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Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in partial fulfilment of
the requirements for acquiring the Ph.D. degree in engineering. The project
was funded jointly by DONG Energy and the Danish Ministry of Higher Edu-
cation and Science under the Industrial Ph.D. program, project 11-117435.

The thesis presents novel models and algorithms for power production planning.
We apply economic model predictive control (EMPC) for economic dispatch
with minimum generation cost. A portfolio system is introduced for demon-
stration purposes. The portfolio system consists of generators with diverse op-
erational features and capabilities. Extensions of certainty-equivalent EMPC
are proposed to account for the inherent uncertainties associated with renew-
able energy sources. Moreover, we develop tailored optimization algorithms to
accommodate the proposed EMPC schemes to large-scale energy systems.

The thesis consists of a summary report and a collection of eleven research
papers. The research papers were written during the period April 2012 to
September 2015. One paper has been published in a peer-reviewed scientific
journal, and three papers have been accepted for publication in peer-reviewed
scientific journals. Seven papers have been published at peer-reviewed scientific
conferences.

Kgs. Lyngby, October 2015

Leo Emil Sokoler
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Summary (English)

This thesis concerns methods and algorithms for power production planning
in contemporary and future power systems. Power production planning is a
task that involves decisions across different time scales and planning horizons.
Hours-ahead to days-ahead planning is handled by solving a mixed-integer linear
program for unit commitment and economic dispatch of the system power gen-
erators. We focus on a minutes-ahead planning horizon, where unit commitment
decisions are fixed. Economic model predictive control (EMPC) is employed to
determine an optimal dispatch for a portfolio of power generators in real-time.
A generator can represent a producer of electricity, a consumer of electricity, or
possibly both. Examples of generators are heat pumps, electric vehicles, wind
turbines, virtual power plants, solar cells, and conventional fuel-fired thermal
power plants. Although this thesis is mainly concerned with EMPC for minutes-
ahead production planning, we show that the proposed EMPC scheme can be
extended to days-ahead planning (including unit commitment) as well.

The power generation from renewable energy sources such as wind and solar
power is inherently uncertain and variable. A portfolio with a high penetration
of renewable energy is therefore a stochastic system. To accommodate the need
for EMPC of stochastic systems, we generalize certainty-equivalent EMPC (CE-
EMPC) to mean-variance EMPC (MV-EMPC). In MV-EMPC, the objective
function is a trade-off between the expected cost and the cost variance. Sim-
ulations show that MV-EMPC reduces cost and risk compared to CE-EMPC.
The simulations also show that the economic performance of CE-EMPC can be
much improved using a constraint back-off heuristic.

Efficient solution of the optimal control problems (OCPs) that arise in EMPC
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is important, as the OCPs are solved online. We present special-purpose algo-
rithms for EMPC of linear systems that exploit the high degree of structure in
the OCPs. A Riccati-based homogeneous and self-dual interior-point method
is developed for the special case, where the OCP objective function is a linear
function. We design an algorithm based on the alternating direction method
of multipliers (ADMM) to solve input-constrained OCPs with convex objective
functions. The OCPs that occur in EMPC of dynamically decoupled subsys-
tems, e.g. power generators, have a block-angular structure. Subsystem de-
composition algorithms based on ADMM and Dantzig-Wolfe decomposition are
proposed to solve these OCPs. Subproblems that arise in the decomposition
algorithms are solved using structure-exploiting algorithms. To reduce compu-
tation time of the EMPC algorithms further, warm-start and early-termination
strategies are employed. Benchmarks show that the special-purpose algorithms
are significantly faster than current state-of-the-art solvers.

As a potential application area of EMPC, we study power production planning
in small isolated power systems. A critical part of power production planning in
small isolated power systems is operational reserve planning. The operational
reserves are activated to balance production and consumption in real-time. An
EMPC scheme is presented for activation of operational reserves. Simulations
based on a Faroe Islands case study show that significant cost savings can
be achieved using this strategy. For efficient planning of the operational re-
serves, we present an optimal reserve planning problem (ORPP). The ORPP is
a contingency-constrained unit commitment problem that addresses low inertia
challenges in small isolated power systems.

In summary, the main contributions of this thesis are:

e A mean-variance optimization strategy for EMPC of linear stochastic sys-
tems.

e Tailored algorithms for solution of the OCPs that arise in EMPC of linear
stochastic systems.

e Methods for power production planning in small isolated power; the ORPP
for unit commitment and economic dispatch, and an EMPC scheme for
activation of operational reserves.



Summary (Danish)

Denne afhandling omhandler produktionsplanlaegning i nuvaerende og fremtidige
energisystemer. Produktionsplanlegning involverer beslutninger pa forskellige
tidsskalaer og med forskellige planlaegningshorisonter. Planlaegning pa time- til
dagsniveau handteres ved at lgse et linezert blandet heltalsprogram til bind-
ing (unit commitment, UC) og gkonomisk indmelding (econmic dispatch) af
systemets elektriske generatorer. Vi fokuser pa planlsegning med en minut-
baseret horisont, hvor generatorernes bindingsmgnster er fastlagt. (dkonomisk
model praediktiv regulering (economic model predictive control, EMPC) anven-
des til, at bestemme en optimal kegreplan for en portefglje af elektriske gen-
eratorer i realtid. En elektrisk generator kan repraesentere en producent af
elektricitet, en forbruger af elektricitet, eller begge dele. Eksempler pa gen-
eratorer er varmepumper, elbiler, vindmgller, virtuelle kraftveerker, solpaneler,
og konventionelle termiske kraftveerker. Selvom denne afhandling fokuserer pa
minutbaseret produktionsplanlaegning vises det, at EMPC tilgangen kan gener-
aliseres til planleegning pa time- og dagsniveau (inklusiv binding af generatorer).

Elproduktion baseret pa vedvarende energikilder, som f.eks. vind- og vand-
kraft, er usikker og variabel. En portefglje af generatorer med en stor andel
af vedvarende produktion, er derfor et stokastisk system. Behovet for EMPC
af stokastiske systemer imgdekommes ved at generalisere sikkerhedsaekvivalens
EMPC (certainty-equivalent EMPC, CE-EMPC) til middelveerdi-varians EMPC
(mean-variance EMPC, MV-EMPC). I MV-EMPC formuleres objektfunktio-
nen som en afvejning af de forventede driftsomkostninger og variansen af drift-
somkostningerne. Simuleringer viser, at MV-EMPC reducerer bade omkost-
ninger og risiko sammenlignet med CE-EMPC. Det vises ogsa, at CE-EMPC
kan forbedres betydeligt ved anvendelse af en (back-off) heuristik, der modifi-
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cerer systemets begraensninger.

I EMPC lgses et kontrolproblem (optimal control problem, OCP) med samme
frekvens som systemets sample tid. Effektive algoritmer til lgsning af EMPC
kontrolproblemer er vigtige, idet kontrolproblemerne lgses i realtid. Afhandlin-
gen pracsenterer skraeddersyede algoritmer til EMPC af linesere systemer, der
udnytter strukturen i kontrolproblemerne. En Riccati-baseret homogen og selv-
dual indrepunktsmetode, udvikles til specialtilfzeldet hvor kontrolproblemets
omkostningsfunktion er en lineser funktion. En algoritme baseret pa den al-
ternerende multiplikator metode (alternating direction method of multipliers,
ADMM), designes til lgsning af input-begraeensede kontrolproblemer med kon-
vekse objektfunktioner. Kontrolproblemer der opstar i forbindelse med EMPC
af dynamisk afkoblede systemer, som f.eks. elektriske generatorer, har en blok-
anguleer struktur. Disse kontrolproblemer lgses effektivt af dekompositions al-
goritmer baseret pa ADMM og Dantzig-Wolfe dekomposition. Subproblemer
i dekompositionsalgoritmerne lgses via skraeddersyede optimeringsalgoritmer.
Strategier til initialisering (warm start) og tidlig afslutning (early-termination)
reducerer beregningstiden for de foreslaede EMPC algoritmer ydereligere. Sam-
menligner viser, at de skraeddersyede algoritmer er betydeligt hurtigere end ek-
sisterende state-of-the-art metoder til lgsning af kontrolproblemer.

Som et potentielt anvendelsesomrade for EMPC, studeres produktionsplanlaegn-
ing i sma isolerede g-systemer. Reserveplanlaegning er en kritisk del af produk-
tionsplanlaegningen i sma isolerede @-systemer. Reserverne aktiveres til bal-
ancering af forbrug og produktion i realtid. En EMPC-baseret strategi ud-
vikles til aktivering af reserver. Et konceptuelt case studie af Feergerne viser,
at denne strategi reducerer driftsomkostningerne signifikant. Til planleegn-
ing af reserver, praesenteres et optimalt reserve beregnings problem (optimal
reserve planning problem, ORPP). Dette problem er et haendelses-begraenset
(contingency-constrained) UC problem, der er specialiseret til sma g-systemer
med varierende inerti.

Hovedbidragene i denne afhandling kan opsummeres som:

e En middelvaerdi-varians optimeringsstrategi til EMPC af linesere stokastiske
systemer.

e Skraeddersyede algoritmer til EMPC af linesere stokastiske systemer.

e Metoder til produktionsplanlegning i sma isolerede g-systemer. Herunder
det introducerede ORPP til gkonomisk indmelding og binding af genera-
torer, og en EMPC-baseret strategi til aktivering af reserver.
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CHAPTER 1

Introduction

This chapter describes the transition of contemporary fossil-based power systems
into power systems with a high penetration of renewable energy sources. The
increased electricity generation of renewable energy sources, motivates the use
of economic model predictive control (EMPC) for power production planning.
This chapter also states the main contributions and the organization of the
thesis.

1.1 Future Power Systems

Many countries have ambitious political climate and energy targets to reduce
CO; emissions [Eurl5a,Brol3,Eurl5b]. The Renewable Energy Directive states
that 20% of total EU energy consumption in 2020 should be produced by re-
newable energy sources. Binding national 2020 renewable energy targets for
each Member State forms an integral part of EU energy policy. Wind power,
solar power, hydro power, and sustainable biomass-sourced power will account
for the majority of future renewable energy production [Eurl4]. Fig. 1.1 shows
the 2020 renewable energy targets for each EU Member State.

Integration of renewable energy sources is challenging, due to their inherent
variable and uncertain nature. Wind turbines depend on the wind, and solar
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Figure 1.1: Binding national 2020 renewable energy targets for each EU Mem-
ber State [Eurl5b].

cells depend on the solar radiation [Pin13]. Hydro power is an attractive source
of renewable energy, because of its flexibility and its storage capabilities. Hydro
power is a key factor behind the high 2020 renewable energy targets set by Aus-
tria, Sweden, and Finland. Countries with poor conditions for hydro power rely
more heavily on wind and solar power. As an example, wind power accounted
for approximately 40% of the total Danish energy consumption in 2014 [Enel5].
This percentage is expected to increase. Denmark has set the goal of being
completely independent of fossil fuels by 2050 [ED11].

To handle fluctuations in the generation of renewable energy sources, flexible
solutions are needed on both the production and the consumption side of energy.
Distributed energy resources, such as heat pumps, electric vehicles, and local
combined heat and power plants, as well as household electrical appliances, can
provide flexibility in the form of e.g. load shifting, balancing services, and energy
storage [ED10, ED11, MPH"15]. Virtual power plants (VPPs) are aggregates
of smaller distributed energy resources [BK10, YTP09,SMT11, LKMB10, HI08,
MREKG11]. Commercial VPPs are aimed at market related activities such as
maximizing profit and overcoming market barriers (e.g. market barriers may
prevent small power generators from submitting bids in the electricity market).
Technical VPPs help maintain power quality, reliability and security of supply
[PRS07,Youl0]. Fig. 1.2 is a conceptual illustration of a future power grid, and
Fig. 1.3 illustrates the VPP technology.
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Figure 1.2: Conceptual illustration of a future power grid [Eur06].

This thesis focuses on power system operations from the power producer’s point
of view. Linear EMPC is applied to operate a portfolio of power generators
with minimum generation cost. In a conventional portfolio, the power gener-
ation is mainly based on fossil fuels such as coal, natural gas, and petroleum
(and in some cases nuclear power). The power production of fossil-based gener-
ators is deterministic in nature. Deterministic power management strategies are
therefore adequate to control conventional fossil-based portfolios. A portfolio
based on a large share of renewable energy sources is a stochastic system. Ac-
cordingly, EMPC schemes are developed for control of stochastic systems. The
EMPC schemes have several important applications in control of future power
systems. We present special purpose algorithms to accommodate the proposed
EMPC schemes for large-scale energy systems.

1.2 Thesis Contribution and Organization

The emphasis of this thesis is on the formulation and solution of the optimal con-
trol problems (OCPs) that arise in EMPC of linear stochastic systems, and their
applications in power production planning. Fig. 1.4 shows the research areas of
the thesis papers, within a power production planning framework. Some of the
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papers have overlapping areas. The papers are divided into two main groups.
Open-loop control concerns production scheduling with a day-ahead planning
horizon, and closed-loop control concerns production scheduling with a planning
horizon ranging from a few seconds up to several minutes. A key difference be-
tween the two groups is that computations within the closed-loop control group
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are time critical, because they are performed online. Efficient algorithms are
therefore important for the tractability of EMPC schemes within this group.
Production scheduling is in the open-loop control group. Production scheduling
involves solving a mixed-integer linear program (MILP) for unit commitment
(UC) and economic dispatch of the system power generators. Balance control
computes corrections to the nominal production plan (provided by the produc-
tion scheduling algorithm) in real-time, based on updated forecasts, setpoint
corrections, measurements, and a dynamic model of the system. Frequency
control is applied to keep the system frequency close to its nominal value. This
is important to avoid blackouts in the system. Balance and frequency control
become increasingly important, as more renewable energy sources are integrated
into the power system. The key contributions of this thesis are described in the
following two sections.

1.2.1 Formulation of the OCP

Certainty-equivalent EMPC (CE-EMPC) is the most widely used form of EMPC.
CE-EMPC replaces random variables in the OCP by conditional expectations.
This means that the variance of the random variables is neglected. In power
production planning, disregarding the uncertainty (e.g. variations in the elec-
tricity price, electricity consumption, and generation of renewable energy) leads
to violations of the system constraints and inefficient use of resources. Paper F
and Paper I show that CE-EMPC performs poorly under uncertainty, both for
balance control and for frequency control. To overcome this challenge, Paper
I generalizes CE-EMPC to mean-variance EMPC (MV-EMPC). In MV-EMPC
the OCP objective function is formulated as a bi-criterion that trades off cost ex-
pectation and cost variance. MV-EMPC reduces both cost and risk compared
to CE-EMPC. Paper E demonstrates regularization techniques for improving
the closed-loop performance of EMPC under uncertainty.

Paper H develops a novel optimal reserve planning problem (ORPP) for UC
and economic dispatch of generators in an isolated power system. A Faroe Is-
lands case study show that the production plan provided by the ORPP is robust
against contingencies. In the particular case study, blackouts and power outages
are avoided at a cost increase of less than 3%. Paper J presents a hierarchical
algorithm for integrated scheduling and control. The algorithm establishes a
formal connection between production scheduling and balance control in power
system operations. Moreover, it accommodates the need for frequent reschedul-
ing of power generation using updated forecasts of renewable energy production.
Paper I presents a novel EMPC scheme for activation of operational reserves
in a single-area power system. In this scheme, the OCP objective function is
formulated as a bi-criterion that trades off cost of generation and setpoint track-
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ing. Simulations show that significant cost savings can be achieved using the
proposed EMPC scheme, compared to conventional setpoint-based EMPC and
frequency-based PI control.

1.2.2 Solution of the OCP

The performance and reliability of the optimization algorithms solving the OCPs
that arise in EMPC are important, as the optimization problems are solved on-
line. Convex optimization algorithms for EMPC form an important contribu-
tion of this thesis. Paper B and Paper E develop decomposition algorithms for
EMPC of dynamically decoupled subsystems. These algorithms are based on the
alternating direction method of multipliers (ADMM) and Dantzig-Wolfe decom-
position. Power generators in a portfolio system are an example of dynamically
decoupled subsystems. Paper G overcomes tractability issues of MV-EMPC by
solving a convex relaxation of the OCP associated with MV-EMPC using a new
ADMM-based decomposition algorithm.

Paper A, Paper C, and Paper K, provide a homogeneous and self-dual interior-
point method (IPM) for EMPC of linear systems with linear constraints and
linear objective functions. Paper D presents an ADMM-based algorithm for
input-constrained EMPC with convex objective functions. These algorithms
can be used independently, or as subproblem solvers in the proposed decompo-
sition algorithms. The EMPC algorithms are implemented in MATLAB and C.
Warm-start and early-termination strategies are applied to increase the perfor-
mance of the algorithms further. Benchmarks show that the EMPC algorithms
are significantly faster than state-of-the-art solvers for solution of the OCPs.
Moreover, while memory becomes an issue for general-purpose solvers, the de-
composition algorithms facilitate EMPC of large-scale energy systems.

1.2.3 Thesis Organization

We have organized this thesis as follows. Part I and Part II constitute the
summary report, and Part IIT is the collection of research papers. Part I of
the summary report is an introduction and background. It describes energy
systems, model predictive control (MPC), and convex optimization algorithms,
in general terms. The intention of Part I is only to provide references and
background material for Part IT and Part III of the thesis. Part II summarizes
the contributions of the research papers. Part II is divided into three main
sections: a section on OCP formulations, a section on OCP algorithms, and a
section on planning and control applications in small isolated power systems.



CHAPTER 2

Energy Systems

This chapter provides an overview of power production planning using a top-
down view of energy systems. A hierarchical planning architecture is introduced,
and we discuss the integration of EMPC into this architecture. This chapter
also introduces a linear power portfolio system. The portfolio system consists
of a collection of power generators. A power generator can represent a producer
of electricity, a consumer of electricity, or possibly both.

2.1 Energy Value Chain

Producers and consumers of electricity are connected to each other via the power
grid. Fig. 2.1 illustrates a typical grid topology. Power producers are connected
to the transmission grid, which is a high-voltage grid. Power substations step
transmission voltages down to distribution voltages that are distributed to end-
users via distribution grids.

In liberalized power systems, the energy value chain is divided into commercial
and non-commercial activities. Sales, consumption and generation are commer-
cial activities, while transmission and distribution are non-commercial activities.
Fig. 2.2 illustrates the system setup [HJB13]. Retailers (including wholesalers)



10

Energy Systems

Transmission

Distribution

Distribution

) &) @)

) &) @)
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Figure 2.2: Overview of a liberalized electricity market.

and power producers are commercial actors. They buy and sell power in the
electricity markets. End-users buy their electricity via the retailers. The trans-
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mission system and the distribution system are operated by non-commercial
actors. The transmission system operator (TSO) is responsible for the daily op-
eration and maintenance of the transmission grid. The TSO is also responsible
for security of supply and power quality. The TSO relies on ancillary services
that are traded in special capacity markets. Each distribution network is man-
aged by a distribution system operator (DSO). The DSO is responsible for a
stable supply of electricity within its geographical area. The DSO also collects
consumption (production) data from the end-users. These data are used for
financial settlements with the retailers, and to monitor the need to expand the
grid capacity.

Electricity is bought and sold in electricity markets. Markets vary from geo-
graphical area to geographical area. A majority of the energy is usually traded in
a day-ahead market. Intraday markets make it possible to adjust the contracted
positions within the day of operation. Imbalances from the contracted positions
are settled in a balancing market. To balance production and consumption in
real-time, the TSO relies on operating reserves that are bought in markets for
ancillary services. There are different reserve markets, each with specific require-
ments for the reserve activation time and for the size of the reserve. Usually,
there is also a real-time (regulating power) market, where the market players can
submit bids for up and down regulation to the TSO. Regulating power is mainly
activated to solve persistent imbalance problems, while operating reserves are
activated to ensure stable operation of the system. For more details on markets
and actors, we refer to e.g. [PHBT13,Hall4, HJB13, Zug13, MCM ™ 14].

2.2 Planning Hierarchy

After the day-ahead electricity market is cleared, each power producer receives a
reference profile specifying the amount of electricity they have sold. The power
producer’s main objective is then to determine the most economical production
plan that accommodates the reference profile.

Fig. 2.3 is a diagram of the power production planning hierarchy from a power
producer’s point of view. The system level covers the upper three layers of
the planning hierarchy. This level involves coordinated decisions for the entire
portfolio of generators. In the top system level layer is business planning, where
portfolio modifications are planned. The next two layers are the production
planning layer and the balance control layer. The production planning layer is
responsible for unit commitment and economic dispatch of the portfolio power
generators, given the reference profile. This involves solving the UC problem.
We refer to the production plan provided by the UC problem, as the nominal
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Figure 2.3: Power production planning hierarchy [EdI10].

production plan. The planning horizon of the UC problem is up to several
days, while its resolution is in the order of minutes. The UC problem is an
MILP. The solution time of the UC problem can be several minutes or even
hours, depending on the portfolio size and the number (and type) of operating
constraints. Consequently, the production plan can only be updated with a
relatively low frequency.

The production planning layer is a pure open-loop control layer. To account for
imbalances between power production and reference profile, a balance control
layer is employed. The balance control layer is a closed-loop control layer.
Closed-loop control is necessary, as the controlled system is a stochastic system.
In particular, it is not possible to predict the generation of renewable energy
sources exactly. Moreover, the TSO provides corrections to the reference profile
in real-time (e.g. via activation of regulating power and operational reserves).
As more renewable energy is integrated into the grid, forecasts become less
accurate, and the reserve and real-time markets become more critical for the
TSO to balance production and consumption on a grid level. This means that
the need for continuously adjusting the nominal production plan increases for
the power producers.

Fig. 2.4 is a schematic diagram of the production planning layer and the bal-
ance control layer. This thesis applies EMPC for balance control. The EMPC-
based balance controller exploits information on updated forecasts, setpoint-
corrections, and measurements, to continuously adjust the nominal production



2.2 Planning Hierarchy 13

Production Planning i Balance Control
Production Schedule
Planner
Reference
Reference Corrections
l 1
Balance
Controller
Measurements

Figure 2.4: The production planning and balance control layer [EdI10].

plan. Discrete decisions such as on/off decisions are considered as fixed parame-
ters by the balance controller. The planning horizon of the balance controller is
usually less than one hour, and its sampling rate is in the order of seconds. Us-
ing a fine-grained temporal resolution allows the balance controller to act based
on a dynamic model of the system. Features that make EMPC well-suited
for balance control are its predictive ability, economically efficient operation,
easy integration of constraints, direct support of multiple-input multiple-output
(MIMO) systems, and flexibility in the formulation of the OCP.

2.2.1 Integration of Scheduling and Control

Paper J presents an EMPC scheme for integrated scheduling and control. The
OCP solved in this scheme involves decisions on two time scales. Binary vari-
ables occur as scheduling (slow time-scale) decisions in the OCP, and continuous
variables occur as control (fast time-scale) decisions in the OCP. A hierarchical
algorithm is proposed for solution the OCP. The algorithm consists of two op-
timization levels. The upper level (scheduling level) solves an MILP with a low
frequency. The lower level (control level) solves a linear program (LP) with a
high frequency. The main advantage of the proposed approach is that it requires
online solution of an LP rather than an MILP.

The hierarchical algorithm is tested using a power portfolio case study, in which
production scheduling and balance control are integrated. The idea is to re-
place the production planner and the balance controller in Fig. 2.4 by a single
EMPC scheme. For this EMPC scheme, the OCP is an MILP that includes
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binary unit commitment variables. Moreover, the OCP is defined to have a
long prediction horizon and a fine-grained temporal resolution. A single-layer
EMPC scheme is attractive from an economic point of view, as it collects the
degrees of freedom of production planning and balance control in a single opti-
mization problem. The disadvantage is that the resulting OCP is a large-scale
MILP. Direct solution of the large-scale MILP is computationally intractable in
real-time. Simulations show that the hierarchical algorithm reduces the com-
putation to solve the large-scale MILP (to near-optimality) by several orders of
magnitude. Hence, the hierarchical algorithm allows frequent redispatch of the
system power generators. This is important for cost-efficient operation of power
systems with a high penetration of renewable energy sources.

Hierarchical decomposition of unit commitment and balance control is widely
adopted in power system operations [SC13, WW13]. Paper J demonstrates that
this hierarchical decomposition can be interpreted as an approximation of the
proposed EMPC scheme for integrated scheduling and control.

2.3 Generator Model

EMPC requires a model of the controlled system. This section presents a generic
power generator model. A power generator refers to a unit that can either
produce or consume power, or possibly both. Electric vehicles, heat pumps,
combined heat and power plants, wind turbines, thermal power plants, and
VPPs, are examples of power generators. By convention, the negative sign is
used for power consumption and the positive sign is used for power production.

Power generators are modeled at different levels of detail, depending on the
application of interest [WW13, Deb88, KBL94, KCLB14, And12b]. The main
focus of this thesis is on the formulation and the solution of the OCPs, and not
on modeling of energy systems. We model a power generator as a time-invariant
system. In transfer function form, the nominal system is

Zy(s) = Ggu(8)Ug(s) + Gg,a(s)Dy(s), (2.1)

where Ugy(s) € R™ is the generator input, Dy(s) € R™s¢ is a known distur-
bance, and Z(s) € R™= is the generator output. G, (s) and G 4(s) are trans-
fer functions. Transfer functions can be identified based on experimental step
responses of a system [Lju99]. References [Hall4, Hov13,Stal5, EMB09] provide
(approximate) models for a variety of power generators in the form (2.1), e.g.
heat pumps in residential buildings [HPMJ12], electric vehicles with vehicle-to-
grid capabilities [HPM™12], solar tanks [HBP™12], cold rooms in refrigeration
systems [HLEJ12], and conventional thermal power plants [EMB09].
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Figure 2.5: Step response of the third-order system (2.2) for three different
time constants.

As an example, consider the special case of (2.1) where

1

(rs+ 1) (Ug(s) + Dy(s)) - (2.2)

Zy(s) =

In this single-input single-output (SISO) system, Uy (s) is the power production
setpoint, and Z,(s) is the power production. Fig. 2.5 shows the step response
for the system (2.2). Three different time constants are considered. In case
7 = bs, the third-order system (2.2) can represent a small agile power plant
such as a diesel generator. When 7 = 40s, the model may represent a medium-
sized gas turbine, and for 7 = 80s, it may represent a large fuel-fired thermal
power plant.

In discrete state-space form, we write the system (2.1) as

Tgpi1 = Aggr + Byugr + Egdg i, (2.3a)

Zg.k = Cg,zxg,lv (2313)

In this model structure, (Ay, By, Ey, C, ) are the state-space matrices, x4 €
R™s= is the (internal) system state, ug , € R™9» is the system input, dg j € R™9¢
is the known disturbance, and z,4 ;, € R™s:= is the system output.

In general, the power generator model (2.3) is a MIMO system. Outputs of
the system may include e.g. the state-of-charge for an electric vehicle, the
room temperature for a heat pump in a residential building, and the reservoir
level for a pumped storage hydro plant. We assume that the power production
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(consumption) is part of the system output. This is written as
zp = Tzgx, (2.4)

where T € R'*™s:= is a vector of multipliers and 2P is the power production of
the generator. For the SISO system (2.2), T = 1.

2.4 Portfolio Model

Define M power generators in the form (2.3)
Lgj,k+1 = A!ijgj7k + ngugj,k + Egjdgj,’f’ JjeEM, (2.5&)
Zgjk = ng’zxgj,/ﬁ jeM, (2.5b)
where M = {1,2,..., M}. Using (2.4), the total power production by the M
generators is expressed as
2= = ST Tizg e =D TiCy, g, i (2.6)
JjEM JEM JEM

The portfolio model (2.5) and (2.6) is written compactly as

Tpk+1 = Apxpy + Bpuy + Epdpy, (2.7a)
Zpk = Cp,zxp’k, (27b)
in which
Zg1,k
g1,
Lgy,k Ugy ,k dgl,k
Zg2,k d
. Lgs,k Ugs,k 92,k
2pg = N A N : , upg = ) , dpg = : , (2.8)
gMm,
2Tk Ly k Ugns ke dQM»k
and

Ap = blkdiag(A41,A42,..., 44 M),

Bp = blkdiag(By 1, By2, ..., Bgm),

Ep = blkdiag(Ey1,Eq2,...,Eg ),
using MATLAB notation. Finally

CQLZ
ng,z

CQM-,Z
TnglsZ Tzcgmz e TMCHMJ
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In the portfolio model (2.7), zpr € R™=, upy € R"»*, dpj € R"P¢ and
zpi € R™"P=. The system dimensions are

npa = E ngj,m’ npw = E ngjnu

JEM JEM
npd = E Ng;.,dy np. = E Ng;,z + 1.
JEM JEM

The system (2.7) is a generator portfolio model. The model consists of dy-
namically decoupled subsystems (power generators) that are linked via the ag-
gregated variables (2.6). The aggregated variables represent the total power
production of the portfolio. Utilizing structure in the state-space matrices is
an important part of implementing efficient algorithms for EMPC. In this the-
sis, (2.7) is used for conceptual studies of EMPC in power production plan-
ning. Modelling individual power generators for the portfolio is studied in
e.g. [Hall4,Hov13,Stal5, EMBO09].

To model the uncertain and variable behavior of generators based on renewable
energy sources, we augment the system (2.7) by stochastic terms. The resulting
system is a linear stochastic state-space model in the form

xTpy1 = Apxpy + Bpuy + Epdpy + wpy, (2.9a)
Zpk = Cp7z513p7k, (2.9b)
yrr = CpyTpr +vpg. (2.9¢)

ypr € R"Pv is the system measurement, wp € R™"7= is the process noise, and
vpy € R"Pv is the measurement noise. We use bold letters to denote random
variables. Realizations of the random variables are written in normal letters.
Generally, a number of the controlled outputs may only be available via state
estimation, i.e. Cpy # Cp,,.
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CHAPTER 3

Model Predictive Control

The portfolio system (2.9) is a linear stochastic system. This chapter gives a
brief introduction to MPC of linear stochastic systems. Economic cost functions
motivate the use of EMPC over setpoint-based MPC. This chapter also addresses
stability of MPC and EMPC. Finally, we provide an overview of algorithms for
efficient solution of the OCPs that arise in MPC and EMPC.

MPC is a technology for control of constrained dynamic systems. Due to its in-
herent ability to handle constraints, time delays, and multivariate systems, MPC
has become one of the most successful control technologies in the process in-
dustries [QB03,Raw00, RM09, Mac02, Mo0s95, Ros03, GSD05, KH05, CB07, ML99,
MRRS00, JHR11]. Recent developments demonstrate that MPC is a promising
technology for control of energy systems as well [HLEJ12, HLSJ12, HBPT12,
MSSVP14,HPMJ12,PEH"13,Hal14, HPM 12, SPJS13,EBJ11,ZH14, MQLS11].
The basic idea of MPC is to optimize the predicted behavior of a dynamic model
over a finite horizon. At each sampling instant, the system state is estimated
and an OCP is formed and solved. The solution of the OCP provides a sequence
of inputs. Only the first input in this sequence is applied to the controlled sys-
tem, and the process is repeated at the following sampling instant. In this way,
a closed-loop input trajectory is synthesized using feedback. Fig. 3.1 is a block
diagram of MPC.
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Figure 3.1: Block diagram of MPC.
3.1 Linear Stochastic Systems

We consider linear stochastic state-space systems in the form

Tpt1 = Az + Bug + Edy, + wy, (3.1a)
Y = CyiEk + vk, (3.1b)
z, = CLxy. (3.10)

(A, B, E,Cy,Cz) are the state-space matrices, ), € R"k is the system state,
up, € R™ is the system input, d € R™¢ is the known disturbance, y, € R™v
is the measured output, and z; € R™ is the controlled variable. Moreover,
wi € R™ is the process noise, and vy € R™v is the measurement noise. Note
that the portfolio system (2.9) is in the form (3.1). We assume that the process
noise, wy, and the measurement noise, vi, are independent and identically
distributed random variables with

wy ~ N(0,Ry), (3.2a)
v ~ N(0,R,). (3.2b)
The system (3.1) may be derived from input-output models such as finite impulse

response (FIR) models, autoregressive moving average exogenous (ARMAX)
models, Box-Jenkins models, and transfer function models [BJ76, VD96, Lju99,
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JJO07]. In addition, (3.1) arises when linear continuous differential equations are
discretized.

3.2 Filtering and Prediction

The system state, (3.1a), and output, (3.1c¢), are estimated based on measure-
ments. Accurate estimates are critical for the performance of MPC. This section
provides Kalman filter equations for state estimation and prediction with mini-
mum prediction error variance [Kal60]. By assumption, the process noise, wy,
and the measurement noise, vy, are uncorrelated. Reference [JHR11] treats the
more general case with correlated process and measurement noise.

Define the information structure
T = {Zk—1, Uk—1,dk—1, Yk }+
with Zy = yg. Moreover, introduce the conditional means
Trtjie = B @ri| Tl

Uktjle = B [Yrri|Ze] s
Zhtjik = E (21| Th]

and the conditional covariance matrix
Py yji =V @t |Th] -

The filtered estimate 2y, and the covariance matrix Py, are computed as

€k =Yk — Uklk—1 = Yo — Cylrp—1, (3-3a)
Re k= CyPrj—1Cy + Ry, (3.3b)
KL = Pk|k,1C§1R;}€, (3.3¢)
Py = Prje—1 — kR ik}, (3.3d)
Tk = Tijk—1 + Krek- (3.3e)

ki is the Kalman filter gain, e is the innovation, and R, j is the innovation
covariance matrix.

The j-step ahead predictions for the system state and its covariance matrix are

£k+j+1|k = A£k+j|k + Bupyj + Edpyj, 7 >0, (3.4a)
Piyitin = APy jin AT + Ry, j>0. (3.4b)
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The j-step ahead predictions for the system output and measurement are
Zipilk = Carpjis j=>0, (3.5a)
Ukt stk = Cyrijihs j=0. (3.5b)
For proof and details, we refer to [MR93,PR03, MB02].

3.3 Certainty Equivalent MPC

The most common form of MPC is MPC based on the separation and certainty
equivalence principle. This form of MPC is referred to as CE-EMPC. In CE-
MPC, random variables are replaced by conditional expectations. Control of
(3.1) is thereby simplified to control of a deterministic system that is governed
by the Kalman filter equations (3.3), (3.4) and (3.5).

Define the prediction and control horizon
N, ={0+4,1+4,...,N +i}, (3.6)

where N is the horizon length. Subscript ¢ shifts the horizon by ¢ steps. For
compact notation, we introduce the vectors

Up Tpipk Zkt1lk
Uk+1 Tr42|k Zk42|k

u= Uk+2 , &= | Te3lk |, Z= | Fk+3lk | . (3_7)
Uk+N—1 Thi Nk 2L Nk

The OCP solved in CE-MPC is

min. ¢ (u, 2, 2), (3.8a)
s.t. jk+j+1|lc = Aik+j|k + Bupyj + Ediyj, j €Ny, (3.8b)
Zhpilk = Carpjis jeNM, (3.8¢)
(u, 2, %) € X. (3.8d)

The function ¢ : RV x RV"> x RN"= 1 R is the objective function. Constraints
(3.8b) and (3.8¢) are the state-space constraints. These constraints model the
predicted behavior of the system (3.1). The filtered estimate, 2y, is a fixed
parameter in (3.8b). This parameter is obtained from (3.3). Constraint (3.8d)
accounts for operational constraints such as input limits, input-rate limits, and
output limits. The objective function, ¢, may be non-linear and the constraint
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set X can be non-convex. We only consider the case where ¢ is a convex function
over X, and X is a closed and convex set. Under these assumptions, the OCP
(3.8) is a convex optimization problem.

Let (u*,2*, 2*) denote a solution of (3.8) and define the function

up, = (T {drri}iens) s (3.9)

such that wuj, is the first component of u*. The function (3.9) is a control law
for the system (3.1). Evaluating the control law requires solution of the convex
optimization problem (3.8).

3.4 Objective Functions

In conventional MPC, the objective function (3.8a) penalizes deviations from
a target operating point [Raw00]. The objective function may also include
regularization terms. We write the objective function as

d(u, z,2) = ¢ (u, 2, 2) + "5 (u, z, 2). (3.10)

The function ¢*P(u, x, z) is a setpoint-based objective function and ¢"8(u, xz, 2)
is a function composed of regularization terms. A widely used setpoint-based
objective function is

(w,7,2) = Y 11Q 2y — D3 + 1R (s — )5, (3.11)
JENo

where (@, Z) is the target operating point. The entries in @ € R™*"=  and
R € R™=*™u are penalty weights that can be adjusted to tune the controller.
Examples of regularization functions for (3.10) are

B, 2) = > 1Se Augg]ly (3.12a)
JENO

re 2

e x,2) = Y [1Se, Akl - (3.12b)
JE€ENo

As for (3.11), S¢,, Se, € R™ ™ are weight matrices. The input-rate, Auj4;,
is defined as
AUt = Uty = Ukgj—1, (3.13)

Regularization is important to make the closed-loop trajectory of the controlled
system well-behaved [PJ09, SSET14, HLJB12]. Figure 3.2 illustrates the reg-
ularization functions (3.12), The function (3.12a) assigns a linear penalty to
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Figure 3.2: Tllustration of the regularization functions (3.12).

the input-rate, and the function (3.12b) assigns a quadratic penalty to the
input-rate. Generally, ¢1-regularization induces sparsity in the solution, while
ly-regularization favors smooth solutions [BV04]. A combination of ¢; and ¢5-
regularization is used to obtain smooth and sparse solutions.

3.5 Economic MPC

Economic optimization in contemporary industrial systems that utilize MPC is
usually composed of several layers. In the real-time optimization layer (RTO), a
static optimization problem is solved to determine the most cost-efficient steady-
state (target operating point) for the system. The target operating point is sent
to the supervisory control layer, where setpoint-based MPC is applied to steer
the system to the desired steady-state. The RTO layer and the supervisory
control layer have different time scales. Therefore, there is no guarantee that
such a hierarchical approach operates the system in an economically efficient
way during setpoint transitions. Moreover, steady-state operation may not be
the best strategy in terms of economics. To overcome these challenges, EMPC
has been introduced as an alternative to setpoint-based MPC [DARI11, Griil3,
RAB12, AAR12,EDC14].

In EMPC, the OCP objective function, (3.8a), is an economic cost function.
This allows cost information from the RTO layer to be included directly in the
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supervisory control layer, which is responsible for closed-loop operation of the
system. Including an economic cost function, ¢*°°(u, z, z), in (3.10), yields

o(u,x, 2) = ¢°°(u, x, 2) + ¢ (u, x, 2) + "% (u, x, 2). (3.14)

When ¢ (u, x, z) and ¢"8(u, x, z) are zero, (3.14) is a pure economic objective
function. In some cases, regularization terms are incorporated into ¢*°(u, z, z),
e.g. when a price for input-rate movements is available (this price can be related
to wear and tear of the system components). The use of an economic objec-
tive function is a key concept for MPC in power production planning [HLJ11,
MQLS11,HPMJ12, HPM*12,SEJ15,SSET 14, ZH14, MSSVP14,RSR13,BTS10].
Applications of EMPC in power production planning include flexible consump-
tion for refrigeration systems, [HLEJ12,HLSJ12], cost-efficient building climate
control [HPMJ12, MQLS11], control of heat ventilation and air conditioning
systems for grid regulation services [MSSVP14], activation of operational re-
serves for frequency control [SEJ15], charging and discharging electric vehicles
using electricity price forecasts [HPM™12], control of residential heat pumps for
energy storage [PEH 13, Hall4], control of solar tanks based on weather and
consumption forecasts [HBP*12], and design of sustainable policies for mitigat-
ing climate change [CDPH12].

3.6 Stability

Stability of MPC has been established for a variety OCPs [AAR12, DARII,
RBJT08, PN00, QB03, Griil3, JHO5, MRRS00, RM93, GPSW12, BGW14]. The
stability proofs are mainly based on Lyapunov stability theory. References
[RBJT08, MRRS00,RM93] provide stability proofs for setpoint-based MPC with
a terminal cost and/or terminal constraints. These stability proofs are not
directly applicable to MPC with an economic objective function. References
[AAR12,DARI11] prove stability of EMPC with a terminal cost. Stability of
EMPC without a terminal cost is addressed in [Gril3, GPSW12,BGW14]. A
method to achieve stability that works well in practice, is simply to use suffi-
ciently long prediction horizons [HPJJ12, JHO5, PN00, Griil3, LS15, Jor05]. In
our work, we adopt this approach. The use of long prediction horizons makes
EMPC algorithms that scale well in the horizon length, NV, important.

3.7 Online Optimization

MPC requires the solution of an OCP in every sampling instant. For this rea-
son, the use of MPC has conventionally been limited to small systems with
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slow dynamics. Modern algorithms, combined with increased computing power,
have extended the use of MPC to larger systems with dynamics even in the kHz
range. Efficient algorithms for solution of OCPs are based on multi-parametric
programming [TJB03,BMDP02,SDG00, Pis12], IPMs [WB10,SFET 13, RWR9S,
SKC10,ESJ09,RIM09,Wri97,DZZ" 12], active-set methods [BB06,FBD08,JRJ04,
Wri97], and first-order methods [RJMO09, JGR ™ 14].

References [RWR98, JFGND12] present structure-exploiting IPMs for setpoint-
based MPC with an fs-penalty. A similar algorithm is proposed in [VBN02]
for setpoint-based MPC with an ¢;-penalty. Reference [SFST15] provides a
Riccati-based homogenous and self-dual IPM for EMPC with a linear objective
function. Reference [SAY13] develops a warm-start strategy for homogeneous
and self-dual IPMs. Reference [SFST15] reports that this warm-start strategy
reduces the average number of IPM iterations by 35-40% in an EMPC power
portfolio case study. Splitting methods [BV04,Roc70] and gradient-based meth-
ods [HL13,JGR™14], have been developed for distributed setpoint-based MPC
of dynamically coupled systems [CSZT12,S1.12], ¢;-regularized setpoint-based
MPC [AHW12], mean-variance EMPC [SDMJ14a], and setpoint-based MPC
with an fs-penalty [JGRT14, KF12,KF11,SFAJ14]. Reference [SSET14] intro-
duces an ADMM-based decomposition algorithm and a Dantzig-Wolfe decompo-
sition algorithm for EMPC of dynamically decoupled subsystems. Warm-start
and early-termination strategies are employed to increase the computational
performance of the decomposition algorithms.

Generally, the best choice of algorithm for solving the OCP is highly dependent
on the problem structure, as well as the accuracy required for the solution.
Multi-parametric programming methods compute the control law defined by
(3.9) offline. In this way, the online computations can be implemented as a
lookup table. The main issue with multi-parametric programming methods
is that the computation time can grow exponentially with the problem size
(horizon length, number of states, and number of inputs). Multi-parametric
programming methods are therefore limited to small problems. IPMs produce
high-accuracy solutions using a few computationally expensive iterations. In
contrast to this, first-order methods produce less accurate solutions using many
computationally inexpensive iterations. For some problems, first-order methods
determine a fairly accurate solution within a relatively small number of iterations
[KCLB14,BPCT11].

3.7.1 State Elimination

Depending on the size and structure of the OCP, one formulation of the OCP
may be preferable over another, from a computational point of view. State con-
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densing eliminates the system states and outputs from the OCP. This results
in a smaller less structured OCP. Algorithms that rely on state condensing are
especially efficient for solution of the OCP when the length of the prediction
horizon, N, is small and the state dimension, n,, is large [FJ13]. State con-
densing is applied several times in this thesis. For convenience, we outline a
procedure for state condensing below.

Consider the OCP (3.8). Using the state equation (3.8b), it follows that

fik+1|k = Aﬂ}klk' + Buy + Edy, (3.15a)
£k+2|k e A£k+1|k + Bug4+1 + Edi1, (3.15Db)
TNk = AZpyn—1jp + Buggn—1 + Edpyn—1. (3.15¢)

Repeated substitution of the system states gives

j-1 j—1
-i'k+j|k = Aji'k|k + ZAj_i_lBukJri + ZAj_i_lEkori, jeN. (3.16)
=0 =0

Define the impulse response matrices (Markov parameters)

H,;=C,A"'B, 7€M,
Hyj;=C.A7E, j € M.

The system outputs defined by (3.8¢), can be written in the form

j—1 j—1
2k+j|k = CzAjikUc + Z Hu,j—iukJri + Z Hd,jfikoriv j € Nl. (3.17)
=0 =0

Equations (3.16) and (3.17) show that

T = Lz(u;d,ﬁck‘k), (318&)
zZ= LZ(U;d,i’Mk), (318b)
where L, and L. are affine functions, and d = [df d} , - d{+N71]T. Le.

the state and the outputs can be written as affine functions of the input, u,
the disturbance, d, and the filtered estimate, #,. The semi-colons in (3.18)
separate the OCP optimization variable, u, from the OCP parameters, d and

j;k\k'
The function L, is defined as

LI(U; d, jk\k) = (I)Li'k“c +Fuu+I‘dd7 (319)
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where ® = [(C.A)T (C.A%)T ... (CZAN)T]T and
Hu,l Hd71
Hu,2 Hu,l Hd72 Hdvl
Fu - . . . ) Fd = . .
Hu,N Hu,Nfl Hu,l Hd,N Hd,N—l Hd,l

The function L, is defined similarly. Using the expressions (3.18), the states, &,
and the outputs, Z, can be eliminated from the OCP (3.8).



CHAPTER 4

Convex Optimization

This chapter presents convex optimization algorithms for EMPC of linear stochas-
tic systems. A homogeneous and self-dual linear programming IPM is outlined.
LPs arise in EMPC of linear systems with linear constraints and linear objec-
tive functions. We present a Dantzig-Wolfe decomposition algorithm for block-
angular LPs. Block-angular LPs occur in EMPC of dynamically decoupled
subsystems, such as power generators in the portfolio system (2.9). An ADMM
algorithm is proposed for convex optimization problems with separable objective
functions. This type of problem is solved in MV-EMPC. Part II of the thesis
provides tailored EMPC implementations of the proposed algorithms.

4.1 Convex Optimization Problems

Define the convex optimization problem [BV04]

min. f(z), (4.1a)
s.t. gi(x) =0, i1=1,2,...,mg, (4.1b)
hi(z) <0, 1=1,2,...,my, (4.1c)

where z € R” is the optimization variable, and:
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e The objective function f is a convex function.

e The equality constraint functions g1, ..., gm, are affine functions.

e The inequality constraint functions hq, ..., hy,, are convex functions.

4.1.1 Karush-Kuhn-Tucker Conditions

The Lagrangian associated with (4.1) is

meg mr
L(z,y,z) = f(z)+ Zyigi(x) + Z zihi(z). (42)
i=1 i=1
where y1,...,Ym; € R and 21,...,2,, € R are dual variables, and

T

y=1[n v2 - Ymsl
T

z = [Zl V) cee Zml] .

The Karush-Kuhn-Tucker (KKT) conditions for (4.1) are

V. L(x,y,2z) =0, (4.3a)
gi(x) =0, 1=1,2,...,mg, (4.3b)
hi(z) <0, 1=1,2,...,my, (4.3c)

2 >0, i=1,2,....mp, (4.3d)
zihi(x) =0, 1=1,2,...,my. (4.3¢)

Condition (4.3a) is the Lagrangian stationarity condition. Conditions (4.3b)
and (4.3c) are the primal feasibility conditions. Condition (4.3d) is the dual
feasibility condition, and condition (4.3e) is the complementary slackness con-
dition. Problem (4.1) is a convex optimization problem. The KKT conditions
(4.3) are therefore necessary and sufficient for an optimal solution of (4.1). Le.
a point, (z*,y*, z*), satisfying (4.3) is a global solution of (4.1), and vice-versa.
The KKT conditions (4.3) assume that f, g1, ..., gmp, and hq, ..., hy,, are
differentiable functions. Reference [Rus07] provides generalized KKT conditions
that hold for non-differentiable functions as well.
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4.2 Linear Programming IPM

This section presents a homogeneous and self-dual IPM for solution of the LP

min. g7z, (4.4a)
st. Az =b, (4.4b)
Cx <d. (4.4c)

The data in (4.4) are g € R", A € R™2*" p ¢ R™E C € R™*" and d €
R™I. The LP (4.4) is the special case of (4.1) where f(z) is a linear function,

g1,---,9my are affine functions, and hq, ..., h,,, are affine functions. We write
this as
T
flx) =gz,
gi(z) = al'x — b, 1=1,2,...,mg,
hi(z) = cf' o — d;, 1=1,2,...,my,

with ai,...,6mg ER™, b1,...,b;my €ER, c1,...,cm; € R, and dy,...,dm, €R.
In addition

A:[al as - amE]T,
b=[b1 by - by
C:[cl co - cm,]T7
d=1[di do - dw,]",

The Lagrangian associated with (4.4) is
L(z,y,2) =g z+y" (Az —b) + 27 (Cx — d),

and the dual LP of (4.4) can be written in the form

max. —bly —d’z, (4.5a)

Y,z
st. ATy +CTz=—g, (4.5b)
z > 0. (4.5¢)

The KKT conditions for (4.4) are

ATy+CTz+g=0, (4.6a)
Az —b=0, (4.6b)
Cx—d<0, (4.6¢)

2 >0, (4.6d)
zi(cF oy —d;) =0, i=1,2,...,my. (4.6¢)
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For convenience, introduce the slack variables

sizdi—ciTx, i=1,2,...,my.
and s = [s1 -+ Sm,|. This way, the KKT conditions (4.6) can be written as
ATy +CT24+g=0, (4.7a)
Az —b=0, (4.7b)
Cr—d+s=0, (4.7¢)
(2,8) >0, (4.7d)
751 =0, (4.7¢)

where S = diag (s), Z = diag (z), and 1 is a vector of all ones.

4.2.1 Homogeneous and Self-Dual Model

The solution of the KKT system (4.6) provides the solution of the primal LP
(4.4), (z*,s*), and the solution of the dual LP (4.5), (y*,z*). Conventional
IPMs solve the KKT system using a Newton-type of method. Homogeneous
and self-dual IPMs solve the related LP

mfiﬁn. 0, (4.8a)
st. ATg+CT24gr =0, (4.8b)
Az —br =0, (4.8¢)
Ci—dr+35=0, (4.8d)
—gle —bTg—dTz4+ k=0, (4.8e)
(2,8,7,K) >0, (4.8f)

in which z e R*, § € R™# 2 € R™, and 7,k € R. The LP (4.8) is a pure
feasibility problem.

A strict complementary solution of (4.8), (¥*,g*, 2%, 5%, 7%, k*), satisfies 215, =
0,...,2m,;5m; = 0, and 7k = 0. Moreover, one of the following conditions
hold [AGMX96, YTM94, XHY96]:

e If7* > 0, and k* = 0: The scaled solution (z*, y*, z*, s*) = (&*, §*, 2*, §*) /7"
is a primal-dual optimal solution of (4.4) and (4.5).

o If 7* =0, and x* > 0: The problem (4.4) is infeasible or unbounded. Ei-
ther —bT§* —d” 2% > 0 (primal infeasible and dual unbounded) or g7 7* < 0
(primal unbounded and dual infeasible).
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Homogeneous and self-dual IPMs determine a strict complementarity solution of
(4.8) [YTM94,XHY96]. If the problem is infeasible or unbounded, the solution
satisfies 7* = 0 and &* > 0. The ability to detect infeasible or unbounded
problems is a special feature of homogeneous and self-dual IPMs. An additional
advantage of homogeneous and self-dual IPMs is that they can be warm-started
efficiently. In [SAY13] warm-start reduces the number of IPM iterations by 30-
75% for the NETLIB collection of test problems. Warm-start capabilities are
convenient in MPC applications, as the OCP is solved in a receding horizon
manner. Conventional IPMs do not have similar warm-start capabilities as
homogeneous and self-dual TPMs.

4.2.2 Predictor-Corrector Algorithm

We present a homogeneous and self-dual IPM for solution of (4.8). The method
is based on Mehrotra’s predictor-corrector method. Proofs and details are pro-
vided in e.g. [Meh92, NW06,YTM94,XHY96,ART03,Stu02,SAY13,Ye97, Wri96].
Mehrotra’s predictor-corrector method is a path-following algorithm that tracks
the central path. The central path is a smooth curve that connects an initial
point to a complementary solution of (4.8).

For compact notation, introduce
9: ('i?g)gagaTaK‘)) (49)

and let 6% refer to the i’th iterate generated by the proposed algorithm. The

initial point is #° = (2°,¢°, 29, 59, 70, k).

A solution of (4.8) is defined by

(2757’6’7—) Z 07 (4103)
and
V1(9) AT+ CTz 4+ gr 0
Va(0) AF — br 0
we)] CF—dr + 35 o
Vi) = Vi(0)| — |—¢"E -0y —d"i 4k 0 (4.10b)
Vi (6) 751 0
Vi (6) ® 0

Asin (4.7), Z = diag(%) and S = diag(5) are diagonal matrices.

Define the complementary gap

. (21‘)T§i_’_7i,{i
= 4.11
p e (4.11)
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The central path is given as

C={01V(©®) =", (33,k71) >0,7€[0,1]}. (4.12)
where
Vl(GO) AT@O +CT,§0 +gTO
Va(6°) Az0 — b0
20— V3(6°) _ C7% —dr®+3°

‘/21(90) —gTj;O _ ngO —dTs0 4+ g
o1 ((ZO)TEO + 7'0/-@0) /(mr+1)1
‘LLO ((20)T§O+TOI€O> /(m1+1)

For v = 0, the central path (4.12) defines a point, 8*, that satisfies the conditions
(4.10), i.e. a solution of (4.8). Mehrotra’s predictor-corrector method generates
iterates, 0°,0%, ..., 0%, along the central path as v — 0. It is trivial to construct
an initial point, 69, for this procedure. E.g.

00 = (z°,9°,2°, 3%, 7% k%) = (0,0,1,1,1,1), (4.13)

lies on the central path for v = 1.

The optimization search direction is computed by solving the linear system of
equations

Jv (0 A0 = -V (6", (4.14)
where Jy (%) is the Jacobian of V evaluated at 6. It follows from (4.10b) that
0o AT ¢t 0o g o0

A 0 0 0 -b O

; cC 0 0 I —-d 0
JV(G ) = _gT T 4T 0 0 1 (415)

0 0o St Zi 0 0

0 0 0 0 KLt

The right-hand side in (4.14) is defined as

(1 =~")V1(6")
e
_ i 1 —~t 7
Vi) = (= AV

Vs(6) + AZ;HASQH =7 gl
V(0') + AT g AR g — 7' il
In this definition, AZ!; = diag(AZzls), ASis = diag(Adls), Arig, and Arlg,

are second order corrector terms [NWO06, Meh92], iy is the affine complemen-
tarity gap, and +* is the centering parameter. These quantities are computed
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based on an affine-scaling direction
Abag = (Ai'aﬂa Agaffv AZasr, ASagt, ATasr, A’iaﬁ)-
The affine-scaling direction is obtained by solving the system (4.14) with V(%)
replaced by V(6"). Accordingly, we define the affine variables
Zag = 2+ ongAZyg, S = 8+ augAdLg,
o = T+ CogATog, Fag = K+ QugAryg,
where ol is a damping parameter that keeps the affine variables within the
non-negative orthant (4.10a)
Aégﬂ
i AT, aff
Opg = Mmax { aug € [0, 1]] gi| Taamt | a5t | 2 0
Aﬁaﬁ
The affine complementarity gap is
(Zag) " Bt + Tagtag
mr+1
and the centering parameter 4* is computed as
. 3 » . . ) 3
i | Hag | _ ((Zig) "3l + Tigrls)
v = . = T T . (4.16)
i (F)75 + rinc)

Equation (4.16) updates the centering parameter according to the effectiveness
of the affine-scaling direction. When pulg ~ p', only small progress towards
the optimal solution can be made in the affine-scaling direction. In this case,
(4.16) yields 4¢ ~ 1, which forces the search direction towards the central path.

Substantial progress can usually be made in the affine-scaling direction in an
iteration that follows a step with aggressive centering.

-
Hagf = ’

To classify a solution as optimal, we use the stopping criteria [ART03]
0 < €en, of <er, op < ep, 26 < €o. (4.17)
Moreover, the problem is considered to be infeasible if 7¢ < €, max(1, %), and
o < eg, o <er, op < ep, 06 < €. (4.18)
€, €, €1, €p, €0 and €g are user-defined tolerance parameters, and
op = [IVi(0)llo /max(L, [[H" FT g][| ),
01 = [[Va(0)||o. /max(1, || [F b] le)
or = |[V3(0)| o /max(1, || [H H|oo)»
oc = |L — &|/max(1, || [¢" bT 1]

o = |L|/(r +|-b"§ - c"'3)).

’oo)’
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Algorithm 1 Homogeneous and self-dual IPM for (4.8)

p (ZTs+7K)/(ms + 1)
while not converged do
COMPUTE AFFINE-SCALING DIRECTION
Abug < —Jy (0)71V(9)
Qlaff — Max {Gaff S [0, 1]|(§, T, S, K) + aatt(AZasr, ATasr, ASar, Aliaff) > 0}
Saff < S+ agASag, Kaff <& K+ GagAKag
Zaff ¢ Z 4+ agQAZagr, Taf < T+ QagATag
Haff < (Zgﬁgaﬁ + Taffﬁaff)/(ml + 1)
Y (pas/p)?
COMPUTE SEARCH DIRECTION
AO — —Jy(0)71V ()
a < max{a € [0,1]|(Z,7,5, k) + a(AZ, AT, AS, Ak) > 0}
T T4+rvalAZ, 3§+ §+valAs, k< k+valk
7§ §+rvaldy, Z<+ Z4+valdzi, T+ 1T+valAr
p (ZT5+7K)/(mr +1)
end while

L =gT% — (—=bT§ — d"'%) is the duality gap. Algorithm 1 outlines the proposed
homogeneous and self-dual IPM. To keep the iterates well inside the interior
of the non-negative orthant, (4.10a), a damping parameter v € [0.95;0.999] is
introduced. Conditions (4.17) and (4.18) are the stopping criteria for Algorithm
1.

4.3 Dantzig-Wolfe Decomposition Algorithm

This section presents a Dantzig-Wolfe decomposition algorithm for solution of
LPs in the form

min. g7z, (4.19a)
s.t. Az <b, (4.19b)
with the block-angular structure
g1 x ﬁll A Ay b
s1

92 T2 A bs,
g=1|.|, z=1|.|, A= 52 , b= . (4.20)

9p Tp . A bs,,

r
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The indices j € J = {1,...,p} are subsystem indices. The vector g; € R™
is the cost associated with subsystem j, x; € R™ is the decision variable for
subsystem j, A;; € R™ " is the linking constraint matrix for subsystem j, and
A, €R™ X" is the constraint matrix for subsystem j. The right-hand side of
the linking constraints is b; € R™ | and the right-hand side of the constraints for
subsystem j is by, € R™. Note that the block-angular LP (4.19) is a special
case of (4.4).

Using the definitions (4.20), we write (4.19) as

min. Zgjrxj, (4.21a)
‘ JjeT
st Agz; < b, jed, (4.21D)
Z Alj T S bl. (421(3)
JjeET

In the extreme case, m; = 0, there are no linking constraints. For this case, the
problem (4.21) decouples into p independent subproblems. Conversely, when
mg, = --- = mg, = 0, there are no subsystem constraint blocks. Algorithms
based on Dantzig-Wolfe decomposition are generally most efficient when m; is
small compared to the overall number of constraints, i.e. when the problem has
relatively few linking constraints. The OCP that arises in EMPC of the portfolio
system (2.9) is block-angular LPs with relatively few linking constraints.

4.3.1 Extreme Point Representation

Dantzig-Wolfe decomposition exploits that a convex set can be characterized by
its extreme points and its extreme rays [CCMGBO06, DW60, Mar99]. Define

G] = {I] | Aijj S ij}7 .]e j)

such that (4.21b) can be written as z; € G; for j € J. For simplicity, assume
that every G; is bounded. It follows that

Gj=qzjle; =Y MNah, Y N =1XN>0forallicZ;y, jeJ, (422)
i€Z; i€Z;

where ' are the extreme points of G;, and X} are convex combination multipli-
ers. The set of indices associated with the extreme points of G; is denoted Z;.
Since every G; is bounded, the representation (4.22) does not include extreme
rays.
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Replacing the decision variables in (4.21) by convex combination multipliers
yields

m}\n. Z Z g;‘-)\;, (4.23a)

JjET iEIj

st Y Y AN < By, (4.23D)
JjeJ i€,
doN=1, jed, (4.23¢)
iEIj
A5 >0, jeJ, i€T; (4.23d)

where we have defined
A} = Ayt jeJd, i€l (4.24a)
g, =g, jeJd, iel. (4.24b)
Problem (4.23) is referred to as the master problem.

Given a solution, A\*, to the master problem (4.23), a solution to the original
problem, (4.21), is obtained as

x;‘:Z)\;*x;, jeJd.

i€Z;

The number of optimization variables and constraints in the master problem
(4.23), increases with the number of extreme points. The number of extreme
points can be exponential in the size of the original problem (4.21). It is therefore
computationally inefficient to solve the master problem directly. The Dantzig-
Wolfe decomposition algorithm generates extreme points in an iterative manner

[SSE+14].

4.3.2 Column Generation Procedure

The dual LP of (4.23) may be stated as

max — by + Z Bj, (4.25a)
JjeJg

st. — (A ) Ta+ B < g}, jeJg, i€, (4.25b)

a >0, (4.25¢)

in which « and 8 are the dual variables associated with the linking constraints,
(4.23b), and the convexity constraints, (4.23c), respectively.



4.3 Dantzig-Wolfe Decomposition Algorithm 39

The necessary and sufficient optimality conditions for (4.23) and (4.25) are

DSOS AN <, (4.26a)

JET i€L;
doN=1 jed, (4.26b)
iEIj
A5 >0, jed, i€, (4.26¢)
g9j+ (A}) = ;5 >0, jed, i€l (4.26d)
a>0, (4.26¢)
Ni(g; + (Aj) e = 8;) =0, jed, i€l (4.26f)

Reference [DW60, DW60, SSE™T14] presents a column generation procedure for
solution of (4.26). In this procedure, a restricted master problem is solved. The
restricted master problem is defined as

min. )Y giAs, (4.27a)

JeT ieI;

st Y Y ALN < by, (4.27D)
JeJ ieI;
doN=1, jed, (4.27¢)
iGij
AL >0, jeJ, i€l (4.27d)

where fj C Z;, for j € J. The restricted master problem is simply (4.23),
defined over a subset of the extreme points.

Let (5\,07, B) denote a primal-dual solution of the restricted master problem,
(4.27). Reference [SSET14] shows that the solution

o = a,
Nooifiel

A S A D jed, iel,
0 ifieZ;\I;

satisfies the KKT conditions (4.26), provided that the optimal objective value
of the subproblem

min. ¢; = (g; + Afa") Z; — 5 (4.28a)

st A, < b, (4.28b)
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/ Solve Restricted Master Problem \ﬁ

> Solve Subproblem 1 I

> Solve Subproblem 2 I

sjurRIISUOD Sunul] uo seorid ren(y
Subproblem candidate solutions

> Solve Subproblem p I

Figure 4.1: Flowchart of the Dantzig-Wolfe decomposition algorithm.

is non-negative for each j € 7.

Algorithm 2 outlines the Dantzig-Wolfe decomposition algorithm. Extreme
points are generated by solving subproblems in the form (4.28). The algorithm
terminates if ¢; > € for all j € J. The parameter € is a user-defined tolerance
parameter. Fig. 4.1 is a flowchart of Algorithm 2. For proofs and details, we
refer to [CCMGBO06, DW60, Mar99, SSE*14].

4.4 Alternating Direction Method of Multipli-
ers

This section presents an ADMM algorithm for solution of the convex optimiza-
tion problem

rnin. f1 (Il) + fQ (172), (429&)
s.t. Ajxq + Asxs = b, (429b)
where x = (z1,22). We assume that f; and f; are convex (not necessarily

differentiable) functions. The problem dimensions are z; € R™, x5 € R"2,
Ay € R™*™ and Ay € R™*"2. Problem (4.29) is the special case of (4.1),
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Algorithm 2 Dantzig-Wolfe Decomposition Algorithm for (4.23)

1 =0, converged = false
while not converged do
7+ {0,1,...,i}
COMPUTE PROBLEM DATA
for j € J do
A;j = Alj.x;'
9; = 95 %5
end for
SOLVE RESTRICTED MASTER PROBLEM
(A\*,a*, B*) < solve (4.27) with Z; = Z for j € J
SOLVE SUBPROBLEMS
for j € J do
(¢3,27) < solve (4.28)
end for
CHECK IF CONVERGED
if p; > ¢ for j € J then
converged = true

else
UPDATE EXTREME POINTS
for j € J do

o =z

end for
14—1+1

end if

end while

where mg = m, my = 0, and

f(@) = fi(z1) + fa(w2),

T T :
gi(w) = ay ;71 + ay ;x2 — by, 1=1,2,...,m.
ain,---,a1,m €ER" azq,...,a2,m € R", and by,...,b, € R. Moreover
T
A = [al,l ai2 - al,m} )
T
Ay =az1 az2 - azm|
T
b:[bl by .- bm] .

ADMM is a powerful algorithm for solving large-scale structured convex opti-
mization problems in the form (4.29) [BPC*11]. In particular, ADMM gives rise
to distributed algorithms for the OCPs that arise in EMPC of linear stochastic
systems [SSE*14,SDMJ14a].
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The indicator function is often used to pose convex optimization problems in
the form (4.29). The indicator function of a set A is defined as

0 ifzcA
I = ’ 4.30
4(®) { oo otherwise. ( )

The indicator function of a convex set is a non-differentiable convex function
[BV04].

4.4.1 ADMM Recursions

The Lagrangian of the convex optimization problem (4.29) is
L(z,y) = fi(z1) + falw2) +y" (Arzy + Agzy — b),

where y € R™ is the dual variable associated with the equality constraints
(4.29b). Let O denote the subdifferential operator [BL11]. A stationary point
of the Lagrangian satisfies

0 € 83?1‘C(xvy) = 8361 fl(xl) + A,{y, (431&)

The KKT conditions for (4.29) are the primal feasibility condition (4.29b), and
the dual feasibility conditions (4.31).

The ADMM recursions for solution of (4.29) are

2 = argmin £, (21, 75, y"), (4.32a)
z1

2htt = argmin £, (x, 22, y"), (4.32b)
T2

YT =yt 4 p(At T 4 AgrT —b). (4.32¢)

The augmented Lagrangian with penalty parameter p > 0 is defined as
Lo(x,y) = L(z,y) + SllArz + Aoz — b3

The recursions (4.32) alternate between an x;-minimization, (4.32a), and an
xo-minimization, (4.32b). Finally, (4.32¢) is a dual variable update.

It is convenient to express the recursions (4.32) in a scaled form. The scaled
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Algorithm 3 ADMM algorithm for the solution of (4.29)

converged = false
while not converged do
ADMM RECURSIONS
x1 < argmin g, fi(z1) + p/2||Azy + Aszs — b+ uf
Ty < argmin,, fa(22) + p/2||Azy + Aszs — b+ uf
u < u—+ p(A1x + Asx — b)
CHECK IF CONVERGED
if [|r|l, < ep and ||s]|, < ep then
converged = true
end if
end while

:
2

ADMM recursions are

M = argmin fi(z1) + p/2|| Az + Agxh — b+ |3, (4.33a)
x1

25 = argmin fa(xo) + p/2|| Azt + Agwy — b+ |3, (4.33b)
x2
ut = w4 p(ApztT £ AgaT —b). (4.33¢)

where u = (1/p)y is a scaled dual variable. Under mild assumptions, the ADMM
recursions, (4.33), converge to a solution of (4.29). References [BV04,BPCT 11,
Roc70, BL00, HULO1] provide proofs and details.

Algorithm 3 outlines the ADMM algorithm. To detect an optimal solution in
Algorithm 3, we use the stopping criteria [BPCT11]

\|er2 < ep (4.34a)
|s‘ll, < €b- (4.34b)

€5 > 0 and €%, > 0 are primal and dual tolerance parameters. These parameters
are defined as

€p = eav/m + eg max{|| Ay 2|
€h = €ay/ni +€r HA{yﬂ

A2$22’

2+ [10l]2}

27

2

where €4 > 0 and egr > 0 are user-defined (absolute and relative) tolerance
parameters. Moreover

it = Alx?’l + Agxg"'l —b, (4.35a)
s = pAT Ao (25T — ). (4.35b)
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Reference [HL13] establishes a linear convergence rate of ADMM. The empirical
convergence rate of ADMM can be much faster, and is highly problem-dependent
[KCLB14,WBAW12]. Several tuning strategies have been proposed to speed-up
convergence of ADMM for individual problems. One extension of Algorithm 3
is to replace A1zt by aAd;zitt — (1 — a)(Axxh — b) in the recursions (4.33).
This strategy is known as over-relaxation [BPC11]. The parameter o € [0, 2]
is tuned to the particular application. Another critical tuning parameter is the
penalty parameter p [JGR'14,JGRT14,HL13, GTSJ13]. References [BPCT11,
GTSJ13] provide adaptive updating strategies for p.
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CHAPTER 5

Economic MPC in Power
Production Planning

This chapter presents novel EMPC schemes for power production planning.
Control of the portfolio system (2.9) is considered. A small demonstration
example shows that CE-EMPC performs poorly under uncertainty in terms of
economics. MV-EMPC is introduced to account for the system uncertainty in
a more economically efficient manner. We employ regularization techniques to
obtain well-behaved closed-loop control of the portfolio system.

5.1 Contributions

The OCP solved in EMPC consists of an economic objective function and a
number of operating constraints. The performance and reliability of EMPC
depend on the formulation of the OCP. Uncertainty management is important
for EMPC of stochastic systems, such as the power portfolio system (2.9). In
CE-EMPC, uncertain parameters in the OCP are replaced by conditional ex-
pectations. Paper F shows that CE-EMPC can be economically inefficient in
practice. The main issue with CE-EMPC is that the approach disregards the
variance of the uncertain parameters. Paper F introduces MV-EMPC for linear
stochastic systems. In MV-EMPC, the OCP objective function is a bi-criterion
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that trades off cost expectation and cost variance. Simulations show that MV-
EMPC outperforms CE-EMPC economically. Paper G presents a novel ADMM-
based decomposition algorithm for MV-EMPC, to overcome tractability issues
of the EMPC scheme. Paper E illustrates that regularization is critical for the
closed-loop performance of EMPC.

We have organized this chapter as follows. Section 5.2 describes common oper-
ating constraints for the portfolio of power generators, and section 5.3 defines an
economic objective function for the system. Section 5.4 defines CE-EMPC for
the portfolio system. A two-generator case study is presented for demonstration
purposes. Section 5.5 generalizes CE-EMPC to MV-EMPC, and introduces a
back-off heuristic to improve the economic performance of CE-EMPC. Section
5.6 discusses regularization techniques under uncertainty. Section 5.7 summa-
rizes the main contributions of this chapter.

5.2 Portfolio Constraints

The portfolio system (2.9) is a collection of power generators in the form (2.5).
Each generator is associated with a number of operating constraints. These
operating constraints often have a linear representation [Hall4, Hov13,HPM 12,
HBP ™12, EMB09,HLEJ12, HPMJ12,Stal5]. We consider input constraints

Ug, ke < Ugy b < Ug; ks jEM, (5.1)
and input-rate constraints
Aygjvk é Augj7k S Aﬂgjvk’ J € M' (5.2)

The input-rate, Aug; x, is defined as in (3.13). As an example, (5.1) and (5.2)
represent charging and discharging limits for an electric vehicle. For a heat-
pump in a residential heating system, (5.1) and (5.2) restrict the work of the
compressor. In a commercial refrigeration system, (5.1) and (5.2) limit the
evaporator heat duty. For the power plant model in [EMB09], (5.1) limits the
power production setpoint to the feasible range of setpoints, and (5.2) limits the
setpoint rate of change. Section 5.3 introduces soft output constraints for the
portfolio system.

Using the definitions (2.8), we write the constraints (5.1) and (5.2), in the
compact form

Upy S UPk S Upk, (5.3a)
Aup < Aupy < Aupg, (5.3b)
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where
g k Ugy ,k Aug, Atg, i
Lgy k _ Ugs,k Aug2 k _ Atg,
EP}](; = . ) uP,k) = . 9 Aﬂp,k = ) A’U'P,k = .
ggju,k ugzu,k AEg]\/[,k Aughl;k

5.3 Portfolio Cost Function

Let pgy, 1 denote the price of utilization for power generator j, and define

Py, .k

Pgs.k
PPk = .

ng,k

The utilization cost for the portfolio system (2.9), over N time steps, is

Yy (up, zp) Z Z pg7,k 93k = Z pgkquk' (5.4)

JEM KEN, keNo

up and zp are stacked vectors as in (3.7).

Let (2, 9,k 295, 1) be the desired operating range for the output of power generator
7, and let (gT’k,ET,k) be the desired operating range for the portfolio power
production. The desired operating range can be related to the state-of-charge of
the battery in an electric vehicle, the room temperature in a residential heating
system, the food temperature in a commercial refrigeration system, and the
reference profile (electricity sold in the day-ahead electricity market) for the
portfolio power production. The cost of operating the system outside its desired
operating range, over N time steps, is

Y. (up,zp) = Z gg , max(zpy, — 21k, 0) + a%k max(zrr — Z1,k, 0)
k‘G./\fl

+ Z Z q max — Zg; k,0) —I—Q;’k max(zg, k — Zg; .k, 0),
JEMEkeENT

(5.5)

or in a compact form

V. (up,zp) = Z q;,, max(zpy — zpk,0) + Gpy max(zpp — Zpk,0), (5.6)
keEN:
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T T T T T I T
cost - - - (7g k’zgj,k)

Fgjk === (ggj,kﬂzgjvk)

time 2g;.k

(a) A cost is imposed for operating the sys- (b) The cost of operating the system outside
tem outside its desired operating range. In its desired operating range is proportional to
this figure, cost intervals are indicated by red. the distance from the operating range.

Figure 5.1: Tllustration of the output related cost function (5.6).

in which we have defined

Zg1,k Zg1 k 2‘71’]’“ qglak
Zgs .k Zg2.k 9y, 1 495,k
Zpk = » APk = ) Qp’k = y dp = . (57)
Zgn .k “gm ik g0k Dgnr ke
2Tk 2T,k [ dr K

9p and gp, contain prices for the individual generators, as well as for the

portfoho power production. 9 and gr , can be the prices for balancing power.
Using components such as batteries in electric vehicles, compressors in heat
pumps, and evaporators in cold storage systems, outside their desired operating
range, may be associated with a price for wear and tear of the components.
These prices define ¢ 4y k and Ty, for the power generators. The maximum
function in (5.6) is evaluated element-wise, such that for a vector v € R™

max(vy,0)
max(vs, 0)
max(v,0) =

max (v, 0)

Fig. 5.1 illustrates the cost function (5.6) for a single power generator. The
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EMPC objective function for the power portfolio system (2.9) is defined as
Y(up, 2p) = Yu(up, zp) + . (up, 2p), (5.8)

where v, and v, are defined as in (5.4) and (5.6), respectively.

5.4 Certainty-Equivalent Economic MPC

This section introduces CE-EMPC for the portfolio system (2.9). We assume
that the process noise, wp i, and the measurement noise, vp, are independent
and identically distributed random variables with

wpi ~ N(0, Rpw), (5.9a)
Vpk ~ N(O, Rpﬂ,). (59b)

To keep the notation simple, we let ¥ = 0 denote the current time step and
write &3 = 2o for conditional expectations. Introduce the auxiliary variables

pglxk pzl k
pgg,k pgzhk'
PPK = y PPr = :
d
ng,k PZM,k
PT K Pk
The OCP solved in CE-EMPC of the portfolio system (2.9) is the LP
_min. Z pzTD,kUP,k + Z Qg ,Cpila,k + @g,kﬂifzkv (5.10a)
uPJPJPW?::P}‘: kEN, keN, ’
s.t. i’p7k+1 = APi’P,k‘FBPUP,k‘i’EPdP,k, ke Ny, (5.10b)
ZASRk- = przi‘gk-, ke Nl, (5.10(})
Upp; <upr < Upk, ke N, (5.10d)
A@P,k < AUP’]C < Aﬂp’k, ke No, (5 106)
Zpp = Pby < 2Pk < Zpk + Phys keNi, (5.10f)
Py >0, keN, (5.10g)
Ppr >0, ke N;. (5.10h)
The optimization variables in (5.10) are
upo Tpa Zp1
up,1 -i'P72 2P,2
up = . 3 j:P = . 3 2P = . 3

Up,N-1 LPN ZP.N
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and
d U
PdP,l Pp1
U
d Pp2 u Pp2
Pp = . y Pp = .
d u
PPN PPN

Constraints (5.10a) and (5.10c) are the state-space constraints. These con-
straints are governed by the Kalman filter equations, defined in Section 3.2.
Constraints (5.10d) and (5.10e) follow from (5.3). Constraints (5.10f), (5.10g),
and (5.10h), are a model of (5.6), based on soft output constraints [PJ09, KMO00,
Ken75, MRRS00, ZIM10]. Let (up, %, 25, p&, p%*) denote an optimal solution
of (5.10). The auxiliary variables p% and p%* clearly satisfy

d N
prk = max(éP,k - Z;;,Ic’ O)a ke N,

p’LFL’Tk = max(é}"{k - EP,ka 0); ke Nla

This shows that (5.10a) provides a linear model of (5.8) for the OCP (5.10).

5.4.1 Two-Generator Case Study

A power portfolio CE-EMPC case study is considered. The case study portfolio
consists of two generators; a cheap/slow generator (Generator 1), and an ex-
pensive/fast generator (Generator 2). It is common that small agile generators
have a high price of utilization, while larger less flexibly generators have a low
price of utilization [EIA14]. We model the case study generators as third-order
systems in the form (2.2). The resulting portfolio system, (2.9), is discretized
using a sampling time of Ts = 5s. The OCP (5.10) is solved in a receding horizon
manner. The controller objective is to coordinate the most cost-efficient power
production, given a time-varying reference for the total power production. The
reference is required to be satisfied with a £0.5MW margin. The cost of not
satisfying the demand (with this margin) is 360EUR/MWHh in both the up and
the down direction. The scenario length is 30 minutes, which corresponds to
360 time steps. Full information about the initial state is given, xpo = 0, and

wpy ~ N(0,06 BBT), (5.11a)
vpy ~ N(0,01). (5.11b)

The prediction horizon is N = 60 time steps. Table 5.1 lists the case study
parameters. The parameters are constant over the entire prediction and control
horizon.

Fig. 5.2 and Fig. 5.3 show a closed-loop simulation with ¢ = 0. The cheap
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Table 5.1: Case study parameters.

Ti Pgik  UYUg, kx  Ugsk Aggi,k Augnk

Generator 1 20 0.25 0 5 -1 1
Generator 2 50 0.125 0 20 -0.2 0.2

20

power [MW]

0 5 10 15 20 25 30

time [min]

Figure 5.2: Closed-loop simulation with ¢ = 0: Portfolio power production
and power production reference with a £0.5MW margin.

generator produces the majority of the energy. The expensive generator is ac-
tivated to keep the total power production within the desired operating range.
Around ¢ = 20 min a situation with surplus power occurs. The cost for this is
EUR 8. The total operating cost is EUR 679. Fig. 5.4 and Fig. 5.5 show a
closed-loop simulation with ¢ = 1. In this simulation, the total power produc-
tion is outside the desired operating range a significant part of the time. The
cost for this is EUR 36, which is an increase of a factor 4.5 in imbalance costs,
compared to the noise-free simulation. Over the course of longer time horizons,
the power imbalances increase the overall operating cost significantly.

CE-EMPC operates the system as close as possible to its constraints. This
works well in a noise-free setting. In the presence of uncertainty, random per-
turbations drive the system to a state outside its desired operating range. For
power production planning applications, this can cause e.g. faults in generator
components, overflow of hydro storage reservoirs, decay of food products in re-
frigeration systems, as well as blackouts in small isolated power systems [SEJ15].
For the two-generator case study, CE-EMPC leads to expensive power imbal-
ances that can potentially be avoided. Also observe that the power production
setpoint levels behave irregularly when ¢ = 1. In particular, the setpoint lev-
els for Generator 1 fluctuate at a high rate. Such an aggressive control of a
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(d) Generator 2: ug, f.

Figure 5.3: Closed-loop simulation with ¢ = 0: Generator power production

and setpoint levels.

generator is unfit for practical use due to e.g. wear and tear of the generator
components and model uncertainties [PJ09].

5.5 Mean-Variance Economic MPC

This section provides an overview of MV-EMPC for linear stochastic systems.
For proof and details, we refer to Paper F and Paper G. Reference [CSFJ15]
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Figure 5.4: Closed-loop simulation with ¢ = 1: Portfolio power production
and power production reference with a £0.5MW margin.

describes MV-EMPC for non-linear systems with uncertain model parameters.

Consider the evolution of the linear stochastic system (3.1) (this includes the
portfolio system (2.9)) over the horizon Ny. For simplicity, assume that dy, = 0,
for k € Np. Similar to (3.18), we can write the state and output variables as
affine functions of the input sequence {uy}ren,, the current state xjy, and the
process noise sequence {wy }ren;,. This means that

x = L, (u; i, w),
z = Lz(u;:ck,w),

where L, and L, are affine functions, and € RV™, z € RV": 4 € RN and
w € RV« are stacked vectors as in (3.7).

Define the function
o(u; zr, w) = ¢ (u, Ly (u; zp, w), L (u; 25, w))

where ¢ is the EMPC cost function, e.g. (3.14). The OCP solved in CE-EMPC
can be stated as

min. Yeop = ¢(u; E [ax], E [w)).
U is an input constraint set derived from (3.8d). Fig. 5.6 shows a histogram of
@(up; xpojo, wp) for the two-generator case study, based on 10000 realizations of

the process noise wp. The vector up is the open-loop input trajectory obtained
by solving (5.10), and zpgjo is the known initial state. The operating cost
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Figure 5.5: Closed-loop simulation with ¢ = 1: Generator power production
and setpoint levels.

resulting from the case wp = E[wp] = 0 is indicated in Fig. 5.6. For almost
all the considered realizations of the process noise, the operating cost is larger
than for this case. The average cost over the 10000 simulations is EUR 695.
Thus, while CE-EMPC performs well when the uncertain parameters are equal
to their expected values, it does not perform well on average. The fundamental
issue with CE-EMPC is that

p(u”; Elxy], E[w]) # Ep(u”; 2, w)] .

L.e. minimizing over ¢(u; E [xk], E [w]), as in CE-EMPC, does not necessarily
minimize the expected cost. The two-generator case study is an example where
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Figure 5.6: Operating costs for 10000 realizations of the process noise wp.

this situation clearly occurs. The OCP solved in MV-EMPC is defined as

I;lell’zjll Upy = aF [o(u;z, w)] 4+ (1 — @)V [p(u; 2k, w)] . (5.12)

The OCP (5.12) trades off cost expectation and cost variance. « is a user-defined
risk-aversion parameter. The formulation (5.12) can be interpreted as a classical
Markowitz mean-variance optimization approach [Ste01,Mar52]. This approach
is convenient for EMPC, as it includes a risk measure in the objective function.
Moreover, in contrast to CE-EMPC, it considers the actual cost expectation,
E [p(u; &, w)], rather than ¢(u; E [xg] , FE [w]).

Closed-form expressions for the expected value E [p(u; z, w)] and the variance
V [p(u; 2, w)] are generally not available. This is addressed by introducing the
sample estimates

1
B [p(u o, w)] = =< Y o(us g, w), (5.13a)
seS
1
Vietszewl =5 = o733 (ol w?) = w)" (5.13b)

where {w®}scs is a set of S samples from the distribution of w, and § =
{1,2,...,S}. To keep the notation simple, (5.13) assumes that the current
state xp = xy is a known parameter. If x; is a random variable, scenarios can
be introduced for this variable accordingly. Monte Carlo-based approximations
such as (5.13) have been considered for conventional MPC with probabilistic
constraints in [CF13a,CF13b, MB12b,PGL12,SCFM12, SFFM14,ZSSM13].
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For a sufficiently large number of scenarios, S
Uy =~ ap+ (1 —a)s?. (5.14)

Paper F defines the OCP solved in MV-EMPC of linear stochastic systems as

. - s 2
min. ap+ o 7 — , 5.15a
e i ;S(w n (5.15a)
stz = Az + Buy + wy, keMNy, s€S8, (5.15b)
z; = Cay, keN, s€S8, (5.15¢)
©° = ¢(u,x®, 2%, s€ES, (5.15d)

1 S
= EZ@ . (5.15¢)
seES

a = (1—-a)/(S—1). The optimization variables in (5.15) are the input vec-
tor u € RN™ the state vectors z',22,...,2° € RN the output vectors
2422, ., 2% € RV the costs ¢!, ¢?,...,¢° € R, and the average cost u € R.
The objective function (5.15a) is the mean-variance approximation (5.14). Con-
straint (5.15d) assigns the cost associated with scenario s to the variable ¢®. The
OCP solved in CE-EMPC (3.8) corresponds to the special case where S =1

and w}, = E [wy], for k € N.

As a performance indicator for a given input-sequence, u* € RV we define

Uary = o+ (1 - )5 (5.16)
where
1 i
=5 pu'z,w), (5.17a)
S
seS
32 — *, ~S —\2
5= ﬁ%;@(“ STk, ) — 1), (5.17b)
S

Expressions (5.14) and (5.16) differ in the set of uncertainty scenarios. We
use {w®}ses for optimization, and {w®}scs for performance evaluation. Paper
F demonstrates MV-EMPC using a case study, which is similar to the two-
generator case study. Fig. 5.7 shows a plot of the average cost, fi, as a function
of the standard deviation, s, for this case study. In an open-loop setting, MV-
EMPC reduces both cost expectation and cost variance compared to CE-EMPC.
Each value of « provides a different mean-variance trade-off option. The OCP
(5.15) assumes that no recourse exists in the future. Therefore, MV-EMPC may
be overly conservative when applied in a receding horizon manner [SFFM14,
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Figure 5.7: Open-loop efficient frontier for o = [0;1]. Points on the efficient
frontier are computed by solving (5.15) with S = 2048 realizations
of the process noise vector, w.

LSE13]. To account for future recourse, Paper F introduces an extended two-
stage OCP for MV-EMPC. The two-stage OCP is

min ap+ & Z (0* —p)°, (5.18a)

{usel,x°,2%,0%}scs 1t scS

st. xj = Az} + Buj +w;, kelNy, seS, (5.18b)
zp = CLay, keNy, s€S, (5.18¢)
©* = o(u®,x%, 2°%), seS, (5.18d)
1
n=7 Sezsgos, (5.18e)
upt = up?, s1,52 €8, ke Q. (5.18f)

In this formulation, the input variables are scenario-dependent. Constraint
(5.18f) is a non-anticipativity constraint stating that the input variables should
be equal over all the scenarios for time steps k € Q = {0,1,...,¢} [LSE13]. ¢
is a user-defined parameter. The single-stage OCP (5.15) is the special case of
(5.18) where ¢ = N. Paper F shows that two-stage MV-EMPC is economically
more efficient than both single-stage MV-EMPC and CE-EMPC.

5.5.1 Constraint Back-Off Heuristic

Fig. 5.8 illustrates the typical behavior of MV-EMPC and CE-EMPC for 100
output realizations. The realization associated with the case wy = F[wyg],
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Figure 5.8: EMPC constraint management.

is denoted z.°™. CE-EMPC operates the system as close as possible to its
constraints. This is inefficient for control of stochastic systems, as a significant
part of the output realizations end up below the minimum desired output level.
In MV-EMPC, the system is operated with a safety margin from the minimum
desired output level. The safety margin is an integral part the OCP solved MV-
EMPC. A way to achieve similar behavior for CE-EMPC is to use constraint
back-off [VB02, ASS08]. E.g. for the power portfolio system, we can redefine
the desired output levels, such that

Zpk = 2Zpk — N ke N1, (5.19a)
Zpk i =ZPk T+ Mg ke N1, (5.19b)

where n, and 7, are vectors of back-off parameters. The main advantage of
using CE-EMPC over MV-EMPC is that the OCP solved in CE-EMPC is much
smaller than the OCP solved in MV-EMPC. Paper F provides an example where
back-off modified CE-EMPC performs as well as MV-EMPC in terms of eco-
nomics. For large systems, back-off modified CE-EMPC involves a large number
of back-off parameters. Tuning the back-off parameters can be challenging, es-
pecially when the process noise follows a non-Gaussian distribution. Also, when
back-off is introduced in an EMPC setting, the OCP objective function is no
longer directly related to the system operating cost. Consequently, there is no
way to guarantee the economic performance of back-off modified CE-EMPC. In
MV-EMPC, the only tuning parameter is the risk-aversion parameter, o, which
trades off cost expectation and cost variance. MV-EMPC handles the case with
non-Gaussian process noise in a straightforward way.
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5.6 Regularization

The objective function (5.8) is a pure economic objective function. Regulariza-
tion terms can be added to the objective function to change the behavior of the
controlled system, e.g. to reduce the variability of the setpoint levels in Fig.
5.5. Paper E investigates the use of a weighted ¢;-regularization term for this
purpose. An advantage of using ¢;-regularization in the OCP (5.10), is that the
resulting optimization problem remains an LP. Paper E and Paper K show that
OCPs in this problem class can be solved efficiently.

This section demonstrates that ¢;-regularization improves the behavior of the
closed-loop input trajectories for the two-generator case study. We define ¢;-
regularization for the two-generator case study as

O (up,xp,zp) = Y [RAupkl|,, (5.20)
keNy

where R = rI. In some cases, regularization has an economic interpretation.
For example, setpoint changes are related to wear-and-tear of a power gener-
ator. The /(;-regularization term (5.20) can be interpreted as a linear cost for
setpoint changes. It is convenient to have an economic interpretation of the
regularization terms, since the introduction of tuning parameters in the OCP
objective function, conflicts with the fundamental idea of EMPC. Fig. 5.9 and
Fig. 5.10 show closed-loop simulations for different values of the noise param-
eter, o, and the regularization weight, r. The effect of the regularization is
most clearly observed in the generator setpoint levels (system inputs). At the
expense of slightly less tight control on the total power production, the setpoint
levels become less volatile when the regularization weight, r, is increased. Note
that less tight control on the total power production does not necessarily lead
to more violations of the soft output constraints.

5.7 Summary

This chapter addressed two main challenges of EMPC for linear stochastic
systems. We introduced MV-EMPC to handle the system uncertainty in an
economically efficient manner, and regularization techniques were employed to
achieve well-behaved closed-loop control. The EMPC schemes were tested us-
ing a two-generator case study. Simulations show that MV-EMPC outperforms
CE-MPC in terms of economics. By varying the risk-aversion parameter, o, MV-
EMPC provides different mean-variance trade-off specifications for the system
operating cost. To avoid conservative closed-loop control, a two-stage extension
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Figure 5.9: Total power production. Slightly less tight control on the total
power production is observed when the regularization parameter,
r, is increased.

of MV-EMPC was presented. We introduced a back-off heuristic to improve the
economic performance of CE-EMPC. Back-off modified CE-EMPC can perform
as well as MV-EMPC. On the other hand, back-off modified CE-EMPC does
not guarantee the economic performance of the system in the same way as MV-
EMPC, and it can be difficult to tune. We also illustrated that ¢;-regularization
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Increasing the regularization

parameter, r, reduces the variance of the setpoint levels.

reduces the input variance significantly for the two-generator case study, with-
out a significant increase in the overall cost function. Ideally, the regularization
terms have an economic interpretation, such that the economic interpretation

of the OCP objective function in EMPC is preserved.
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CHAPTER 6

Algorithms for Economic
MPC

Computationally tractable EMPC schemes require efficient algorithms for so-
lution of the OCPs. The contributions of this chapter are special-purpose al-
gorithms for EMPC in power production planning. The algorithms exploit the
high degree of structure in the OCPs to reduce computational time and memory
requirements. We provide benchmarks that compare the proposed algorithms
to current state-of-the-art solvers.

6.1 Contributions

Paper A, Paper C and Paper K develop a homogeneous and self-dual IPM for
EMPC of linear systems with linear constraints and linear objective functions.
The TPM is combined with a tailored Riccati iteration procedure to exploit
the problem structure. In addition, the warm-start procedure of [SAY13] is
employed to reduce the number of IPM iterations. The Riccati-based IPM
scales linearly in the length of the prediction horizon, V. This is convenient,
as stability of EMPC schemes often may be achieved for a sufficiently large N.
Paper B and Paper E provide a Dantzig-Wolfe decomposition algorithm and
an ADMM-based decomposition algorithm for EMPC of dynamically decoupled
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subsystems. The subsystem decomposition algorithms are well-suited for EMPC
of the portfolio system (2.9), as they scale linearly in the number of power
generators, M. Paper G presents a scenario decomposition algorithm for MV-
EMPC that scales linearly in the number of uncertainty scenarios, S. The
algorithm solves a convex relaxation of the OCP that arises in MV-EMPC using
ADMM. An algorithm for MV-EMPC that scales well in S is critical for the
tractability of this EMPC scheme. Subproblems that occur in the proposed
decomposition algorithms can be solved efficiently using the Riccati-based IPM
of Paper K and the ADMM-based algorithm of Paper D.

We have organized this chapter as follows. Section 6.2 presents the Riccati-
based homogeneous and self-dual IPM for EMPC of linear systems with linear
constraints and linear objective functions. The subsystem decomposition algo-
rithms for EMPC of dynamically decoupled subsystems are outlined in Section
6.3, and Section 6.4 describes the scenario decomposition algorithm for MV-
EMPC. Section 6.5 provides a summary of this chapter.

6.2 Riccati-Based Linear Programming IPM

The OCP that arises in EMPC of linear systems with linear constraints and
linear objective functions can be posed as an LP. A fairly general OCP within
this problem class is (5.10). Paper K develops a tailored homogeneous and self-
dual IPM for (5.10). This section provides a brief overview of the algorithm.

Algorithm 1 is a general-purpose homogeneous and self-dual IPM for solution
of the LP (4.4). To avoid conflicting notation, we write the LP as

m%n. g't, (6.1a)
st. Ft =0, (6.1b)
Ht<c (6.1c)

The most time-consuming numerical operations in Algorithm 1 are solving the
two linear systems of equations

Ty (0)Abug = —V (6), (6.2a)

Jv(0)A0 = —V(6). (6.2D)

The systems (6.2a) and (6.2b) determine the optimization search direction for
the IPM. Both systems can be written in the form

Jy(6)A0 =r, (6.3)
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where r is an arbitrary right-hand side.

Using the definitions (4.9) and (4.15), we write (6.3) as

FTAG + HY A + g7 = 11, (6.4a)

bAT — FAt = 1y, (6.4b)

cAT — HATL — A5 =13, (6.4c)

gT AL+ VT AD + T AD — Ak =1y, (6.4d)
WiAG+ S' A =75, (6.4¢)

KAT + T Ak = 6. (6.4f)

r1, T2, T3, T4, T'5, and rg are arbitrary right-hand sides.

Paper K shows that the solution of (6.4) can be obtained by solving the system

0o F7 ar i rn -9
—F 0 ~ 0 - f2 h2 T2 —b ; (65)
—-H 0 (WH)=1St| |fs hs r3g  —c

and subsequent computation of

re — 7 (g7 f1 + b7 foa+ T f3)

k' + 7 (gThy + bThy + cThs)’
At = fi + hi AT,

AD = fo + hoAT,

AW = f3 4+ hgArT,

Ak = g' AT+ bTAD + AW — 1y,
A5 = (W) L(rs — S'AD),

AT =

where r3 :=r3 + (W) ~"lrs and rg := re + Tir4.

Paper K expresses the OCP (5.10) as an LP in the form (6.1). In this for-
mulation, F' and H are highly structured matrices. Consequently, the sys-
tem (6.5) becomes highly structured as well. Paper K solves the system (6.5)
using a Riccati iteration procedure, which is specifically tailored to the OCP
(5.10). The Riccati iteration procedure consists of two parts. The first part
is a variable elimination procedure that reduces (6.5) into a standard system.
The second part of the procedure solves the standard system using a discrete
Riccati recursion [AM12, RWR98, DFHO09, Jor05, WB10, FJ13, RCRW97]. The
overall complexity of the Riccati iteration procedure is O(N (n, + n, + n.)3).
Computations that scale cubically in the Riccati iteration procedure are only
performed one single time in every IPM iteration, as system factorizations are
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stored within the IPM iteration. Subsequent solutions of (6.5) within the IPM
iteration have complexity O(N(n, + n, + n.)?). It is convenient to have an
algorithm that scales linearly in the length of the prediction horizon, IV, as sta-
bility of EMPC schemes often may be achieved by selecting a sufficiently large
value of N [HPJJ12,JHO05,PN00, Grii13,LS15, Jor05, JFGND12].

Solving (6.4) directly using sparse linear algebra routines is linear to quadratic
in N, while general-purpose solvers using dense linear algebra routines scale
cubically in N [ZB09]. When the state dimension, n,, is large compared to
the number of inputs, n,,, condensing methods are more efficient than Riccati-
based methods for solving (6.4) [F.J13]. Condensing methods eliminate the state
and output variables from (6.4), to form and solve a smaller, but less structured
system. Condensing methods scale quadratically to cubically in N. Condensing-
based solvers are therefore not well-suited to OCPs with long prediction hori-
zons. As a rule of thumb, condensing-based solvers are more efficient than
Riccati-based solvers, roughly when n, > Nn,, [FJ13]. The condensing method
of [FJ13] can replace the proposed Riccati iteration procedure to solve (6.4) in
the IPM, when n, > Nn,,.

6.2.1 Warm-Start

We apply the strategy of [SAY13] to warm-start the proposed homogeneous and
self-dual IPM. Let (f,7,w, 5) denote a candidate primal-dual solution of (6.1).
The warm-start is defined as

0 = M, (6.6a)
70 = \p, (6.6b)
=5+ (1 - M1, (6.6¢)
@ = Mo+ (1 — M1, (6.6d)
0 =1, (6.6¢)
K0 = (0”75 /mj. (6.6f)

The point defined by (6.6) is a combination of the candidate point, (¢,7,w, §),
and the standard cold-start

(t,0,w,5,7,£) =(0,0,1,1,1,1). (6.7)

The parameter A € [0, 1] in (6.6) is a tuning parameter. When A = 0, the initial
point becomes the standard cold-start, and for A = 1 the initial point coincides
with the candidate point. For homogeneous and self-dual IPMs, the standard
cold-start, (6.7), is perfectly centralized with respect to the central path. This
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is a key feature that makes warm-start work well for homogeneous and self-
dual IPMs [SAY13]. As X is decreased from one towards zero, the initial point
becomes better centralized, while the distance from the candidate point (and
possibly the solution) is increased.

The performance of the proposed warm-start strategy depends on the quality
of the candidate point. In EMPC, the OCP is solved in a receding horizon
manner. A primal-dual solution of (6.1) is therefore available from the previous
sampling time. This makes it possible to construct a candidate point using
the shift-initialization approach [DFH09], as follows: For the LP formulation of
(5.10), the optimization variable ¢ consists of the components

_1,T ~T T T ~T T T ~T T 1T
t_[uP,O Tpy Pp1 Upy Tp2 Pp2 --- UpNn-1 TpN pP,N] .

As an example, consider the solution of (6.1) at time step k = 0, for N =3

* *T AxT *T *T AxT *T *T ~xT *T T
t"=[upy 1 Pp1 Upy Tha Ppa Ups Fps pps|
The following candidate point is then used at time step k =1
r_ *T ~xT *T *T ~xT *T *T ~xT *T T
t= [UP,1 Tp2 Pp2 UYp2 Tp3 Pp3 Upz Tpg PP,3] . (6.8)

Thus, t is constructed by shifting the components of t* forward in time. The
final (three) components of ¢ can be chosen in several ways [DFH09]. We use a
steady-state approach, where the final components of t* are repeated two times
in . Note that when NV is large, we expect the initialization strategy for the last
components of ¢ to be less significant. As for ¢, we left-shift the optimal slack
variables, s*, and the optimal dual variables, v* and w*, to construct s, ¥ and

w.

6.2.2 Benchmark

LPempc is a tailored MATLAB and C implementation of Algorithm 1. The algo-
rithm utilizes the proposed Riccati iteration procedure to solve (6.5). Moreover,
multiplications involving the structured matrices F' and H, are implemented as
specialized linear algebra routines.

Paper K compares LPempc to IPMs from the following software packages: Gurobi,
MOSEK, SeDuMi, LIPSOL and GLPK. These state-of-the-art IPMs are mainly writ-
ten in low-level language such as FORTRAN and C, and they rely on tailored
linear algebra routines for solution of large-scale sparse LPs. The comparison
also includes the simplex method provided by CPLEX, as well as FORCES [DZZ"12]
and CVXGEN [MB12a] that are IPMs based on automatic code generation. The
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Figure 6.1: CPU time to solve (5.10) as a function of the number of power
generators, M, and the horizon length, N.

algorithms are compared using a power portfolio case study, which is similar to
the two-generator case study. The case study involves control of M generators
in the form (2.2).

Fig. 6.1 depicts the CPU time to solve the OCP (5.10) as a function of the
number of power generators, M, and the length of the prediction horizon, N.
For large problems, LPempc is faster than all other solvers by a significant mar-
gin. In general, code generation-based solvers such as CVXGEN and FORCES are
most competitive for small-dimensional problems [DZZ712]. Code generation
in CVXGEN fails for problems larger than M = 4 and N = 12. Therefore, Fig.
6.1 does include results for CVXGEN.

Fig. 6.2 compares the CPU time to solve (5.10) in a closed-loop simulation
with M = 15 power generators, noise parameter 0 = 1, and a horizon length of
N = 200 time steps. Only the most competitive solvers are considered in this
benchmark. Fig. 6.2 shows that LPempc is up to an order of magnitude faster
than CPLEX, Gurobi, SeDuMi and MOSEK, depending on the problem data. On
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Figure 6.2: CPU time to solve (5.10). Timings are performed over a 30 min
closed-loop simulation with M = 15 power generators and a hori-
zon length of N = 200 time steps. Warm-start is indicated by an
asterisk (*) for LPempc.

average, LPempc is approximately 5 times faster than Gurobi, 6 times faster than
MOSEK, 19 times faster than SeDuMi, and 22 times faster than CPLEX. Warm-start
reduces the average number of IPM iterations by approximately 40%. Paper K
shows that warm-start works well, even for large values of the noise parameter,
.

6.3 Subsystem Decomposition

The portfolio system (2.9) may include a large number of generators, e.g. it can
represent a virtual power plant that is made up of thousands of distributed en-
ergy resources. When the number of generators, M, is large, EMPC algorithms
that scale well in M are attractive. The generators (2.5) are dynamically decou-
pled. Paper E presents two decomposition algorithms for EMPC of dynamically
decoupled subsystems. The algorithms are based on Dantzig-Wolfe decomposi-
tion and ADMM. This section outlines the two decomposition algorithms.

Using the definitions in (2.9), we write the OCP (5.10) as

min, Y phrurk+ Y dp, Pbi+ ApiPbas (6.92)
UP7ZP;ZP7PP7PP kENo kEN,
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subject to

Tg; kt1 = Agjzigj»k + Bg;ug; i + Eg;dg; 1 jeM, ke, (6.9b)
Zg; 0k = Cg; 28 g; ks jEM, ke N, (6.9¢)
Ug, ket < Ugyk < g, ks jeM, kelNy, (6.9d)
Aug, < Aug, i < Alig, 1, jeEM, keN, (6.9¢)
Zg, 0~ Py S Zgpk < Zgy e T Py i jeM, keN,,  (6.9f)
Py 1 =0, JEM, keN,  (6.9g)
Py, = 0, jEM, k€N,  (6.9h)
Zrg = Z T;Cy; 2T g, k> ke N, (6.9i)
jEM
2 — PTn < 21k < Frk + P ke Ny, (6.93)
Pt =0, ke, (6.9k)
P =0, k€N (6.91)

Constraints (6.9b), (6.9¢), (6.9d), (6.9¢), (6.9f), (6.9g) and (6.9h) are generator-
level constraints. Constraint (6.91) connects the generator-level state variables,
g1 ks -+ -1 Zgu .k, With the portfolio-level power production variable, 27 . Con-
straints (6.9j), (6.9k) and (6.91) are portfolio-level constraints. Accordingly, (5.4)
and (5.5) show that the objective function, (6.9a), can be split into generator-
level costs and a portfolio-level cost.

Paper E poses the OCP (6.9) as a block-angular LP in the form (4.21). To avoid
conflicting notation, we write this problem as

. T
min. Z g; tj, (6.10a)
jeT
st. Fyt; < by, jed, (6.10b)
Z Ft; <b. (6.10c)
jeg

In this formulation of (6.9), the subsystem constraints (6.10b) are generator-
level constraints, and the linking constraints (6.10c) are portfolio-level con-
straints. Finally, J = {1,2,..., M, M + 1}, where M is the number of gen-
erators.
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Figure 6.3: Diagram of the Dantzig-Wolfe decomposition algorithm for EMPC
of the power portfolio system.

6.3.1 Dantzig-Wolfe Decomposition Algorithm

Algorithm 2 is a Dantzig-Wolfe decomposition algorithm for the solution of
(6.10). Fig. 6.3 is a diagram of its application to the OCP (6.9). A subproblem
in the form (4.28) is associated with each generator. The subproblems are solved
to update the restricted master problem (4.27). This procedure is repeated until
a stopping criterion for the Dantzig-Wolfe decomposition algorithm is satisfied.
The procedure can be interpreted as follows: An aggregator distributes price
signals to the generators. Each generator then generates a candidate production
plan (dispatch) based on the price signals. If the aggregator is not satisfied with
(a combination of) the candidate production plans, the price signals are updated
and the process is repeated.

An advantage of the Dantzig-Wolfe decomposition algorithm is that a feasible
suboptimal solution is available in every iteration of the algorithm. Early ter-
mination can therefore be applied to trade off computation time and optimality.
Upper and lower bounds for the optimal objective value can be determined via
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Lagrangian relaxation techniques [DDS05]. This makes it possible to give a
qualitative measure of a suboptimal solution. As in (6.8), a shift-initialization
strategy is applied to warm-start the Dantzig-Wolfe decomposition algorithm.

6.3.2 ADMM-Based Decomposition Algorithm

Algorithm 3 is an ADMM algorithm for solution of convex optimization prob-
lems with separable objective functions. Paper E presents a specialized imple-
mentation of the ADMM algorithm for solution of the block-angular LP (6.10).
To write (6.10) in ADMM form, we consider the modified problem

. T
min. Z 9; ti, (6.11a)
JjeJ

st Fgt; <bg,, 1€ J, (6.11b)
Fljtj = vy, ] S j, (611C)
> v < by (6.11d)

JjeT
v = [vf vl vjq\;[ +JT is an auxiliary optimization variable. Using the

indicator function (4.30), we state the problem (6.11) as

rrtulrjl Z (g;‘-rtj + Ir,, (tj)) + Iy, (v), (6.12a)
JjeJ
s.t. _Fl].tj = Vj, j€J, (612b)

where we have defined the sets Fy, = {t;|Fy,t; < by, } and F; = {v| > ,c ;v; <
bi}.

The problem (6.12) is in the standard ADMM form (4.29). The ADMM recur-
sions for solution of (6.12) follow from (4.33). In a simplified form, the recursions
to solve (6.12) are

, _ ; 112 ‘
5 =g 4 Sl el sed @
j € 9;
v = argmin g Z ||Fljt;-+1 —v; + U;| z, (6.13b)
vel,; .
JjegJ
u;.+1 = u; -+ Fljt;'+1 — ’U;+1, ] S ,_7 (613C)

Paper E shows that the t-update, (6.13a), can be expressed as the solution to
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the convex quadratic program (QP)

min. gtJT(FlJ V' Ft; + (g5 + p(—0) + u) " F) T, (6.14a)
st Fyt; < by, jeJ,  (6.14b)
for j € J. Moreover, the v-update, (6.13b), has the closed-form expression
U;--H = Fljt?'l + u} — max(l/(M +1),0), jeJd,
in which
1= (Rt +ul) —h (6.15)
JjET

The ADMM algorithm is composed of a number of (decoupled) generator-level
computations, and a system-level computation. The system-level computation
in the ADMM algorithm is the sum (6.15). In comparison, the Dantzig-Wolfe
decomposition algorithm requires solution of the LP (4.27). The ADMM al-
gorithm is also attractive since it can be generalized to convex optimization
problems, e.g. OCPs with quadratic cost functions [CSZ 12, SL12, AHW12].
As the Dantzig-Wolfe decomposition algorithm, the ADMM algorithm can be
warm-started using a shift-initialization strategy, and it can be terminated early
to obtain a feasible suboptimal solution.

6.3.3 Subproblems

Efficient implementations of the subsystem decomposition algorithms require
efficient solution of the subproblems (4.28) and (6.14). Since the subproblems
are decoupled in j € J, they can be solved in parallel. Moreover, a warm-start
for the algorithms solving the subproblems is obtained using values from the
previous iteration of the respective decomposition algorithm. In the Dantzig-
Wolfe decomposition algorithm, the subproblem (4.28) can be expressed as a
linear OCP. LPempc is a structure-exploiting IPM for solution of linear OCPs.
A crossover procedure can be applied to obtain an optimal extreme point for
(4.28), based on an interior-point solution of the subproblem [Mar99, WCS13].
In the ADMM algorithm, the subproblem (6.14) can be expressed as a quadratic
OCP. Active-set methods [JRJ04,BB06,FBD08], IPMs [WB10,RWR98,SKC10],
and first-order methods [RJM09,JGR™14], solve this type of problem efficiently.
In particular, Paper D provides an ADMM-based algorithm for solution of input-
constrained OCPs with convex objective functions. An implementation of this
algorithm is developed for input-constrained extended linear quadratic control
problems. Simulations show that the ADMM algorithm is more than an order
of magnitude faster than several state-of-the-art quadratic programming algo-
rithms.
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Table 6.1: Iteration information table based on closed-loop simulation, with
M = 2 generators. The minimum, maximum and average number
of iterations are listed for both cold-start and for warm-start (in

parentheses).

o T DWempc ADMMempc

0 0 [6(2), 16(17), 12(11)] [47(2), 485(410), 097(66)]
0 0.01 [6(2), 15(18), 10(09)]  [35(3), 469(410), 088(56)]
0 0.1 [5(2), 15(17), 07(07)] [33(6), 359(280), 149(48)]
0.01 O [7(2), 18(19), 13(11)] [47(2), 485(410), 094(65)]
0.01 0.01 [6(2),17(17), 10(09)] [35(2), 469(410), 088(58)]
0.01 0.1 [5(2), 13(16), 07(06)] [32(6), 380(290), 145(50)]
0.1 0 [7(2), 17(20), 12(11)] [46(2), 485(410), 091(66)]
0.1 0.01 [6(2), 17(16), 09(09)] [35(2), 469(410), 084(60)]
0.1 0.1 [5(2), 14(14), 07(06)] [32(6), 359(279), 144(47)]

6.3.4 Benchmark

The subsystem decomposition algorithms are implemented in MATLAB. We
refer to the implementation of the Dantzig-Wolfe decomposition algorithm as
DWempc, and to the implementation of the ADMM-based decomposition algo-
rithm as ADMMempc. Paper E compares DWempc and ADMMempc using a power
portfolio case study with M generators. For this case study, the decomposition
algorithms solve the subproblems (4.28) and (6.14) using CPLEX. To get well
behaved closed-loop solutions, the OCP objective function (6.9) is augmented
by an {;-regularization term in the form (5.20). Table 6.1 provides informa-
tion on the number of iterations for DWempc and ADMMempc, based on a 10 min
closed-loop simulation, with M = 2 generators. The closed-loop simulation is
performed for different values of the noise parameter, o, and the regularization
parameter, r. The definition of ¢ in Paper E differs slightly from the defini-
tion (5.11). Table 6.1 shows that DWempc converges in relatively few iterations
compared to ADMMempc. The table also shows that regularization reduces the
computational time for both DWempc and for ADMMempc. E.g. for o = 0.01 and
r = 0.1, the average number of iterations for DWempc is reduced by more than
40%, compared to the case where r = 0. Also observe that while warm-start
leads to a marginal improvement in the iteration count for DWempc, a substantial
reduction in the number of iterations is achieved for ADMMempc.

To indicate the performance of a suboptimal solution (suboptimality level), the
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Figure 6.4: Suboptimality measure in a closed-loop solution with ¢ = 0.01
and 7 = 0.01. DWempc and ADMMempc are terminated after 0.01
seconds.

following measure is defined

¢ —¢*

w=100—— "
max(|¢*|, 1)

(6.16)

where ¢ is the objective value of the OCP (6.9) associated with a suboptimal
solution, and ¢* is the optimal objective value. We test early-termination in a
closed-loop simulation with ¢ = 0.01 and r» = 0.01. The algorithms are termi-
nated after 0.01 seconds. Fig. 6.4 shows the values of w over the closed-loop
simulation. DWempc is up to approximately 30% suboptimal when cold-started,
and not more than 5% suboptimal when warm-started. Warm-start also im-
proves the performance of ADMMempc significantly. Fig. 6.5 shows the value of
w as a function of the elapsed CPU time for a single instance of the OCP with
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Figure 6.5: Suboptimality measure as a function of the CPU time, for a single
instance of the OCP with 128 power generators.

M = 128 power generators. The figure shows that DWempc converges at a fast
rate. After approximately 0.3 seconds, a solution which is less than 1% sub-
optimal is obtained by DWempc. The convergence rate of ADMMempc is relatively
slow. More than 10 seconds is required to find a 1% suboptimal solution for
ADMMempc. Fig. 6.6 shows the CPU time to solve (6.9) as a function of M, for
DWempc, ADMMempc, Gurobi, CPLEX, and MOSEK. The reported timings assume
that the subproblems (4.28) and (6.14) are solved in parallel. This is done to
demonstrate the full parallelization capabilities of the subsystem decomposition
algorithms. Case study details and solver specifications are provided in Paper
E. Fig. 6.6 shows that for large problems, DWempc is 5 times faster than CPLEX
and more than an order of magnitude faster than Gurobi and MOSEK. Paper E
reports that for high accuracy solutions, DWempc is 2 times faster than CPLEX
and approximately 5 times faster than Gurobi and MOSEK. Around M = 3000
memory becomes an issue for Gurobi, CPLEX and MOSEK. DWempc and ADMMempc
solve OCPs with M > 3000 without any memory issues.

Table 6.1 reports that ADMMempc requires more iterations than DWempc. Pro-
vided that the number of iterations is small, the computational cost per itera-
tion is approximately equal for DWempc and ADMMempc. For this reason, DWempc
outperforms ADMMempc by a significant margin. Considering both CPU time
and memory requirements, DWempc is an attractive optimization algorithm for
(6.9), when M is large. For this particular problem ADMM is less attrac-
tive, as it requires many iterations to converge to even a moderately accu-
rate solution. In general, the convergence rate of ADMM is very problem-
dependent [SLY 14, TGST13,GTSJ13].



6.4 Scenario Decomposition 79

102 E T T T T T T T T L] T L] E
| | - A- DWempc —#— ADMMempc 1
| |- ®- Gurobi —— CPLEX ]
1 .- 4-- MOSEK

10° E
5 i ]
i L B
° L B
E 100 F e
+ = B
= L .
[aF t B
] L i
101 | r R L £
£ P P - =
= . _.’_ - -—A- .
| &~ |

1072 [N L1 Lo

101 102 103

M [nr. of generators]

Figure 6.6: CPU time to solve the OCP (6.9) as a function of the number of
power generators, M.

6.4 Scenario Decomposition

The size of the OCP solved in MV-EMPC increases with the number of uncer-
tainty scenarios, S. Paper I shows that MV-EMPC usually requires S > 1000
to work well. Direct solution of the OCP (5.18) is intractable in real-time, for
large S. To overcome this challenge, Paper G presents a novel ADMM-based
decomposition algorithm for MV-EMPC of linear stochastic systems. The al-
gorithm decomposes the OCP into S independent convex subproblems, and a
number of computationally inexpensive operations. This section summarizes
the scenario decomposition algorithm.

The OCP (5.18) is a convex optimization problem when U is a convex set, and
¢ is an affine function. If the equality constraint (5.18d) is replaced by the
inequality constraint

¢* 2 ¢(u®, z°,2%), sES, (6.17)

the requirement on ¢ can be loosened to convexity. Using the relaxed condition
(6.17) is attractive since it preserves convexity of the overall problem for a wide
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Figure 6.7: CPU time to solve the OCP (5.18) and its convex relaxation (6.18)
as a function of the number of uncertainty scenarios, S.

range of cost functions. We write the relaxed OCP as

min. ap+ & Z (0* — p)°, (6.18a)

{us€U,z%,2%,p°}ses, 1t ses

st. xf,, = Axj + Buj + Edp +wy, ke Ny, s€S, (6.18b)

z; = Chay, keNi, se€8, (6.18c)

©° > d(u’, 2, 2%), sES, (6.18d)

w= %Zg@s, (6.18e)
seS

upt = Uy, s1,82 €S, k€ Q.(6.18f)

The solution of the OCP (5.18), and the solution of the relaxed OCP (6.18)
often only differ when o ~ 0 [SDMJ14b]. A small o means that MV-EMPC
emphasizes on minimizing the cost variance. When a ~ 0, a significant cost
reduction can often be achieved by increasing a marginally. For this reason,
cases where « &~ 0 are generally disregarded in practice [Mar52, Ste01].

Paper F solves the relaxed OCP (6.18) in a conceptual example of MV-EMPC.
The example concerns MV-EMPC of the portfolio system (2.9), subject to the
constraints (5.3) and the cost function (5.8). The relaxed OCP is expressed
as a convex QP. Fig. 6.7 shows the CPU time to solve (5.18) and (6.18) as a
function of the number of uncertainty scenarios S. The OCP (5.18) is solved
using MATLAB’s fmincon, while its convex relaxation (6.18) is solved using
Gurobi. It is verified that both optimization problems yield the same solution
(for all practical purposes). For S = 64, the CPU time to solve (5.18) is several
minutes. The relaxed problem is solved in under 5 seconds, even for S = 1024.
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For this example, the time to solve the OCP associated with CE-EMPC, (5.10),
is approximately 0.1 seconds.

Fig. 6.7 reports CPU times based on an example with a single power generator
and a short prediction horizon. For larger problems, the time to solve even the
relaxed OCP, is significantly more than 5 seconds. Moreover, memory becomes
a problem as S is increased. Paper G presents an ADMM-based decomposition
algorithm to solve large instances of the relaxed OCP (6.18), in a reasonable
amount of time. To describe the algorithm, (6.18) is written in the compact
form

min.  ap+ ap’ o+ Sau® — 2aul1Tp, (6.19a)
wEU, @, 2,0, 1

sit. Az + Bu+ Ed+ @ =0, (6.19b)

z=Cu, (6.19¢)

© > o(u,z, 2), (6.19d)

pw=1%¢/S (6.19e)

Lu=0, (6.19f)

where we have defined the stacked vectors

ul 7l ol !
w2 22 52 2

u = , T = ,oz=1 .1, e=1.1- (6.20)
us 25 S oS

U=UxUX---xU is the Cartesian power of the set U, such that u* € U for
s € S, can be expressed as u € U. Constraints (6.19b) and (6.19¢) correspond
to (6.18b) and (6.18c). Constraint (6.19d) corresponds to (6.18d). Constraint
(6.19¢) corresponds to (6.18¢), and Constraint (6.18f) corresponds to (6.18f).
We refer to Paper G for a description of the data structures in (6.19).

Introduce the auxiliary variables fi, @ and . Moreover, define the sets

V, ={v|i eUd,Az + Bu+ Ed+w =0, z = Cx, p > (i, x, 2)},
Vg = {v2|l~/u = 0},

where v; = (4,2, 2,9, 1) and vy = (u,¢, p) for compact notation. Using the
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indicator function, (6.19) is written as

min. (afi + Iy, (v1)) + ("o + Sap® — 2ap1” ¢ + Iy, (v2)) (6.21a)
v1,V2

st. i—1Tp/S =0, (6.21Db)

fi — =0, (6.21c¢)

i —u =0, (6.21d)

@—p=0 (6.21¢)

Problem (6.21) is in the standard ADMM form (4.29), with variables v; =
(@, 2,2,¢, i) and va = (u,p, ). The ADMM recursions for solution of (6.21)
are given by (4.29). Paper G develops a computationally efficient formulation
of the ADMM recursions that scales linearly in S. To keep the notation simple,
we state the recursions for a fixed iteration number and drop superscript i for
the iteration number. The vi-update in the ADMM algorithm is expressed as
the solution of the convex OCPs

omin, (@) Te7 + (9167 + (mg) et +migt, (6.22a)
0 €Uz, 3

st. a3 = Az}, + Buj, + Edj, + w®, ke Ny, (6.22b)

zp = CLay, keNi, (6.22c)

@° > p(u®, 2, 2%), (6.22d)

for s € S, and computation of
A= =k ((ma + ma)p+ a). (6.23)

The vectors my, mo, mg and my are updated in every iteration of the ADMM
algorithm. mf, m3, m5 and mj, s € S, are components of these vectors. The
vo-update in the ADMM algorithm is expressed as the solution of the convex
optimization problem

1
min. ipuTu +TOp + 0u? — 2817 pp — pngp — pndu, (6.24a)
U,
s.t. Lu =0, (6.24b)

where § = Sa + 3p and © = al + 2p((1/5?)117 + I). The vectors ni, no,
n3 and ny4 are updated in every iteration of the ADMM algorithm. Paper G
splits (6.24) into an optimization problem in u, and an optimization problem
in (o, ). Simple closed-form expressions are derived for the solution of each of
these optimization problems.

Solving the S subproblems in the form (6.22) is the main computational bot-
tleneck of the proposed scenario decomposition algorithm. The dimensions of
the subproblem, (6.22), are approximately the same as the dimensions of the
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Figure 6.8: CPU time to solve (6.18) as a function of the number of scenarios,

S.

OCP solved in CE-EMPC. Warm-started algorithms that are tailored to con-
vex OCPs, e.g. the ADMM algorithm of Paper D, can be used as efficient
subproblem solvers for the scenario decomposition algorithm. In MV-EMPC
of dynamically decoupled subsystems, the subproblem (6.22) is a block-angular
convex optimization problem. ADMMempc can be generalized to solve problems
of this type. We remark that the subproblems can be solved in parallel.

6.4.1 Benchmark

MVadmm is a MATLAB implementation of the scenario decomposition algorithm.
The algorithm is specialized to the QP that arises in MV-EMPC of the portfolio
system (2.9), subject to the constraints (5.3) and the cost function (5.8). MVadmm
solves the subproblem (6.22) using CVXGEN. Paper G compares MVadmm to CPLEX,
MOSEK and Gurobi using a small power portfolio case study with a single power
generator. The length of the prediction horizon is N = 40 time steps. Moreover
qg=1,1ie. Q= {0}. In this way, the OCP (6.18) accounts for the possibility of
recourse in the following sampling instant (in an approximate manner).

Fig. 6.8 reports the CPU time to solve the relaxed OCP (6.18) for MVadmm,
CPLEX, MOSEK and Gurobi as a function S. The reported CPU times assume
that the subproblems defined by (6.22) are solved in parallel. Fig. 6.8 shows that
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MVadmm scales better than the general-purpose solvers in terms of computational
time. For large S, MVadmn is several orders of magnitude faster than the general-
purpose solvers. For S = 8192, CPLEX, MOSEK and Gurobi fail due to memory
issues. MVadmm solves the relaxed OCP in approximately 5 seconds for this value
of S.

6.5 Summary

In this chapter, we have developed tailored algorithms for EMPC in power
production planning. The algorithms can be categorized as follows:

e General EMPC algorithms: We presented a homogeneous and self-dual
IPM for EMPC of linear systems with linear constraints and linear ob-
jective functions. An ADMM-based algorithm was described for input-
constrained EMPC of linear systems with convex objective functions. The
algorithms scale linearly in the length of the prediction horizon, N. This
is important, as stability of EMPC schemes depends on N. The pro-
posed algorithms can be used independently, or as subproblem solvers in
decomposition algorithms for EMPC.

e Subsystem decomposition algorithms: We presented a Dantzig-Wolfe de-
composition algorithm and an ADMM-based decomposition algorithm for
EMPC of dynamically decoupled subsystems. While the Dantzig-Wolfe
decomposition algorithm is limited to LPs, the ADMM-based decomposi-
tion algorithm can be generalized to convex optimization problems. The
subsystem decomposition algorithms accommodate the need for EMPC of
power systems with a large number of power generators, M. The subsys-
tem decomposition algorithms scale linearly in M.

e Scenario decomposition algorithms: An ADMM-based decomposition al-
gorithm was develop for MV-EMPC of linear stochastic systems. The
algorithm scales linearly in the number of uncertainty scenarios, S.

Simulations show that the tailored EMPC algorithms are significantly faster
than current state-of-the-art solvers, and that the difference in computational
time increases with the size of the OCPs. Moreover, the proposed decomposition
algorithms can solve much larger problems than general-purpose solvers without
any memory issues.



CHAPTER 7

Isolated Power Systems

The contributions of this chapter are methods for power production planning
in small isolated power systems. The ORPP is presented for unit commitment
and economic dispatch of the system power generators, considering a set of pre-
defined contingencies. Frequency control is handled using a reserve activation
scheme based on EMPC. The methods proposed in this chapter, are tested using
a Faroe Islands simulation case study. The ORPP is currently being tested in
the actual Faroese power system.

7.1 Contributions

Small isolated power systems are characterized by low inertia provided by a
relatively small number of generators [HCM ™01, GB11, CFP95, UBA 14, KO96,
ORFT14, TF94, Lal05, LRFO05, LMOO05]. This characteristic makes the system
frequency in small isolated power systems very sensitive to power imbalances.
Imbalances are a result of e.g. loss of power generators, fluctuations in non-
controllable production or consumption, and errors in the prediction of renew-
able energy production. We refer to such power imbalance triggering events as
contingencies. Significant frequency deviations from the nominal frequency lead
to load-shedding, cascading generator trips, power outages, and ultimately total
blackouts.
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Due to the limited inertia and the inability to exchange power with neighboring
regions, power production planning in small isolated power systems is challeng-
ing, especially for systems with a high penetration of renewable energy sources.
At the same time, small isolated power systems are ideal for testing smart grid
technologies. Full system-level experiments only require a small-scale imple-
mentation. Moreover, the volatile conditions in isolated power systems make it
possible to test the technologies at their limits.

Paper H and Paper I address two related challenges associated with power pro-
duction planning in small isolated power systems. These challenges are:

e Reserve planning: Reserve planning is an integral part of the UC problem.
In small isolated power systems, the system inertia (and reserve require-
ments) vary significantly with the committed power generators. This is
challenging to handle in the UC problem. Paper H addresses reserve plan-
ning in small isolated power systems using a novel formulation of the UC
problem, which is referred to as the ORPP. The ORPP guarantees that
the system frequency is kept above a pre-defined limit in the event of a
contingency.

e Reserve activation: The cost of active reserves is different from generator
to generator. This is often neglected by the controllers that activate oper-
ational reserves. Using cost information in the reserve activation process
is a challenging problem. Paper I presents an EMPC scheme for activation
of reserves. The OCP solved in this EMPC scheme trades off the cost of
operation and setpoint tracking.

We have organized this chapter as follows. Section 7.2 describes the Faroe
Islands’ power system and its challenges. Section 7.3 defines a single-area model
for a small isolated power system. The model consists of a bus connected to
a collection of generators and an aggregate of loads. The role of operating
reserves in conventional and isolated power systems is discussed in Section 7.4.
Section 7.4 also defines the two main types of operating reserves in isolated
power systems: FCR and FRR. Section 7.5 describes scheduling of FCR via the
ORPP, and Section 7.6 gives an overview of EMPC for cost-efficient frequency
control using FRR. Section 7.7 summarizes the main results in this chapter.

7.2 The Faroe Islands

The Faroe Islands are a group of islands situated in the North Atlantic Ocean.
The Faroese power system is isolated; it has no interconnectors to other coun-
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tries. The Faroe Islands have a target to increase the amount of renewable
energy production from 38% in 2011 to 75% in 2020. The increase in renewable
energy is expected to come from a combination of hydro and wind power. In
2009 a joint venture between the Faroe Islands and DONG Energy was formed.
The cooperation focuses on methods to integrate renewable energy sources into
isolated power systems. Since 2009, DONG Energy has tested several smart grid
technologies in the Faroe Islands [Twel3]. This includes the proposed ORPP.

The Faroe Islands are inhabited by almost 50,000 people, and the total area is
approximately 1,400 km?2. The Faroe Islands’ electricity demand varies from 15
MW at night time up to 45 MW in the afternoons. In 2014, the installed wind
power was 18 MW, corresponding to 122% of the minimum load and 41% of
the maximum load. Diesel generators produced 49% of the energy consumed
in 2014, while the remaining 51% was produced by hydro generators and wind
turbines [SEV15]. There are no liberalized electricity markets in the Faroe
Islands. The power system is operated by the municipality-owned company
SEV, which is responsible for both generation, transmission and distribution of
power.

The Faroe Islands have some of the world’s best wind resources, due to their
position in the Atlantic Ocean. However, the power system is small and vul-
nerable with a high number of power outages compared to Continental Europe.
Historically, the Faroe Islands have around 30 power outages each year [Twel3].
Power production planning in the Faroe Islands is currently based on manual
ad-hoc methods. As more renewable energy is integrated into Faroe Islands’
power system, the need for more intelligent power production planning strate-
gies increases.

7.3 Single-Area Model

This section introduces a model of a single-area power system. The level of
detail in the model is fit to the proposed control and planning methods. Figure
7.1 is a diagram of the single-area power system. The system consists of three
main components: a collection of power generators, a load, and a bus. The
balance between production and consumption in the system is

AP(t)= | > Pi(t) | - R(t), (7.1)
jeEM

where P;(t) is the power production of generator j, and F;(t) is the system load.
We use the swing equation for a synchronous machine to model the frequency in
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Figure 7.1: Schematic diagram of the single-area power system. The system
consists of a bus connected to a collection of generators (G) and
an aggregate of loads (L).

the system [And12a,KBL94]. The equation is written as an ordinary differential
equation (ODE) in the form
nom 2
(/")

ft) = WAP@), (7.2)

where

H= )Y H;Rj/R, R=> R; (7.3a)
JEM JEM

In (7.2), f(t) [Hz] is the system frequency, and f™°™ [Hz] is the nominal fre-
quency. Moreover, H; [s] is the constant of inertia of generator j, and R; [MVA]
is the rated power of generator j. Model (7.2) assumes that f;(t) = f(t) for all
j € M, i.e. that the power system is a single-bus system with no line capacity
constraints or transmission losses. This assumption can be justified for highly
meshed systems, where the relative impedances between nodes in the system
are small [Lal05, And12a, UBA14, ORF* 14, HTM91, KO96]. The Faroese power
system is a fairly meshed system, where line capacity constraints and transmis-
sion losses are negligible for the applications presented in this chapter. Model
(7.2) also assumes that the loads in the system are frequency-independent, i.e.
load-damping is neglected. This is a conservative assumption for most control
and planning applications, since frequency-dependent loads have a stabilizing
effect on the frequency [And12a].

7.4 Operating Reserves

Operating reserves are activated to balance production and consumption in real-
time. The European network of transmission system operators (ENTOSO-E)
has defined the following three main types of operating reserve [EE12]:

e Frequency containment reserve (FCR): Reserve for containment of fre-
quency deviations (fluctuations) that maintains the power balance in the
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Figure 7.2: Frequency drop in the Faroese power system after intentionally
tripping a generator, October 2012.

whole synchronously interconnected system. Activation of FCR results in
a restored power balance at a frequency that deviates from the nominal
frequency. Activation time for FCR is typically up to 30 seconds. The
power generators activate FCR automatically and autonomously using lo-
cal frequency-based proportional controllers. The FCR is also referred to
as the primary reserve.

e Frequency restoration reserve (FRR): Reserve for restoring the frequency
to its nominal value. Activation time for FRR is typically up to 15 minutes.
The power generators activate FRR manually or automatically. The FRR
is also referred to as the secondary reserve.

e Replacement reserve (RR): Reserve for restoring the required level of FCR
and FRR. Activation time for RR is typically from 15 minutes up to a
number of hours. The RR is also referred to as the tertiary reserve.

The ENTOSO-E reserve specifications are tailored to Continental Europe. In
small isolated power systems, the reserve requirements are more strict. Fig. 7.2
shows the frequency in the Faroese power system after intentionally tripping
a generator at the Sund power plant in October 2012 [Twel3]. The generator
trips around ¢ = 3 seconds. Approximately 12% of the total power production
in the system is lost due to the generator trip. As a result, the frequency drops
more than 1.5 Hz in 3 seconds. In the Faroe Islands, frequency drops of more
than 2 Hz are critical. Since the frequency can drop at a rate of 0.5 Hz/s, FCR
has to be available within a few seconds to keep the system stable. The nominal
frequency in the Faroe Islands’ power system is 50Hz. Fig. 7.3 shows a reserve
activation diagram for Continental Europe and for the Faroe Islands. Due to the
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Figure 7.3: Reserve activation diagram.

limited generation capacity, RR is not considered in the Faroe Islands. Instead,
a re-optimization of the production plan is performed to restore the FCR and
the FRR to their original levels.

7.5 Unit Commitment

The UC problem is solved to determine an hours-ahead production plan for
the system generators. The production plan includes the amount of reserve
each generator should provide. In contingency-constrained UC problems, the
production plan is required to be able to withstand a number of pre-defined
contingencies. This means that the system frequency must remain within a
safe operating range, in the event of a pre-defined contingency. In small iso-
lated power systems, the frequency dynamics (7.2) depends significantly on the
committed power generators [VFF15 SVBT15]. This dependence is important
to consider in contingency-constrained UC problems for small isolated power
systems. The ORPP is a contingency-constrained UC problem, which accounts
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for the system frequency dynamics in an explicit way. Minimum frequency
constraints are formulated using a model of the system inertia and an FCR ac-
tivation model for each power generator. The advantages of the ORPP are that
it can be formulated as a single MILP, it does not impose any strict assump-
tions on the generators, and that the parameters in the FCR activation model
are simple to obtain. Finally, the ORPP does not require any simulation model
of the system.

This section gives an overview of the ORPP. In this thesis, contingencies only
refer to loss of power generators. The ORPP generalizes to other types of
contingencies as well. Paper H provides proofs and details.

7.5.1 System Dynamics

To determine the minimum frequency resulting from a contingency, we consider
the model (7.2). Let ¢ = 0 denote the time at which the contingency occurs.
The generators that fail during the contingency are indexed by the subset

MC M.

Prior to a contingency, the system is in steady-state. This means that AP(t) = 0
for t < 0. The power lost in the contingency is

Plost — Z PI,OSt
I
JjEM

P}"St is the power production of generator j prior to the contingency. Generators
that trip do not contribute to the system inertia. Consequently, H and R in
(7.3) are computed as

H= Y H;R;/R, (7.4a)
jEM\M

R= > R (7.4b)
JEM\M

Define the total amount of active FCR

PFOR(t) = > PIOR(). (7.5)
jeEM

PfOR(t) is the active FCR at power generator j. Using (7.2), we get

¢ — (fnom)2 FCR _ plost
£ = 7 (P 0~ P (7.6)
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Figure 7.4: Block diagram of the coupled frequency and generator FCR, dy-
namics.
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Figure 7.5: Generator FCR activation diagram.

Equation (7.6) is a model of the system frequency in the seconds that follow a
contingency. The FRR is activated at a much slower time scale than the FCR.
Therefore, FRR is not included in (7.6).

For ¢t = 0, the active FCR is zero and f/(t) < 0. As time increases, the fre-
quency begins to deviate from the nominal frequency. The generators respond
to frequency deviations by activating FCR. The FCR is activated locally at each
power generator via frequency-based proportional controllers [And12a, KBL94,
Deb88, WW13]. The desired level of active FCR (FCR setpoint) for each gen-
erator is

PFOR(t) = — (1/D;) Af(1), jeM. (7.7)

D; is the droop of generator j, and Af(t) = f(t) — f*°™ is the frequency
deviation from the nominal frequency. Fig. 7.4 is a block diagram of the coupled
frequency and generator FCR dynamics. Fig. 7.5 illustrates the relationship
between the frequency deviation, A f, the FCR setpoint, PJFCR(t), and the active
FCR, P]F CR(t). The dynamics relating the FCR setpoint and the active FCR
are described later in this section.

Provided that the system is stable, the frequency settles at a new steady-state
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Figure 7.6: Frequency dynamics. The minimum frequency occurs during the
transient phase of the post-contingent state.

f(t) = f5¢ < fmom for some t = 3¢ after a contingency has occurred. Fig. 7.6
illustrates a typical system frequency response to a contingency. We refer to
the state of the system prior the contingency as the pre-contingent state, and
the state of the system after the contingency as a post-contingent state. In the
pre-contingent state f(t) = f™°™. The post-contingent state is divided into a
transient phase and a stationary phase. In the transient phase, the frequency
drops to its minimum value f', and it then returns to the steady-state f*.
The minimum frequency, f%, may be significantly smaller than the steady-state
frequency, f5'. The offset f5' — f1°™ is eliminated by activating FRR.

Define the steady-state values
prer. _ prowy), jem.
PFORa = PECR(p), jeM,

for t > t5*. Equation (7.7) shows that the steady-state FCR setpoint for each
generator is

PJFCRSt — _ (1/Dj) (fst _ fnom) , je M.

The active FCR at generator j is equal to the minimum of 1) its steady-state
FCR setpoint, and 2) the maximum amount of FCR that the generator can
deliver. This is written as

*FCR) , jeM, (7.8)

PjFCRSt = min (P].FCR“, P;

—FCR . . .
where P; " is the maximum amount of FCR that can be activated at generator
7. This limit depends on the generator capabilities and the pre-contingent state
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of the generator, e.g. a generator that operates at its maximum capacity limit
cannot increase its production further.

For convenience, we define the energy contribution from active FCR as
t
FCR(;\ _ FCR .
EFOR(f) = /0 PFOR(r)dr, jeM, (7.9)

and the sum of FCR energy as

EFCR(t) = > EFR(1). (7.10)
JEM

References [RRAG12, GBARO05, RG05, GA14] model (7.8) using mixed-integer
constraints. This makes it possible to include constraints for the stationary
frequency, f', in the UC problem. The underlying assumption is that the
power system remains in stable operation during the transient part of the post-
contingent state. This is often not the case for small isolated power systems,
as the minimum frequency, f%, is critical in such systems. The ORPP includes
constraints for f%.

The minimum frequency, f%, occurs during the transient part of the post-
contingent state. Equation (7.8) is a model for the stationary part of the post-
contingent state. Paper H models the transient part of the post-contingent state
as a system of ODEs in the form

F(PYR 1, f) 0
gl (f’ PFCR7 P]FCR7 R (PFCR)(R1)> 0
. =.], (7.11)
Gor (f, PFOR PFOR (P]\F/‘[CR)(HM)) 0
where (P]-FCR)("J’) is the n;’th derivative of PJ“R(t). Moreover
F(PTOR £, f) =0, (7.12)
is a representation of the frequency dynamics (7.6), where
nom 2
FPPOR £ ) = f(t) — AL (pror gy ploty (13

~ 2HRf(t)

Finally, the ODE

G; (f, PFOR, PECR, . (PFOR)()) =, (7.14)
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is a dynamic model that maps the frequency deviation, A f, to the active FCR at
generator j, PJFCR, i.e. a model of the dashed block in Fig. 7.5. As an example,
consider the case where the generator dynamics are first-order systems in the
form

1
s+ 1’

Ti(s) = jEM. (7.15)

For this case

G (f, PR, PFOR) = 7 PPOR(1) + PFOR() — PFOR(r),  je M.

where I:’]FCR(t) = —D%_Af(t). The model (7.14) is general enough to represent

the generators in e.g. [AG14,EMB09,0096,CB12]. The solution of (7.11) is the
frequency, f(t), and the active FCR levels, PFCR(t), ..., PECR(t), that follow a
contingency.

7.5.2 Minimum Frequency Conditions

Define the minimum frequency condition

wmin /() = " > f (7.16)

where f is the lower acceptable limit for the system frequency. Define t* to be
the first time instant at which the power balance is restored

" = min {t| PYOR (¢t) — P'*" = 0} . (7.17)

Under a simple stability condition it holds that f(t') = f%. Therefore, a
sufficient condition for (7.16), is

f) = f (7.18)

Evaluating (7.18) requires the solution of the generally non-linear system (7.11),
and subsequent computation of £ via (7.17). Since the UC problem is an MILP,
the condition (7.18) cannot be included directly in this problem. The ORPP
is based on a set of conservative conditions derived from (7.18). To state these
conditions, define ’PjF CR(¢; f ) as the solution of (7.14) with the system frequency,

f, replaced by the function f . Accordingly, introduce

t
EFR(t: ) :/O Py (7 fdr, jeM, (7.19)
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Figure 7.7: The affine function that contains (0, f"°™) and (¢, f) is an upper
bound for f(¢) in the interval 0 < ¢ < ¢,

and the sums
PR f) =Y PYORE ),
JjEM
YR )y = &N ).
JEM
Note that given f = f, ODEs in the form (7.14) become decoupled in j € M.
Define the affine function

Sin(t) = (1 —=t/t¢) f7 + (t/t°) f, (7.20)

where t€ is a user-defined parameter. The function fj;, provides an upper bound
for the frequency, f, in the interval 0 < ¢t < t%. Fig. 7.7 illustrates this property
of fiin, in a simulated contingency example where ¢ = 2s and f = 48Hz.

Paper H shows that under reasonable assumptions about P¥R, the conditions

EFCR (4 fun) + AE™ > plosty, t <t (7.21a)
PEOR (LY fun) > P, (7.21b)

are sufficient conditions for the minimum frequency condition (7.18). Condition
(7.21a) ensures that f(t) > f for t < t° ie. that the frequency is above f
for 0 < t < t°. The parameter AE™! is related the system inertia. Condition
(7.21b) ensures that t* < ¢¢, i.e. that the minimum frequency occurs before

time ¢°.
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The user-defined parameter t° is an upper bound for the time at which the
minimum frequency occurs. As the power generators activate FCR, in proportion
to the frequency deviation, the function EFCR(t; f;,) is expected to increase
as t¢ decreases. Consequently, condition (7.21a) becomes less strict when t°
is small. When ¢ is small, condition (7.21b) becomes more strict, since the
FCR activation time is limited to t°. The choice of ¢ should balance these
considerations. The conditions (7.21a) and (7.21b) only need to hold for a
single value of ¢, in order to be sufficient for the minimum frequency constraint
(7.18).

Conditions (7.21a) and (7.21b) include terms that can be derived from the func-
tions PYCR(t; fiin), ... ,PﬂCR(t; fin)- The function PJFCR(t; fin) is the active
FCR at generator j in response to the affine frequency drop defined by (7.20).
This function depends on the dynamics of the power generator, and the pre-
contingent state of the generator. We introduce the notation

Py fim) = T (0P OR(1) jEM, (02

where 6 P]“R(t) is the amount of active FCR at generator j in response to (7.20),
and Z accounts for the implicit limits on §PJFCR(t) due to the pre-contingent
state of the generator. The function 5P]FCR(t) is the open-loop FCR response
of power generator j, when f = fj,. This function can be identified based on
simulated or experimental data.

7.5.3 Implementation

The ORPP determines a production plan for the system generators. The pro-
duction plan is optimized over the horizon

T =[0,ts,2t,, ..., Kt (7.23)

ts [min] is the sampling time and K is the number of time steps. The set of
time step indices is denoted

K={1,2,...,K}. (7.24)

Table 7.1 lists the ORPP parameters and Table 7.2 lists the ORPP decision
variables. The ORPP may be solved in a receding horizon manner to account
for updated forecasts of e.g. the wind power production. Paper J develops a
computationally efficient EMPC scheme for this approach.

This section describes the implementation of contingency constraints in the
ORPP. We refer to Paper H for a full description of the ORPP. The ORPP
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Table 7.1: ORPP parameters.

Parameter Description Units

dy, Demand forecast MW

cf Production cost EUR/(ts-MW)

o Fixed run cost EUR/ts

v, esd Start-up/shut-down cost EUR

( )] p

cIRRFCR)  Reserve capacity costs EUR/(ts;- MW

(c; ™ ¢ pacity s

(Q;,ﬁg) Technical production limits MW

(QE,;T);) Forecasted production limits MW

e, €; ner imits

(e7) Energy limi MWh

(7 RR,FJFCR) Reserve limits MW

Wj.k Disturbance forecast MW

D; Droop Hz/MW

Iy Contingency matrix u.l.

Ac;;-"t Rotational energy available ~ kWh

op fUR FCR activation parameters MW

thOR Discretization points S

v Initial running state ul

€5,0 Initial energy level MWh

Table 7.2: ORPP decision variables.

Variable Description Units Domain
Djk Production MW Rx>o
€k Energy level MWh Ry
0% Running state u.l {0,1}
0% Start-up indicator u.l. {0,1}
v;dk. Shut-down indicator u.l {0,1}
Tk Total reserve MW Ry
rIRR FRR reservation MW Ry
rf%R FCR reservation MW R>o
Er% Post-contingent FCR energy kWh Ry
AEl“}ﬁt Post-contingent rotational energy kWh  Rxq

L o Post-contingent lost energy kWh Ry
r?i’EDCR Active FCR power MW  Rxg
r?l’i?R Active FCR energy kWh  Rxg

considers L different contingencies. The contingencies are indexed by the set

£L={1,2,... L}

(7.25)
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We define the contingency matrix I¢ as

(7.26)

o o_ 1 if generator j € M fails in contingency [ € L,
b7 00 otherwise.

Minimum frequency constraints based on (7.21) are formulated for each of the
contingencies. For this purpose, the FCR activation functions, defined by (7.22),
are discretized. Introduce W discretization points YR, . .. ,tI{:VCR that satisfy

t]f‘CR thR

=0< << PR =g, (7.27)

Also define
5pFCR _ 5PFCR(tFCR) jeEM, weWw, (7.28)

such that (5pF R . 6pFCR constitute a discretization of the function 5PJFCR(t)
in the interval 0 S t < t°. The FCR reservation, T gR, is restricted by the
amount of FCR that can be activated within time ¢°. Therefore

riOR < SpE G, jeEM, kek. (7.29)

The FCR that can be activated at time tE“R is modeled as the identified FCR

activation parameters §pFCR scaled by T’FCR / 51%:%;’ ie.

/FCR
Sp.FCR _ "jk FCR  ;
ji’w =3 F%épij , JEM, ke, weWw. (7.30)

The energy released during FCR actlvatlon is approximated by the area under
p,FCR 6p,FCR

the line segments that connect the points r] ki oo TiEw - This is expressed
as
5e,FCR __ _Je,FCR FCR FCR op,FCR
ikw = kw1 T A (tw —ty ) Tkaw—1 .
42 (tFCR tFCR) /OP.FCR __dp FCR (7.31)
2 (lw Joksw jkaw—1)

JeEM, ke, we W\ {1}, and
r?ﬁ,ﬁCRzo, jeM, kek.

A = 5/18 converts the unit of 7"58 FCR to [kW -h]. Fig. 7.8 illustrates the

FCR (¢ 5p,FCR FCR e, FCR
relationship between 6P} (t), Tikw o Typ o and rip o

Condition (7.21a) should be satisfied in the discretization points tf°R, ... +ECR,
for each contingency ! € £ and for each time step k£ € K. The constraint for

this is

Ei§ o+ AEY > Ef, lel, kek, weWw. (7.32)
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Figure 7.8: Illustration of the relationship between SPFCR(t), 20 PR pFOR

Jikw
ée,FCR

and 7 , for a fixed time step k € K, and a fixed generator

]EM

E}% . 1s the energy provided by the active FCR in time step k, during contin-
gency [, in discretization point w

B, =Y (1=1If ) risior, leL, ke, weWw. (7.33a)
JEM
Epq?, is the energy lost in time step £, during contingency [, in discretization
point w
Bty =Y I pintn ™, leLl, kek, weWw. (7.33b)
JEM

AE{’O,j is the rotational energy available due to the system inertia in time step

k, during contingency [
AE[ = (1= If ) Ae o8y, leL, kek. (7.33c)

JEM

Aeg»Ot is the rotational energy of generator j, when running. This parameter is

computed based on the moment of inertia I; [kg - m2] and the number of poles
N7} of the generator.

The condition (7.21b) is modeled as

S U=t =Y I pjiks leL, kek. (7.34)
JeEM JEM
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Table 7.3: Case study system parameters.

t =

# Name Type I; Ny P, D T;
1  Eidisverkid G1 Hydro 5900 8 2.7 68 3
2 Eidisverkid G2  Hydro 5900 8 2.7 68 3
3  Eidisverkid G3  Hydro 8050 8 3 773
4 Strond G1 Diesel 2116 14 1 2.2 2
5  Strond G2 Diesel 4375 10 1.3 3.6 2
6  Sundsverkid G1 Diesel 23301 12 4 8.1 5
7  Sundsverkid G2 Diesel 225500 40 7 12.7 5
8  Heygaverkid G1 Hydro 4875 8 21 53 3
9  Neshagi Wind - - 0 10 0.5

In addition to (7.34), we require that sufficient FRR is available, such that the
frequency can be restored to its nominal value. This is expressed similarly to
(7.34), expect that we replace TEER by TEE‘R. Paper I presents an EMPC scheme
for activation of FRR.

Constraints (7.32) and (7.34) represent the minimum frequency conditions (7.21a)
and (7.21b), respectively. Condition (7.21a) needs to hold for all ¢ < ¢t¢. Con-

straint (7.32) only ensures that (7.21a) is satisfied for ¢t = tF“R . tECR The

number and distribution of discretization points are therefore important. In

practice, 2-5 evenly spaced points are usually adequate. Provided that there are

sufficient discretization points, (7.32) and (7.34) ensure that f(t) > f in every

post-contingent state. Constraint (7.32) may be verified after solving the ORPP

for a fine grid of t-values. If it is violated for some ¢, the ORPP is re-solved with

this point included as an extra discretization point. Constraint (7.34) does not

depend on the discretization points.

7.5.4 Faroe Islands Case Study #1

Paper H tests the ORPP based on a Faroe Islands simulation case study. A
reduced system consisting of M = 9 generators is considered. The generator
dynamics are modeled as first order systems in the form (7.15). Upper and
lower limits for the amount of FCR a generator can provide are accounted for
by including saturation limits in the generator model. Table 7.3 lists the case
study system parameters. The sampling time is ¢; = 15 min, and ¢ = 2s. We
found that t°© = 2s provides a good balance for satisfying both of the minimum
frequency conditions in (7.21). The production plan is optimized over 6 hours,
corresponding to K = 24 time steps. Fig. 7.9 shows the demand forecast,
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Figure 7.9: Case study demand and wind power forecasts.

and the (maximum) wind power forecast. The wind power production is not
allowed to be reduced by more than 5MW compared to the potential wind power
production (curtailment limit of 5SMW). The production costs and the start-up
costs for the generators are

c? =(16.5,17,17.5,18,18,18,18,16, 1),

™ = (3000, 3000, 3000, 3000, 3200, 3200, 3200, 3100, 100).
The costs ¢, ¢4, ¢FRR and ¢ are zero in this case study. Wind turbines
provide the cheapest source of energy. Hydro generators are cheaper to use
than diesel generators, when available, but they have limited reservoirs. For
simplicity, we consider an example with unlimited reservoirs, and we define the
disturbance, wjk, to be zero for all j € M and k € K. Except for Neshagi,
the power generators can deliver 100% of their technical maximum production
in FCR and FRR. Neshagi does not have any FCR capabilities. The droop is
5% for all the power generators. The minimum frequency is f = 48Hz, and the
nominal frequency is f"°™ = 50Hz. B

FRR

The functions PR, ... §P]\F4€R are identified based on the generators’ simu-
lated open-loop FCR response to the affine frequency drop (7.20). The same
approach can, and is, used in actual experiments in the Faroe Islands. The
FCR activation functions are discretized using W = 4 discretization points with
tFOR = (0,2/3,4/3,2). Figure 7.10 illustrates the identified FCR. activation
functions. The number of contingencies is L = 7 in this case study, and the
contingency matrix, (7.26), is

I°=[I; 0],
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—— §PFOR(t) —— §PYOR(t) — §PFCR(t) | i
N §PFCR(t) —— s PFCR(t) —— sPFCR(¢)
. —— §PFOR(t) —— §PYCR(t) —— 6 PYCOR (1)
= : .
=
5 2|
g
o
o7
1
0 : -
0 0.5 1 1.5 2 2.5 3

time [sec]

Figure 7.10: The FCR activation functions defined by (7.22). The discretiza-
tion points tFR = (0,2/3,4/3, 2) are indicated by vertical black
lines.

where I7 is the identity matrix of size 7. This means that any (single) of the
7 first generators listed in Table 7.3 may trip within one of the 15-minutes
sampling intervals, during the 6-hour planning horizon. The production plan
obtained by solving the ORPP can withstand any of these 7 contingencies. The
CPU time to solve the ORPP is approximately 5 seconds using CPLEX.

Paper H compares the ORPP to the UC problem presented in [RRAG12,GBARO5,
RGO05,GA14], which we refer to as the baseline UC problem (BLUC). The BLUC
only includes constraints for the steady-state frequency, f5t. Fig. 7.11 illustrates
the ORPP production plan and the BLUC production plan. The main differ-
ences between the two production plans occur between hours 1-2 and hours
3.5-4.5. Between hours 1-2, the ORPP keeps more generators running than the
BLUC, at the expense of reduced wind power production. This increases the sys-
tem inertia, as well as the available FCR in the system. Between hours 3.5-4.5,
Eidisverkid G1 and Heygaverkid G1 are operated at their limits for the BLUC.
These generators back-off from their constraints for the ORPP. This increases
the available FCR in the system. The ORPP increases the power production of
the more expensive generator Eidisverkid G2, to compensate for the back-off.
The cost associated with the BLUC is EUR 89039 and the cost associated with
the ORPP is EUR 91680. This corresponds to a cost increase of less than 3%
for the ORPP.

Contingencies are simulated by numerical solution of the system (7.11). A
simulation is performed for each contingency [ € £ and for each time step k € K.
We record the minimum frequency, f%, and the stationary frequency, fs¢, for
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Figure 7.11: Solution of the ORPP and the BLUC.

both the ORPP and the BLUC. Fig. 7.12 reports the worst-case frequencies over
the contingencies | € L, for each time step k € K. The stationary frequency is
maintained above 48Hz for both the ORPP and the BLUC. The ORPP keeps
the minimum frequency above 48Hz as well. Potential blackouts and power
outages are therefore avoided by the ORPP. Between hours 1-2 and hours 3.5-
4.5, the minimum frequency drops below 48Hz for the BLUC. In particular, if
Eidisverkid G1 trips between hours 1-2, the frequency drops to 47Hz. This is
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Figure 7.12: Worst-case (stationary and minimum) frequencies over the con-
tingencies | € L, for each time step k € K.

very critical for the system stability. Fig. 7.13 illustrates the system frequency
and FCR response when Eidisverkid G1 trips between hours 1-2. The actual
FCR response, PFCR(t), and the prediction (7.30) are indicated in Fig 7.13(b).
The predicted FCR response underestimates the actual FCR response, without
being significantly smaller than the actual FCR response. This indicates that
the ORPP is not overly conservative.

7.6 Frequency Control

The FCR is activated to stabilize the system frequency. The FRR is activated
to restore the system frequency to its nominal value. Activation of the FRR
is known as automatic generation control (AGC) or as load frequency control
(LFC).

Activating reserves has a cost. For generators with a low price of utilization
(e.g. wind and hydro turbines), the cost is usually low, and for generators with
a high price of utilization (e.g. diesel generators and gas turbines), the cost is
usually high. While cost information is included in the UC problem, it is often
neglected in the LFC layer. An approximate method to include cost information
in the LFC layer is to combine a PI-control structure with so-called participation
factors [KNS97,Bev09,Car85,And12a,IKKO05]. The participation factor of a gen-
erator is a gain that determines its degree of participation in the LFC. The par-
ticipation factors do not distinguish between up and down regulation, which is
a significant economic disadvantage. Moreover, the approach does not consider
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Figure 7.13: System response after Eidisverkid G1 trips (contingency I = 1)
at hour 1-1.25 (time step k = 4).

the frequency dynamics. For example, it is desirable to activate fast (but possi-
bly expensive) generators in situations where the frequency drops at a fast rate.
Conversely, slower generators can be activated in situations when the frequency
drops at a slow rate. Paper I presents an EMPC scheme for LFC that accounts
for both the reserve activation costs and for the system frequency dynamics.
The OCP objective function is formulated as a bi-criterion that trades off the
cost of operation and setpoint tracking. Setpoint-based MPC have been con-
sidered for LFC in [ARF03,KX07, RAF03, VHRW08, MBHH11, MCLA14]. This
section provides a summary of the proposed EMPC scheme for cost-effective

frequency control.
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7.6.1 Model

A combined FCR and FRR model is developed for the single-area system in Fig.
7.1. The model is used for minutes-ahead EMPC of the FRR. On/off decisions
are made in advance by solving a UC problem, e.g. the ORPP. This means
that unit commitment decisions are fixed in the model. The pre-computed
production plan provided by the UC problem is referred to as the nominal
production plan. We refer to Paper I for a detailed description of the model.

The system power generators are modelled as state-space systems in the form
(2.5). In a continuous-time form, the power generator model is

G, (£) = Ag g, (£) + By, ug, (1), jEM, (7.35a)
29, (t) = Cy, 24, (1), jEM, (7.35b)

where (4,,, By, E,,,Cy, .) denote continuous-time state-space matrices. To
keep the notation simple, we assume that each generator is a SISO system.
ug, (t) [MW] is the power production setpoint for generator j, and z,, (t) [MW]
is the power production of generator j.

The load in Fig. 7.1 represents an aggregate of all the loads in the system. The
aggregate includes the power production of non-controllable power generators,
such as non-controllable wind turbines and solar cells. We model the load using
a linear state-space model in the form

jjl(t) = Alﬂjl(t) + Bd; (t), (736&)
zi(t) = Cizy (), (7.36b)
di(t) [MW] is the load setpoint, and z;(t) [MW] is the load.

The power balance at the bus is

() =Y 2y (t) + 21(t) = Y Cg ag, () + Cra(t), (7.37)
JEM i€EM
This corresponds to (7.1) with AP(t) = 2z(t), P;j(t) = 24, (t), and P(t) = —2(t).
Using (7.2), the frequency in the system is modelled as
by = )
t) = —=———2z(t), 7.38
£ = 53 0 (7.38)
where H and R are computed as in (7.3). The power generator setpoints are
composed of two main terms

u, ()= () -5 (-, jeM. (739
—— j

Portfolio Level
Generator Level
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The portfolio-level setpoint is determined at a centralized level, in which inter-
actions between the power generators are considered. This component includes
the nominal setpoint (production plan), as well as setpoint adjustments pro-
vided by active FRR. The generator-level setpoint is the contribution of active
FCR. Asin (7.7), FCR is activated in direct proportion to frequency deviations
from the nominal frequency.

Equations (7.35), (7.36), (7.37), and (7.38), constitute a non-linear model of the
single-area power system. Equation (7.39) is a setpoint model that accounts for
frequency-based proportional control of FCR. Paper I collects equations (7.35),
(7.36), (7.37), (7.38), and (7.39), into a non-linear simulation model. The model
is augmented by process and measurement noise. A piecewise constant (unmea-
sured) disturbance, denoted by, is added to the system as well. The random
terms model the stochastic nature of renewable energy sources. The non-linear
simulation model is linearized for control purposes. The non-linear part of the
simulation model is (7.38). Due to tight frequency control via activation of FCR
and FRR, it is reasonable to assume that f(t) &~ f°™. Under this assumption,
(7.38) can be written as

ft) = S, (7.40)
or in the state-space form
Ty(t) = Arz(t), (7.41a)
zf(t) = x (1), (7.41Db)
where zf(t) is the system frequency, and
Ay = frm/2HS. (7.42)

In discrete-time state-space form, the linearized (stochastic) model for the single-
area power system is

Tpr1 = Axy + Bug + Edy, + wy, (7.43a)
yr = Cyxy + vg, (7.43b)
z, = CLxyp. (7.43c¢)

The process noise and the measurement noise are independent and identically
distributed random variables with

wy ~ N(0,Ry),
vp ~ N(0,R,).
In the system (7.43)
g,k Zgr
up =4Ugk, dp=4dig, ITx= ;Alfk , Zp = ZZ: , (7.44)

Nk ZAfk
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T T T 1T .. .
where x4 5 = [:rgl’k, Ty gy ,ng’k] , and similarly for ug ) and z4 . Finally

Infk = TAfk = 2pk — OO0 = fio — RO

The state variable 7, is included in (7.43) to model piecewise constant distur-
bances. This makes it possible to estimate and predict the unmeasured distur-
bance, by [PR03,BM07]. We use the Kalman filter defined in Section 3.2 for
this purpose.

7.6.2 Nominal Production Plan

The solution of the UC problem provides a nominal production plan for the
generators. To account for the nominal production plan in the model (7.43),
the input, state, disturbance, and output, are written as

up = upo™ + up R dy, = dp°™ + di "R, (7.45a)

Ty = 2ho 4 zf R 2 = 20°™ 4 ZFRR (7.45b)

The input u;°™ is the pre-computed nominal setpoint, and uERR is the FRR
contribution to the setpoint. The FRR contribution, uERR, is computed in real-
time using EMPC. The disturbance, dy, is partitioned into d}°™, which is known
at the time the nominal setpoints are computed, and di®®, which is updated
within the proposed EMPC scheme. The nominal state and output, z3;°™ and
zpo™ are computed using the state-space model (7.43), with wy = v, = 0,
ur = up™, and dp = dp°™. To keep the presentation simple, the remainder
of this section assumes that u;°™ = 0, d;°™ = 0, z;,°™ = 0 and z.°™ = 0, i.e.
that the nominal production plan is zero. Paper I treats the general case with

a non-zero nominal production plan.

7.6.3 Optimal Control Problem

An EMPC scheme is employed to activate FRR. The OCP in this EMPC scheme
is defined as

min. D7 bk (g Zet1) (7.46a)

Uk, Ug kT k, 2k

keNo

s.t. Zpy1 = AZp + Buy + Edp, k € N, (7.46D)
zk = Cy, ke M, (7.46¢)
ug,k = ug + K2, ke No, (7.46d)
U < Ug g < Up, k € N, (7.46e)



110 Isolated Power Systems

where [, is the stage cost function. The input uj = %4, contains the portfolio-
level setpoints for the generators. Equations (7.46b) and (7.46¢) are the state
and output predictions. Equation (7.46d) follows from (7.39). The matrix K is
defined such that

~ I
Ugy ,k D11 Afk
. Ugs,k T D FALK
up + Kz, =
~ 1 A
UM,k T Dy FASK

Equation (7.46d) limits the generator setpoint levels. The limits are time-
varying to account for both generator-specific technical limits, as well as limits
that are determined by external factors, e.g. the wind speed for wind turbines.
The stage cost in the OCP objective function (7.46a) is defined as

(g ks 2k1) = B°C (g ky 241) + (1 = B)™P (ug k, 2611), k€ No.  (7.47)

The function ©°° is related to the cost of operation and ¢°P is a conventional

setpoint-based penalty function. The parameter 8 is a tuning parameter to
trade-off cost of operation and setpoint tracking. For the Faroe Islands case
study, the cost function ¢°° is defined as

° (ug ks 2hg1) =1 |Ug,k — Ug k-1l (7.48a)

+ ¢ max (24 g41,0) + ¢’ max (—24 x+1,0) (7.48b)

4

+ gmax(zafp+1 — AF,0) + gmax(Af — zafk11,0),
(7.48¢)

where r and ¢ are the vectors

rgl Cgl

r92 ng
r= . s c= .

Tgn Conr

The cost function (7.48) consists of three parts. The first term, (7.48a), is an
{1-regularization term on the input-rate. The parameter r is a price vector
associated with wear and tear of the generators. The second two terms, (7.48b),
are related to the cost of generation. Let ¢ denote a vector of utilization prices
for the generators. The parameter ¢ is defined

1/cq,
1/092
c= .

1/cgy
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The price for upward activation of FRR is ¢ = ¢. For downward activation
of FRR, the price is ¢. We do not use ¢ for downward activation of FRR, to
avoid activation of FRR in the nominal case. The final two terms, (7.48c), are
related to the cost of frequency deviations. The cost g is imposed for frequency
deviations larger than f, and the cost ¢ is imposed for frequency deviations
smaller than f. The limits Af and Af are the cut-off frequency deviations,
at which critical actions such as load shedding are initiated to avoid a system
blackout.

The setpoint-based penalty function, ¢°P, is defined as

T T
O (g ke, 2h41) = Ug B ug 1 + 21 QP 2k 41, (7.49)

where R and QP are weight matrices. The problem (7.46) is as a convex QP.
For 8 = 1, the quadratic terms (7.49) drop out of the stage cost (7.47). In this
special case, the optimization problem is an LP.

7.6.4 Faroe Islands Case Study #2

Paper I presents a Faroe Islands case study with M = 4 power generators. A
small system is considered to highlight the essential features of the proposed
EMPC scheme. A time-varying load over 5 minutes is considered. The load
includes non-controllable wind turbines, which give rise to fluctuations from the
nominal production plan. In the Faroe Islands, there are several locally owned
wind turbines that are not controlled by SEV. Fig. 7.14 illustrates the case study
load scenario. The nominal load is d;}°™ = —21MW over the entire scenario. The
load disturbances by, and df*R are not accounted for in the nominal production
plan. A prediction of ngR is available in the EMPC scheme. The unmeasured
load disturbance, by, is estimated via the Kalman filter. As defined by (7.43),
the system is also subject to Gaussian process and measurement noise.

The case study power generators are modeled as first order systems in the form

1
Z,. =—1U,. j . 7.5
9j (S) ngS 4 1 9j (8)7 J € M ( 0)
The load has the similar form
1
Z = U, 7.51
1(s) p——1 1(s), (7.51)

where 7, < 7y, for j € M. We use 7; = 0.5s. The transfer functions (7.50) and
(7.51) are realized in the state-space forms, (7.35) and (7.36), respectively.
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Figure 7.14: Case study load scenario. The UC problem is solved based on
the nominal load forecast d"°™. The proposed EMPC scheme is a
closed-loop strategy for activation of FRR, considering feedback
and updated forecasts.

Table 7.4: Case study system parameters.

# Type H;l[s] Dj;[Hz/MW] Uk IMW] % [MW] 7. [s]
1 Hydro 3.1 3/20 3 20 8
2  Hydro 2.5 1/2 2 6 6
3 Diesel 1.8 3/5 1 5 1
4 Diesel 8.2 1/5 5 15 3

Table 7.4 lists the case study system parameters. The data represents actual
generators in the Faroe Islands. The inertia provided by each generator is scaled
up to better represent a full-scale system. The generator rating, R;, is defined
to have the same magnitude as u; ;. The price of utilization for the generators
in EUR/MWh, are 4, 8, 80, and 60. The input-rate price for each generator is
0.05 EUR/MW. The hydro generators have a lower production cost than the
diesel generators. Within each generator group, the smaller and faster generator
has the highest utilization cost.

The nominal setpoint is uy%™ = [8,6,1,6]. The simulation is started from
steady-state, such that zj 9" = ugolgn. The sampling time is Ts = 0.5s and the
length of the prediction horlzon is N = 80 time steps. The cut-off frequency
deviations are Af = —Af = 1Hz. Frequency deviations larger than +1Hz have

a very high cost. We define the price to be 1000 EUR/(Hz - s). The weight
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Table 7.5: Cost of operation and frequency deviations for the different EMPC
trade-off specifications, and for PI-control.

Cost min{Af} max{Af}

EMPC: =0 15.8 -0.39 0.43
EMPC: o« =0.1 10.9 -0.45 0.48
EMPC: « =0.2 7.20 -0.48 0.61
EMPC: « = 0.3 4.67 -0.52 0.76
EMPC: a =0.5 2.68 -0.76 0.87
EMPC: o =1 2.10 -1.01 0.91
PI control 14.2 -1.19 1.10

specifications in (7.49) are Q* = blkdiag (Q3°, Q;”, Q}", QSApf), and R = R3P.
We use Q@ = I, Q" = QY =0, Q?f = 100, and R} = I. This means
that deviations from the nominal frequency have a large penalty, compared
to deviations from the generators’ production plan. We scale the weights QP
and R®*P by a factor T/3600, such that the economic criterion, (7.48), and the
setpoint-based criterion, (7.49), are in a comparable scale.

Fig. 7.15 and Fig. 7.16 illustrate closed-loop simulations for 5 = 0, 8 = 0.5
and 8 = 1. Fig. 7.15 shows the generator power production levels, and Fig.
7.16 shows the system frequency deviation. The case § = 0 corresponds to
setpoint-based MPC, and 8 = 1 corresponds to CE-EMPC with a pure economic
objective function. A frequency-based Pl-controller is also tested. For 8 =0,
all generators with free generation capacity activate a significant amount of
FCR. Similar behavior is observed for the PI-controller. For 5 = 0.5, low-cost
generators are prioritized over high-cost generators, at the expense of slightly
larger frequency deviations than for § = 0. Although the frequency deviations
are larger for 5 = 0.5 than for § = 0, no critical deviations occur. When 5 =1,
the frequency is operated close to the cut-off frequencies. Since the controlled
system is a stochastic system, frequency deviations larger than +1Hz occur for
this value of 8. As discussed previously, CE-EMPC (corresponding to § = 1)
does not work well in practice. The use of a setpoint-based term in (7.47) can
be interpreted as a heuristic for CE-EMPC, similar to the constraint back-off
heuristic (5.19). The heuristic ensures that the frequency is operated with a
safety margin from the cut-off frequencies. Paper F achieves similar behavior in
a more systematic way using MV-EMPC. In contrast to the proposed EMPC
scheme, MV-EMPC guarantees the economic performance of the controller.

Table 7.5 provides key simulation results for different values of the trade-off
parameter 5. Over the course of one year, the price difference between setpoint-
based MPC and the proposed EMPC scheme with § = 0.5, sums to over EUR
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1.3 million. This corresponds to approximately 3% of the revenues generated
by SEV in 2012 [SEV13].

7.7 Summary

In this chapter, we have developed the ORPP for economic dispatch of power
generators in a small isolated power system, and an EMPC scheme for fre-
quency control. The ORPP ensures that the systems frequency remains in a
safe operating range, in the event of a contingency. The transient dynamics of
the frequency response is accounted for in the ORPP, based on a model of the
system inertia and an open-loop FCR response of the system generators. The
EMPC scheme activates FRR to restore the frequency to the nominal frequency.
The EMPC scheme accounts for generator costs and and the frequency dynam-
ics. The OCP objective function is a bi-criterion that trades-off the cost of
operation and setpoint tracking. The setpoint-based term in the OCP objective
function ensures that the stochastic system is operated with a safety margin
from the system constraints. This can be viewed as a computationally efficient
approach to approximate the behavior of MV-EMPC.

The proposed ORPP and EMPC scheme were tested using a Faroe Island case
study. A single-area model of the system was developed. Simulations show that
potential blackouts and power outages can be avoided using the ORPP, at a cost
increase of less than 3%. The EMPC scheme for frequency control yields a 3%
reduction in the yearly operating cost, compared to conventional LFC schemes.
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Figure 7.15: Closed-loop simulation: Generator power production levels.
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Figure 7.16: Closed-loop simulation: System frequency deviation.



CHAPTER 8

Conclusions

In this thesis, we have developed methods and algorithms for EMPC in power
production planning. The formulation and solution of the OCPs that arise
in EMPC of linear stochastic systems were given particular attention. We in-
troduced a conceptual portfolio system for demonstration and test purposes.
The portfolio system consists of a collection of power generators. Generators
represent generic units with the ability to produce power, consume power, or
possibly both. The main contributions of this thesis were presented in Chapter
5, Chapter 6, and Chapter 7.

Power generation based on renewable energy sources is inherently uncertain and
variable. The power portfolio system is therefore generally a stochastic system.
Chapter 5 demonstrated that CE-EMPC performs poorly under uncertainty.
Consequently, CE-EMPC is not well suited for control of the portfolio system.
For this reason, MV-EMPC was introduced as an extension of CE-EMPC that
accounts for the system uncertainty in a more economically efficient manner. In
MV-EMPC, the OCP objective function is a trade-off between cost expectation
and cost variance. Simulations show that, while CE-EMPC is a high-risk and
high-cost strategy, MV-EMPC provides attractive cost/risk trade-off options.

Computationally tractable EMPC schemes require efficient algorithms to solve
the OCPs. Chapter 6 presented novel algorithms to solve the OCPs that arise in
EMPC. A Riccati-based IPM was developed for CE-EMPC of linear stochastic
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systems. The Riccati-based IPM is a specialized algorithm for OCPs with linear
constraints and linear objective functions. Input-constrained OCPs with convex
objective functions were handled using a tailored ADMM-based algorithm. We
demonstrated that the OCP associated with EMPC of dynamically decoupled
subsystems can be expressed as a block-angular LP. Subsystem decomposition
algorithms based on Dantzig-Wolfe decomposition and ADMM were developed
to solve optimization problems of this type. The algorithms facilitate EMPC of
energy systems with a large number of generators. General-purpose solvers can-
not handle such large-scale systems due to memory limitations. The OCPs that
arise in MV-EMPC are large-scale convex optimization problems. To solve these
problems in real-time, a scenario decomposition algorithm based on ADMM was
presented. Warm-start and early-termination strategies were employed to re-
duce the computation time of the proposed EMPC algorithms. Simulations
demonstrate that the algorithms presented in this thesis are significantly faster
than current state-of-the-art solvers, and that the difference in computation
time increases with the size of the OCPs.

Chapter 7 concerned planning and control methods for small isolated power
systems. A single-area model was introduced to model a small isolated power
system. We developed an EMPC scheme for frequency control via activation
of operational reserves. The strategy accounts for generation costs and for
the system frequency dynamics. Simulations based on a Faroe Islands case
study show that significant savings can be achieved using the proposed EMPC
scheme. The ORPP was developed for unit commitment and economic dispatch
of power generators in a small isolated power system. Frequency constraints in
the ORPP ensure that the ORPP production plan is robust against a number
of pre-defined contingencies. In a Faroe Islands case study, potential blackouts
and power outages are avoided using the ORPP.

8.1 Future Work

Future work involves further investigation and development of the control and
planning methods introduced in this thesis. Two main directions for future
research are described in the following. In addition to the listed research direc-
tions, we plan to improve the proposed planning and control methods for small
isolated power systems, based on experimental results. The ORPP is currently
being tested in the Faroe Islands. Production plans generated by the ORPP
are transmitted directly to the main control room, where the plans are evalu-
ated and validated by the system operators. We would like to test the reserve
activation EMPC scheme and a in a similar setting.
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8.1.1 Risk Measures in MV-EMPC

This thesis demonstrated that MV-EMPC is a promising strategy for EMPC of
linear stochastic systems. MV-EMPC employs variance as a risk measure. We
plan to investigate other risk measures than the variance in an MV-EMPC set-
ting. Notably, Conditional Value-at-Risk (CVaR) is a risk measure with many
attractive properties; it is a convex and coherent risk measure, which is sensitive
to the tail shape of the cost distribution [MCM™ 14, KPU02, SFFM14]. As for
MV-EMPC, scenario decomposition algorithms are required for the computa-
tional tractability of future Monte Carlo-based EMPC schemes.

8.1.2 Algortihms for EMPC

The algorithms proposed in this thesis have a number of potential extensions to
be considered in future work:

e Quadratic programming extensions for LPempc and DWempc: Homoge-
neous and self dual IPMs can be generalized to conic optimization prob-
lems [SAY13, ART03]. We plan to implement a version of LPempc that
can handle quadratic terms (and possibly conic terms) in the OCP ob-
jective function. Similarly, we would like to extend the Dantzig-Wolfe
decomposition algorithm to quadratic programming [Sac80].

e Tuning ADMM: Several ADMM-based algorithms for EMPC have been
presented in this thesis. Tuning parameters are critical for the empirical
convergence rate of ADMM [BPCT11, EF98, GTSJ13, TGS*13]. Tuning
strategies for ADMM in EMPC applications will be investigated in future
work.

e Parallel implementations: The decomposition algorithms developed in this
thesis have good parallelization capabilities. Fully parallel implementa-
tions of the algorithms are left to future work. The potential of utilizing
structure in the subproblems that arise in the decomposition algorithms
should also be investigated further.
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Abstract— In this paper, we develop an efficient interior-point
method (IPM) for the linear programs arising in economic
model predictive control of linear systems. The novelty of our
algorithm is that it combines a homogeneous and self-dual
model, and a specialized Riccati iteration procedure. We test the
algorithm in a conceptual study of power systems management.
Simulations show that in comparison to state of the art software
implementation of IPMs, our method is significantly faster and
scales in a favourable way.

I. INTRODUCTION

During the last 30-40 years, model predictive control
(MPC) for constrained systems has become the most success-
ful advanced control technology for the process industries
[1]-[4]. Technically, MPC is attractive because of its ability
to handle constraints, time delays, and multivariate systems
in a straightforward and transparent way. The basic idea of
MPC is to optimize the forecast of a process model over a
finite horizon. At each sampling instant, a new optimization
problem is formed and solved. Conventionally, the optimiza-
tion problems associated with MPC have been formulated as
tracking problems that penalize deviations from a set-point.
Although this approach ensures that the set-point is reached
in a reasonable amount of time, it does not guarantee that the
transition between set-points is performed in an economically
efficient way. To face this challenge, economic MPC has
emerged as a promising technology [5]-[9].
Economic MPC is a variant of MPC that integrates
economic information directly in the optimization problem
defining the control law. This enables he controller to act
based on an economic incentive rather than to deviations
from a set-point. Some examples of economic MPC are
cost-efficient control of refrigeration systems [10], building
climate control [11], [12], and charging batteries in electric
vehicles [13]. In linear economic MPC, the optimization
problem solved at each sampling instant can be posed as
a highly structured linear program. The main contribution of
this paper is an efficient algorithm for large-scale problems
of this type that combines:
o The homogeneous and self-dual model described in
[14]-[17] to facilitate warm-starting

o A specialized and efficiently implemented Riccati iter-
ation procedure to speed-up the most time consuming
numerical operations
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Riccati based IPMs for MPC with {-penalty on set-point
deviations have been reported in [18], [19], and similar
work for ¢;-penalty in [20]. However, while most modern
IPMs are based on the homogeneous and self-dual model, a
Riccati iteration procedure for MPC has not previously been
developed for such methods.

Our paper is organized as follows. In Section II, we
formulate the control law associated with economic MPC
as a highly structured linear program. A homogeneous and
self-dual IPM for the linear program is derived in Section III.
Section IV and Section V show how to implement the IPM
efficiently using a highly specialized Riccati iteration proce-
dure and special-purpose linear algebra operations. A MAT-
LAB implementation of our algorithm denoted LPempc is
compared against state of the art IPMs in Section VI using
a small conceptual study in power systems management.
Concluding remarks are given in Section VIIL. Details on our
Riccati iteration procedure for economic MPC can be found
in the appendix.

II. OPTIMAL CONTROL PROBLEM
We consider linear state space systems in the form

Xii1 = Axy + Buy + Edy, di ~ N(0,Ry), (la)
ykZQ’xk+ek7 ekNN(OvRe): (lb)
i = Cxy, (Ic)

where x ~ N (%o, Fy). Here (A, B,Cy,C;,E) are the state space
matrices, x; € R™ is the state vector, u; € R™ is the input
vector, y, € R™ is the measurement vector, z; € R™ is the
output vector, dj is the process noise vector and ey is the
measurement noise vector. Notice that bold letters indicate
stochastic variables.

Economic MPC based on the certainty equivalence prin-
ciple is a control law for the system (1) that optimizes
the control actions with respect to an economic objective
function, input limits, input-rate limits and soft output limits.
Evaluation of this control law at time step k requires the
solution to the following linear program

un?mp ,-;% P/{+j“k+j +aiy 1Pkt j+15 (2a)
St R e = A jje + Bites j» je S, (@2b)
Zhet ke = Cofiey b €M, (0

Wesj < s j < U js je M, )
Aty j < Aty j < Nt JEM, (e

Ly j— Pt S G jik STkrjt Prrjy JEM, (2D

Pr+j =0, JEM, Qg



where A7 :={0+1i,1+i,....,N—1+i} and N is the length
of the prediction horizon. The problem data are the state-
space matrices (4,B,C;), the filtered estimate %, the input
limits w; ; and @y j, the input-rate limits Au ; and Al j,
the output limits z, ¥ and 7y j, the input price piy; and the
price for violating the output constraints g ; (see e.g. [21]
for details on soft output constraints in relation to MPC). The
filtered estimate £ := E [x|¥;] is the conditional expectation
of x;, given the observations Y; := [yg le y{ y{] T
We obtain this value using the Kalman filter.

The input-rate is defined in terms of the backward differ-
ence operator Auy j 1= U j — gy j—1, which alternately can
be written as wug ; — DX j; by augmenting the state space
system, and defining the matrix D accordingly. This refor-
mulation simplifies later computations considerably. Finally,
to keep the notation simple we assume that k = 0 and write
Xj:=2Xg4jjo for conditional expressions.

A. Linear Program Formulation

By aggregating the problem data into g, F, b, H and c,
(2) can be put into the form

min {g"t|Ft = b,Ht < c}. 3)
As an example, consider the case for N =2
T
prl

[ T T T T 4T
ti=[ug £ pl ul £

T
g=1[py 0 af pi 0 4],
and
[ B -1 0 0 0 0 | —A%y
D A A
I 0 0 0 0 0] m@m ]
0O 0 0 I 0 0] m
-1 0 0 0 0 0| —u
0 0 0 —I 0 0] —u
I 0 0 0 0 0] A
0 -D 0 I 0 0] Ang
=t 0 0 0 0 0 |-Au
Hlel=\"o p 0 Z1 0 0|-tu |
0 ¢ -1 0 0 0| 7
0 0 0 0 A )
0 ¢ I 0 0 0| -z
0o 0 0 0 —C —I| -z
0 0 -1 0 0 0 0
L0 0o 0o 0o 0 ~—I| 0 |

where Aii := Auip + DXy and Aug := Au, + Dxy. Hence, (2)
can be posed as a highly structured linear program with
n:= N(n, +ny+n;) variables, mg := Nn, equality constraints
and my := N(4n, +3n;) inequality constraints. Notice that we
have eliminated Z; from the optimization problem using (2c).

III. HOMOGENEOUS AND SELF-DUAL MODEL
The dual optimization problem associated with (3) is

max {—b"v—cTw|—FTv—HTw=gw>0}, (@)
W

s

in which v € R™ and w € R™ are dual variables correspond-
ing to the Lagrange multipliers for the equality constraints
and the inequality constraint of (3), respectively.

Problem (3) and (4) can be solved in polynomial time by a
standard primal-dual IPM [22]. However, instead of solving
the problems directly [14]-[17] have shown that it is has
several advantages to consider a related homogeneous and
self-dual linear program. This approach makes it simple to
detect infeasibility, find a good initial point, and facilitates
warm-starting. E.g. the warm-starting method of [17] reports
a speed-up of 30-75% for an extensive amount of diverse
linear programs and quadratic conic problems.

The homogeneous and self-dual linear program associated
with (3) and (4), may be stated in the form

. min 0, (2
[RATAR NS
st. FIo+H Ww+gt =0, (5b)
bE—Fi=0, (5¢)
cE—Hi—§=0, (5d)
—gF=bpT5—cTw+i =0, (5¢)
(W,§,%,&) > 0. (5f)

This linear program is a pure feasibility problem since the
objective function is constant. Moreover, it always has a
strict complimentary solution (7,7, w*,§*, 7*, &*) satisfying
j”;wj. =0 for j=1,2,...,m; and T*K* = 0 (for proofs and
derivations see [16]).
The following proposition states that a solution to (5) is
either a scaled solution to (3) and (4) or a certificate of
infeasibility.
Proposition 1: For a strict complementary solution of (5),
one of the following statements hold:
e L 7*>0and k*=0
The scaled solution (¢*,v*,w*,s*) = (7*, 7", w*,§*) /7" is
a primal-dual optimal solution to (3) and (4).

o II. 7 =0 and K* >0
The problem (3) is infeasible or unbounded; either
—bTv* — cTWw* > 0 (implies primal infeasibility), or
gT ™ < 0 (implies dual infeasibility).
Proof: See [16]. | |

Thus, we can obtain the solution to (3) and (4) indirectly
by solving (5).

A. Interior Point Method

This section presents a homogeneous and self-dual IPM
for solving (5). The algorithm tracks the central path,
which connects an initial point (7°,7°,1°,5% 29 &9) satis-
fying (59,50, %%, &%) > 0 to a strict complementary solution
of (5). Such a solution satisfies the following necessary and
sufficient optimality conditions

FTo+H w4 g% 0

b¥—Ff 0

~~~~~~ ) cT—Hi—3§ |0
V(I,V,W,S T7K)' 7ng~7bT177CTW+ﬁ' - 0 ) (6)

WS1,, 0

33 0
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with (W, 3§, &, %) > 0. We have defined W as a diagonal matrix
with diagonal elements wi,ws,...,w,, and similarly for S.
Moreover, 1,, is the column vector of all ones of size m;.

Using the definition (6), the central path may be written
as the set

¢ :={9lV(¢p) =y, ye[0,1]},
where ¢ := (7,7,W,§, T,K) and
= [Vi(¢")T Va(})T V3(04) Va(9%)T 1k (1)" )",

Here superscript has been introduced to represent the it-
eration number and p* := ((W¥)75 + #&K)/(my +1) is a
measure of the duality gap. In addition, V;(¢) denotes the
i’th set of components of V(¢) defined as in (6). Notice, that
for fixed y=1 the central path is the initial point, whereas
for Y =0 the central path is a strict complementary solution
of (5).

To track the central path, we use a variant of Mehrotra’s
predictor-corrector method [22], [23]. The method is based
on repeating a two-step procedure. In the first step (affine
step) the centering parameter 7y is updated and second-order
correction terms are computed. Secondly, a corrector step is
determined and a new iterate is produced.

The direction associated with the affine step corresponds
to a pure Newton direction for (6)

Ty (0F)Ags = —V (95). )

Here ¢* is the current iterate and A¢¥ ¢ 18 the affine direction
obtained by solving the system (7).
The Jacobian of V evaluated at ¢* is given by

o FT H" 0 ¢ O
-F 0 0 0 b O
-H 0 0 —-I ¢ 0
Ty (9F) = T T 0 0 1 ®)
0 0 S w0 o0
0 0 0 o &k

Havmg solved for A¢dff, the affine variables W{;’H, ffjff, Ti‘ff
and & g are computed

Y S _k Kk .k opk Ak
Wap : = W +adffAWdff7 Satr - = 5" + BageASarr,
=k ok .ok, pk Az
Ty s = T + oAy, air s = K 4 BarARyy

The damping parameters Oug and Pur are introduced to
ensure that the non-negative constraints (5f) remain satisfied

A gff} >O}
AT, Taft

k b Ash,
ﬁal’f:: max{baffe [071” |:~ :| + bagr |: :| > 0}
att

To update the centering parameter }*, we compare the affine
duality gap /,La’fff with the current duality gap [,tk [22]

—k
W
ok = max{aaff €10,1]| {f"} + Qqfp {

/- (5) - (S o

In the second step of Mehrotra’s predictor-corrector method,
(7) is solved with a modified right hand side.
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The resulting linear system of equations is written as

Ty (%) Ak = —V (¢%),

where V;(¢) := (1 ff)v,-((p) for i=1,2,3,4 and
Vs(9%) == V5(0%) = V'u* (L))" + AW5AS L,
Vo(9) := Vo(9") — Y uk + ATGAR:

Here AW;‘H and AS’;H are second-order correction terms

defined as diagonal matrices with the elements of Wy and

Saft appearing on their respective diagonals. Similarly A’Z’é‘ﬁ

and Af(;‘ff are scalar second-order correction terms. Finally,

the terms involving ¥* are used to orient the search direction

towards the central path based on the updating formula (9).
As in [24], an iterate is classified as optimal if

pr<er, pi<e&, pp<ep, pH<eo. (10a)
and infeasible if #* < e; max(1,&¥) and
pi<ex, pi<e, pp<eén, ps<es. (lla)

The parameters €;, €, &, €p, €o and &g are small user-
defined tolerances and

Po = [Vi(9)lle/max(1, || [HT FT g]ll.),
pE = = [[Va(9)]eo/max (1, || [F b]]lw),
pr:=|Va(@)l o/ max(LI[ [H 1 c]||.),

IL—&|/max(L,||[¢" b7 <" 1]]l),
ILI/(F+|-bTv—cTw|).

PG =
po:=

where L:= g7 — (—b"v—cTWw) is the duality gap. An imple-
mentation of the procedure described above is summarized
in Algorithm 1. Notice that a parameter v € [0.95;0.999] is
introduced to keep the iterates away from the boundary of
the feasible region. In LPempc, v = 0.995.

IV. RICCATI ITERATION PROCEDURE

Solving the linear systems involving the Jacobian matrix
(8) is the main computational bottleneck of Algorithm 1. For
an arbitrary right hand side, the operations can be written as

FTAG+HT AW+ gAT =1y, (12a)

bAT — FAT = r», (12b)

cAT—HAf — A§=r3, (12¢)

g AT+ DT A+ T AW — AR = 1y, (12d)
WAS+SAW = rs, (12e)

RAT + TAK = rg. (12f)

We remark that this system is different from the case of
conventional IPMs, due to our introduction of the homoge-
neous and self-dual model. In particular, a Riccati iteration
procedure for MPC has not previously been developed for
solving (12) efficiently.

The following proposition shows that the solution of (12)
can be obtained by solving a smaller linear system, and a
number of computationally inexpensive operations.



Algorithm 1 Homogeneous and self-dual IPM for (5)

DATA (g,F,b,H,c)
Require: INITIAL POINT (7,7,w,§,%,K)
PARAMETERS v

// initialize
u— W5+ %K)/ (my +1)
while not CONVERGED do
// affine step
Aduit = —Jv ($) "'V (9)
// center parameter

4 AW,
Olaff <— MAX { daff € [0,1” + Aafr A~ffff ZO}

T Ta
K AS,
ﬁaff < max < by € [07 1” % + bagr Aﬁ:i‘ff > 0}

Sat < 5+ BattASatt, Kaff < K+ BateARafr
Waff < W+ OaftAWatr,  Taff < T+ QatrATafr
Uatr < (WTepSage + TaeKatr) / (my + 1)
¥ = (Maie/ 1)
// predictor—-corrector step
AY — —Tv(¢)7'V(9)
// step update

w Aw
o+ max<a€[0,1]| MEXIPY 20}
§ A§
B+ max<{bel0,1]| < +b AR 20}
T« T+ VBAT, §< 5+ VPAS,

V4 V+VOAD, W< W+ VoAW,
s W5+ EK)/(my+1)
end while

Proposition 2: The solution to (12) can be obtained by
solving

0o FT

HT fi o —g
—F 0 0 fH h|=|n -b|, (13)
—-H 0 WIS||fs s F3 —c

and subsequent computation of

fs— (g fi+b o+ f3)

AT = R T £ 6Ty +Thy)’
AT = fi+hiAF,
AV = fr + AT,
AV = f3+ h3AT,

AR = gT AT+ DT AT+ T AW — 1y,
AF =W (re — SAW),

where 73 :=r3 + W lrs and 7 := re + Tra.
Proof: See [24]. | ]
To solve (13) efficiently, we have developed a Riccati
iteration procedure specifically tailored to economic MPC.
The procedure exploits the problem structure by reducing
the original system into a much smaller system, which is
then solved by a standard recursive approach. For further
details, we refer to the appendix.

The proposed method has order of complexity O(N(n, +
nx+ny)3) per iteration. In comparison, a general purpose
solver based on dense linear algebra yields O(N?(n, + n, +
n;)%). Thus, the computational cost per iteration is reduced
by two orders of magnitude in N. However, as described in
[25], the complexity of IPMs based on direct sparse linear
algebra is linear to quadratic for problems such as (2). Notice
also, that if the number of states n, is very large, condensing
methods using state-elimination have an advantage over a
Riccati based solver [19].

V. SPECIAL OPERATORS

To speed-up the numerical computations and reduce the
storage requirements of Algorithm 1, operations involv-
ing the structured matrices F and H are implemented as
specialized linear algebra routines. Denote the Lagrange
multipliers associated with the inequality constraints (2d)-
(2g) as An, AL, Av, Aw, Ay, A{ and AE where An :=
[And An! Anh_y] " and similarly for A4, Av, Aw,
Ay, Al and A&. An and AA are multipliers for the input
limits (2d), Av and Aw are multipliers for the input-rate
limits (2e), Ay and A are multipliers for the output limits
(2f) and A& is the vector of multipliers for the non-negative
constraints (2g). Using this notation, the optimization vari-
ables 7, ¥, and W can be stated in the form

=_ [, T 4T T T AT 7T
i=[uf i pf uy_y &Pyl

. T T
F=[7 .. o]
W= [nT AT o T 4T (T gT]T.
As an example consider the case N =2. In this case the
specialized linear algebra routines are

Flo=[iTB TA— o B -} o],
Mo — Ao+ Vo —
DT (o —v1)+CT (0 = &)
T _ -6 -m
How= M —A+v — o
CT(p—G6)
“p-O-m
and
Hi=[ul  —u" uf (u-D#)T —ul (D& —u)T
(Cti—p))" (Ca—p2)" (Cti—p1)"

(—Ct—p2)" —p"]",
Ft= [(Buo 7)21)T (A% + Buy 7)?2)T}T,
VI. CASE STUDY - POWER SYSTEM

We now present a case study of economic MPC, which
is used to compare LPempc against state of the art [PMs.
The tolerance parameters in (10)-(11) are set to 1078, It
has been verified that for this setup, approximately the same
accuracy in the solution is achieved for all other solvers using
their default tolerance settings. The study is performed on an
Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz with 4 GB
RAM running a 64-bit Ubuntu 12.04.1 LTS operating system.
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TABLE 1
CASE STUDY PARAMETERS. THE PORTFOLIO CONSISTS OF A FAST AND
EXPENSIVE GENERATOR, AND A SLOW AND CHEAP GENERATOR.

TABLE 1T
COMPARISON OF THE NUMBER OF ITERATIONS, BASED ON OUR
CLOSED-LOOP SIMULATION.

\ -
Power Generator 1 90 100 0 200 -20 20
Power Generator 2 30 200 0 150 -40 40

production [MW]

. 1000
time [sec]

500 1500 2000

Fig. 1. Closed-loop simulation of a stochastic power system controlled
by economic MPC. A majority of the production is produced by the cheap
(slow) power generator, while the expensive unit (fast) is used only when
extra flexibility is required to satisfy the constraints.

In our study, we consider generic power generators in the
form [26]
1
3 U,' (S),

Y=

Here U (s) is the units of fuel supplied to generator i and ¥;(s)
is its power production. Moreover, the total power production
is given by

i=1,2,...,m. (14)

m m

25)=Y X5 =Y

i=1 i=1

! 3Ui(S).

(s +1) {13)

The system (14)-(15) is realized as a state space system in the
form (1), where u; € R™ is the units of fuel supplied to the
power generators, y; € R™ is the measured power production
of each generator and z; € R is the total power production.

Fig. 1 illustrates an example with m = 2 power generators.
The simulation is performed in closed-loop over N = 400
time steps using a sampling time of 7y =5 seconds. Thus, the
optimization problem (2) is solved 400 times. The controller
objective is to keep the total power production within a
certain pre-defined range, while minimizing input costs and
respecting capacity constraints. The case study parameters
are listed in Table I.  Aside the parameters listed in the
table, we have fixed the length of the prediction horizon to
N =80 and g; = 10* over the entire scenario. Moreover, full
information about the initial state is given xy ~ (0,0) and
Ri=R,=1.

The closed-loop solution depicted in Fig. 1 was computed
using LPempc, and IPMs from the following software
packages: SeDuMi, MOSEK, LIPSOL and GLPK. These
solvers are mainly written in low-level language such as
FORTRAN or C and rely on sparse linear algebra routines
that are specifically tailored to the solution of large-scale
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| | Min  Max Mean Std.  Fail Rate (%) |
LPempc (HSD) 11 23 17.4 2.35 0
MOSEK (HSD) 12 53 22.1 8.17 0
SeDuMi (HSD) 15 23 19.3 1.55 0
LIPSOL 12 45 19.2 9.63 11.25
GLPK 15 26 1942 1.72 8.25
@ Pempc [ 4
“A-MOSEK| :"
10° | *=SeDuMi -
LIPSOL ¢ 102 ]
4 GLPK ]
2
510 A
@
2, 1
© 10 q
£10' E
=
a
o
10° I ]
10—1 i 1
10 q

10
nr. of units horizon length

Fig. 2. CPU-time for the different solvers as a function of the number of
power generators m (fixed N = 32) and the length of the prediction horizon
N (fixed m = 32).

sparse linear and conic programs. In comparison, LPempc
is written in MATLAB with a separate MEX-file performing
the Riccati iteration procedure.

Table II lists selected results from the closed loop simula-
tion. We have tagged the IPMs based on the homogeneous
and self-dual model by (HSD).

The fail rate accounts for the cases in which numerical
instabilities occured, or more than 100 iterations were used.
Thus, the table indicates that the homogeneous and self-
dual IPMs are more reliable than the conventional IPMs.
Moreover, our simulations show that LPempc and SeDuMi
use a smaller and less fluctuating number of iterations than
MOSEK.

In Fig. 2 we have compared the CPU-time for the different
solvers, as a function of the number of power generators and
the length of the prediction horizon. The figure shows that
the advantage of using LPmpc increases with the problem
size. E.g. for 16 units, MOSEK and LPmpc are approximately
equally fast, but for 128 units the difference is a factor 4.
For 128 units LPempc is about 150 times faster than GLPK.
Similar results is observed for an increasing prediction
horizon N.

VII. CONCLUSION & FUTURE WORK

In this paper, we have developed an efficient Riccati
based homogeneous and self-dual IPM for linear economic
MPC. Simulations show that a MATLAB implementation of
our algorithm, LPempc, is significantly faster than state of



the art IPMs based on direct sparse linear algebra. As the
problems become larger LPempc becomes relatively faster.
We have also observed that for our problem, homogeneous
and self-dual IPMs are more reliable (100% convergence)
than conventional IPMs (90-95% convergence).

Although the advantages of homogeneous and self-dual
IPMs have been widely accepted in the field of optimization,
they have not yet been adopted by the MPC community.
Our work on extending Riccati based solvers for MPC to
homogeneous and self dual IPMs is therefore a significant
contribution that allows for MPC-based controllers to exploit
important features of the homogeneous and self-dual model.
One example is the warm-starting approach of [17] which
will be implemented in the next edition of LPempc. Since
the optimization problems solved at successive sampling
instants in MPC are very similar, we expect that this method
will reduce the number of iterations for LPempc signifi-
cantly.

APPENDIX

Riccati Iteration Procedure for Economic MPC

Consider the system (13)

0 FT H'QT[fi h o —g
—F 0 0 fh |l =|n —-b
-H 0 WS| | = P —c

For a single arbitrary right hand side, we may write this
system as

o frT HT AT [y
—-F 0 0 AV | = |rg (16)
—-H 0 WwWi§| [aw r

Using the same notation as in Section V, we write the
solution to (16) in the form

A =[Au] AR Ap] Ay ARG Apf)T,
Av= [ATF AT A%,

Av=[AnT AT AvT AeT Ay ALT AET]T.

Accordingly, we partition the right hand side such that

_ [T T T T T T
'p = [ru.O rx,l rw,l ru,Nfl rx,N rw,N]
_[pT T T r
"E = [RV,O Rv,l RV,N—I} )

T
T T T T T T T
r]:[rn rl n Te ry rC ré] s

and write the diagonal matrix W~'S in terms of diagonal
submatrices

W15 = diag (2;2{,25,2{,,25,22,23 .

The linear system of equations (16) can now be stated in the
form

AN — Adi+ AV — A+ BT AV = 1y, i€ Mo,
—Aui+2n1iA11,~:rn’,-, i€ N,
Au[+2,1_,~A/I,~ =T i€ N,
—Au;+ DA% + 2y AV =1y, i€ M,
Au; — DA% + L A0 =10, i€ N,
ARi11 —AA% — BAu; = R,;, i€ M,
Api —C AR + Xy Ay, =ryi, 1€ M,
APi+CAY+ 5 Al =1, i€ M,
Api+Z§,,»A§,‘:r5.,-, ieM,
—AY = AL —AE =1y, PEM,

— A+ C(AYig1 — A1) +AT AV
+DT(CO,*—A‘U,‘) =T, ie%,

with Af 1= A \ 0 and the special cases
—Aug + Xy 0AV = ry,0,
Aug +ZEe 0A) = re0,
A%| — BAuy = Ry,
—AVy_q +CZT(A7N —AlN) =ren.
By eliminating the Lagrange multipliers for the inequality

constrains A1, AA, AV, Aw, Ay, Al and A we get the
reduced set of equations

BT A¥o + UpAug = Ry, (17a)

BTAV; +UiAu; + GiAti =R,;, i€ M, (17b)

—ARf] + BAuy = Ry, (17¢)

—ARiy1 +AAR; 4+ BAu; = R, ie gy, (17d)

WiApi +MIAR; =R,;, ic M, (17e)

—AV;_| +MAp; + X;A%;
+GT Au; + AT AV; = Ry, ie gy, (17
—APy_1 +MyApy +XnAfy = Ry, (17g)
where we have defined
Ui=Eh+ 2+ 2+ 5,0 i€ M,
Gii=—(Z,5+Z,1)D, ie M,
m::zg}+23§+z;}, ie M,
M;:=C] (5} —2,)), ieM,
X = Cl(E  +E,)C+DT (5, +2,))D, i€ M,
Xy :=Cl (£ ) +Zy y)Cz-
Furthermore

Ryi=ryi+7yi+tTwi—ri— v i€ M,
Ryi:=—Ry, i€,
Ryi = rwi—1 +7g i1 +7g i+ Fri, ieMm,
Rii:=ry; +CZ_T(fg7,~ — Fyi) +D" (Fpi—Fwi), i€ M,

N = rx,N—FCZT(l_’g,N — ’_”y.N)-
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For compact notation, we have introduced the notation 7y, ; :

Z;L’l’.r;t_l-, and in a similar way 7 i, P i, Fv,i, T¢ i Tg; and Fy;.
Solving (17e) for Aw gives

Api =W (R — M A%y), ie M. (18)
Substituting back into (17) yields the equations
BT Ao+ UpAug = R
BT AV, + UiAu; + GiARi = Ry, i€ M
—AR%) +BAug =R,
—A%i11 +AAR +BAw; =R,;, i€ M
—AVi + X AR+ GT Au+ATAT =R, i€ M

—APy_1 +XNAfNy = Ry

where X; :=X; — M;W,”'M! and Ry; := R.; — MiW, 'R,;. As
an example let N = 3. In this case, the equations above may
be arranged as

[Uy BT Aug ] Ruo
B |- Ay Ryo
—11X, GT AT A% Rei

G, Uy BT Auy Ry

A B |- AV | = | Ry,

—11X GT AT A%y Ry»

G, U, BT Auy Rup

A B -1 Avy RV>2
L —I|X3 | [Af3] [ Ry3 |

This system can be solved efficiently by a Riccati iteration
procedure [18], [20]. Thus, by utilizing the structure of (2)

we

have reduced (13) to a smaller system which can be

solved efficiently using a recursive approach.
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Abstract—In economic model predictive control of distributed
energy systems, the constrained optimal control problem can be
expressed as a linear program with a block-angular structure. In
this paper, we present an efficient Dantzig-Wolfe decomposition
algorithm specifically tailored to problems of this type. Simula-
tions show that a MATLAB implementation of the algorithm is
significantly faster than several state-of-the-art linear program-
ming solvers and that it scales in a favorable way.

I. INTRODUCTION

Due to global concerns related to environmental issues
and security of supply, an increasing share of electricity is
being produced by renewable energy sources. Accordingly,
methods for power production planning that can handle the
volatile and unpredictable power generation associated with
technologies such as wind, solar and wave power are required.
For this reason, energy systems management has emerged as
a promising application area for economic model predictive
control (MPC).

In economic MPC of energy systems, the power production
planning is handled in real-time by an optimization algorithm
that computes an optimal production plan based on the most
recent information available such as forecasts of energy prices,
wind power production, and district heating consumption.
Examples of economic MPC in energy systems manage-
ment include cost-efficient control of refrigeration systems
[1], building climate control [2], [3], and optimal charging
strategies for batteries in electric vehicles [4].

Economic MPC requires the solution of a linear program
at every sampling instant. In energy systems management,
the solution to this linear problem, known as the optimal
control problem, provides a sequence of control moves that
yields the most cost-efficient power generation, with respect
to a process model of the power system. To compensate for
non-predictable disturbances and discrepancies between the
process model and the true system, only the first input in the
sequence of control moves is applied to the system, and the
optimization procedure is repeated using updated information
at the following sampling instant.

As the control moves are computed in real-time, one of
the key challenges in economic MPC is to solve the optimal
control problem in an efficient and reliable way. The main
contribution of this paper is an algorithm for control of
distributed energy systems that satisfies these criteria. Our
algorithm exploits that the units in a distributed energy system

Laura Standardi and John Bagterp Jgrgensen

Department of Applied Mathematics and Computer Science
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Email: {laus, jbjo}@dtu.dk

are dynamically decoupled. This gives rise to a block-angular
structure in the optimal control problem, that allows it to
be decomposed into a master problem and a number of
subproblems, using Dantzig-Wolfe decomposition [5], [6]. To
solve the decomposed problem efficiently we use a column
generation procedure, which is warm-started by a strategy
that utilizes problem specific features. Similar algorithms
have been applied to coordinate the target calculation in set-
point based MPC [7], [8], building climate control [9], and
hierarchical MPC-based control [10].

A. Paper Organization

This paper is organized as follows. In Section II, we
introduce the optimal control problem solved in economic
MPC and a compact problem formulation is derived. We
decompose the problem using Dantzig-Wolfe decomposition in
Section III, and optimality conditions are derived in Section
IV. In this section we also present a warm-started column
generation procedure for solving the optimization problem.
Performance benchmarks for the proposed algorithm based
on a conceptual energy systems management case study are
provided in Section V. We give concluding remarks in Section
VL

II. PROBLEM DEFINITION

We consider an electrical grid with M dynamically decou-
pled power generating units. The units are modelled as discrete
state space systems in the form

jeE M,
j6%7

where .# = {1,2,...,M}. The state space matrices are de-
noted as (A;,B;,C;), the states as x;; € R=0) the inputs as
Ujx € R, and the outputs as Vik € R (),

Assuming that the power production is available as a linear
combination of the outputs in (1), the total power production
can be written as

Tk = Z

je#

(1)
(1b)

Xjk+1 :ijj.k +Bjuj‘k,

Vik = CjXjs

Yiyje= Y, Y,Ci¥jk @
jed
in which T; € R () is a row vector such that Y;Cixjy is
the power production of unit j at time step k.
Economic MPC defines a control law for the generating
units (1), that optimizes the inputs (control moves) with



respect to an economic objective function, input limits, input
rate limits and soft output limits. Evaluating this control law
requires the solution to the minimization problem

. T T T
min Y dlooen+ Y plaict i Vi, (Ga)
wEINTPY I e -

subject to the constraints

Xjjr1 =AjXjp+Bjujy, ke M, je#, (3b)
Vik=Cjxjk, keM, je M, (3¢)
yra= Y, Y,Cixjs, ke M, (3d)
jes
i <ujx <Ujx, ke M, jed, (3e)
Aujp<ujp—ujp—1 <Aujp, ke, jed, (3N
Vi " Yik SVik SVt Ve ke M, jed, (g
0<%u < Vi ke M, jed, (h
Yrx P SYTk SVrpt P kEM, (3i)
0 < px <Py, ke M, (3j)

where A7 = {0+i,1+1i,...,N—1+i}, with N being the
length of the prediction horizon. The input data are the
input limits, (u; ,%;), the input rate limits, (Au; ., At ;). the
output limits associated with the generating units, (Xj,k’yf-,k)’
the output limits associated with the total power production,
(Y7 4:¥r4)s the input prices, pj, the price for violating the
output limits associated with the generating units, r;, and
the price for violating the output limits associated with the
total power production gi. The slack variables y;; and pi
represent the violation of the output constraints. We include
upper limits, (77/-_’,(,51(), on these variables, as this simplifies
later computations considerably.

A. Compact Formulation
By eliminating the states using equation (1a), we can write
the output equation, (1b), as

k
ik =CiAlxjo+ Y, Hjp-ittji,
i€

je,

where the impulse response coefficients are given by

Hji =C;Ak'B;, je.
Consequently
k=Y, (TjCjAl}Xj,o-i- )y TjHj,kiuj,i> .
jeH i
Define the vectors
T .
vi=Dh via yinl"s jed,  (4a)
T .
uj= [”,T.o “]T,l u;N—l] ) JE A, (4b)
and the matrices
Hj, 0 -0 CiA;
Hi, Hj) CjA3
Li=1 . . ) , D= s
Hjn Hjn-1 Hj, 2V

for je /.
We can then write the outputs, (4a), for each of the
generating units as

jed. (6))

Moreover, by introducing ['; and ®; accordingly, it follows
that yr =Y e I'juj+Pjx; 0. We simplify the notation further
by introducing

yj :l"juj-i-CI)jxj,o,

—_1,T T T T .
uj=[ujy uj, ujn ] je,
— =T =T =T T .
0= [ Wy Wy jed,

and similarly we define Au;, Auj, Yy Vj» Yy Y15 ¥is P P-4,
pj» rj and ;. Using this notation, the optimal control problem,
(3), can be written as

I T T
min q'p+ Y, pjui+riv;, (62)
jes

subject to a set of decoupled constraints
u; <u; <uj, je A, (6b)
AE}SAMjSAﬁp jEl/”, (6¢)
Y=Y <Ujuj+®pjo <3+,  je#,  (6d)
0<y; <7, jEM, (6e)
0<p<p, (60)

and a set of linking constraints
=P < Y Tjuj+®xjo <yr+p. (6g)
jesn

In a compact form, (6) can be stated by

min Y fz;, (72)
c o jed
st. Gjz; > g, je, (7b)
Y Hgzi>h, (7c)
jed
where .# =1,2,...,M+1 and
T T r 1T :
g=[w 7], cj=lpj ri]", Jje

T T
Myl =P, CM+1 =4 .

In (7), (7b) represents the decoupled constraints (6b)-(6f), and

(7c) represents the linking constraints (6g). The data structures
in (7) are defined as

G; g. [ A; h
o[ %) w-| %) m-[ ) - [4])
J L J

where

(1 0| u | w
A0 | Auj | Ad

(Gl |e =T 1 ly|= |
Fj —] —00 }7/
Lo 1] 0 |7
— — _fj 0 yr e
[H"Mh}:_f/ 0‘*“ y"r}




for j € ., with

Yr=y;— Z ®xj0, Ir=Ir— Z ®x;0,
jes# jet
Y=Y~ ®xjo, Ji=y;—®jxj0, jeA,
A’Iij:Aﬂj-i-Iouj’,], Aﬁj:Aﬁj-i-loujﬁ], je A,
and A and [ defined as
1 1
-1 1 0
Aj= I=
-1 1 0
In the special case j=M+1, Hy1 = [1 71}T and

| Gust 8y |8 |=[1]0[P]

III. DANTZIG-WOLFE DECOMPOSITION

Dantzig-Wolfe decomposition exploits that a convex set can
be characterized by its extreme points and its extreme rays [5],
[6]. For each j € .4, the set of points satisfying the decoupled
constraints (7b), ¢; = {z;|G,z; > g;}, may be written as

{z,|z, Y A Y M=1,A>0Vie @},
ic?

e

where 7’ are the extreme points of %;, and Al are convex com-
bination multipliers. Notice that since each of the sets ¥; are
bounded, extreme rays are not needed in their representation.

By replacing the decision variables in (7) by convex combi-
nation multipliers, we obtain the master problem formulation

min ¢ = Z Z c/lj’, (8a)
A>0 jenicr
Y Y HAl > (8b)
jeMi€e?
Y Ai=1, jed, (8¢)
IS4

where we have defined H;'. =
M and i € L.

Given a solution, A*, to the master problem (8), a solution
to the original problem, (7), can be obtained as

5= Y (A

ic?

szﬁ and 03 = cjrzﬁ for each j €

je .

Since the number of extreme points, ||, can increase ex-
ponentially with the size of the original problem, solving
the master problem directly is inefficient. As demonstrated
in the following section however, the problem can be solved
efficiently using a column generation procedure that replaces
2 by a subset Z.

IV. COLUMN GENERATION PROCEDURE

The dual linear program of (8) can be stated as

max W a+ Z B, %a)
az0. jed
st. (H) o+ <, jed, ic 2, (9b)

in which a € R* and B € RM*! are the Lagrange multipliers
associated with the linking constraints, (8b), and the convexity
constraints, (8c), respectively. The necessary and sufficient
optimality conditions for (8) and (9) are

Y Y HA > (10a)
jeMic€e?
Y Ai=1, jed, (10b)
i€e?
A;>0,  jeudd,ie?,  (10c)
;—H) a—B;>0, jedd,ic?,  (10d)
a>0, (10e)
Al —(H) a—Bj) =0 jed, ic 2, (10f)

In Proposition 1 we derive conditions for which a solution
satisfying this set of optimality conditions, can be obtained by
solving the master problem (8) over a subset of the original
variables.

Proposition 1: Let 2 C 2, and define (i, d,B) as a primal-
dual solution to (8) and (9) restricted to the subset 2. Then
the solution

o =@,

ﬁ;zﬁj je'ﬁ_v

. Al ifie P ~
AN)=<"17 -, jeM, i€ P,
(A% {0 ifier\g IETIET

satisfies the conditions, (10), if the optimal objective value of
the subproblem

q)j:rrli_n{(cj—HjTa*)TZj—ﬁj*\Gij281}7 (1
<j

is non-negative for each j € ./Z.

Proof The solution ()L*,oc*,ﬁ*) satisfies (10a) since

Y Y H@AY. =Y Y HA>h,

jeMic? jeM ic?

which follows from the definition of (1,&, ). Similarly, it is
easy to verify that the conditions (10c), (10b), (10e) and (10f)
are fulfilled.

Provided that (A*,a*, B*) is optimal, (10d) yields

—(H) o =B} = (c;—Hla*)'2, — B} >0,

for all j € .4 and i € &. By construction of the solution,
(12) is satisfied for all i € &2. To check that the condition
holds for all i € 2\ 2, we consider the optimization problem
(11). Since this linear program minimizes the left hand side
of (12) over all possible extreme points, Z;, of ¢;, the solution

12)



(A*,@, B*) also satisfies the remaining optimality condition
(12) if @; is non-negative for all j € .. R

In Algorithm 1, we have outlined a column generation pro-
cedure based on Proposition 1. The algorithm exploits that if
(12) is violated, then the solution to the subproblems, (11),
provides a set of extreme points that can be added to the
master problem. Notice that when & is restricted to the subset
&, the master problem (8) is much smaller than the original
problem. Therefore, the column generation procedure requires
less memory than conventional linear programming methods.
Moreover, solving the subproblems is computationally inex-
pensive as they do not grow with the number of units M. We
remark that this step may be performed in parallel.

Algorithm 1 Column generation procedure for solving (8).
Require: {z? ]//:/ 1
i=0, converged = false
while not converged do
P ={0,1,...,i}
for jc.#,icPdo
NN s
end for
(o, A%, 0", B*) < solve (8) with & = P
for j € .4 do
(9;,2}) < solve (11)
end for
if o; >0Vje A then
converged = true

else
for j €./ do
2 2y
end for
i=i+1
end if
end while

A. Warm-Starting

Algorithm 1 requires a set of initial points {z?}j//:/ | that
are feasible for both the subproblems (11) and the original
problem (7). As economic MPC is a receding horizon strategy,
we can generate such a set of points by exploiting the solution
from a previous time step.

Given the solution to (11)

T T T T

G=[Go - wiva 7 vinl
T 71T
Gy = [Pf P ]

we build a set of initial points in the following sampling instant
as

0 T T ~T T T T
g=[wh w0 YL o v Y
0 71T
=" e BT

for each j € .. Hence, the original solution values are shifted
forward in time, and the variables i;, ¥; and p are appended

to the initial points. In our implementation, we let

=y 1, je A, 13)

which leads to an initial input sequence with constant input
in the two final sampling intervals. Using the state space
equations (1)-(2), we compute the outputs y;y and Y7y
associated with this input sequence. Based on these values
we let

7= maX(Xj‘N —¥in,0) +max(¥;n —F; 5, 0),
p = max(y, , —¥r.n,0) + max(¥rn —¥ry,0),

where the maximum function is evaluated element-wise.

Assuming that the inputs (13) satisfy the input constraints
for the updated problem data, and that the upper limits on
Y; and p are sufficiently large, the strategy above yields a
set of feasible initial points for Algorithm 1, {z? }/Zl’ which
exploits the solution obtained in the previous time step. As
the solution in successive time steps are closely related in
MPC applications, this approach provides a warm-start for
Algorithm 1. In case no previous solution is available, a
similar strategy can be used to adjust the slack variables for
an arbitrary feasible input sequence.

V. RESULTS

In this section, we compare a MATLAB implementation of
Algorithm 1, denoted DWempc, to linear programming solvers
from the following software packages: CPLEX, Gurobi and
MOSEK. The algorithms are run on an Intel(R) Core(TM) i5-
2520M CPU @ 2.50GHz with 4 GB RAM running a 64-
bit Windows 7 Enterprise operating system. In DWempc, the
restricted master problem and the subproblems are solved
using CPLEX.

As a conceptual case study, we consider a collection of
power generating units in the form

Yi(s) = 1/(tjs+1)°Uj(s), jed, (14

where Uj(s) is the fuel input and the Y;(s) is the power
production. The third order model, (14), has been validated
against actual measurement data in [11]. In our study, we
vary the time constant, 7;, to represent different types of
power generating units. Time constants in the range 80-120
are associated with slow units, such as centralized thermal
power plants, while time constants in the range 20-60 represent
units with faster dynamics such as diesel generators and gas
turbines. To control the units, (14), using economic MPC,
we realize the system in the discrete state space form (1)-
(2) using a sampling time of 7y = 5 seconds. In the resulting
model structure, u;; € R is fuel input, y;; € R is the power
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