dgemv is the same as for Cortex A9, a part the fact that the
half prefetch instruction are used, since the cache line size in
Cortex A15 is twice the size in Cortex A9. However, since
Cortex A15 can perform a double-precision MLA every cycle
and can co-issue MLA and memory load, the performance
is exactly twice as much as Cortex A9, i.e. 96% and 63%
respectively of the theoretical peak performance of 2 flops
per cycle (4.6 Gflops at 2.3 GHz).

In single precision (Fig. 2d), Cortex A15 shows even big-
ger improvements over Cortex A9. In fact, it can issued a 4-
wide NEON MLA every cyle (NEON can effectively execute
128-bit per cycle), and furthermore there are no performance
penalty in mixing VFP and NEON instructions, nor there are
in mixing NEON and load instructions. Interestingly, Cortex
A15 can not co-issue NEON MLA with NEON load, while
it can co-issue NEON MLA with VFP load. So the best
performance is obtained interleaving a NEON MLA with a
VFP load, that can be both issued in the same clock cycle.

The fact that there are no performance penalty in mixing
MLA and load instructions implies that it is possible to use
even more registers to hold a sub-matrix of C, to reduce the
memory operations further. Performance tests show that a
12 ⇥ 4 sgemm kernel performs better than a 8 ⇥ 4 kernel.
This means that 12 out of 16 q-registers are used to hold a
sub-matrix of C, while the other 4 are used for vectors from
the A and B matrices. We still choose b

s

= 4, and thus three
panels from A and one panel from B are streamed. The best
performance is 89% of the theoretical peak performance of
8 flops per cycle (18.4 Gflops at 2.3 GHz).

In the sgemv implementation, the code is analogous to
the code for Cortex A9, with the differences that interleaving
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MLAs and loads improves performance, and half the prefetch
instructions are needed. The peak performance of 39% is less
than half of the sgemm peak performance.

C. Cortex A7

The Cortex A7 is a low-power 32-bit processor designed
by ARM. Present on the market since 2013, it can be found
alone in low-end smartphones and tablets, or in combination
with the Cortex A15 (big.LITTLE technology) in high-end
devices. It is fully feature compatible with Cortex A15, but
the design focus is on low-power consumption instead of
high-performance.

It is partially superscalar, being able to double-issue only
few combinations of instructions. It supports in-order ex-
ecution, without any register renaming. There can be up
to 8 cache-coherent cores per cluster, with 32 KB of both
instruction and data L1 cache per core, and up to 1 MB
integrated L2 cache. The cache line size is 64 byte for L1
data and L2 caches, and 32 byte for L1 instruction cache. It
has the VFPv4 and NEONv2 FP units, and the FP datapath
is 64 bit (same as Cortex A9).

Our test machine is Cubieboard 2, a development board
equipped with the Allwinner A20 SoC: the CPU is a dual-
core Cortex A7 @ 1.0 GHz, with 512 KB of L2 cache.

In double precision (Fig. 2e), the code for both dgemm

and dgemv is exactly the same as for Cortex A15. However,
Cortex A7 can only perform a double-precision MLA every
4 cycles: as a consequence the performance-per-cycle is half
of Cortex A9 and a quarter of Cortex A15, arriving at 92%
and 72% respectively of a theoretical peak performance of
0.5 flops per cycle (0.5 Gflops at 1.0 GHz). Notice that the
dgemv performance is very high for data fitting in cache:
in fact, Cortex A7 has the same datapath as Cortex A9, but
half the throughput.

In single precision (Fig. 2f), the Cortex A7 can perform
a VFP MLA every cycle, or a NEON 4-wide MLA every
4 cycles (NEON can effectively execute 32-bit per cycle):
so the theoretical peak performance is the same for VFP
and NEON, namely 2 flops per cycle (2 Gflops at 1.0
GHz). However, the Cortex A7 shows the same performance
penalties as the Cortex A9, and the penalty in mixing
FP loads and MLA applies to both VFP and NEON. In
practice, using NEON it is possible to have a slightly better
performance, so the sgemm and sgemv kernels for Cortex
A7 are the same as for Cortex A9, with the difference that it
uses half the prefetch instructions (being the cache line twice
as long). The best performance is 72% for sgemm, and 47%
and 39% respectively for the ’N’ and ’T’ variants of sgemv.

V. LQCP SOLVERS

For the solution of the LQCP in (2), we consider the
efficient Riccati recursion algorithm proposed in [6], [8].
Riccati recursion can be seen as a factorization procedure
for the KKT system of (2), therefore two algorithms are
presented in [8]: one to factorize the KKT matrix and solve
the KKT system (Algorithtm 1), and one to solve the KKT
system using an already factorized KKT matrix (Algorithm
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Fig. 3: Performance test for the Riccati LQCP solvers: factorization
& solution (blue), solution with varying b (red) and solution with
fixed b (green), on an ARM Cortex A9. Tests in double precision
(Peak performance is 1.0 Gflops).

2). These algorithms are implemented using the gemm and
gemv kernels as their respective backbone. In this section,
we want to show that the performance of the LQCP solvers
strongly depends on the performance of these kernels.

In the LQCP (2), the data storage size grows approxi-
mately as O(N(n

x

+n

u

)2): there are N stages, and at each
stage the largest matrix has O((n

x

+ n

u

)2) elements. This
stage-wise structure affects the performance of solvers.

Algorithm 1 makes use of level-3-BLAS-like routines
(implemented using the gemm kernel), where each matrix
element is used more than once. Fig. 3a and 3b show the
performance of the double-precision version of the routine
for a Cortex A9 (blue line): the performance of the Riccati
recursion is higher than 80% of theoretical peak. There is a
peak in performance for problems small enough to entirely fit
in cache (meaning that all matrices for all N stages can fit in
cache at once), followed by a small decrease in performance
when data has to be fetch from main memory. Performance
increases again for larger matrices, as long as each single
matrix can individually fit in LLC, since each element is
reused more times once moved from main menory to cache.
The value and position of this peak is influenced by problem-
dependent quantities such as the horizon length (N = 10 in
Fig. 3a and N = 50 in Fig. 3b), as well as machine features
such as memory hierarchy and FP computational capabilities.

Algorithm 2 makes use of level-2-BLAS-like routines (im-
plemented using the gemv kernel), and each matrix element
is used only once. As a consequence, once the problem
memory footprint exceeds the LLC size, the performance
keeps decreasing as the problem size increases (red line).
However, if the Lagrangian multipliers are not needed (i.e.
line 15 in Algorithm 2 is not executed), and if the value
of P

n+1bn has already been computed in a previous solver
call (i.e. line 3 in Algorithm 2 is not executed again), then
many flops can be saved and much less memory needs to
be accessed: this is the case in the ADMM algorithm. The
accessed memory (but not the flops) can be further decreased
if the dynamic system is time invariant, by reusing a single
matrix at every stage: this keeps the performance high also
for large values of n

x

(green line).
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TABLE I: Solution time [in ms] in double (single) precision for the MPC solvers: IPM in FORCES, IPM in HPMPC and ADMM in
HPMPC. The code compiled using gcc. The OS is Ubuntu for Cortex A9 and Cortex A15, and Debian for Cortex A7.

Cortex A7 @ 1.0 GHz Cortex A9 @ 1.0 GHz Cortex A15 @ 2.3 GHz

MPC problem size FORCES HPMPC FORCES HPMPC FORCES HPMPC

n
x

n
u

N IPM IPM ADMM IPM IPM ADMM IPM IPM ADMM

4 1 10 2.24(1.90) 0.74(0.59) 0.87(0.97) 1.14(0.93) 0.53(0.47) 0.64(0.79) 0.36(0.30) 0.15(0.15) 0.16(0.25)
8 3 10 7.16(5.96) 2.14(1.38) 2.12(1.98) 4.23(3.40) 1.57(1.06) 1.49(1.54) 1.16(0.93) 0.38(0.30) 0.37(0.48)
12 5 30 47.6(36.4) 18.6(9.31) 13.2(10.4) 28.3(22.5) 10.6(6.90) 9.40(8.45) 7.21(5.46) 2.47(1.68) 2.22(2.38)
22 10 10 69.1(55.7) 21.1(9,29) 11.0(7.40) 40.0(33.5) 11.7(6.34) 7.43(5.63) 11.7(9.28) 2.69(1.43) 1.68(1.46)
30 14 10 156(126) 48.3(18.9) 19.2(16.0) 122(70.9) 23.9(11.7) 12.2(8.61) 25.1(20.9) 5.43(2.39) 2.82(2.12)
60 29 30 2256(1928) 906(340) 309(152) 1876(1373) 569(220) 173(74.8) 431(369) 116(39.1) 35.1(19.2)

VI. MPC SOLVERS

The Riccati solvers for the LQCP in (2) can be used as
routines in solvers for MPC. In this paper, we consider two
solvers: a Mehrotra’s predictor-corrector IPM (calling both
Algorithm 1 and 2 once per iteration), and an ADMM (call-
ing Algorithm 1 only the first iteration, and then Algorithm
2 once per iteration). We use the mass-spring system as test
problem and repeat the tests in [4] using the two solvers from
our toolbox HPMPC [2] and the IPM FORCES. We exploit
the fact that the dynamic system is linear time-invariant to
reuse the same data matrices at each stage, and by computing
the factorization of the KKT matrix off-line in the ADMM.

Table I provides the results. We decide to fix the number
of iterations to 10 for the IPM and to 50 for the ADMM:
for these values IPM and ADMM gives reasonably similar
accuracy for this test problem. For very small problems,
the different computational capabilities of processors are
partially masked by fixed cost such as latency of memory
access and pre- and post-loop operations in kernels. Simi-
larly, there is not a big difference between single and double
precision, and Algorithm 1 and Algorithm 2 have comparable
costs. So ADMM is slower beacuse of the larger number of
iterations. As the problem size increases, single precision
becomes increasingly advantageous over double precision,
and the same happens for Algorithm 2 (with a quadratic
cost on state and input size) over Algorithm 1 (with cubic
cost), even if the flops count is partially balanced by the
higher performance of gemm over gemv. For both solvers
in HPMPC the CPU times are well below 1 ms for the
smallest problem, and below 1 s for the largest one, thanks
to the high-performance of the gemm and gemv kernels. The
generic code in FORCES can exploit hardware capabilities
to a much smaller extent, especially in single precision.

Notice that the above analysis is based on the cost for
a fixed number of iterations, while in practice number of
iterations may vary considerably with the problem instance,
especially in the case of ADMM.

VII. CONCLUSION

In this paper, we reviewed linear-algebra implementation
techniques currently employed in the HPC community and
in the embedded MPC community, and proposed a novel
approach. This approach takes implementation techniques
used in recent BLAS implementations and adapts them to the

needs of embedded MPC. MPC solvers implemented using
this approach can exploit hardware capabilities of processors
well, and therefore attain a large fraction of theoretical peak
performance. In this context, we investigated the compu-
tational capabilities of modern ARMv7A processors, and
found that, regarding FP theoretical peak performance per
cycle, Cortex A15 is 2x faster than Cortex A9, that in turn
is 2x faster than Cortex A7. In practice, Cortex A15 appears
to be of a different class (partially due to the higher clock
frequency it can reach), being over 9x times faster than
Cortex A7, and 6x times faster than Cortex A9 on compute-
intensive workloads in single precision. The developed code
is part of the open-source HPMPC toolbox [2].
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Abstract:

In this paper we present a moving horizon estimation (MHE) formulation suitable to easily
describe the quadratic programs (QPs) arising in constrained and nonlinear MHE. We propose
algorithms for factorization and solution of the underlying Karush-Kuhn-Tucker (KKT) system,
as well as the e�cient implementation techniques focusing on small-scale problems. The
proposed MHE solver is implemented using custom linear algebra routines and is compared
against implementations using BLAS libraries. Additionally, the MHE solver is interfaced to
a code generation tool for nonlinear model predictive control (NMPC) and nonlinear MHE
(NMHE). On an example problem with 33 states, 6 inputs and 15 estimation intervals execution
times below 500 microseconds are reported for the QP underlying the NMHE.

1. INTRODUCTION

Moving Horizon Estimation (MHE) has emerged as an
e↵ective option to state and parameter estimation of con-
strained or non-linear systems. It is found to give su-
perior estimation performance with respect to the Ex-
tended Kalman Filter (EKF), at the cost of increased
computational cost [11]: MHE requires the solution of an
optimization problem at each sampling instant.

MHE can be seen as an extension of the Kalman Filter,
where, beside the current measurement, a window of N
past measurements is explicitly taken into account in the
estimation. This makes the estimation less sensitive to
the choice of the arrival cost, that rarely has an analytic
expression in case of constrained or non-linear systems
[18]. Furthermore, the MHE formulation can naturally and
optimally take constraints into account.

From an algorithmic point of view, MHE is often consid-
ered the dual of Model Predictive Control (MPC), with
the di↵erence that the initial state is free. Therefore, algo-
rithms for MPC have been used to solve MHE problems.
In particular, a forward Riccati recursion (corresponding
to a covariance Kalman filter recursion) has been proposed
in [20; 14] for the solution of the unconstrained MHE sub-
problems. A QR factorization based, square-root forward
Riccati is proposed as routine in an Interior-Point Method
(IPM) for MHE in [12].

The focus of the current paper is on the computational per-
formance of algorithms and implementations, rather than
the control or estimation performance. More precisely, the
focus is on the development of a fast solver for the equality-
constrained linear MHE problem, specially tailored to
small-scale problems. This solver is embedded in an algo-
rithmic framework for non-linear MHE (presented in [15]
and implemented using automatic code generation in [6])
and used to solve in real-time the QPs arising in equality-

constrained non-linear MHE problems. The real-world test
problem in Section 5.2 falls into this class of problems.
Furthermore, the developed solver can be easily embedded
as a routine into an IPM to solve inequality-constrained
MHE problems, similarly to [9] for the MPC problem case.
In an IPM, a solver for the equality-constrained MHE
problem is used to compute the Newton direction, that is
the most computationally expensive part of the algorithm.
Hence the importance of a solver for this class of problems.

The focus on small-scale problems has important conse-
quences on algorithmic and implementation choices. In
case of small-scale dense problems (with dense meaning
MPC and MHE problems where the dynamic system
matrices are dense), solvers based on tailored recursions
are much faster than general-purpose direct sparse solvers
(see e.g. [7] for a comparison of a Riccati recursion based
solver to PARDISO and MA57 direct sparse solves in
the unconstrained MPC problem case). The performance
gap suggests that direct sparse solvers may become com-
petitive only for very sparse problems. In case of large-
scale and sparse solvers, direct sparse solvers have been
successfully applied to the MHE problem [23]. Further-
more, the focus on small-scale problems reduces the issues
related to the numerical stability of the recursion schemes.
It is well known that the Riccati recursion can be seen
as a special stage-wise factorization of the KKT matrix
of the unconstrained MPC problem. The factorization of
di↵erent permutations of the KKT matrix can have better
accuracy properties, especially in case of ill-conditioned
problems.

In this paper, we study the applicability to the MHE
problem of the e�cient implementation techniques pro-
posed in [9; 8] for the MPC problem, with special focus
on small-scale performance. In particular, one of the key
ingredients to obtain solvers giving high-performance for
small matrices is the merging of linear algebra routines
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[8]. In the case of the MHE problem, the e�cient Riccati
recursion implementation proposed in [9] can not be em-
ployed, since the covariance of the state estimates (needed
in the computation of the state estimates in the forward-
backward substitutions) is never computed explicitly, but
instead only implicitly in a Cholesky factorization. There-
fore, in this paper we consider a di↵erent recursion for
MHE, corresponding to the information Kalman filter.
This recursion can be e↵ectively implemented using the
proposed techniques, giving noticeable speedups with re-
spect to the use of optimized BLAS (Basic Linear Algebra
Subprograms) and LAPACK (Linear Algebra PACKage)
libraries, as shown in Section 5.1. As a further advan-
tage, the use of this recursion as routine in solvers for
constrained MHE is straightforward, since the inversion
of the information matrices (updated at each iteration of
e.g. an IPM) is e�ciently embedded in the recursion itself.
Finally, this recursion can naturally handle state equality
constraints at the last stage, that are useful to provide the
controller with consistent state feedback.

Besides the use of the e�cient implementation techniques
proposed in [9; 8], the key di↵erence between the solver
presented in the current paper and the one presented in
[12] regards the choices at the linear algebra level. Given
the generic matrices A and B, the upper Cholesky factor
R of the matrix A + B

0 · B can be computed e�ciently
using the BLAS rank-k symmetric update routine syrk

and LAPACK Cholesky factorization routine potrf at a
cost of 4

3n
3 flops (if all matrices are of size n). Given the

uniqueness of the Cholesky factorization, R can also be
computed using the LAPACK QR factorization routine

geqrf, as


B

A

1
/2

�
= Q ·R, at the larger cost of 10

3 n

3 flops,

plus possibly 1
3n

3 to compute A

1
/2. On the other hand,

the QR factorization based on Householder reflections is
more accurate, since the worse-conditioned normal matrix
B

0 ·B is not computed explicitly. The choice between the
two implementations therefore depends on accuracy and
speed requirements.

2. PROBLEM FORMULATION

The aim of the MHE problem is the reconstruction of
the state vectors x

k

, process noise vectors w

k

and mea-
surement noise vectors v

k

, given the plant model, the
measurement vectors y

k

for a window of past time instants
k = 0, 1, . . . , N and an initial estimate of the state vector
at time 0, x̄0, and relative covariance matrix eP0, summa-
rizing the contribution given by the measurements prior
to time 0.

The (unconstrained) MHE problem is traditionally written
as the Quadratic Program (QP)

min
xk,wk,vk

P
N

k=0
1
2 (vk � v̄

k

)T eR�1
k
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+
P

N�1
k=0

1
2 ((wk

� w̄

k

)T eQ�1
k

(w
k

� w̄

k

)+
+ 1

2 (x0 � x̄0)T eP�1
0 (x0 � x̄0)

s.t. x

k+1 = A

k

x

k

+G

k

w

k

+ f

k

y

k

= C

k

x

k

+ v

k

In this formulation, the inverse of the matrices in the cost
function has a precise statistical interpretation: eR

k

is the
covariance matrix of the measurement noise vector v

k

, eQ
k

is the covariance matrix of the process noise vector w

k

.
The vectors v̄

k

and w̄

k

are the expected values of the
measurement and process noises.

In this paper, we consider a di↵erent formulation of the
MHE problem. Namely, we consider a QP in the form

min
xk,wk
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N
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s.t. x
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= C

k

x

k

+ v

k

(1c)
D

N

x

N

= d

N

(1d)
The matrices Q

k

, R

k

and P0 can be interpreted as
information matrices. In general, the matrices R

k

are
assumed to be strictly positive definite, and the matrices
Q

k

and P0 are assumed to be positive semi-definite, with
the matrix Q0 + P0 strictly positive definite.

This formulation reflects the deterministic view of the
MHE as the problem of finding the optimal x

k

, w
k

and
v

k

sequences in a least-square sense, with respect to some
cost function. The penalization of x

k

in place of v

k

in
the cost function (1a) is useful to account for QPs in
non-linear MHE. The fact that the matrices in the cost
function appear as not-inverted makes straightforward the
use of a solver for this MHE formulation as a routine
for constrained MHE (e.g., in an IPM these matrices are
updated to take into account constraints). The inversion
does not need to be performed explicitly, but instead
implicitly and embedded in the solution algorithm, as
shown in section 4.1.

In this formulation, we consider additional state equality
constraints (1d) beside the dynamic system equations (1b).
These equality constraints are used to provide consistent
feedback signal to the controller. They are enforced only
at the last stage to avoid Linear Independence Constraint
Qualification (LICQ) problems.

The size of problem (1) is defined by the quantities: n
x

(state vector size), n

w

(process noise vector size), n

d

(number of state equality constraints on the last stage),
N (horizon lenght).

3. STAGE-WISE FACTORIZATION OF THE KKT
MATRIX

The MHE problem (1) is an equality constrained QP with
a special structure. For N = 2, the solution is obtained
solving the KKT (Karush-Kuhn-Tucker) system
2

6666666664
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T
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0
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�I Q1 A

T

1
R1 G

T

1
A1 G1 �I

�I Q2 D

T

2
D2

3

7777777775

2

666666664

x0

w0

�0

x1

w1

�1

x2

�2

3

777777775

=

2

666666664

�e0
�r0
�f0
�q1
�r1
�f1
�q2
+d2

3

777777775

(2)

where �

k

are the Lagrangian multipliers and
E0 = Q0 + P0

e0 = q0 + P0x̄0.

The KKT matrix is symmetric, large and structured. If the
structure is not exploited, it can be factorized using a dense

2015 IFAC NMPC
September 17-20, 2015. Seville, Spain

81



LDL factorization using 1
3 ((N � 1)(2n

x

+ n

w

) + n

x

+ n

d

)3

flops. However, the problem structure can be exploited to
greatly reduce this cost computational.

The stage-wise structure of the KKT matrix can be
exploited to factorize it stage-by-stage using a forward
recursion, starting from the first stage. This recursion is
analogue to the Information Filter (IF) formulation of the
Kalman filter proposed in [16]. The recursion can be easily
generalized (at the cost of a modest increase in the solution
time) to handle a cross-term S

k

between x

k

and w

k

in the
cost function. The top-left corner of the KKT matrix is

2
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2
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If the matrix E0 is invertible, the variable x0 can be
eliminated using the Schur complement of E0, obtaining2

4
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T

0

G0 �A0E
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0 A0 �I
�I Q1

3
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4
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3
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�q1

3
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.

Similarly, if the matrix R0 is invertible, the variable w0

can be eliminated, obtaining

�A0E

�1
0 A

T

0 �G0R
�1
0 G0 �I

�I Q1

� 
�0

x1

�
=

=


�f0 +A0E

�1
0 e0 +G0R

�1
0 r0

�q1

�
.

Finally, if the matrix P

�1
1 = A0E

�1
0 A

T

0 + G0R
�1
0 G0 is

invertible, the variable �0 can be eliminated, obtaining

(Q1 + P1)x1 = �q1 � P1(�f0 +A0E
�1
0 e0 +G0R

�1
0 r0),

that can be rewritten in the more compact form

E1x1 = �e1 (4)

closing the recursion, since now the top-left corner of the
KKT matrix is.2
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that is in the same form as (3). The recursion can therefore
be repeated at the following stage. At the last stage, we
can distinguish two cases, depending on the presence of
equality constraints on the state vector at the last stage
(1d).

If n
d

= 0, the last stage looks like

E2x2 = �e2
that, if E2 is invertible, can be easily solved to compute
x2. Notice that the information matrix E2 of the estimate
x2 is available at no extra cost.

If n
d

> 0, the last stage looks like
E2 D

T

2
D2

� 
x2

�2

�
=


�e2
+d2

�
.

If the matrix E2 is invertible, the variable x2 can be
eliminated using the Schur complement of E2, obtaining

(�D2E
�1
2 D

T

2 )�2 = d2 +D2E
�1
2 e2.

If the matrix D2E
�1
2 D

T

2 is invertible, then the value of �2

can be computed, that in turn gives the value of x2 as

E2x2 = �e2 �D

T

2 �2.

The information matrix of the estimate in the null-space
can be computed as

E

Z,2 = Z

0
E2Z

where Z is a null-space matrix of D [17].

Notice that the proposed recursion requires the invert-
ibility of the matrices R

k

for k = 0, . . . , N � 1, of the
matrices E

k

= Q

k

+ P

k

for k = 0, . . . , N , of the matrices
P

�1
k

(and then of the matrices P

k

) for k = 1, . . . , N , and
of the matrix D

N

E

�1
N

D

T

N

. However, the matrix P0 can
be singular: in particular, it can be set to 0 if no prior
information is available about the value of the estimate
of x0. Invertibility of Q

k

for k = 0, . . . , N and full row-
rank of A

k

for k = 1, . . . , N � 1 and of D
N

guarantees the
invertibility of E

k

for k = 0, . . . , N , of P
k

for k = 1, . . . , N
and of D

N

E

�1
N

D

T

N

.

4. IMPLEMENTATION

In this paper, the e�cient implementation techniques
proposed in [9; 8] for the Riccati-based solver for the
unconstrained MPC problem are applied to the MHE
problem (1).

4.1 Algorithm

In the MPC case, the backward Riccati recursion can be
seen as a stage-wise factorization of the KKT matrix,
with the recursion beginning at the last stage [19]. The
key operation in the algorithm presented in [9] is the
computation of Q+AT · P ·A, where Q is a positive semi-
definite matrix. If all matrices A, P and Q have size n,
then the most e�cient way to compute this operation is

Q+AT · P · A = Q+AT · (L · LT ) · A =

= Q+ (AT · L) · (AT · L)T
(5)

where L is the lower Cholesky factor of P. Using spe-
cialized BLAS routines, the cost of this operation is 1

3n
3

(potrf) + n

3 (trmm) + n

3 (syrk) = 7
3n

3 flops.

In the MHE case, in the forward recursion presented in
Section 3 the key operation is the computation of Q+A ·
P�1 · AT , where Q is a positive definite matrix. Despite
the presence of a matrix inversion, this operation can
be computed in the exact same number of flops as the
operation in (5). In fact, the matrix inversion is computed
implicitly, as

Q+A · P�1 · AT = Q+A · (L · LT )�1 · AT =

= Q+ (A · L�T ) · (A · L�T )T
(6)

where again L is the lower Cholesky factor of P. Since
the matrix L is triangular, the operation A · L�T can
be computed e�ciently using the routine trsm to solve
a triangular system of linear equations with matrix RHS.
Using specialized BLAS routines, the cost of this operation
is 1

3n
3 (potrf) + n

3 (trsm) + n

3 (syrk) = 7
3n

3 flops. This
makes the IF-like recursion in Section 3 competitive with
respect to the forward Riccati recursion generally used to
factorize the KKT matrix of the MHE problem.

The algorithm for the factorization of the KKT matrix
(2) is presented in Algorithm 1. The algorithm can be
implemented using standard BLAS and LAPACK rou-
tines: the name of the routines is in the comment to each
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Algorithm 1 Factorization of the KKT matrix of the
MHE problem (1)

Require:

U0 s.t. P0 = U0 · UT

0

1: for k  0, . . . , N � 1 do

2: E

k

 Q

k

+ U

k

· UT

k

. lauum

3: L

e,k

 E

1
/2

k

. potrf

4: AL

e,k

 A

k

· L�T

e,k

. trsm

5: L

r,k

 R

1
/2

k

. potrf

6: GL

r,k

 G

k

· L�T

r,k

. trsm

7: P

inv

 AL

e,k

·ALT

e,k

+GL

r,k

·GL

T

r,k

. syrk

8: L

p

 P

1
/2

inv

. potrf

9: U

k+1  L

�T

p

. trtri

10: end for

11: E

N

 Q

N

+ U

N

· UT

N

. lauum

12: L

e,N

 E

1
/2

N

. potrf

13: if n

d

> 0 then

14: DL

e

 D

N

· L�T

e,N

. trsm

15: P

d

 DL

e

·DL

T

e

. syrk

16: L

d

 P

1
/2

d

. potrf

17: end if

line. The cost of the algorithm is of N( 103 n

3
x

+ n

2
x

n

w

+
n

x

n

2
w

+ 1
3n

3
w

) + 2
3n

3
x

+ n

d

n

2
x

+ n

2
d

n

x

+ 1
3n

3
d

flops. If the
R

k

matrices are diagonal, then operations in lines 5 and
6 can be performed in a linear and quadratic number of
flops, respectively. This decreases N(n

x

n

2
w

+ 1
3n

3
w

) flops
from the complexity of the algorithm, making it linear in
n

w

. This is advantageous in typical situations with MHE
formulations involving additive process noise.

The algorithm for the solution of the KKT system given
the factorization of the KKT matrix is presented in Algo-
rithm 2. It consists of forward and backward substitutions.
Again, triangular matrices are exploited by means of spe-
cialized routines.

4.2 Merging of linear algebra routines

All linear-algebra routines are implemented using the im-
plementation techniques presented in [9; 8]. In particular,
high-performance kernels for the general matrix-matrix
multiplication routine gemm are used as the backbone of
kernels for all matrix-matrix operations and factorizations.
These kernels are optimized for a number of architectures,
and can attain a large fraction of the floating-point (FP)
peak performance. The design focus is on performance for
small-scale matrices, but the performance scales optimally
for matrices of size up to a few hundreds, large enough for
embedded MPC and MHE needs.

In the optimization of solvers for small scale problems, it is
beneficial to merge linear algebra routines when possible,
as shown in the Riccati recursion for unconstrained MPC
problems in [9]. The main advantage is the reduction in
the number of calls to linear algebra kernels. In fact, in
our implementation linear algebra kernels are blocked for
register size, and therefore they compute a sub-matrix of
the result matrix with a single kernel call. If the size of
the result matrix is not a multiple of the optimal kernel

Algorithm 2 Forward-backward substitution of the KKT
system of the MHE problem (1)

Require:

U

k+1, Le,k

, AL

e,k

, L

r,k

, GL

r,k

, k = 0, . . . , N � 1
L

e,N
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e

, L

d

1: for k  0, . . . , N � 1 do

2: e

k

 q

k

+ U

k

· UT

k

· x̄
k

. trmv

3: x̄

k+1  �f0 +AL

e,k

· L�1
e,k

· e
k

. gemv & trsv

4: x̄

k+1  x̄

k+1 +GL

r,k

· L�1
r,k

· r
k

. gemv & trsv

5: end for

6: e

N

 q

N

+ U

N

· UT

N

· x̄
N

. trmv

7: if n

d

= 0 then

8: x

N

 �L�T

e,N

· L�1
e,N

· e
N

. trsv

9: else

10: �

N

 d

N

+DL

e

· L�1
e,N

· e
N

. gemv & trsv

11: �

N

 �L�T

d

· L�1
d

· �
N

. trsv

12: x

N

 �L�T

e,N

· (e
N

+DL

T

e

· �
N

) . gemv & trsv

13: end if

14: for k  N � 1, . . . , 0 do

15: �

k

 U

k

· UT

k

· (x̄
k+1 � x

k+1) . trmv

16: x

k

 L
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e,k
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e,k

· �
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) . gemv & trsv

17: w

k

 L
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· (�r
k

�GL

T

r,k

· �
k

) . gemv & trsv

18: end for

size, there is a loss in performance: therefore merging
small matrices into larger ones increases the likelihood of
using the optimal kernel size. Furthermore, the reduction
in the number of kernel calls reduces the corresponding
overhead, and improves memory reuse. All these aspects
are especially beneficial for small size problems.

As the problem size increases, however, the performance
advantages of merging linear algebra routines become
smaller, since the kernels call overhead gets amortized over
a larger number of flops. On the contrary, numerical tests
show that merging linear algebra routines often slightly
decreases performance for large problems. This is due to
the fact that merged routines operate on larger amounts
of data than un-merged routines, and therefore cache size
is exceeded for smaller problem sizes. The performance
crossover point can be easily determined by numerical
simulation, and it can be used as threshold to switch
between merged and un-merged linear algebra routines.

In order to motivate the use of routine merging, let us
consider a 3 ⇥ 3 blocked version of the operation L =
(Q + A · A0)1/2 in (7). The last line contains the explicit
expression of the lower Cholesky factor L: the expression
for the L

ij

block is in position ij in the matrix. We
can see immmediately that the products A

i

· AT

j

(used
to compute the matrix to be factorized) are in the same
form as the correction terms �L

ik

· LT

jk

in the Cholesky
factorization (a part the change of sign). This means that
the Lmatrix can be computed sweeping it once block-wise:
each block is initialized with Q

ij

, then updated with A
i

·
AT

j

and corrected with the products �L
ik

·LT

jk

, and finally
Cholesky-factorized (diagonal blocks) or solved using a
triangular matrix (o↵-diagonal blocks). So, diagonal blocks
are computed using the merged kernel syrk potrf, while
the o↵-diagonal blocks are computed using the merged
kernel gemm trsm.
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Having this in mind, lines 5, 6 of Algorithm 1 can be
trivially merged: in fact, the trsm kernel is already used in-
ternally in the Cholesky factorization routine. This means
that the operations in lines 5, 6 can be computed using a
Cholesky-like factorizatin routine operating on rectangular
matrices, as 
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.

Lines 2, 3, 4 of Algorithm 1 perform a similar operation
to the one in (7), with the di↵erence that the A matrix is
upper triangular and the Q and L matrices are rectangu-
lar. This means that the operations in lineas 2, 3, 4 can be
computed as
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where the product U
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·UT

k

takes into account the fact that
U

k

is upper-triangular.

Notice that, if a cross term S

k

is present in the cost
function, then operations in lines 2, 3, 4, 5, 6, plus the
additional operations related to S

k

can be merged in the
single routine
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Lines 7, 8, 9 of Algorithm 1 can be merged as well.
Lines 7, 8 implement the exact same operation in (7).
The triangular matrix inversion and transposition in line
9 can be computed easily by considering the analogy of
this operation with the trsm operation embedded in the
Cholesky factorization. All operations in lines 7, 8, 9 can
therefore be computed as
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= rect potrf
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0 0
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,

and taking into account the fact that U

k+1 is upper
triangular.

Similar arguments apply to the operations in the remain-
ing lines 11, 12, 14, 15, 16 of Algorithm 1, and similarly
the merged routine gemv trsv can be used at lines 3, 4,
10, 12, 16, 17 of Algorithm 2.

5. NUMERICAL TESTS

5.1 Performance tests

The results of the tests reported in this section assess
the performance of the proposed MHE solver when imple-
mented using di↵erent libraries for linear algebra. Namely,

the implementation using the custom and merged linear
algebra routines presented in section 4.2 (that is part of
the HPMPC toolbox [1]) is compared against two open
source BLAS libraries: OpenBLAS and the Netlib BLAS.

OpenBLAS [3] is an highly optimized BLAS implementa-
tion, providing code tuned for a number of architectures.
It is a fork of the successful (and now unsupported) Go-
toBLAS [10], and it supports also the most recent archi-
tectures. It makes use of a complex blocking strategy to
optimize the use of caches and TLBs (Translation Looka-
side Bu↵er), and key routines are written in assembly
using architecture-specific instructions. Its performance is
competitive against vendor BLAS. The version tested in
this paper is the 0.2.14.

Netlib BLAS [2] is the reference BLAS. It is written in
Fortran code and it is generic, not targeting any feature
of specific architectures. It does not perform any blocking
strategy, and level-3 routines are written as simple triple
loops. The performance is usually poor for large matrices.

The test machine is a laptop equipped with the Intel Core
i5 2410M processor, running at a maximum frequency of
2.9 GHz. The operating system is Linux Ubuntu 14.04,
with gcc 4.8.2 compiler. The processor has 2 cores and 4
threads (however, only single-thread code is considered in
our tests). The processor implements the Sandy Bridge
architecture, supporting the AVX instruction set (that
operates on 256-bit vector register, each holding 4 double
or 8 single precision FP numbers). The Sandy Bridge
core can perform one vector multiplication and one vector
addition each clock cycle, and therefore in double precision
it has a FP peak performance of 8 flops per cycle (that at
2.9 GHz gives 23.2 Gflops).

In Fig. 1 there is the result of a performance test. On
the small scale (Fig. 1a), the performance of the HPMPC
version is much better than both BLAS versions, and it
can attain a large fraction of the FP peak performance
for problems with tens of states. On the medium scale
(Fig. 1b), the performance of HPMPC is steady at around
75-80% of FP peak, while the performance of the Netlib
BLAS version is steady at around 15% of FP peak. On
the other hand, the performance of OpenBLAS increases
with the problem size. For even larger problems, the
performance of unblocked implementations (HPMPC and
Netlib BLAS) would decrease, while the performance of
the OpenBLAS implementation would be steadily close to
FP peak. Such large problem sizes are however of limited
interest in embedded MHE, and therefore the HPMPC
implementation gives the best performance for relevant
problem sizes.
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Fig. 1. Performance test for the proposed MHE KKT
matrix factorization algorithm, assuming S

k

= 0 and
R

k

dense. The performance in Gflops is represented as
a function of n

x

= n

w

, while N = 10 and n

d

= 0 are
fixed. Top of the picture is the FP peak performance
of the processor.

In Fig. 2 there are the running times for the factorization
Algorithm 1 (Fig. 2a) and for the forward-backward sub-
stitution Algorithm 2 (Fig. 2b), in the three implemen-
tations using HPMPC, OpenBLAS and Netlib. In both
the factorization and the substitution cases, the HPMPC
implementation has a big advantage for small problems. In
the factorization case, HPMPC retains the performance
advantage over the Netlib BLAS version also for larger
problems, while the the OpenBLAS version reduces the
performance gap. In the substitution case, for larger prob-
lems the performance of the three implementations gets
very similar. This is due to the fact that Algorithm 2
is implemented using level 2 BLAS, where matrices are
streamed and there is no reuse in matrix elements. There-
fore for large problems the substitution time is dominated
by the cost of streaming matrices from main memory, that
is the same for all implementations.

5.2 Nonlinear MHE and MPC in closed loop: real-time
numerical simulations

In the following we present the strength of the presented
solver for MHE for state estimation and control of a
nonlinear system. Namely, we present results of closed-loop
real-time simulations of rotational start-up for an airborne
wind energy system [22]. The system is modeled as a
di↵erential-algebraic equation (DAE), with 27 di↵erential
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Fig. 2. Execution time for the proposed MHE KKT matrix
factorization algorithm and forward-backward substi-
tution algorithm, assuming S

k

= 0 and R

k

dense. The
execution time in seconds is represented as a function
of n

x

= n

w

, while N = 10 and n

d

= 0 are fixed.

states, 1 algebraic state and 4 control inputs. To solve the
nonlinear MPC (NMPC) and nonlinear MHE (NMHE)
formulations we use the ACADO Code Generation Tool
(CGT) [13] that implements the real-time iteration (RTI)
scheme [4; 15]. The QP underlying the NMHE solver is
solved using the implementation presented in Section 4,
while the QP underlying the NMPC solver is handled with
an e�cient implementation from [9].

An augmented model used for the NMHE, one that in-
cludes a disturbance model, has n

x

= 33 states and n

w

= 6
disturbance inputs. Consistency conditions of the DAE
model yield n

d

= 9 equality constraints, while the number
of estimation intervals is N = 15. On the other hand, the
NMPC formulation hasN = 50 intervals. For more details,
we refer to [21] and references therein.

The simulation results are reported in Figure 3. A control
interval begins with a feedback step of the RTI scheme
for the NMHE (MHE FBK), after which the current state
estimate is obtained. Afterwards, the NMPC feedback step
is triggered (MPC FBK) for calculation of optimal control
inputs. In essence, the execution times of the feedback
steps amount to solutions of underlying QPs. After each
feedback step corresponding preparation step is executed
(MHE PREP and MPC PREP), which includes model
integration, sensitivity generation and linearization of the
objective and the constraints. In this setting both NMHE
and NMPC run on the separate CPU cores.
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Fig. 3. Feedback and preparation step times for the MHE
and MPC using the ACADO-HPMPC solver in the
rotational start-up of an airbone wind energy system.

The solution times for the feedback step of the NMHE
are always less than 500 µs, and the maximum feedback
times for the NMPC are always less than 3 ms. In total,
the maximum feedback delay is always less than 3.5 ms,
far below the control period of 40 ms. Note that in [21]
qpOASES [5] solver is used to solve the QPs underlying
the same NMHE formulation. In that case the feedback
step of the NMHE alone requires about 3.5 ms, i.e. nearly
seven times more than with the MHE QP solver proposed
in this paper.

6. CONCLUSION

In this paper, we presented an information Kalman filter
recursion for the MHE problem, that can be easily used as
routine in constrained and non-linear MHE. Furthermore
we proposed e�cient implementation techniques tailored
to this recursion form, with special focus on small-scale
performance. The resulting solver is shown to give no-
ticeable performance improvements when compared to the
same algorithm implemented using optimized BLAS and
LAPACK libraries. Furthermore, the solver has been used
to solve QPs underlying a nonlinear MHE formulation
and provides state estimates necessary for control of a
challenging non-linear system in less than 500 µs.
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