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Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in partial fulfilment of
the requirements for acquiring the Ph.D. degree in engineering. The project
was funded jointly by DONG Energy and the Danish Ministry of Higher Edu-
cation and Science under the Industrial Ph.D. program, project 11-117435.

The thesis presents novel models and algorithms for power production planning.
We apply economic model predictive control (EMPC) for economic dispatch
with minimum generation cost. A portfolio system is introduced for demon-
stration purposes. The portfolio system consists of generators with diverse op-
erational features and capabilities. Extensions of certainty-equivalent EMPC
are proposed to account for the inherent uncertainties associated with renew-
able energy sources. Moreover, we develop tailored optimization algorithms to
accommodate the proposed EMPC schemes to large-scale energy systems.

The thesis consists of a summary report and a collection of eleven research
papers. The research papers were written during the period April 2012 to
September 2015. One paper has been published in a peer-reviewed scientific
journal, and three papers have been accepted for publication in peer-reviewed
scientific journals. Seven papers have been published at peer-reviewed scientific
conferences.

Kgs. Lyngby, October 2015

Leo Emil Sokoler
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Summary (English)

This thesis concerns methods and algorithms for power production planning
in contemporary and future power systems. Power production planning is a
task that involves decisions across different time scales and planning horizons.
Hours-ahead to days-ahead planning is handled by solving a mixed-integer linear
program for unit commitment and economic dispatch of the system power gen-
erators. We focus on a minutes-ahead planning horizon, where unit commitment
decisions are fixed. Economic model predictive control (EMPC) is employed to
determine an optimal dispatch for a portfolio of power generators in real-time.
A generator can represent a producer of electricity, a consumer of electricity, or
possibly both. Examples of generators are heat pumps, electric vehicles, wind
turbines, virtual power plants, solar cells, and conventional fuel-fired thermal
power plants. Although this thesis is mainly concerned with EMPC for minutes-
ahead production planning, we show that the proposed EMPC scheme can be
extended to days-ahead planning (including unit commitment) as well.

The power generation from renewable energy sources such as wind and solar
power is inherently uncertain and variable. A portfolio with a high penetration
of renewable energy is therefore a stochastic system. To accommodate the need
for EMPC of stochastic systems, we generalize certainty-equivalent EMPC (CE-
EMPC) to mean-variance EMPC (MV-EMPC). In MV-EMPC, the objective
function is a trade-off between the expected cost and the cost variance. Sim-
ulations show that MV-EMPC reduces cost and risk compared to CE-EMPC.
The simulations also show that the economic performance of CE-EMPC can be
much improved using a constraint back-off heuristic.

Efficient solution of the optimal control problems (OCPs) that arise in EMPC
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is important, as the OCPs are solved online. We present special-purpose algo-
rithms for EMPC of linear systems that exploit the high degree of structure in
the OCPs. A Riccati-based homogeneous and self-dual interior-point method
is developed for the special case, where the OCP objective function is a linear
function. We design an algorithm based on the alternating direction method
of multipliers (ADMM) to solve input-constrained OCPs with convex objective
functions. The OCPs that occur in EMPC of dynamically decoupled subsys-
tems, e.g. power generators, have a block-angular structure. Subsystem de-
composition algorithms based on ADMM and Dantzig-Wolfe decomposition are
proposed to solve these OCPs. Subproblems that arise in the decomposition
algorithms are solved using structure-exploiting algorithms. To reduce compu-
tation time of the EMPC algorithms further, warm-start and early-termination
strategies are employed. Benchmarks show that the special-purpose algorithms
are significantly faster than current state-of-the-art solvers.

As a potential application area of EMPC, we study power production planning
in small isolated power systems. A critical part of power production planning in
small isolated power systems is operational reserve planning. The operational
reserves are activated to balance production and consumption in real-time. An
EMPC scheme is presented for activation of operational reserves. Simulations
based on a Faroe Islands case study show that significant cost savings can
be achieved using this strategy. For efficient planning of the operational re-
serves, we present an optimal reserve planning problem (ORPP). The ORPP is
a contingency-constrained unit commitment problem that addresses low inertia
challenges in small isolated power systems.

In summary, the main contributions of this thesis are:

• A mean-variance optimization strategy for EMPC of linear stochastic sys-
tems.

• Tailored algorithms for solution of the OCPs that arise in EMPC of linear
stochastic systems.

• Methods for power production planning in small isolated power; the ORPP
for unit commitment and economic dispatch, and an EMPC scheme for
activation of operational reserves.



Summary (Danish)

Denne afhandling omhandler produktionsplanlægning i nuværende og fremtidige
energisystemer. Produktionsplanlægning involverer beslutninger p̊a forskellige
tidsskalaer og med forskellige planlægningshorisonter. Planlægning p̊a time- til
dagsniveau h̊andteres ved at løse et lineært blandet heltalsprogram til bind-
ing (unit commitment, UC) og økonomisk indmelding (econmic dispatch) af
systemets elektriske generatorer. Vi fokuser p̊a planlægning med en minut-
baseret horisont, hvor generatorernes bindingsmønster er fastlagt. Økonomisk
model prædiktiv regulering (economic model predictive control, EMPC) anven-
des til, at bestemme en optimal køreplan for en portefølje af elektriske gen-
eratorer i realtid. En elektrisk generator kan repræsentere en producent af
elektricitet, en forbruger af elektricitet, eller begge dele. Eksempler p̊a gen-
eratorer er varmepumper, elbiler, vindmøller, virtuelle kraftværker, solpaneler,
og konventionelle termiske kraftværker. Selvom denne afhandling fokuserer p̊a
minutbaseret produktionsplanlægning vises det, at EMPC tilgangen kan gener-
aliseres til planlægning p̊a time- og dagsniveau (inklusiv binding af generatorer).

Elproduktion baseret p̊a vedvarende energikilder, som f.eks. vind- og vand-
kraft, er usikker og variabel. En portefølje af generatorer med en stor andel
af vedvarende produktion, er derfor et stokastisk system. Behovet for EMPC
af stokastiske systemer imødekommes ved at generalisere sikkerhedsækvivalens
EMPC (certainty-equivalent EMPC, CE-EMPC) til middelværdi-varians EMPC
(mean-variance EMPC, MV-EMPC). I MV-EMPC formuleres objektfunktio-
nen som en afvejning af de forventede driftsomkostninger og variansen af drift-
somkostningerne. Simuleringer viser, at MV-EMPC reducerer b̊ade omkost-
ninger og risiko sammenlignet med CE-EMPC. Det vises ogs̊a, at CE-EMPC
kan forbedres betydeligt ved anvendelse af en (back-off) heuristik, der modifi-
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cerer systemets begrænsninger.

I EMPC løses et kontrolproblem (optimal control problem, OCP) med samme
frekvens som systemets sample tid. Effektive algoritmer til løsning af EMPC
kontrolproblemer er vigtige, idet kontrolproblemerne løses i realtid. Afhandlin-
gen præsenterer skræddersyede algoritmer til EMPC af lineære systemer, der
udnytter strukturen i kontrolproblemerne. En Riccati-baseret homogen og selv-
dual indrepunktsmetode, udvikles til specialtilfældet hvor kontrolproblemets
omkostningsfunktion er en lineær funktion. En algoritme baseret p̊a den al-
ternerende multiplikator metode (alternating direction method of multipliers,
ADMM), designes til løsning af input-begrænsede kontrolproblemer med kon-
vekse objektfunktioner. Kontrolproblemer der opst̊ar i forbindelse med EMPC
af dynamisk afkoblede systemer, som f.eks. elektriske generatorer, har en blok-
angulær struktur. Disse kontrolproblemer løses effektivt af dekompositions al-
goritmer baseret p̊a ADMM og Dantzig-Wolfe dekomposition. Subproblemer
i dekompositionsalgoritmerne løses via skræddersyede optimeringsalgoritmer.
Strategier til initialisering (warm start) og tidlig afslutning (early-termination)
reducerer beregningstiden for de foresl̊aede EMPC algoritmer ydereligere. Sam-
menligner viser, at de skræddersyede algoritmer er betydeligt hurtigere end ek-
sisterende state-of-the-art metoder til løsning af kontrolproblemer.

Som et potentielt anvendelsesomr̊ade for EMPC, studeres produktionsplanlægn-
ing i sm̊a isolerede ø-systemer. Reserveplanlægning er en kritisk del af produk-
tionsplanlægningen i sm̊a isolerede ø-systemer. Reserverne aktiveres til bal-
ancering af forbrug og produktion i realtid. En EMPC-baseret strategi ud-
vikles til aktivering af reserver. Et konceptuelt case studie af Færøerne viser,
at denne strategi reducerer driftsomkostningerne signifikant. Til planlægn-
ing af reserver, præsenteres et optimalt reserve beregnings problem (optimal
reserve planning problem, ORPP). Dette problem er et hændelses-begrænset
(contingency-constrained) UC problem, der er specialiseret til sm̊a ø-systemer
med varierende inerti.

Hovedbidragene i denne afhandling kan opsummeres som:

• En middelværdi-varians optimeringsstrategi til EMPC af lineære stokastiske
systemer.

• Skræddersyede algoritmer til EMPC af lineære stokastiske systemer.

• Metoder til produktionsplanlægning i sm̊a isolerede ø-systemer. Herunder
det introducerede ORPP til økonomisk indmelding og binding af genera-
torer, og en EMPC-baseret strategi til aktivering af reserver.
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C h a p t e r 1

Introduction

This chapter describes the transition of contemporary fossil-based power systems
into power systems with a high penetration of renewable energy sources. The
increased electricity generation of renewable energy sources, motivates the use
of economic model predictive control (EMPC) for power production planning.
This chapter also states the main contributions and the organization of the
thesis.

1.1 Future Power Systems

Many countries have ambitious political climate and energy targets to reduce
CO2 emissions [Eur15a,Bro13,Eur15b]. The Renewable Energy Directive states
that 20% of total EU energy consumption in 2020 should be produced by re-
newable energy sources. Binding national 2020 renewable energy targets for
each Member State forms an integral part of EU energy policy. Wind power,
solar power, hydro power, and sustainable biomass-sourced power will account
for the majority of future renewable energy production [Eur14]. Fig. 1.1 shows
the 2020 renewable energy targets for each EU Member State.

Integration of renewable energy sources is challenging, due to their inherent
variable and uncertain nature. Wind turbines depend on the wind, and solar
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Figure 1.1: Binding national 2020 renewable energy targets for each EU Mem-
ber State [Eur15b].

cells depend on the solar radiation [Pin13]. Hydro power is an attractive source
of renewable energy, because of its flexibility and its storage capabilities. Hydro
power is a key factor behind the high 2020 renewable energy targets set by Aus-
tria, Sweden, and Finland. Countries with poor conditions for hydro power rely
more heavily on wind and solar power. As an example, wind power accounted
for approximately 40% of the total Danish energy consumption in 2014 [Ene15].
This percentage is expected to increase. Denmark has set the goal of being
completely independent of fossil fuels by 2050 [ED11].

To handle fluctuations in the generation of renewable energy sources, flexible
solutions are needed on both the production and the consumption side of energy.
Distributed energy resources, such as heat pumps, electric vehicles, and local
combined heat and power plants, as well as household electrical appliances, can
provide flexibility in the form of e.g. load shifting, balancing services, and energy
storage [ED10, ED11, MPH+15]. Virtual power plants (VPPs) are aggregates
of smaller distributed energy resources [BK10, YTP09, SMT11, LKMB10, HI08,
MRKG11]. Commercial VPPs are aimed at market related activities such as
maximizing profit and overcoming market barriers (e.g. market barriers may
prevent small power generators from submitting bids in the electricity market).
Technical VPPs help maintain power quality, reliability and security of supply
[PRS07,You10]. Fig. 1.2 is a conceptual illustration of a future power grid, and
Fig. 1.3 illustrates the VPP technology.
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Figure 1.2: Conceptual illustration of a future power grid [Eur06].

This thesis focuses on power system operations from the power producer’s point
of view. Linear EMPC is applied to operate a portfolio of power generators
with minimum generation cost. In a conventional portfolio, the power gener-
ation is mainly based on fossil fuels such as coal, natural gas, and petroleum
(and in some cases nuclear power). The power production of fossil-based gener-
ators is deterministic in nature. Deterministic power management strategies are
therefore adequate to control conventional fossil-based portfolios. A portfolio
based on a large share of renewable energy sources is a stochastic system. Ac-
cordingly, EMPC schemes are developed for control of stochastic systems. The
EMPC schemes have several important applications in control of future power
systems. We present special purpose algorithms to accommodate the proposed
EMPC schemes for large-scale energy systems.

1.2 Thesis Contribution and Organization

The emphasis of this thesis is on the formulation and solution of the optimal con-
trol problems (OCPs) that arise in EMPC of linear stochastic systems, and their
applications in power production planning. Fig. 1.4 shows the research areas of
the thesis papers, within a power production planning framework. Some of the
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Figure 1.3: A VPP is an aggregate of smaller distributed energy resources
[Twe13].

Figure 1.4: Overview of thesis papers.

papers have overlapping areas. The papers are divided into two main groups.
Open-loop control concerns production scheduling with a day-ahead planning
horizon, and closed-loop control concerns production scheduling with a planning
horizon ranging from a few seconds up to several minutes. A key difference be-
tween the two groups is that computations within the closed-loop control group
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are time critical, because they are performed online. Efficient algorithms are
therefore important for the tractability of EMPC schemes within this group.
Production scheduling is in the open-loop control group. Production scheduling
involves solving a mixed-integer linear program (MILP) for unit commitment
(UC) and economic dispatch of the system power generators. Balance control
computes corrections to the nominal production plan (provided by the produc-
tion scheduling algorithm) in real-time, based on updated forecasts, setpoint
corrections, measurements, and a dynamic model of the system. Frequency
control is applied to keep the system frequency close to its nominal value. This
is important to avoid blackouts in the system. Balance and frequency control
become increasingly important, as more renewable energy sources are integrated
into the power system. The key contributions of this thesis are described in the
following two sections.

1.2.1 Formulation of the OCP

Certainty-equivalent EMPC (CE-EMPC) is the most widely used form of EMPC.
CE-EMPC replaces random variables in the OCP by conditional expectations.
This means that the variance of the random variables is neglected. In power
production planning, disregarding the uncertainty (e.g. variations in the elec-
tricity price, electricity consumption, and generation of renewable energy) leads
to violations of the system constraints and inefficient use of resources. Paper F
and Paper I show that CE-EMPC performs poorly under uncertainty, both for
balance control and for frequency control. To overcome this challenge, Paper
F generalizes CE-EMPC to mean-variance EMPC (MV-EMPC). In MV-EMPC
the OCP objective function is formulated as a bi-criterion that trades off cost ex-
pectation and cost variance. MV-EMPC reduces both cost and risk compared
to CE-EMPC. Paper E demonstrates regularization techniques for improving
the closed-loop performance of EMPC under uncertainty.

Paper H develops a novel optimal reserve planning problem (ORPP) for UC
and economic dispatch of generators in an isolated power system. A Faroe Is-
lands case study show that the production plan provided by the ORPP is robust
against contingencies. In the particular case study, blackouts and power outages
are avoided at a cost increase of less than 3%. Paper J presents a hierarchical
algorithm for integrated scheduling and control. The algorithm establishes a
formal connection between production scheduling and balance control in power
system operations. Moreover, it accommodates the need for frequent reschedul-
ing of power generation using updated forecasts of renewable energy production.
Paper I presents a novel EMPC scheme for activation of operational reserves
in a single-area power system. In this scheme, the OCP objective function is
formulated as a bi-criterion that trades off cost of generation and setpoint track-
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ing. Simulations show that significant cost savings can be achieved using the
proposed EMPC scheme, compared to conventional setpoint-based EMPC and
frequency-based PI control.

1.2.2 Solution of the OCP

The performance and reliability of the optimization algorithms solving the OCPs
that arise in EMPC are important, as the optimization problems are solved on-
line. Convex optimization algorithms for EMPC form an important contribu-
tion of this thesis. Paper B and Paper E develop decomposition algorithms for
EMPC of dynamically decoupled subsystems. These algorithms are based on the
alternating direction method of multipliers (ADMM) and Dantzig-Wolfe decom-
position. Power generators in a portfolio system are an example of dynamically
decoupled subsystems. Paper G overcomes tractability issues of MV-EMPC by
solving a convex relaxation of the OCP associated with MV-EMPC using a new
ADMM-based decomposition algorithm.

Paper A, Paper C, and Paper K, provide a homogeneous and self-dual interior-
point method (IPM) for EMPC of linear systems with linear constraints and
linear objective functions. Paper D presents an ADMM-based algorithm for
input-constrained EMPC with convex objective functions. These algorithms
can be used independently, or as subproblem solvers in the proposed decompo-
sition algorithms. The EMPC algorithms are implemented in MATLAB and C.
Warm-start and early-termination strategies are applied to increase the perfor-
mance of the algorithms further. Benchmarks show that the EMPC algorithms
are significantly faster than state-of-the-art solvers for solution of the OCPs.
Moreover, while memory becomes an issue for general-purpose solvers, the de-
composition algorithms facilitate EMPC of large-scale energy systems.

1.2.3 Thesis Organization

We have organized this thesis as follows. Part I and Part II constitute the
summary report, and Part III is the collection of research papers. Part I of
the summary report is an introduction and background. It describes energy
systems, model predictive control (MPC), and convex optimization algorithms,
in general terms. The intention of Part I is only to provide references and
background material for Part II and Part III of the thesis. Part II summarizes
the contributions of the research papers. Part II is divided into three main
sections: a section on OCP formulations, a section on OCP algorithms, and a
section on planning and control applications in small isolated power systems.
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Energy Systems

This chapter provides an overview of power production planning using a top-
down view of energy systems. A hierarchical planning architecture is introduced,
and we discuss the integration of EMPC into this architecture. This chapter
also introduces a linear power portfolio system. The portfolio system consists
of a collection of power generators. A power generator can represent a producer
of electricity, a consumer of electricity, or possibly both.

2.1 Energy Value Chain

Producers and consumers of electricity are connected to each other via the power
grid. Fig. 2.1 illustrates a typical grid topology. Power producers are connected
to the transmission grid, which is a high-voltage grid. Power substations step
transmission voltages down to distribution voltages that are distributed to end-
users via distribution grids.

In liberalized power systems, the energy value chain is divided into commercial
and non-commercial activities. Sales, consumption and generation are commer-
cial activities, while transmission and distribution are non-commercial activities.
Fig. 2.2 illustrates the system setup [HJB13]. Retailers (including wholesalers)
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Figure 2.1: A typical power grid topology.

Figure 2.2: Overview of a liberalized electricity market.

and power producers are commercial actors. They buy and sell power in the
electricity markets. End-users buy their electricity via the retailers. The trans-
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mission system and the distribution system are operated by non-commercial
actors. The transmission system operator (TSO) is responsible for the daily op-
eration and maintenance of the transmission grid. The TSO is also responsible
for security of supply and power quality. The TSO relies on ancillary services
that are traded in special capacity markets. Each distribution network is man-
aged by a distribution system operator (DSO). The DSO is responsible for a
stable supply of electricity within its geographical area. The DSO also collects
consumption (production) data from the end-users. These data are used for
financial settlements with the retailers, and to monitor the need to expand the
grid capacity.

Electricity is bought and sold in electricity markets. Markets vary from geo-
graphical area to geographical area. A majority of the energy is usually traded in
a day-ahead market. Intraday markets make it possible to adjust the contracted
positions within the day of operation. Imbalances from the contracted positions
are settled in a balancing market. To balance production and consumption in
real-time, the TSO relies on operating reserves that are bought in markets for
ancillary services. There are different reserve markets, each with specific require-
ments for the reserve activation time and for the size of the reserve. Usually,
there is also a real-time (regulating power) market, where the market players can
submit bids for up and down regulation to the TSO. Regulating power is mainly
activated to solve persistent imbalance problems, while operating reserves are
activated to ensure stable operation of the system. For more details on markets
and actors, we refer to e.g. [PHB+13,Hal14,HJB13,Zug13,MCM+14].

2.2 Planning Hierarchy

After the day-ahead electricity market is cleared, each power producer receives a
reference profile specifying the amount of electricity they have sold. The power
producer’s main objective is then to determine the most economical production
plan that accommodates the reference profile.

Fig. 2.3 is a diagram of the power production planning hierarchy from a power
producer’s point of view. The system level covers the upper three layers of
the planning hierarchy. This level involves coordinated decisions for the entire
portfolio of generators. In the top system level layer is business planning, where
portfolio modifications are planned. The next two layers are the production
planning layer and the balance control layer. The production planning layer is
responsible for unit commitment and economic dispatch of the portfolio power
generators, given the reference profile. This involves solving the UC problem.
We refer to the production plan provided by the UC problem, as the nominal
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Figure 2.3: Power production planning hierarchy [Edl10].

production plan. The planning horizon of the UC problem is up to several
days, while its resolution is in the order of minutes. The UC problem is an
MILP. The solution time of the UC problem can be several minutes or even
hours, depending on the portfolio size and the number (and type) of operating
constraints. Consequently, the production plan can only be updated with a
relatively low frequency.

The production planning layer is a pure open-loop control layer. To account for
imbalances between power production and reference profile, a balance control
layer is employed. The balance control layer is a closed-loop control layer.
Closed-loop control is necessary, as the controlled system is a stochastic system.
In particular, it is not possible to predict the generation of renewable energy
sources exactly. Moreover, the TSO provides corrections to the reference profile
in real-time (e.g. via activation of regulating power and operational reserves).
As more renewable energy is integrated into the grid, forecasts become less
accurate, and the reserve and real-time markets become more critical for the
TSO to balance production and consumption on a grid level. This means that
the need for continuously adjusting the nominal production plan increases for
the power producers.

Fig. 2.4 is a schematic diagram of the production planning layer and the bal-
ance control layer. This thesis applies EMPC for balance control. The EMPC-
based balance controller exploits information on updated forecasts, setpoint-
corrections, and measurements, to continuously adjust the nominal production
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Figure 2.4: The production planning and balance control layer [Edl10].

plan. Discrete decisions such as on/off decisions are considered as fixed parame-
ters by the balance controller. The planning horizon of the balance controller is
usually less than one hour, and its sampling rate is in the order of seconds. Us-
ing a fine-grained temporal resolution allows the balance controller to act based
on a dynamic model of the system. Features that make EMPC well-suited
for balance control are its predictive ability, economically efficient operation,
easy integration of constraints, direct support of multiple-input multiple-output
(MIMO) systems, and flexibility in the formulation of the OCP.

2.2.1 Integration of Scheduling and Control

Paper J presents an EMPC scheme for integrated scheduling and control. The
OCP solved in this scheme involves decisions on two time scales. Binary vari-
ables occur as scheduling (slow time-scale) decisions in the OCP, and continuous
variables occur as control (fast time-scale) decisions in the OCP. A hierarchical
algorithm is proposed for solution the OCP. The algorithm consists of two op-
timization levels. The upper level (scheduling level) solves an MILP with a low
frequency. The lower level (control level) solves a linear program (LP) with a
high frequency. The main advantage of the proposed approach is that it requires
online solution of an LP rather than an MILP.

The hierarchical algorithm is tested using a power portfolio case study, in which
production scheduling and balance control are integrated. The idea is to re-
place the production planner and the balance controller in Fig. 2.4 by a single
EMPC scheme. For this EMPC scheme, the OCP is an MILP that includes



14 Energy Systems

binary unit commitment variables. Moreover, the OCP is defined to have a
long prediction horizon and a fine-grained temporal resolution. A single-layer
EMPC scheme is attractive from an economic point of view, as it collects the
degrees of freedom of production planning and balance control in a single opti-
mization problem. The disadvantage is that the resulting OCP is a large-scale
MILP. Direct solution of the large-scale MILP is computationally intractable in
real-time. Simulations show that the hierarchical algorithm reduces the com-
putation to solve the large-scale MILP (to near-optimality) by several orders of
magnitude. Hence, the hierarchical algorithm allows frequent redispatch of the
system power generators. This is important for cost-efficient operation of power
systems with a high penetration of renewable energy sources.

Hierarchical decomposition of unit commitment and balance control is widely
adopted in power system operations [SC13,WW13]. Paper J demonstrates that
this hierarchical decomposition can be interpreted as an approximation of the
proposed EMPC scheme for integrated scheduling and control.

2.3 Generator Model

EMPC requires a model of the controlled system. This section presents a generic
power generator model. A power generator refers to a unit that can either
produce or consume power, or possibly both. Electric vehicles, heat pumps,
combined heat and power plants, wind turbines, thermal power plants, and
VPPs, are examples of power generators. By convention, the negative sign is
used for power consumption and the positive sign is used for power production.

Power generators are modeled at different levels of detail, depending on the
application of interest [WW13, Deb88, KBL94, KCLB14, And12b]. The main
focus of this thesis is on the formulation and the solution of the OCPs, and not
on modeling of energy systems. We model a power generator as a time-invariant
system. In transfer function form, the nominal system is

Zg(s) = Gg,u(s)Ug(s) +Gg,d(s)Dg(s), (2.1)

where Ug(s) ∈ Rng,u is the generator input, Dg(s) ∈ Rng,d is a known distur-
bance, and Z(s) ∈ Rng,z is the generator output. Gg,u(s) and Gg,d(s) are trans-
fer functions. Transfer functions can be identified based on experimental step
responses of a system [Lju99]. References [Hal14,Hov13,Sta15,EMB09] provide
(approximate) models for a variety of power generators in the form (2.1), e.g.
heat pumps in residential buildings [HPMJ12], electric vehicles with vehicle-to-
grid capabilities [HPM+12], solar tanks [HBP+12], cold rooms in refrigeration
systems [HLEJ12], and conventional thermal power plants [EMB09].
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Figure 2.5: Step response of the third-order system (2.2) for three different
time constants.

As an example, consider the special case of (2.1) where

Zg(s) =
1

(τs+ 1)3
(Ug(s) +Dg(s)) . (2.2)

In this single-input single-output (SISO) system, Ug(s) is the power production
setpoint, and Zg(s) is the power production. Fig. 2.5 shows the step response
for the system (2.2). Three different time constants are considered. In case
τ = 5s, the third-order system (2.2) can represent a small agile power plant
such as a diesel generator. When τ = 40s, the model may represent a medium-
sized gas turbine, and for τ = 80s, it may represent a large fuel-fired thermal
power plant.

In discrete state-space form, we write the system (2.1) as

xg,k+1 = Agxg,k +Bgug,k + Egdg,k, (2.3a)

zg,k = Cg,zxg,k. (2.3b)

In this model structure, (Ag, Bg, Eg, Cg,z) are the state-space matrices, xg,k ∈
Rng,x is the (internal) system state, ug,k ∈ Rng,u is the system input, dg,k ∈ Rng,d

is the known disturbance, and zg,k ∈ Rng,z is the system output.

In general, the power generator model (2.3) is a MIMO system. Outputs of
the system may include e.g. the state-of-charge for an electric vehicle, the
room temperature for a heat pump in a residential building, and the reservoir
level for a pumped storage hydro plant. We assume that the power production
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(consumption) is part of the system output. This is written as

zpg,k = Υzg,k, (2.4)

where Υ ∈ R1×ng,z is a vector of multipliers and zpg,k is the power production of
the generator. For the SISO system (2.2), Υ = 1.

2.4 Portfolio Model

Define M power generators in the form (2.3)

xgj ,k+1 = Agjxgj ,k +Bgjugj ,k + Egjdgj ,k, j ∈M, (2.5a)

zgj ,k = Cgj ,zxgj ,k, j ∈M, (2.5b)

where M = {1, 2, . . . ,M}. Using (2.4), the total power production by the M
generators is expressed as

zT,k =
∑

j∈M
zpgj ,k =

∑

j∈M
Υjzgj ,k =

∑

j∈M
ΥjCgj ,zxgj ,k. (2.6)

The portfolio model (2.5) and (2.6) is written compactly as

xP,k+1 = APxP,k +BPuk + EP dP,k, (2.7a)

zP,k = CP,zxP,k, (2.7b)

in which

zP,k =




zg1,k
zg2,k

...
zgM ,k

zT,k



, xP,k =




xg1,k
xg2,k

...
xgM ,k


 , uP,k =




ug1,k
ug2,k

...
ugM ,k


 , dP,k =




dg1,k
dg2,k

...
dgM ,k


 , (2.8)

and

AP = blkdiag(Ag,1, Ag,2, . . . , Ag,M ),

BP = blkdiag(Bg,1, Bg,2, . . . , Bg,M ),

EP = blkdiag(Eg,1, Eg,2, . . . , Eg,M ),

using MATLAB notation. Finally

CP,z =




Cg1,z
Cg2,z

. . .

CgM ,z

Υ1Cg1,z Υ2Cg2,z · · · ΥMCgM ,z



.



2.4 Portfolio Model 17

In the portfolio model (2.7), xP,k ∈ RnP,x , uP,k ∈ RnP,u , dP,k ∈ RnP,d and
zP,k ∈ RnP,z . The system dimensions are

nP,x =
∑

j∈M
ngj ,x, nP,u =

∑

j∈M
ngj ,u,

nP,d =
∑

j∈M
ngj ,d, nP,z =

∑

j∈M
ngj ,z + 1.

The system (2.7) is a generator portfolio model. The model consists of dy-
namically decoupled subsystems (power generators) that are linked via the ag-
gregated variables (2.6). The aggregated variables represent the total power
production of the portfolio. Utilizing structure in the state-space matrices is
an important part of implementing efficient algorithms for EMPC. In this the-
sis, (2.7) is used for conceptual studies of EMPC in power production plan-
ning. Modelling individual power generators for the portfolio is studied in
e.g. [Hal14,Hov13,Sta15,EMB09].

To model the uncertain and variable behavior of generators based on renewable
energy sources, we augment the system (2.7) by stochastic terms. The resulting
system is a linear stochastic state-space model in the form

xP,k+1 = APxP,k +BPuk + EP dP,k + wP,k, (2.9a)

zP,k = CP,zxP,k, (2.9b)

yP,k = CP,yxP,k + vP,k. (2.9c)

yP,k ∈ RnP,y is the system measurement, wP,k ∈ RnP,x is the process noise, and
vP,y ∈ RnP,y is the measurement noise. We use bold letters to denote random
variables. Realizations of the random variables are written in normal letters.
Generally, a number of the controlled outputs may only be available via state
estimation, i.e. CP,y 6= CP,z.
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C h a p t e r 3

Model Predictive Control

The portfolio system (2.9) is a linear stochastic system. This chapter gives a
brief introduction to MPC of linear stochastic systems. Economic cost functions
motivate the use of EMPC over setpoint-based MPC. This chapter also addresses
stability of MPC and EMPC. Finally, we provide an overview of algorithms for
efficient solution of the OCPs that arise in MPC and EMPC.

MPC is a technology for control of constrained dynamic systems. Due to its in-
herent ability to handle constraints, time delays, and multivariate systems, MPC
has become one of the most successful control technologies in the process in-
dustries [QB03,Raw00,RM09,Mac02,Mos95,Ros03,GSD05,KH05,CB07,ML99,
MRRS00,JHR11]. Recent developments demonstrate that MPC is a promising
technology for control of energy systems as well [HLEJ12, HLSJ12, HBP+12,
MSSVP14,HPMJ12,PEH+13,Hal14,HPM+12,SPJS13,EBJ11,ZH14,MQLS11].
The basic idea of MPC is to optimize the predicted behavior of a dynamic model
over a finite horizon. At each sampling instant, the system state is estimated
and an OCP is formed and solved. The solution of the OCP provides a sequence
of inputs. Only the first input in this sequence is applied to the controlled sys-
tem, and the process is repeated at the following sampling instant. In this way,
a closed-loop input trajectory is synthesized using feedback. Fig. 3.1 is a block
diagram of MPC.
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Figure 3.1: Block diagram of MPC.

3.1 Linear Stochastic Systems

We consider linear stochastic state-space systems in the form

xk+1 = Axk +Buk + Edk + wk, (3.1a)

yk = Cyxk + vk, (3.1b)

zk = Czxk. (3.1c)

(A,B,E,Cy,Cz) are the state-space matrices, xk ∈ Rnxk is the system state,
uk ∈ Rnu is the system input, dk ∈ Rnd is the known disturbance, yk ∈ Rny

is the measured output, and zk ∈ Rnz is the controlled variable. Moreover,
wk ∈ Rnw is the process noise, and vk ∈ Rny is the measurement noise. Note
that the portfolio system (2.9) is in the form (3.1). We assume that the process
noise, wk, and the measurement noise, vk, are independent and identically
distributed random variables with

wk ∼ N(0, Rw), (3.2a)

vk ∼ N(0, Rv). (3.2b)

The system (3.1) may be derived from input-output models such as finite impulse
response (FIR) models, autoregressive moving average exogenous (ARMAX)
models, Box-Jenkins models, and transfer function models [BJ76,VD96,Lju99,
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JJ07]. In addition, (3.1) arises when linear continuous differential equations are
discretized.

3.2 Filtering and Prediction

The system state, (3.1a), and output, (3.1c), are estimated based on measure-
ments. Accurate estimates are critical for the performance of MPC. This section
provides Kalman filter equations for state estimation and prediction with mini-
mum prediction error variance [Kal60]. By assumption, the process noise, wk,
and the measurement noise, vk, are uncorrelated. Reference [JHR11] treats the
more general case with correlated process and measurement noise.

Define the information structure

Ik = {Ik−1, uk−1, dk−1, yk},

with I0 = y0. Moreover, introduce the conditional means

x̂k+j|k = E [xk+j |Ik] ,

ŷk+j|k = E [yk+j |Ik] ,

ẑk+j|k = E [zk+j |Ik] ,

and the conditional covariance matrix

Pk+j|k = V [xk+j |Ik] .

The filtered estimate x̂k|k, and the covariance matrix Pk|k, are computed as

ek = yk − ŷk|k−1 = yk − Cyx̂k|k−1, (3.3a)

Re,k = CyPk|k−1C
T
y +Rv, (3.3b)

κk = Pk|k−1C
T
y R
−1
e,k, (3.3c)

Pk|k = Pk|k−1 − κRe,kκTk , (3.3d)

x̂k|k = x̂k|k−1 + κkek. (3.3e)

κk is the Kalman filter gain, ek is the innovation, and Re,k is the innovation
covariance matrix.

The j-step ahead predictions for the system state and its covariance matrix are

x̂k+j+1|k = Ax̂k+j|k +Buk+j + Edk+j , j ≥ 0, (3.4a)

Pk+j+1|k = APk+j|kA
T +Rw, j ≥ 0. (3.4b)
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The j-step ahead predictions for the system output and measurement are

ẑk+j|k = Czx̂k+j|k, j ≥ 0, (3.5a)

ŷk+j|k = Cyx̂k+j|k, j ≥ 0. (3.5b)

For proof and details, we refer to [MR93,PR03,MB02].

3.3 Certainty Equivalent MPC

The most common form of MPC is MPC based on the separation and certainty
equivalence principle. This form of MPC is referred to as CE-EMPC. In CE-
MPC, random variables are replaced by conditional expectations. Control of
(3.1) is thereby simplified to control of a deterministic system that is governed
by the Kalman filter equations (3.3), (3.4) and (3.5).

Define the prediction and control horizon

Ni = {0 + i, 1 + i, . . . , N + i}, (3.6)

where N is the horizon length. Subscript i shifts the horizon by i steps. For
compact notation, we introduce the vectors

u =




uk
uk+1

uk+2

...
uk+N−1



, x̂ =




x̂k+1|k
x̂k+2|k
x̂k+3|k

...
x̂k+N |k



, ẑ =




ẑk+1|k
ẑk+2|k
ẑk+3|k

...
ẑk+N |k



. (3.7)

The OCP solved in CE-MPC is

min.
u,x̂,ẑ

φ (u, x̂, ẑ) , (3.8a)

s.t. x̂k+j+1|k = Ax̂k+j|k +Buk+j + Edk+j , j ∈ N0, (3.8b)

ẑk+j|k = Czx̂k+j|k, j ∈ N1, (3.8c)

(u, x̂, ẑ) ∈ X. (3.8d)

The function φ : RNnu×RNnx×RNnz 7→ R is the objective function. Constraints
(3.8b) and (3.8c) are the state-space constraints. These constraints model the
predicted behavior of the system (3.1). The filtered estimate, x̂k|k, is a fixed
parameter in (3.8b). This parameter is obtained from (3.3). Constraint (3.8d)
accounts for operational constraints such as input limits, input-rate limits, and
output limits. The objective function, φ, may be non-linear and the constraint
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set X can be non-convex. We only consider the case where φ is a convex function
over X, and X is a closed and convex set. Under these assumptions, the OCP
(3.8) is a convex optimization problem.

Let (u∗, x̂∗, ẑ∗) denote a solution of (3.8) and define the function

u∗k = µ
(
x̂k|k, {dk+j}j∈N0

)
, (3.9)

such that u∗k is the first component of u∗. The function (3.9) is a control law
for the system (3.1). Evaluating the control law requires solution of the convex
optimization problem (3.8).

3.4 Objective Functions

In conventional MPC, the objective function (3.8a) penalizes deviations from
a target operating point [Raw00]. The objective function may also include
regularization terms. We write the objective function as

φ(u, x, z) = φsp(u, x, z) + φreg(u, x, z). (3.10)

The function φsp(u, x, z) is a setpoint-based objective function and φreg(u, x, z)
is a function composed of regularization terms. A widely used setpoint-based
objective function is

φsp
`2

(u, x, z) =
∑

j∈N0

‖Q (zk+j+1 − z̄)‖22 + ‖R (uk+j − ū)‖22 , (3.11)

where (ū, z̄) is the target operating point. The entries in Q ∈ Rnz×nz , and
R ∈ Rnu×nu , are penalty weights that can be adjusted to tune the controller.
Examples of regularization functions for (3.10) are

φreg
`1

(u, x, z) =
∑

j∈N0

‖S`1∆uk+j‖1 , (3.12a)

φreg
`2

(u, x, z) =
∑

j∈N0

‖S`2∆uk+j‖22 . (3.12b)

As for (3.11), S`1 , S`2 ∈ Rnu×nu are weight matrices. The input-rate, ∆uk+j ,
is defined as

∆uk+j = uk+j − uk+j−1, (3.13)

Regularization is important to make the closed-loop trajectory of the controlled
system well-behaved [PJ09, SSE+14, HLJB12]. Figure 3.2 illustrates the reg-
ularization functions (3.12), The function (3.12a) assigns a linear penalty to
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Figure 3.2: Illustration of the regularization functions (3.12).

the input-rate, and the function (3.12b) assigns a quadratic penalty to the
input-rate. Generally, `1-regularization induces sparsity in the solution, while
`2-regularization favors smooth solutions [BV04]. A combination of `1 and `2-
regularization is used to obtain smooth and sparse solutions.

3.5 Economic MPC

Economic optimization in contemporary industrial systems that utilize MPC is
usually composed of several layers. In the real-time optimization layer (RTO), a
static optimization problem is solved to determine the most cost-efficient steady-
state (target operating point) for the system. The target operating point is sent
to the supervisory control layer, where setpoint-based MPC is applied to steer
the system to the desired steady-state. The RTO layer and the supervisory
control layer have different time scales. Therefore, there is no guarantee that
such a hierarchical approach operates the system in an economically efficient
way during setpoint transitions. Moreover, steady-state operation may not be
the best strategy in terms of economics. To overcome these challenges, EMPC
has been introduced as an alternative to setpoint-based MPC [DAR11, Grü13,
RAB12,AAR12,EDC14].

In EMPC, the OCP objective function, (3.8a), is an economic cost function.
This allows cost information from the RTO layer to be included directly in the
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supervisory control layer, which is responsible for closed-loop operation of the
system. Including an economic cost function, φeco(u, x, z), in (3.10), yields

φ(u, x, z) = φeco(u, x, z) + φsp(u, x, z) + φreg(u, x, z). (3.14)

When φsp(u, x, z) and φreg(u, x, z) are zero, (3.14) is a pure economic objective
function. In some cases, regularization terms are incorporated into φeco(u, x, z),
e.g. when a price for input-rate movements is available (this price can be related
to wear and tear of the system components). The use of an economic objec-
tive function is a key concept for MPC in power production planning [HLJ11,
MQLS11,HPMJ12,HPM+12,SEJ15,SSE+14,ZH14,MSSVP14,RSR13,BTS10].
Applications of EMPC in power production planning include flexible consump-
tion for refrigeration systems, [HLEJ12,HLSJ12], cost-efficient building climate
control [HPMJ12, MQLS11], control of heat ventilation and air conditioning
systems for grid regulation services [MSSVP14], activation of operational re-
serves for frequency control [SEJ15], charging and discharging electric vehicles
using electricity price forecasts [HPM+12], control of residential heat pumps for
energy storage [PEH+13, Hal14], control of solar tanks based on weather and
consumption forecasts [HBP+12], and design of sustainable policies for mitigat-
ing climate change [CDPH12].

3.6 Stability

Stability of MPC has been established for a variety OCPs [AAR12, DAR11,
RBJ+08, PN00, QB03, Grü13, JH05, MRRS00, RM93, GPSW12, BGW14]. The
stability proofs are mainly based on Lyapunov stability theory. References
[RBJ+08,MRRS00,RM93] provide stability proofs for setpoint-based MPC with
a terminal cost and/or terminal constraints. These stability proofs are not
directly applicable to MPC with an economic objective function. References
[AAR12, DAR11] prove stability of EMPC with a terminal cost. Stability of
EMPC without a terminal cost is addressed in [Grü13, GPSW12, BGW14]. A
method to achieve stability that works well in practice, is simply to use suffi-
ciently long prediction horizons [HPJJ12, JH05, PN00, Grü13, LS15, Jør05]. In
our work, we adopt this approach. The use of long prediction horizons makes
EMPC algorithms that scale well in the horizon length, N , important.

3.7 Online Optimization

MPC requires the solution of an OCP in every sampling instant. For this rea-
son, the use of MPC has conventionally been limited to small systems with
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slow dynamics. Modern algorithms, combined with increased computing power,
have extended the use of MPC to larger systems with dynamics even in the kHz
range. Efficient algorithms for solution of OCPs are based on multi-parametric
programming [TJB03,BMDP02,SDG00,Pis12], IPMs [WB10,SFE+13,RWR98,
SKC10,ESJ09,RJM09,Wri97,DZZ+12], active-set methods [BB06,FBD08,JRJ04,
Wri97], and first-order methods [RJM09,JGR+14].

References [RWR98,JFGND12] present structure-exploiting IPMs for setpoint-
based MPC with an `2-penalty. A similar algorithm is proposed in [VBN02]
for setpoint-based MPC with an `1-penalty. Reference [SFS+15] provides a
Riccati-based homogenous and self-dual IPM for EMPC with a linear objective
function. Reference [SAY13] develops a warm-start strategy for homogeneous
and self-dual IPMs. Reference [SFS+15] reports that this warm-start strategy
reduces the average number of IPM iterations by 35-40% in an EMPC power
portfolio case study. Splitting methods [BV04,Roc70] and gradient-based meth-
ods [HL13, JGR+14], have been developed for distributed setpoint-based MPC
of dynamically coupled systems [CSZ+12, SL12], `1-regularized setpoint-based
MPC [AHW12], mean-variance EMPC [SDMJ14a], and setpoint-based MPC
with an `2-penalty [JGR+14, KF12, KF11, SFAJ14]. Reference [SSE+14] intro-
duces an ADMM-based decomposition algorithm and a Dantzig-Wolfe decompo-
sition algorithm for EMPC of dynamically decoupled subsystems. Warm-start
and early-termination strategies are employed to increase the computational
performance of the decomposition algorithms.

Generally, the best choice of algorithm for solving the OCP is highly dependent
on the problem structure, as well as the accuracy required for the solution.
Multi-parametric programming methods compute the control law defined by
(3.9) offline. In this way, the online computations can be implemented as a
lookup table. The main issue with multi-parametric programming methods
is that the computation time can grow exponentially with the problem size
(horizon length, number of states, and number of inputs). Multi-parametric
programming methods are therefore limited to small problems. IPMs produce
high-accuracy solutions using a few computationally expensive iterations. In
contrast to this, first-order methods produce less accurate solutions using many
computationally inexpensive iterations. For some problems, first-order methods
determine a fairly accurate solution within a relatively small number of iterations
[KCLB14,BPC+11].

3.7.1 State Elimination

Depending on the size and structure of the OCP, one formulation of the OCP
may be preferable over another, from a computational point of view. State con-
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densing eliminates the system states and outputs from the OCP. This results
in a smaller less structured OCP. Algorithms that rely on state condensing are
especially efficient for solution of the OCP when the length of the prediction
horizon, N , is small and the state dimension, nx, is large [FJ13]. State con-
densing is applied several times in this thesis. For convenience, we outline a
procedure for state condensing below.

Consider the OCP (3.8). Using the state equation (3.8b), it follows that

x̂k+1|k = Ax̂k|k +Buk + Edk, (3.15a)

x̂k+2|k = Ax̂k+1|k +Buk+1 + Edk+1, (3.15b)

...

x̂k+N |k = Ax̂k+N−1|k +Buk+N−1 + Edk+N−1. (3.15c)

Repeated substitution of the system states gives

x̂k+j|k = Aj x̂k|k +

j−1∑

i=0

Aj−i−1Buk+i +

j−1∑

i=0

Aj−i−1Edk+i, j ∈ N1. (3.16)

Define the impulse response matrices (Markov parameters)

Hu,j = CzA
j−1B, j ∈ N1,

Hd,j = CzA
j−1E, j ∈ N1.

The system outputs defined by (3.8c), can be written in the form

ẑk+j|k = CzA
j x̂k|k +

j−1∑

i=0

Hu,j−iuk+i +

j−1∑

i=0

Hd,j−idk+i, j ∈ N1. (3.17)

Equations (3.16) and (3.17) show that

x̂ = Lx(u; d, x̂k|k), (3.18a)

ẑ = Lz(u; d, x̂k|k), (3.18b)

where Lx and Lz are affine functions, and d =
[
dTk dTk+1 · · · dTk+N−1

]T
. I.e.

the state and the outputs can be written as affine functions of the input, u,
the disturbance, d, and the filtered estimate, x̂k|k. The semi-colons in (3.18)
separate the OCP optimization variable, u, from the OCP parameters, d and
x̂k|k.

The function Lx is defined as

Lx(u; d, x̂k|k) = Φx̂k|k + Γuu+ Γdd, (3.19)



28 Model Predictive Control

where Φ =
[
(CzA)T (CzA

2)T · · · (CzA
N )T

]T
and

Γu =




Hu,1

Hu,2 Hu,1

...
...

. . .

Hu,N Hu,N−1 · · · Hu,1


 , Γd =




Hd,1

Hd,2 Hd,1

...
...

. . .

Hd,N Hd,N−1 · · · Hd,1


 .

The function Lz is defined similarly. Using the expressions (3.18), the states, x̂,
and the outputs, ẑ, can be eliminated from the OCP (3.8).



C h a p t e r 4

Convex Optimization

This chapter presents convex optimization algorithms for EMPC of linear stochas-
tic systems. A homogeneous and self-dual linear programming IPM is outlined.
LPs arise in EMPC of linear systems with linear constraints and linear objec-
tive functions. We present a Dantzig-Wolfe decomposition algorithm for block-
angular LPs. Block-angular LPs occur in EMPC of dynamically decoupled
subsystems, such as power generators in the portfolio system (2.9). An ADMM
algorithm is proposed for convex optimization problems with separable objective
functions. This type of problem is solved in MV-EMPC. Part II of the thesis
provides tailored EMPC implementations of the proposed algorithms.

4.1 Convex Optimization Problems

Define the convex optimization problem [BV04]

min.
x

f(x), (4.1a)

s.t. gi(x) = 0, i = 1, 2, . . . ,mE , (4.1b)

hi(x) ≤ 0, i = 1, 2, . . . ,mI , (4.1c)

where x ∈ Rn is the optimization variable, and:
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• The objective function f is a convex function.

• The equality constraint functions g1, . . . , gmE
are affine functions.

• The inequality constraint functions h1, . . . , hmI
are convex functions.

4.1.1 Karush-Kuhn-Tucker Conditions

The Lagrangian associated with (4.1) is

L(x, y, z) = f(x) +

mE∑

i=1

yigi(x) +

mI∑

i=1

zihi(x). (4.2)

where y1, . . . , ymE
∈ R and z1, . . . , zmI

∈ R are dual variables, and

y =
[
y1 y2 · · · ymE

]T
,

z =
[
z1 z2 · · · zmI

]T
.

The Karush-Kuhn-Tucker (KKT) conditions for (4.1) are

∇xL(x, y, z) = 0, (4.3a)

gi(x) = 0, i = 1, 2, . . . ,mE , (4.3b)

hi(x) ≤ 0, i = 1, 2, . . . ,mI , (4.3c)

zi ≥ 0, i = 1, 2, . . . ,mI , (4.3d)

zihi(x) = 0, i = 1, 2, . . . ,mI . (4.3e)

Condition (4.3a) is the Lagrangian stationarity condition. Conditions (4.3b)
and (4.3c) are the primal feasibility conditions. Condition (4.3d) is the dual
feasibility condition, and condition (4.3e) is the complementary slackness con-
dition. Problem (4.1) is a convex optimization problem. The KKT conditions
(4.3) are therefore necessary and sufficient for an optimal solution of (4.1). I.e.
a point, (x∗, y∗, z∗), satisfying (4.3) is a global solution of (4.1), and vice-versa.
The KKT conditions (4.3) assume that f , g1, . . . , gmE

, and h1, . . . , hmI
are

differentiable functions. Reference [Rus07] provides generalized KKT conditions
that hold for non-differentiable functions as well.
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4.2 Linear Programming IPM

This section presents a homogeneous and self-dual IPM for solution of the LP

min.
x

gTx, (4.4a)

s.t. Ax = b, (4.4b)

Cx ≤ d. (4.4c)

The data in (4.4) are g ∈ Rn, A ∈ RmE×n, b ∈ RmE , C ∈ RmI×n, and d ∈
RmI . The LP (4.4) is the special case of (4.1) where f(x) is a linear function,
g1, . . . , gmE

are affine functions, and h1, . . . , hmI
are affine functions. We write

this as

f(x) = gTx,

gi(x) = aTi x− bi, i = 1, 2, . . . ,mE ,

hi(x) = cTi x− di, i = 1, 2, . . . ,mI ,

with a1, . . . , amE
∈ Rn, b1, . . . , bmE

∈ R, c1, . . . , cmI
∈ Rn, and d1, . . . , dmI

∈ R.
In addition

A =
[
a1 a2 · · · amE

]T
,

b =
[
b1 b2 · · · bmE

]T
,

C =
[
c1 c2 · · · cmI

]T
,

d =
[
d1 d2 · · · dmI

]T
,

The Lagrangian associated with (4.4) is

L(x, y, z) = gTx+ yT (Ax− b) + zT (Cx− d),

and the dual LP of (4.4) can be written in the form

max.
y,z

− bT y − dT z, (4.5a)

s.t. AT y + CT z = −g, (4.5b)

z ≥ 0. (4.5c)

The KKT conditions for (4.4) are

AT y + CT z + g = 0, (4.6a)

Ax− b = 0, (4.6b)

Cx− d ≤ 0, (4.6c)

z ≥ 0, (4.6d)

zi(c
T
i xi − di) = 0, i = 1, 2, . . . ,mI . (4.6e)
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For convenience, introduce the slack variables

si = di − cTi x, i = 1, 2, . . . ,mI .

and s =
[
s1 · · · smI

]
. This way, the KKT conditions (4.6) can be written as

AT y + CT z + g = 0, (4.7a)

Ax− b = 0, (4.7b)

Cx− d+ s = 0, (4.7c)

(z, s) ≥ 0, (4.7d)

ZS1 = 0, (4.7e)

where S = diag (s), Z = diag (z), and 1 is a vector of all ones.

4.2.1 Homogeneous and Self-Dual Model

The solution of the KKT system (4.6) provides the solution of the primal LP
(4.4), (x∗, s∗), and the solution of the dual LP (4.5), (y∗, z∗). Conventional
IPMs solve the KKT system using a Newton-type of method. Homogeneous
and self-dual IPMs solve the related LP

min.
x

0, (4.8a)

s.t. AT ỹ + CT z̃ + gτ = 0, (4.8b)

Ax̃− bτ = 0, (4.8c)

Cx̃− dτ + s̃ = 0, (4.8d)

− gTx− bT ỹ − dT z̃ + κ = 0, (4.8e)

(z̃, s̃, τ, κ) ≥ 0, (4.8f)

in which x̃ ∈ Rn, ỹ ∈ RmE , z̃ ∈ RmI , and τ, κ ∈ R. The LP (4.8) is a pure
feasibility problem.

A strict complementary solution of (4.8), (x̃∗, ỹ∗, z̃∗, s̃∗, τ∗, κ∗), satisfies z̃1s̃1 =
0, . . . , zmI

smI
= 0, and τκ = 0. Moreover, one of the following conditions

hold [AGMX96,YTM94,XHY96]:

• If τ∗ > 0, and κ∗ = 0: The scaled solution (x∗, y∗, z∗, s∗) = (x̃∗, ỹ∗, z̃∗, s̃∗)/τ∗

is a primal-dual optimal solution of (4.4) and (4.5).

• If τ∗ = 0, and κ∗ > 0: The problem (4.4) is infeasible or unbounded. Ei-
ther−bT ỹ∗−dT z̃∗ > 0 (primal infeasible and dual unbounded) or gT x̃∗ < 0
(primal unbounded and dual infeasible).
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Homogeneous and self-dual IPMs determine a strict complementarity solution of
(4.8) [YTM94,XHY96]. If the problem is infeasible or unbounded, the solution
satisfies τ∗ = 0 and κ∗ > 0. The ability to detect infeasible or unbounded
problems is a special feature of homogeneous and self-dual IPMs. An additional
advantage of homogeneous and self-dual IPMs is that they can be warm-started
efficiently. In [SAY13] warm-start reduces the number of IPM iterations by 30-
75% for the NETLIB collection of test problems. Warm-start capabilities are
convenient in MPC applications, as the OCP is solved in a receding horizon
manner. Conventional IPMs do not have similar warm-start capabilities as
homogeneous and self-dual IPMs.

4.2.2 Predictor-Corrector Algorithm

We present a homogeneous and self-dual IPM for solution of (4.8). The method
is based on Mehrotra’s predictor-corrector method. Proofs and details are pro-
vided in e.g. [Meh92,NW06,YTM94,XHY96,ART03,Stu02,SAY13,Ye97,Wri96].
Mehrotra’s predictor-corrector method is a path-following algorithm that tracks
the central path. The central path is a smooth curve that connects an initial
point to a complementary solution of (4.8).

For compact notation, introduce

θ = (x̃, ỹ, z̃, s̃, τ, κ), (4.9)

and let θi refer to the i’th iterate generated by the proposed algorithm. The
initial point is θ0 = (x̃0, ỹ0, z̃0, s̃0, τ0, κ0).

A solution of (4.8) is defined by

(z̃, s̃, κ, τ) ≥ 0, (4.10a)

and

V (θ) =




V1(θ)
V2(θ)
V3(θ)
V4(θ)
V5(θ)
V6(θ)




=




AT ỹ + CT z̃ + gτ
Ax̃− bτ

Cx̃− dτ + s̃
−gT x̃− bT ỹ − dT z̃ + κ

Z̃S̃1
τκ




=




0
0
0
0
0
0



. (4.10b)

As in (4.7), Z̃ = diag(z̃) and S̃ = diag(s̃) are diagonal matrices.

Define the complementary gap

µi =
(z̃i)T s̃i + τ iκi

mI + 1
. (4.11)
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The central path is given as

C =
{
θ | V (θ) = γr0, (z̃, s̃, κ, τ) ≥ 0, γ ∈ [0, 1]

}
. (4.12)

where

r0 =




V1(θ0)
V2(θ0)
V3(θ0)
V4(θ0)
µ01
µ0




=




AT ỹ0 + CT z̃0 + gτ0

Ax̃0 − bτ0

Cx̃0 − dτ0 + s̃0

−gT x̃0 − bT ỹ0 − dT z̃0 + κ0(
(z̃0)T s̃0 + τ0κ0

)
/(mI + 1)1(

(z̃0)T s̃0 + τ0κ0
)
/(mI + 1)



.

For γ = 0, the central path (4.12) defines a point, θ∗, that satisfies the conditions
(4.10), i.e. a solution of (4.8). Mehrotra’s predictor-corrector method generates
iterates, θ0, θ1, . . . , θ∗, along the central path as γ → 0. It is trivial to construct
an initial point, θ0, for this procedure. E.g.

θ0 = (x̃0, ỹ0, z̃0, s̃0, τ0, κ0) = (0,0,1,1, 1, 1), (4.13)

lies on the central path for γ = 1.

The optimization search direction is computed by solving the linear system of
equations

JV (θi)∆θi = −V̄ (θi), (4.14)

where JV (θi) is the Jacobian of V evaluated at θi. It follows from (4.10b) that

JV (θi) =




0 AT CT 0 g 0
A 0 0 0 −b 0
C 0 0 I −d 0
−gT −bT −dT 0 0 1

0 0 S̃i Z̃i 0 0
0 0 0 0 κi τ i



. (4.15)

The right-hand side in (4.14) is defined as

V̄ (θi) =




(1− γi)V1(θi)
(1− γi)V2(θi)
(1− γi)V3(θi)
(1− γi)V4(θi)

V5(θi) + ∆Z̃iaff∆S̃iaff − γiµiaff1
V6(θi) + ∆τ iaff∆κiaff − γiµiaff



.

In this definition, ∆Z̃iaff = diag(∆z̃iaff), ∆S̃iaff = diag(∆s̃iaff), ∆τ iaff, and ∆κiaff,
are second order corrector terms [NW06, Meh92], µiaff is the affine complemen-
tarity gap, and γi is the centering parameter. These quantities are computed
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based on an affine-scaling direction

∆θaff = (∆x̃aff,∆ỹaff,∆z̃aff,∆s̃aff,∆τaff,∆κaff).

The affine-scaling direction is obtained by solving the system (4.14) with V̄ (θi)
replaced by V (θi). Accordingly, we define the affine variables

z̃iaff = z̃i + αiaff∆z̃iaff, s̃iaff = s̃i + αiaff∆s̃iaff,

τ iaff = τ i + αiaff∆τ iaff, κiaff = κi + αiaff∆κiaff,

where αiaff is a damping parameter that keeps the affine variables within the
non-negative orthant (4.10a)

αiaff = max




aaff ∈ [0, 1]|




z̃i

τ i

s̃i

κi


+ aaff




∆z̃iaff

∆τ iaff

∆s̃iaff

∆κiaff


 ≥ 0




.

The affine complementarity gap is

µiaff =
(z̃iaff)T s̃iaff + τ iaffκ

i
aff

mI + 1
,

and the centering parameter γi is computed as

γi =

[
µiaff

µi

]3

=

[
((z̃iaff)T s̃iaff + τ iaffκ

i
aff)

((z̃i)T s̃i + τ iκi)

]3

. (4.16)

Equation (4.16) updates the centering parameter according to the effectiveness
of the affine-scaling direction. When µiaff ≈ µi, only small progress towards
the optimal solution can be made in the affine-scaling direction. In this case,
(4.16) yields γi ≈ 1, which forces the search direction towards the central path.
Substantial progress can usually be made in the affine-scaling direction in an
iteration that follows a step with aggressive centering.

To classify a solution as optimal, we use the stopping criteria [ART03]

%iE ≤ εE , %iI ≤ εI , %iD ≤ εD, %iO ≤ εO. (4.17)

Moreover, the problem is considered to be infeasible if τ i ≤ ετ max(1, κi), and

%iE ≤ εE , %iI ≤ εI , %iD ≤ εD, %iG ≤ εG. (4.18)

ετ , εE , εI , εD, εO and εG are user-defined tolerance parameters, and

%D = ‖V1(θ)‖∞/max(1,
∥∥[HT FT g

]∥∥
∞),

%E = ‖V2(θ)‖∞/max(1,
∥∥[F b

]∥∥
∞),

%I = ‖V3(θ)‖∞/max(1,
∥∥[H I c

]∥∥
∞),

%G = |L− κ|/max(1,
∥∥[gT bT cT 1

]∥∥
∞),

%O = |L|/(τ +
∣∣−bT ỹ − cT z̃

∣∣).
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Algorithm 1 Homogeneous and self-dual IPM for (4.8)

µ← (z̃T s̃+ τκ)/(mI + 1)
while not converged do
COMPUTE AFFINE-SCALING DIRECTION

∆θaff ← −JV (θ)−1V (θ)
αaff ← max {aaff ∈ [0, 1]|(z̃, τ, s̃, κ) + aaff(∆z̃aff,∆τaff,∆s̃aff,∆κaff) ≥ 0}
s̃aff ← s̃+ αaff∆s̃aff, κaff ← κ+ α̃aff∆κaff

z̃aff ← z̃ + αaff∆z̃aff, τaff ← τ + α̃aff∆τaff

µaff ← (z̃Taffs̃aff + τaffκaff)/(mI + 1)
γ ← (µaff/µ)3

COMPUTE SEARCH DIRECTION

∆θ ← −JV (θ)−1V̄ (θ)
α← max {a ∈ [0, 1]|(z̃, τ, s̃, κ) + a(∆z̃,∆τ,∆s̃,∆κ) ≥ 0}
x̃← x̃+ να∆x̃, s̃← s̃+ να∆s̃, κ← κ+ να∆κ
ỹ ← ỹ + να∆ỹ, z̃ ← z̃ + να∆z̃, τ ← τ + να∆τ

µ← (z̃T s̃+ τκ)/(mI + 1)
end while

L = gT x̃− (−bT ỹ − dT z̃) is the duality gap. Algorithm 1 outlines the proposed
homogeneous and self-dual IPM. To keep the iterates well inside the interior
of the non-negative orthant, (4.10a), a damping parameter ν ∈ [0.95; 0.999] is
introduced. Conditions (4.17) and (4.18) are the stopping criteria for Algorithm
1.

4.3 Dantzig-Wolfe Decomposition Algorithm

This section presents a Dantzig-Wolfe decomposition algorithm for solution of
LPs in the form

min.
x

gTx, (4.19a)

s.t. Ax ≤ b, (4.19b)

with the block-angular structure

g =




g1

g2

...
gp


 , x =




x1

x2

...
xp


 , A =




Al1 Al2 · · · Alp
As1

As2
. . .

Asp



, b =




bl
bs1
...
bsp


 . (4.20)
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The indices j ∈ J = {1, . . . , p} are subsystem indices. The vector gj ∈ Rnj

is the cost associated with subsystem j, xj ∈ Rnj is the decision variable for
subsystem j, Alj ∈ Rml×nj is the linking constraint matrix for subsystem j, and

Asj ∈ Rmsj
×nj is the constraint matrix for subsystem j. The right-hand side of

the linking constraints is bl ∈ Rml , and the right-hand side of the constraints for
subsystem j is bsj ∈ Rmsj . Note that the block-angular LP (4.19) is a special
case of (4.4).

Using the definitions (4.20), we write (4.19) as

min.
x

∑

j∈J
gTj xj , (4.21a)

s.t. Asjxj ≤ bsj , j ∈ J , (4.21b)
∑

j∈J
Aljxj ≤ bl. (4.21c)

In the extreme case, ml = 0, there are no linking constraints. For this case, the
problem (4.21) decouples into p independent subproblems. Conversely, when
ms1 = · · · = msp = 0, there are no subsystem constraint blocks. Algorithms
based on Dantzig-Wolfe decomposition are generally most efficient when ml is
small compared to the overall number of constraints, i.e. when the problem has
relatively few linking constraints. The OCP that arises in EMPC of the portfolio
system (2.9) is block-angular LPs with relatively few linking constraints.

4.3.1 Extreme Point Representation

Dantzig-Wolfe decomposition exploits that a convex set can be characterized by
its extreme points and its extreme rays [CCMGB06,DW60,Mar99]. Define

Gj = {xj | Asjxj ≤ bsj}, j ∈ J ,

such that (4.21b) can be written as xj ∈ Gj for j ∈ J . For simplicity, assume
that every Gj is bounded. It follows that

Gj =



xj |xj =

∑

i∈Ij

λijx
i
j ,
∑

i∈Ij

λij = 1, λij ≥ 0 for all i ∈ Ij



 , j ∈ J , (4.22)

where xij are the extreme points of Gj , and λij are convex combination multipli-
ers. The set of indices associated with the extreme points of Gj is denoted Ij .
Since every Gj is bounded, the representation (4.22) does not include extreme
rays.
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Replacing the decision variables in (4.21) by convex combination multipliers
yields

min.
λ

∑

j∈J

∑

i∈Ij

gijλ
i
j , (4.23a)

s.t.
∑

j∈J

∑

i∈Ij

Ailjλ
i
j ≤ bl, (4.23b)

∑

i∈Ij

λij = 1, j ∈ J , (4.23c)

λij ≥ 0, j ∈ J , i ∈ Ij , (4.23d)

where we have defined

Ailj = Aljx
i
j , j ∈ J , i ∈ Ij , (4.24a)

gij = gTj x
i
j , j ∈ J , i ∈ Ij . (4.24b)

Problem (4.23) is referred to as the master problem.

Given a solution, λ∗, to the master problem (4.23), a solution to the original
problem, (4.21), is obtained as

x∗j =
∑

i∈Ij

λi∗j x
i
j , j ∈ J .

The number of optimization variables and constraints in the master problem
(4.23), increases with the number of extreme points. The number of extreme
points can be exponential in the size of the original problem (4.21). It is therefore
computationally inefficient to solve the master problem directly. The Dantzig-
Wolfe decomposition algorithm generates extreme points in an iterative manner
[SSE+14].

4.3.2 Column Generation Procedure

The dual LP of (4.23) may be stated as

max
α,β

− αT bl +
∑

j∈J
βj , (4.25a)

s.t. − (Ailj )Tα+ βj ≤ gij , j ∈ J , i ∈ Ij , (4.25b)

α ≥ 0, (4.25c)

in which α and β are the dual variables associated with the linking constraints,
(4.23b), and the convexity constraints, (4.23c), respectively.
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The necessary and sufficient optimality conditions for (4.23) and (4.25) are

∑

j∈J

∑

i∈Ij

Ailjλ
i
j ≤ bl, (4.26a)

∑

i∈Ij

λij = 1, j ∈ J , (4.26b)

λij ≥ 0, j ∈ J , i ∈ Ij , (4.26c)

gij + (Ailj )Tα− βj ≥ 0, j ∈ J , i ∈ Ij , (4.26d)

α ≥ 0, (4.26e)

λij(g
i
j + (Ailj )Tα− βj) = 0, j ∈ J , i ∈ Ij , (4.26f)

Reference [DW60, DW60, SSE+14] presents a column generation procedure for
solution of (4.26). In this procedure, a restricted master problem is solved. The
restricted master problem is defined as

min.
λ

∑

j∈J

∑

i∈Ĩj

gijλ
i
j , (4.27a)

s.t.
∑

j∈J

∑

i∈Ĩj

Ailjλ
i
j ≤ bl, (4.27b)

∑

i∈Ĩj

λij = 1, j ∈ J , (4.27c)

λij ≥ 0, j ∈ J , i ∈ Ĩj , (4.27d)

where Ĩj ⊆ Ij , for j ∈ J . The restricted master problem is simply (4.23),
defined over a subset of the extreme points.

Let (λ̃, α̃, β̃) denote a primal-dual solution of the restricted master problem,
(4.27). Reference [SSE+14] shows that the solution

α∗ = α̃,

β∗j = β̃j , j ∈ J ,

λi∗j =

{
λ̃ij if i ∈ Ĩj
0 if i ∈ Ij \ Ĩj

, j ∈ J , i ∈ Ij ,

satisfies the KKT conditions (4.26), provided that the optimal objective value
of the subproblem

min.
x̃j

ϕj = (gj +ATljα
∗)T x̃j − β∗j (4.28a)

s.t. Asj x̃j ≤ bsj , (4.28b)
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Figure 4.1: Flowchart of the Dantzig-Wolfe decomposition algorithm.

is non-negative for each j ∈ J .

Algorithm 2 outlines the Dantzig-Wolfe decomposition algorithm. Extreme
points are generated by solving subproblems in the form (4.28). The algorithm
terminates if ϕj ≥ ε for all j ∈ J . The parameter ε is a user-defined tolerance
parameter. Fig. 4.1 is a flowchart of Algorithm 2. For proofs and details, we
refer to [CCMGB06,DW60,Mar99,SSE+14].

4.4 Alternating Direction Method of Multipli-
ers

This section presents an ADMM algorithm for solution of the convex optimiza-
tion problem

min.
x

f1(x1) + f2(x2), (4.29a)

s.t. A1x1 +A2x2 = b, (4.29b)

where x = (x1, x2). We assume that f1 and f2 are convex (not necessarily
differentiable) functions. The problem dimensions are x1 ∈ Rn1 , x2 ∈ Rn2 ,
A1 ∈ Rm×n1 , and A2 ∈ Rm×n2 . Problem (4.29) is the special case of (4.1),
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Algorithm 2 Dantzig-Wolfe Decomposition Algorithm for (4.23)

i = 0, converged = false

while not converged do
Ĩ ← {0, 1, . . . , i}
COMPUTE PROBLEM DATA

for j ∈ J do
Ailj = Aljx

i
j

gij = gTj x
i
j

end for
SOLVE RESTRICTED MASTER PROBLEM

(λ∗, α∗, β∗)← solve (4.27) with Ĩj = Ĩ for j ∈ J
SOLVE SUBPROBLEMS

for j ∈ J do
(ϕ∗j , x̃

∗
j )← solve (4.28)

end for
CHECK IF CONVERGED

if ϕj ≥ ε for j ∈ J then
converged = true

else
UPDATE EXTREME POINTS

for j ∈ J do
xi+1
j = x̃∗j

end for
i← i+ 1

end if
end while

where mE = m, mI = 0, and

f(x) = f1(x1) + f2(x2),

gi(x) = aT1,ix1 + aT2,ix2 − bi, i = 1, 2, . . . ,m.

a1,1, . . . , a1,m ∈ Rn, a2,1, . . . , a2,m ∈ Rn, and b1, . . . , bm ∈ R. Moreover

A1 =
[
a1,1 a1,2 · · · a1,m

]T
,

A2 =
[
a2,1 a2,2 · · · a2,m

]T
,

b =
[
b1 b2 · · · bm

]T
.

ADMM is a powerful algorithm for solving large-scale structured convex opti-
mization problems in the form (4.29) [BPC+11]. In particular, ADMM gives rise
to distributed algorithms for the OCPs that arise in EMPC of linear stochastic
systems [SSE+14,SDMJ14a].
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The indicator function is often used to pose convex optimization problems in
the form (4.29). The indicator function of a set A is defined as

IA(x) =

{
0 if x ∈ A,
∞ otherwise.

(4.30)

The indicator function of a convex set is a non-differentiable convex function
[BV04].

4.4.1 ADMM Recursions

The Lagrangian of the convex optimization problem (4.29) is

L(x, y) = f1(x1) + f2(x2) + yT (A1x1 +A2x2 − b),

where y ∈ Rm is the dual variable associated with the equality constraints
(4.29b). Let ∂ denote the subdifferential operator [BL11]. A stationary point
of the Lagrangian satisfies

0 ∈ ∂x1L(x, y) = ∂x1f1(x1) +AT1 y, (4.31a)

0 ∈ ∂x2
L(x, y) = ∂x2

f2(x2) +AT2 y, (4.31b)

The KKT conditions for (4.29) are the primal feasibility condition (4.29b), and
the dual feasibility conditions (4.31).

The ADMM recursions for solution of (4.29) are

xi+1
1 = argmin

x1

Lρ(x1, x
i
2, y

i), (4.32a)

xi+1
2 = argmin

x2

Lρ(xi+1
1 , x2, y

i), (4.32b)

yi+1 = yi + ρ(A1x
i+1 +A2x

i+1 − b). (4.32c)

The augmented Lagrangian with penalty parameter ρ > 0 is defined as

Lρ(x, y) = L(x, y) +
ρ

2
||A1x+A2x− b||22.

The recursions (4.32) alternate between an x1-minimization, (4.32a), and an
x2-minimization, (4.32b). Finally, (4.32c) is a dual variable update.

It is convenient to express the recursions (4.32) in a scaled form. The scaled
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Algorithm 3 ADMM algorithm for the solution of (4.29)

converged = false

while not converged do
ADMM RECURSIONS

x1 ← argmin x1
f1(x1) + ρ/2||Ax1 +A2x2 − b+ u||22

x2 ← argmin x2
f2(x2) + ρ/2||Ax1 +A2x2 − b+ u||22

u← u+ ρ(A1x+A2x− b)
CHECK IF CONVERGED

if ‖r‖2 ≤ εP and ‖s‖2 ≤ εD then
converged = true

end if
end while

ADMM recursions are

xi+1
1 = argmin

x1

f1(x1) + ρ/2||Ax1 +A2x
i
2 − b+ ui||22, (4.33a)

xi+1
2 = argmin

x2

f2(x2) + ρ/2||Axi+1
1 +A2x2 − b+ ui||22, (4.33b)

ui+1 = ui + ρ(A1x
i+1 +A2x

i+1 − b). (4.33c)

where u = (1/ρ)y is a scaled dual variable. Under mild assumptions, the ADMM
recursions, (4.33), converge to a solution of (4.29). References [BV04,BPC+11,
Roc70,BL00,HUL01] provide proofs and details.

Algorithm 3 outlines the ADMM algorithm. To detect an optimal solution in
Algorithm 3, we use the stopping criteria [BPC+11]

∥∥ri
∥∥

2
≤ εiP , (4.34a)

∥∥si
∥∥

2
≤ εiD. (4.34b)

εiP > 0 and εiD > 0 are primal and dual tolerance parameters. These parameters
are defined as

εiP = εA
√
m+ εR max{

∥∥A1x
i
1

∥∥
2
,
∥∥A2x

i
2

∥∥
2
, ‖b‖2},

εiD = εA
√
n1 + εR

∥∥AT1 yi
∥∥

2
,

where εA > 0 and εR > 0 are user-defined (absolute and relative) tolerance
parameters. Moreover

ri+1 = A1x
i+1
1 +A2x

i+1
2 − b, (4.35a)

si+1 = ρAT1 A2(xi+1
2 − xi2). (4.35b)
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Reference [HL13] establishes a linear convergence rate of ADMM. The empirical
convergence rate of ADMM can be much faster, and is highly problem-dependent
[KCLB14,WBAW12]. Several tuning strategies have been proposed to speed-up
convergence of ADMM for individual problems. One extension of Algorithm 3
is to replace A1x

i+1
1 by αA1x

i+1
1 − (1 − α)(A2x

i
2 − b) in the recursions (4.33).

This strategy is known as over-relaxation [BPC+11]. The parameter α ∈ [0, 2]
is tuned to the particular application. Another critical tuning parameter is the
penalty parameter ρ [JGR+14, JGR+14, HL13, GTSJ13]. References [BPC+11,
GTSJ13] provide adaptive updating strategies for ρ.



Part II

Summary Report: Main
Contributions





C h a p t e r 5

Economic MPC in Power
Production Planning

This chapter presents novel EMPC schemes for power production planning.
Control of the portfolio system (2.9) is considered. A small demonstration
example shows that CE-EMPC performs poorly under uncertainty in terms of
economics. MV-EMPC is introduced to account for the system uncertainty in
a more economically efficient manner. We employ regularization techniques to
obtain well-behaved closed-loop control of the portfolio system.

5.1 Contributions

The OCP solved in EMPC consists of an economic objective function and a
number of operating constraints. The performance and reliability of EMPC
depend on the formulation of the OCP. Uncertainty management is important
for EMPC of stochastic systems, such as the power portfolio system (2.9). In
CE-EMPC, uncertain parameters in the OCP are replaced by conditional ex-
pectations. Paper F shows that CE-EMPC can be economically inefficient in
practice. The main issue with CE-EMPC is that the approach disregards the
variance of the uncertain parameters. Paper F introduces MV-EMPC for linear
stochastic systems. In MV-EMPC, the OCP objective function is a bi-criterion
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that trades off cost expectation and cost variance. Simulations show that MV-
EMPC outperforms CE-EMPC economically. Paper G presents a novel ADMM-
based decomposition algorithm for MV-EMPC, to overcome tractability issues
of the EMPC scheme. Paper E illustrates that regularization is critical for the
closed-loop performance of EMPC.

We have organized this chapter as follows. Section 5.2 describes common oper-
ating constraints for the portfolio of power generators, and section 5.3 defines an
economic objective function for the system. Section 5.4 defines CE-EMPC for
the portfolio system. A two-generator case study is presented for demonstration
purposes. Section 5.5 generalizes CE-EMPC to MV-EMPC, and introduces a
back-off heuristic to improve the economic performance of CE-EMPC. Section
5.6 discusses regularization techniques under uncertainty. Section 5.7 summa-
rizes the main contributions of this chapter.

5.2 Portfolio Constraints

The portfolio system (2.9) is a collection of power generators in the form (2.5).
Each generator is associated with a number of operating constraints. These
operating constraints often have a linear representation [Hal14,Hov13,HPM+12,
HBP+12,EMB09,HLEJ12,HPMJ12,Sta15]. We consider input constraints

ugj ,k ≤ ugj ,k ≤ ugj ,k, j ∈M, (5.1)

and input-rate constraints

∆ugj ,k ≤ ∆ugj ,k ≤ ∆ugj ,k, j ∈M. (5.2)

The input-rate, ∆ugj ,k, is defined as in (3.13). As an example, (5.1) and (5.2)
represent charging and discharging limits for an electric vehicle. For a heat-
pump in a residential heating system, (5.1) and (5.2) restrict the work of the
compressor. In a commercial refrigeration system, (5.1) and (5.2) limit the
evaporator heat duty. For the power plant model in [EMB09], (5.1) limits the
power production setpoint to the feasible range of setpoints, and (5.2) limits the
setpoint rate of change. Section 5.3 introduces soft output constraints for the
portfolio system.

Using the definitions (2.8), we write the constraints (5.1) and (5.2), in the
compact form

uP,k ≤ uP,k ≤ uP,k, (5.3a)

∆uP,k ≤ ∆uP,k ≤ ∆uP,k, (5.3b)
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where

uP,k =




ug1,k
ug2,k

...
ugM ,k


 , uP,k =




ug1,k
ug2,k

...
ugM ,k


 , ∆uP,k =




∆ug1,k
∆ug2,k

...
∆ugM ,k


 , ∆uP,k =




∆ug1,k
∆ug2,k

...
∆ugM ,k


 .

5.3 Portfolio Cost Function

Let pgj ,k denote the price of utilization for power generator j, and define

pP,k =




pg1,k
pg2,k

...
pgM ,k


 .

The utilization cost for the portfolio system (2.9), over N time steps, is

ψu (uP , zP ) =
∑

j∈M

∑

k∈N0

pTgj ,kugj ,k =
∑

k∈N0

pTP,kuP,k. (5.4)

uP and zP are stacked vectors as in (3.7).

Let (zgj ,k, zgj ,k) be the desired operating range for the output of power generator
j, and let (zT,k, zT,k) be the desired operating range for the portfolio power
production. The desired operating range can be related to the state-of-charge of
the battery in an electric vehicle, the room temperature in a residential heating
system, the food temperature in a commercial refrigeration system, and the
reference profile (electricity sold in the day-ahead electricity market) for the
portfolio power production. The cost of operating the system outside its desired
operating range, over N time steps, is

ψz (uP , zP ) =
∑

k∈N1

qT
T,k

max(zT,k − zT,k, 0) + qTT,k max(zT,k − zT,k, 0)

+
∑

j∈M

∑

k∈N1

qT
gj ,k

max(zgj ,k − zgj ,k, 0) + qTgj ,k max(zgj ,k − zgj ,k, 0),
(5.5)

or in a compact form

ψz (uP , zP ) =
∑

k∈N1

qT
P,k

max(zP,k − zP,k, 0) + qTP,k max(zP,k − zP,k, 0), (5.6)
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time

zgj ,k (zgj ,k,zgj ,k)

(a) A cost is imposed for operating the sys-
tem outside its desired operating range. In
this figure, cost intervals are indicated by red.

zgj ,k

cost (zgj ,k,zgj ,k)

(b) The cost of operating the system outside
its desired operating range is proportional to
the distance from the operating range.

Figure 5.1: Illustration of the output related cost function (5.6).

in which we have defined

zP,k =




zg1,k
zg2,k

...
zgM ,k

zT,k



, zP,k =




zg1,k
zg2,k

...
zgM ,k

zT,k



, q

P,k
=




q
g1,k

q
g2,k
...

q
gM ,k

q
T,k



, qP,k =




qg1,k
qg2,k

...
qgM ,k

qT,k



. (5.7)

q
P,k

and qP,k contain prices for the individual generators, as well as for the

portfolio power production. q
T,k

and qT,k can be the prices for balancing power.

Using components such as batteries in electric vehicles, compressors in heat
pumps, and evaporators in cold storage systems, outside their desired operating
range, may be associated with a price for wear and tear of the components.
These prices define q

gj ,k
and qgj ,k for the power generators. The maximum

function in (5.6) is evaluated element-wise, such that for a vector v ∈ Rn

max(v, 0) =




max(v1, 0)
max(v2, 0)

...
max(vn, 0)


 .

Fig. 5.1 illustrates the cost function (5.6) for a single power generator. The
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EMPC objective function for the power portfolio system (2.9) is defined as

ψ(uP , zP ) = ψu(uP , zP ) + ψz(uP , zP ), (5.8)

where ψu and ψz are defined as in (5.4) and (5.6), respectively.

5.4 Certainty-Equivalent Economic MPC

This section introduces CE-EMPC for the portfolio system (2.9). We assume
that the process noise, wP,k, and the measurement noise, vP,k, are independent
and identically distributed random variables with

wP,k ∼ N(0, RP,w), (5.9a)

vP,k ∼ N(0, RP,v). (5.9b)

To keep the notation simple, we let k = 0 denote the current time step and
write x̂k = x̂k|0 for conditional expectations. Introduce the auxiliary variables

ρdP,k =




ρdg1,k
ρdg2,k

...
ρdgM ,k

ρdT,k



, ρuP,k =




ρug1,k
ρug2,k

...
ρugM ,k

ρuT,k



.

The OCP solved in CE-EMPC of the portfolio system (2.9) is the LP

min.
uP ,x̂P ,ẑP ,ρdP ,ρ

u
P

∑

k∈N0

pTP,kuP,k +
∑

k∈N1

qT
P,k
ρdP,k + qTP,kρ

u
P,k, (5.10a)

s.t. x̂P,k+1 = AP x̂P,k +BPuP,k + EP dP,k, k ∈ N0, (5.10b)

ẑP,k = CP,zx̂P,k, k ∈ N1, (5.10c)

uP,k ≤ uP,k ≤ uP,k, k ∈ N0, (5.10d)

∆uP,k ≤ ∆uP,k ≤ ∆uP,k, k ∈ N0, (5.10e)

zP,k − ρdP,k ≤ ẑP,k ≤ zP,k + ρuP,k, k ∈ N1, (5.10f)

ρdP,k ≥ 0, k ∈ N1, (5.10g)

ρuP,k ≥ 0, k ∈ N1. (5.10h)

The optimization variables in (5.10) are

uP =




uP,0
uP,1

...
uP,N−1


 , x̂P =




x̂P,1
x̂P,2

...
x̂P,N


 , ẑP =




ẑP,1
ẑP,2

...
ẑP,N


 ,
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and

ρdP =




ρdP,1
ρdP,2

...
ρdP,N


 , ρ

u
P =




ρuP,1
ρuP,2

...
ρuP,N


 .

Constraints (5.10a) and (5.10c) are the state-space constraints. These con-
straints are governed by the Kalman filter equations, defined in Section 3.2.
Constraints (5.10d) and (5.10e) follow from (5.3). Constraints (5.10f), (5.10g),
and (5.10h), are a model of (5.6), based on soft output constraints [PJ09,KM00,
Ken75,MRRS00,ZJM10]. Let (u∗P , x̂

∗
P , ẑ

∗
P , ρ

d∗
P , ρ

u∗
P ) denote an optimal solution

of (5.10). The auxiliary variables ρd∗P and ρu∗P clearly satisfy

ρd∗P,k = max(zP,k − ẑ∗P,k, 0), k ∈ N1,

ρu∗P,k = max(ẑ∗P,k − zP,k, 0), k ∈ N1,

This shows that (5.10a) provides a linear model of (5.8) for the OCP (5.10).

5.4.1 Two-Generator Case Study

A power portfolio CE-EMPC case study is considered. The case study portfolio
consists of two generators; a cheap/slow generator (Generator 1), and an ex-
pensive/fast generator (Generator 2). It is common that small agile generators
have a high price of utilization, while larger less flexibly generators have a low
price of utilization [EIA14]. We model the case study generators as third-order
systems in the form (2.2). The resulting portfolio system, (2.9), is discretized
using a sampling time of Ts = 5s. The OCP (5.10) is solved in a receding horizon
manner. The controller objective is to coordinate the most cost-efficient power
production, given a time-varying reference for the total power production. The
reference is required to be satisfied with a ±0.5MW margin. The cost of not
satisfying the demand (with this margin) is 360EUR/MWh in both the up and
the down direction. The scenario length is 30 minutes, which corresponds to
360 time steps. Full information about the initial state is given, xP,0 = 0, and

wP,k ∼ N(0, σBBT ), (5.11a)

vP,k ∼ N(0, σI). (5.11b)

The prediction horizon is N = 60 time steps. Table 5.1 lists the case study
parameters. The parameters are constant over the entire prediction and control
horizon.

Fig. 5.2 and Fig. 5.3 show a closed-loop simulation with σ = 0. The cheap
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Table 5.1: Case study parameters.

τi pgi,k ugi,k ugi,k ∆ugi,k ∆ugi,k

Generator 1 20 0.25 0 5 -1 1
Generator 2 50 0.125 0 20 -0.2 0.2
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Figure 5.2: Closed-loop simulation with σ = 0: Portfolio power production
and power production reference with a ±0.5MW margin.

generator produces the majority of the energy. The expensive generator is ac-
tivated to keep the total power production within the desired operating range.
Around t = 20 min a situation with surplus power occurs. The cost for this is
EUR 8. The total operating cost is EUR 679. Fig. 5.4 and Fig. 5.5 show a
closed-loop simulation with σ = 1. In this simulation, the total power produc-
tion is outside the desired operating range a significant part of the time. The
cost for this is EUR 36, which is an increase of a factor 4.5 in imbalance costs,
compared to the noise-free simulation. Over the course of longer time horizons,
the power imbalances increase the overall operating cost significantly.

CE-EMPC operates the system as close as possible to its constraints. This
works well in a noise-free setting. In the presence of uncertainty, random per-
turbations drive the system to a state outside its desired operating range. For
power production planning applications, this can cause e.g. faults in generator
components, overflow of hydro storage reservoirs, decay of food products in re-
frigeration systems, as well as blackouts in small isolated power systems [SEJ15].
For the two-generator case study, CE-EMPC leads to expensive power imbal-
ances that can potentially be avoided. Also observe that the power production
setpoint levels behave irregularly when σ = 1. In particular, the setpoint lev-
els for Generator 1 fluctuate at a high rate. Such an aggressive control of a
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(d) Generator 2: ug2,k.

Figure 5.3: Closed-loop simulation with σ = 0: Generator power production
and setpoint levels.

generator is unfit for practical use due to e.g. wear and tear of the generator
components and model uncertainties [PJ09].

5.5 Mean-Variance Economic MPC

This section provides an overview of MV-EMPC for linear stochastic systems.
For proof and details, we refer to Paper F and Paper G. Reference [CSFJ15]
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Figure 5.4: Closed-loop simulation with σ = 1: Portfolio power production
and power production reference with a ±0.5MW margin.

describes MV-EMPC for non-linear systems with uncertain model parameters.

Consider the evolution of the linear stochastic system (3.1) (this includes the
portfolio system (2.9)) over the horizon N0. For simplicity, assume that dk = 0,
for k ∈ N0. Similar to (3.18), we can write the state and output variables as
affine functions of the input sequence {uk}k∈N0 , the current state xk, and the
process noise sequence {wk}k∈N0 . This means that

x = Lx(u;xk,w),

z = Lz(u;xk,w),

where Lx and Lz are affine functions, and x ∈ RNnx , z ∈ RNnz , u ∈ RNnu , and
w ∈ RNnx , are stacked vectors as in (3.7).

Define the function

ϕ(u;xk,w) = φ (u, Lx(u;xk,w), Lz(u;xk,w)) ,

where φ is the EMPC cost function, e.g. (3.14). The OCP solved in CE-EMPC
can be stated as

min.
u∈U

ΨCE = ϕ(u;E [xk] , E [w]).

U is an input constraint set derived from (3.8d). Fig. 5.6 shows a histogram of
ϕ(u∗P ;xP,0|0, wP ) for the two-generator case study, based on 10000 realizations of
the process noise wP . The vector u∗P is the open-loop input trajectory obtained
by solving (5.10), and xP,0|0 is the known initial state. The operating cost
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Figure 5.5: Closed-loop simulation with σ = 1: Generator power production
and setpoint levels.

resulting from the case wP = E [wP ] = 0 is indicated in Fig. 5.6. For almost
all the considered realizations of the process noise, the operating cost is larger
than for this case. The average cost over the 10000 simulations is EUR 695.
Thus, while CE-EMPC performs well when the uncertain parameters are equal
to their expected values, it does not perform well on average. The fundamental
issue with CE-EMPC is that

ϕ(u∗;E [xk] , E [w]) 6= E [ϕ(u∗;xk,w)] .

I.e. minimizing over ϕ(u;E [xk] , E [w]), as in CE-EMPC, does not necessarily
minimize the expected cost. The two-generator case study is an example where
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Figure 5.6: Operating costs for 10000 realizations of the process noise wP .

this situation clearly occurs. The OCP solved in MV-EMPC is defined as

min.
u∈U

ΨMV = αE [ϕ(u;xk,w)] + (1− α)V [ϕ(u;xk,w)] . (5.12)

The OCP (5.12) trades off cost expectation and cost variance. α is a user-defined
risk-aversion parameter. The formulation (5.12) can be interpreted as a classical
Markowitz mean-variance optimization approach [Ste01,Mar52]. This approach
is convenient for EMPC, as it includes a risk measure in the objective function.
Moreover, in contrast to CE-EMPC, it considers the actual cost expectation,
E [ϕ(u;xk,w)], rather than ϕ(u;E [xk] , E [w]).

Closed-form expressions for the expected value E [ϕ(u;xk,w)] and the variance
V [ϕ(u;xk,w)] are generally not available. This is addressed by introducing the
sample estimates

E [ϕ(u;xk,w)] ≈ µ =
1

S

∑

s∈S
ϕ(u;xk, w

s), (5.13a)

V [ϕ(u;xk,w)] ≈ s2 =
1

S − 1

∑

s∈S
(ϕ(u;xk, w

s)− µ)
2
, (5.13b)

where {ws}s∈S is a set of S samples from the distribution of w, and S =
{1, 2, . . . , S}. To keep the notation simple, (5.13) assumes that the current
state xk = xk is a known parameter. If xk is a random variable, scenarios can
be introduced for this variable accordingly. Monte Carlo-based approximations
such as (5.13) have been considered for conventional MPC with probabilistic
constraints in [CF13a,CF13b,MB12b,PGL12,SCFM12,SFFM14,ZSSM13].
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For a sufficiently large number of scenarios, S

ΨMV ≈ αµ+ (1− α)s2. (5.14)

Paper F defines the OCP solved in MV-EMPC of linear stochastic systems as

min.
u∈U,{xs,zs,ϕs}s∈S ,µ

αµ+ α̃
∑

s∈S
(ϕs − µ)

2
, (5.15a)

s.t. xsk+1 = Axsk +Buk + wsk, k ∈ N0, s ∈ S, (5.15b)

zsk = Czx
s
k, k ∈ N1, s ∈ S, (5.15c)

ϕs = φ(u, xs, zs), s ∈ S, (5.15d)

µ =
1

S

∑

s∈S
ϕs. (5.15e)

α̃ = (1 − α)/(S − 1). The optimization variables in (5.15) are the input vec-
tor u ∈ RNnu , the state vectors x1, x2, . . . , xS ∈ RNnx , the output vectors
z1, z2, . . . , zS ∈ RNnz , the costs ϕ1, ϕ2, . . . , ϕS ∈ R, and the average cost µ ∈ R.
The objective function (5.15a) is the mean-variance approximation (5.14). Con-
straint (5.15d) assigns the cost associated with scenario s to the variable ϕs. The
OCP solved in CE-EMPC (3.8) corresponds to the special case where S = 1
and w1

k = E [wk], for k ∈ N0.

As a performance indicator for a given input-sequence, u∗ ∈ RNnu , we define

Ψ̄MV = αµ̄+ (1− α)s̄2. (5.16)

where

µ̄ =
1

S

∑

s∈S
ϕ(u∗;xk, w̃

s), (5.17a)

s̄2 =
1

S − 1

∑

s∈S
(ϕ(u∗;xk, w̃

s)− µ̄)
2
, (5.17b)

Expressions (5.14) and (5.16) differ in the set of uncertainty scenarios. We
use {ws}s∈S for optimization, and {w̃s}s∈S for performance evaluation. Paper
F demonstrates MV-EMPC using a case study, which is similar to the two-
generator case study. Fig. 5.7 shows a plot of the average cost, µ̄, as a function
of the standard deviation, s̄, for this case study. In an open-loop setting, MV-
EMPC reduces both cost expectation and cost variance compared to CE-EMPC.
Each value of α provides a different mean-variance trade-off option. The OCP
(5.15) assumes that no recourse exists in the future. Therefore, MV-EMPC may
be overly conservative when applied in a receding horizon manner [SFFM14,
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Figure 5.7: Open-loop efficient frontier for α = [0; 1]. Points on the efficient
frontier are computed by solving (5.15) with S = 2048 realizations
of the process noise vector, w.

LSE13]. To account for future recourse, Paper F introduces an extended two-
stage OCP for MV-EMPC. The two-stage OCP is

min.
{us∈U,xs,zs,ϕs}s∈S ,µ

αµ+ α̃
∑

s∈S
(ϕs − µ)

2
, (5.18a)

s.t. xsk+1 = Axsk +Busk + wsk, k ∈ N0, s ∈ S, (5.18b)

zsk = Czx
s
k, k ∈ N1, s ∈ S, (5.18c)

ϕs = φ(us, xs, zs), s ∈ S, (5.18d)

µ =
1

S

∑

s∈S
ϕs, (5.18e)

us1k = us2k , s1, s2 ∈ S, k ∈ Q. (5.18f)

In this formulation, the input variables are scenario-dependent. Constraint
(5.18f) is a non-anticipativity constraint stating that the input variables should
be equal over all the scenarios for time steps k ∈ Q = {0, 1, . . . , q} [LSE13]. q
is a user-defined parameter. The single-stage OCP (5.15) is the special case of
(5.18) where q = N . Paper F shows that two-stage MV-EMPC is economically
more efficient than both single-stage MV-EMPC and CE-EMPC.

5.5.1 Constraint Back-Off Heuristic

Fig. 5.8 illustrates the typical behavior of MV-EMPC and CE-EMPC for 100
output realizations. The realization associated with the case wk = E [wk],
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Figure 5.8: EMPC constraint management.

is denoted znom
k . CE-EMPC operates the system as close as possible to its

constraints. This is inefficient for control of stochastic systems, as a significant
part of the output realizations end up below the minimum desired output level.
In MV-EMPC, the system is operated with a safety margin from the minimum
desired output level. The safety margin is an integral part the OCP solved MV-
EMPC. A way to achieve similar behavior for CE-EMPC is to use constraint
back-off [VB02, ASS08]. E.g. for the power portfolio system, we can redefine
the desired output levels, such that

zP,k : = zP,k − ηk, k ∈ N1, (5.19a)

zP,k : = zP,k + ηk, k ∈ N1, (5.19b)

where η
k

and ηk are vectors of back-off parameters. The main advantage of
using CE-EMPC over MV-EMPC is that the OCP solved in CE-EMPC is much
smaller than the OCP solved in MV-EMPC. Paper F provides an example where
back-off modified CE-EMPC performs as well as MV-EMPC in terms of eco-
nomics. For large systems, back-off modified CE-EMPC involves a large number
of back-off parameters. Tuning the back-off parameters can be challenging, es-
pecially when the process noise follows a non-Gaussian distribution. Also, when
back-off is introduced in an EMPC setting, the OCP objective function is no
longer directly related to the system operating cost. Consequently, there is no
way to guarantee the economic performance of back-off modified CE-EMPC. In
MV-EMPC, the only tuning parameter is the risk-aversion parameter, α, which
trades off cost expectation and cost variance. MV-EMPC handles the case with
non-Gaussian process noise in a straightforward way.



5.6 Regularization 61

5.6 Regularization

The objective function (5.8) is a pure economic objective function. Regulariza-
tion terms can be added to the objective function to change the behavior of the
controlled system, e.g. to reduce the variability of the setpoint levels in Fig.
5.5. Paper E investigates the use of a weighted `1-regularization term for this
purpose. An advantage of using `1-regularization in the OCP (5.10), is that the
resulting optimization problem remains an LP. Paper E and Paper K show that
OCPs in this problem class can be solved efficiently.

This section demonstrates that `1-regularization improves the behavior of the
closed-loop input trajectories for the two-generator case study. We define `1-
regularization for the two-generator case study as

φreg
`1

(uP , xP , zP ) =
∑

k∈N0

‖R∆uP,k‖1 , (5.20)

where R = rI. In some cases, regularization has an economic interpretation.
For example, setpoint changes are related to wear-and-tear of a power gener-
ator. The `1-regularization term (5.20) can be interpreted as a linear cost for
setpoint changes. It is convenient to have an economic interpretation of the
regularization terms, since the introduction of tuning parameters in the OCP
objective function, conflicts with the fundamental idea of EMPC. Fig. 5.9 and
Fig. 5.10 show closed-loop simulations for different values of the noise param-
eter, σ, and the regularization weight, r. The effect of the regularization is
most clearly observed in the generator setpoint levels (system inputs). At the
expense of slightly less tight control on the total power production, the setpoint
levels become less volatile when the regularization weight, r, is increased. Note
that less tight control on the total power production does not necessarily lead
to more violations of the soft output constraints.

5.7 Summary

This chapter addressed two main challenges of EMPC for linear stochastic
systems. We introduced MV-EMPC to handle the system uncertainty in an
economically efficient manner, and regularization techniques were employed to
achieve well-behaved closed-loop control. The EMPC schemes were tested us-
ing a two-generator case study. Simulations show that MV-EMPC outperforms
CE-MPC in terms of economics. By varying the risk-aversion parameter, α, MV-
EMPC provides different mean-variance trade-off specifications for the system
operating cost. To avoid conservative closed-loop control, a two-stage extension
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Figure 5.9: Total power production. Slightly less tight control on the total
power production is observed when the regularization parameter,
r, is increased.

of MV-EMPC was presented. We introduced a back-off heuristic to improve the
economic performance of CE-EMPC. Back-off modified CE-EMPC can perform
as well as MV-EMPC. On the other hand, back-off modified CE-EMPC does
not guarantee the economic performance of the system in the same way as MV-
EMPC, and it can be difficult to tune. We also illustrated that `1-regularization
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Figure 5.10: Power generator setpoint levels. Increasing the regularization
parameter, r, reduces the variance of the setpoint levels.

reduces the input variance significantly for the two-generator case study, with-
out a significant increase in the overall cost function. Ideally, the regularization
terms have an economic interpretation, such that the economic interpretation
of the OCP objective function in EMPC is preserved.
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C h a p t e r 6

Algorithms for Economic
MPC

Computationally tractable EMPC schemes require efficient algorithms for so-
lution of the OCPs. The contributions of this chapter are special-purpose al-
gorithms for EMPC in power production planning. The algorithms exploit the
high degree of structure in the OCPs to reduce computational time and memory
requirements. We provide benchmarks that compare the proposed algorithms
to current state-of-the-art solvers.

6.1 Contributions

Paper A, Paper C and Paper K develop a homogeneous and self-dual IPM for
EMPC of linear systems with linear constraints and linear objective functions.
The IPM is combined with a tailored Riccati iteration procedure to exploit
the problem structure. In addition, the warm-start procedure of [SAY13] is
employed to reduce the number of IPM iterations. The Riccati-based IPM
scales linearly in the length of the prediction horizon, N . This is convenient,
as stability of EMPC schemes often may be achieved for a sufficiently large N .
Paper B and Paper E provide a Dantzig-Wolfe decomposition algorithm and
an ADMM-based decomposition algorithm for EMPC of dynamically decoupled
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subsystems. The subsystem decomposition algorithms are well-suited for EMPC
of the portfolio system (2.9), as they scale linearly in the number of power
generators, M . Paper G presents a scenario decomposition algorithm for MV-
EMPC that scales linearly in the number of uncertainty scenarios, S. The
algorithm solves a convex relaxation of the OCP that arises in MV-EMPC using
ADMM. An algorithm for MV-EMPC that scales well in S is critical for the
tractability of this EMPC scheme. Subproblems that occur in the proposed
decomposition algorithms can be solved efficiently using the Riccati-based IPM
of Paper K and the ADMM-based algorithm of Paper D.

We have organized this chapter as follows. Section 6.2 presents the Riccati-
based homogeneous and self-dual IPM for EMPC of linear systems with linear
constraints and linear objective functions. The subsystem decomposition algo-
rithms for EMPC of dynamically decoupled subsystems are outlined in Section
6.3, and Section 6.4 describes the scenario decomposition algorithm for MV-
EMPC. Section 6.5 provides a summary of this chapter.

6.2 Riccati-Based Linear Programming IPM

The OCP that arises in EMPC of linear systems with linear constraints and
linear objective functions can be posed as an LP. A fairly general OCP within
this problem class is (5.10). Paper K develops a tailored homogeneous and self-
dual IPM for (5.10). This section provides a brief overview of the algorithm.

Algorithm 1 is a general-purpose homogeneous and self-dual IPM for solution
of the LP (4.4). To avoid conflicting notation, we write the LP as

min.
t

gT t, (6.1a)

s.t. Ft = b, (6.1b)

Ht ≤ c (6.1c)

The most time-consuming numerical operations in Algorithm 1 are solving the
two linear systems of equations

JV (θ)∆θaff = −V (θ), (6.2a)

JV (θ)∆θ = −V̄ (θ). (6.2b)

The systems (6.2a) and (6.2b) determine the optimization search direction for
the IPM. Both systems can be written in the form

JV (θ)∆θ = r, (6.3)
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where r is an arbitrary right-hand side.

Using the definitions (4.9) and (4.15), we write (6.3) as

FT∆ṽ +HT∆w̃ + gτ = r1, (6.4a)

b∆τ − F∆t̃ = r2, (6.4b)

c∆τ −H∆t̃−∆s̃ = r3, (6.4c)

gT∆t̃+ bT∆ṽ + cT∆w̃ −∆κ = r4, (6.4d)

W̃ i∆s̃+ S̃i∆w̃ = r5, (6.4e)

κi∆τ + τ i∆κ = r6. (6.4f)

r1, r2, r3, r4, r5, and r6 are arbitrary right-hand sides.

Paper K shows that the solution of (6.4) can be obtained by solving the system




0 FT HT

−F 0 0

−H 0 (W̃ i)−1S̃i





f1 h1

f2 h2

f3 h3


 =



r1 −g
r2 −b
r3 −c


 , (6.5)

and subsequent computation of

∆τ =
r6 − τ i

(
gT f1 + bT f2 + cT f3

)

κi + τ i (gTh1 + bTh2 + cTh3)
,

∆t̃ = f1 + h1∆τ,

∆ṽ = f2 + h2∆τ,

∆w̃ = f3 + h3∆τ,

∆κ = gT∆t̃+ bT∆ṽ + cT∆w̃ − r4,

∆s̃ = (W̃ i)−1(r5 − S̃i∆w̃),

where r3 := r3 + (W̃ i)−1r5 and r6 := r6 + τ ir4.

Paper K expresses the OCP (5.10) as an LP in the form (6.1). In this for-
mulation, F and H are highly structured matrices. Consequently, the sys-
tem (6.5) becomes highly structured as well. Paper K solves the system (6.5)
using a Riccati iteration procedure, which is specifically tailored to the OCP
(5.10). The Riccati iteration procedure consists of two parts. The first part
is a variable elimination procedure that reduces (6.5) into a standard system.
The second part of the procedure solves the standard system using a discrete
Riccati recursion [AM12, RWR98, DFH09, Jør05, WB10, FJ13, RCRW97]. The
overall complexity of the Riccati iteration procedure is O(N(nu + nx + nz)

3).
Computations that scale cubically in the Riccati iteration procedure are only
performed one single time in every IPM iteration, as system factorizations are
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stored within the IPM iteration. Subsequent solutions of (6.5) within the IPM
iteration have complexity O(N(nu + nx + nz)

2). It is convenient to have an
algorithm that scales linearly in the length of the prediction horizon, N , as sta-
bility of EMPC schemes often may be achieved by selecting a sufficiently large
value of N [HPJJ12,JH05,PN00,Grü13,LS15,Jør05,JFGND12].

Solving (6.4) directly using sparse linear algebra routines is linear to quadratic
in N , while general-purpose solvers using dense linear algebra routines scale
cubically in N [ZB09]. When the state dimension, nx, is large compared to
the number of inputs, nu, condensing methods are more efficient than Riccati-
based methods for solving (6.4) [FJ13]. Condensing methods eliminate the state
and output variables from (6.4), to form and solve a smaller, but less structured
system. Condensing methods scale quadratically to cubically in N . Condensing-
based solvers are therefore not well-suited to OCPs with long prediction hori-
zons. As a rule of thumb, condensing-based solvers are more efficient than
Riccati-based solvers, roughly when nx ≥ Nnu [FJ13]. The condensing method
of [FJ13] can replace the proposed Riccati iteration procedure to solve (6.4) in
the IPM, when nx ≥ Nnu.

6.2.1 Warm-Start

We apply the strategy of [SAY13] to warm-start the proposed homogeneous and
self-dual IPM. Let (t̄, v̄, w̄, s̄) denote a candidate primal-dual solution of (6.1).
The warm-start is defined as

t̃0 = λt̄, (6.6a)

ṽ0 = λv̄, (6.6b)

s̃0 = λs̄+ (1− λ)1, (6.6c)

w̃0 = λw̄ + (1− λ)1, (6.6d)

τ0 = 1, (6.6e)

κ0 = (w̃0)T s̃0/mI . (6.6f)

The point defined by (6.6) is a combination of the candidate point, (t̄, v̄, w̄, s̄),
and the standard cold-start

(t̃, ṽ, w̃, s̃, τ, κ) = (0,0,1,1, 1, 1). (6.7)

The parameter λ ∈ [0, 1] in (6.6) is a tuning parameter. When λ = 0, the initial
point becomes the standard cold-start, and for λ = 1 the initial point coincides
with the candidate point. For homogeneous and self-dual IPMs, the standard
cold-start, (6.7), is perfectly centralized with respect to the central path. This
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is a key feature that makes warm-start work well for homogeneous and self-
dual IPMs [SAY13]. As λ is decreased from one towards zero, the initial point
becomes better centralized, while the distance from the candidate point (and
possibly the solution) is increased.

The performance of the proposed warm-start strategy depends on the quality
of the candidate point. In EMPC, the OCP is solved in a receding horizon
manner. A primal-dual solution of (6.1) is therefore available from the previous
sampling time. This makes it possible to construct a candidate point using
the shift-initialization approach [DFH09], as follows: For the LP formulation of
(5.10), the optimization variable t consists of the components

t =
[
uTP,0 x̂TP,1 ρTP,1 uTP,1 x̂TP,2 ρTP,2 . . . uTP,N−1 x̂TP,N ρTP,N

]T
.

As an example, consider the solution of (6.1) at time step k = 0, for N = 3

t∗ =
[
u∗TP,0 x̂∗TP,1 ρ∗TP,1 u∗TP,1 x̂∗TP,2 ρ∗TP,2 u∗TP,2 x̂∗TP,3 ρ∗TP,3

]T
,

The following candidate point is then used at time step k = 1

t̄ =
[
u∗TP,1 x̂∗TP,2 ρ∗TP,2 u∗TP,2 x̂∗TP,3 ρ∗TP,3 u∗TP,2 x̂∗TP,3 ρ∗TP,3

]T
. (6.8)

Thus, t̄ is constructed by shifting the components of t∗ forward in time. The
final (three) components of t̄ can be chosen in several ways [DFH09]. We use a
steady-state approach, where the final components of t∗ are repeated two times
in t̄. Note that when N is large, we expect the initialization strategy for the last
components of t̄ to be less significant. As for t̄, we left-shift the optimal slack
variables, s∗, and the optimal dual variables, v∗ and w∗, to construct s̄, v̄ and
w̄.

6.2.2 Benchmark

LPempc is a tailored MATLAB and C implementation of Algorithm 1. The algo-
rithm utilizes the proposed Riccati iteration procedure to solve (6.5). Moreover,
multiplications involving the structured matrices F and H, are implemented as
specialized linear algebra routines.

Paper K compares LPempc to IPMs from the following software packages: Gurobi,
MOSEK, SeDuMi, LIPSOL and GLPK. These state-of-the-art IPMs are mainly writ-
ten in low-level language such as FORTRAN and C, and they rely on tailored
linear algebra routines for solution of large-scale sparse LPs. The comparison
also includes the simplex method provided by CPLEX, as well as FORCES [DZZ+12]
and CVXGEN [MB12a] that are IPMs based on automatic code generation. The
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Figure 6.1: CPU time to solve (5.10) as a function of the number of power
generators, M , and the horizon length, N .

algorithms are compared using a power portfolio case study, which is similar to
the two-generator case study. The case study involves control of M generators
in the form (2.2).

Fig. 6.1 depicts the CPU time to solve the OCP (5.10) as a function of the
number of power generators, M , and the length of the prediction horizon, N .
For large problems, LPempc is faster than all other solvers by a significant mar-
gin. In general, code generation-based solvers such as CVXGEN and FORCES are
most competitive for small-dimensional problems [DZZ+12]. Code generation
in CVXGEN fails for problems larger than M = 4 and N = 12. Therefore, Fig.
6.1 does include results for CVXGEN.

Fig. 6.2 compares the CPU time to solve (5.10) in a closed-loop simulation
with M = 15 power generators, noise parameter σ = 1, and a horizon length of
N = 200 time steps. Only the most competitive solvers are considered in this
benchmark. Fig. 6.2 shows that LPempc is up to an order of magnitude faster
than CPLEX, Gurobi, SeDuMi and MOSEK, depending on the problem data. On
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Figure 6.2: CPU time to solve (5.10). Timings are performed over a 30 min
closed-loop simulation with M = 15 power generators and a hori-
zon length of N = 200 time steps. Warm-start is indicated by an
asterisk (*) for LPempc.

average, LPempc is approximately 5 times faster than Gurobi, 6 times faster than
MOSEK, 19 times faster than SeDuMi, and 22 times faster than CPLEX. Warm-start
reduces the average number of IPM iterations by approximately 40%. Paper K
shows that warm-start works well, even for large values of the noise parameter,
σ.

6.3 Subsystem Decomposition

The portfolio system (2.9) may include a large number of generators, e.g. it can
represent a virtual power plant that is made up of thousands of distributed en-
ergy resources. When the number of generators, M , is large, EMPC algorithms
that scale well in M are attractive. The generators (2.5) are dynamically decou-
pled. Paper E presents two decomposition algorithms for EMPC of dynamically
decoupled subsystems. The algorithms are based on Dantzig-Wolfe decomposi-
tion and ADMM. This section outlines the two decomposition algorithms.

Using the definitions in (2.9), we write the OCP (5.10) as

min.
uP ,x̂P ,ẑP ,ρdP ,ρ

u
P

∑

k∈N0

pTP,kuP,k +
∑

k∈N1

qT
P,k
ρdP,k + qTP,kρ

u
P,k, (6.9a)
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subject to

x̂gj ,k+1 = Agj x̂gj ,k +Bgjugj ,k + Egjdgj ,k, j ∈M, k ∈ N0, (6.9b)

ẑgj ,k = Cgj ,zx̂gj ,k, j ∈M, k ∈ N1, (6.9c)

ugj ,k+j ≤ ugj ,k ≤ ugj ,k, j ∈M, k ∈ N0, (6.9d)

∆ugj ,k ≤ ∆ugj ,k ≤ ∆ugj ,k, j ∈M, k ∈ N0, (6.9e)

zgj ,k − ρdgj ,k ≤ zgj ,k ≤ zgj ,k + ρugj ,k, j ∈M, k ∈ N1, (6.9f)

ρdgj ,k ≥ 0, j ∈M, k ∈ N1, (6.9g)

ρugj ,k ≥ 0, j ∈M, k ∈ N1, (6.9h)

ẑT,k =
∑

j∈M
ΥjCgj ,zxgj ,k, k ∈ N1, (6.9i)

zT,k − ρdT,k ≤ zT,k ≤ zT,k + ρuT,k, k ∈ N1, (6.9j)

ρdT,k ≥ 0, k ∈ N1, (6.9k)

ρuT,k ≥ 0, k ∈ N1. (6.9l)

Constraints (6.9b), (6.9c), (6.9d), (6.9e), (6.9f), (6.9g) and (6.9h) are generator-
level constraints. Constraint (6.9i) connects the generator-level state variables,
x̂g1,k, . . . , x̂gM ,k, with the portfolio-level power production variable, ẑT,k. Con-
straints (6.9j), (6.9k) and (6.9l) are portfolio-level constraints. Accordingly, (5.4)
and (5.5) show that the objective function, (6.9a), can be split into generator-
level costs and a portfolio-level cost.

Paper E poses the OCP (6.9) as a block-angular LP in the form (4.21). To avoid
conflicting notation, we write this problem as

min.
t

∑

j∈J
gTj tj , (6.10a)

s.t. Fgj tj ≤ bgj , j ∈ J , (6.10b)
∑

j∈J
Flj tj ≤ bl. (6.10c)

In this formulation of (6.9), the subsystem constraints (6.10b) are generator-
level constraints, and the linking constraints (6.10c) are portfolio-level con-
straints. Finally, J = {1, 2, . . . ,M,M + 1}, where M is the number of gen-
erators.
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Figure 6.3: Diagram of the Dantzig-Wolfe decomposition algorithm for EMPC
of the power portfolio system.

6.3.1 Dantzig-Wolfe Decomposition Algorithm

Algorithm 2 is a Dantzig-Wolfe decomposition algorithm for the solution of
(6.10). Fig. 6.3 is a diagram of its application to the OCP (6.9). A subproblem
in the form (4.28) is associated with each generator. The subproblems are solved
to update the restricted master problem (4.27). This procedure is repeated until
a stopping criterion for the Dantzig-Wolfe decomposition algorithm is satisfied.
The procedure can be interpreted as follows: An aggregator distributes price
signals to the generators. Each generator then generates a candidate production
plan (dispatch) based on the price signals. If the aggregator is not satisfied with
(a combination of) the candidate production plans, the price signals are updated
and the process is repeated.

An advantage of the Dantzig-Wolfe decomposition algorithm is that a feasible
suboptimal solution is available in every iteration of the algorithm. Early ter-
mination can therefore be applied to trade off computation time and optimality.
Upper and lower bounds for the optimal objective value can be determined via



74 Algorithms for Economic MPC

Lagrangian relaxation techniques [DDS05]. This makes it possible to give a
qualitative measure of a suboptimal solution. As in (6.8), a shift-initialization
strategy is applied to warm-start the Dantzig-Wolfe decomposition algorithm.

6.3.2 ADMM-Based Decomposition Algorithm

Algorithm 3 is an ADMM algorithm for solution of convex optimization prob-
lems with separable objective functions. Paper E presents a specialized imple-
mentation of the ADMM algorithm for solution of the block-angular LP (6.10).
To write (6.10) in ADMM form, we consider the modified problem

min.
t,v

∑

j∈J
gTj tj , (6.11a)

s.t. Fgj tj ≤ bgj , j ∈ J , (6.11b)

Flj tj = vj , j ∈ J , (6.11c)
∑

j∈J
vj ≤ bl. (6.11d)

v =
[
vT1 vT2 · · · vTM+1

]T
is an auxiliary optimization variable. Using the

indicator function (4.30), we state the problem (6.11) as

min.
t,v

∑

j∈J

(
gTj tj + IFgj

(tj)
)

+ IFl
(v), (6.12a)

s.t. Flj tj = vj , j ∈ J , (6.12b)

where we have defined the sets Fgj = {tj |Fgj tj ≤ bgj} and Fl = {v|∑j∈J vj ≤
bl}.

The problem (6.12) is in the standard ADMM form (4.29). The ADMM recur-
sions for solution of (6.12) follow from (4.33). In a simplified form, the recursions
to solve (6.12) are

ti+1
j = argmin

tj∈Fgj

gTj tj +
ρ

2

∥∥Flj tj − vij + uij
∥∥2

2
, j ∈ J , (6.13a)

vi+1 = argmin
v∈Fl

ρ

2

∑

j∈J

∥∥Flj ti+1
j − vj + uij

∥∥2

2
, (6.13b)

ui+1
j = uij + Flj t

i+1
j − vi+1

j , j ∈ J . (6.13c)

Paper E shows that the t-update, (6.13a), can be expressed as the solution to



6.3 Subsystem Decomposition 75

the convex quadratic program (QP)

min.
tj

ρ

2
tTj (Flj )TFlj tj + (gj + ρ(−vij + uij)

TFlj )T tj , (6.14a)

s.t. Fgj tj ≤ bgj , j ∈ J , (6.14b)

for j ∈ J . Moreover, the v-update, (6.13b), has the closed-form expression

vi+1
j = Flj t

i+1
j + uij −max(l/(M + 1), 0), j ∈ J ,

in which

l =
∑

j∈J

(
Flj t

i+1
j + uij

)
− h. (6.15)

The ADMM algorithm is composed of a number of (decoupled) generator-level
computations, and a system-level computation. The system-level computation
in the ADMM algorithm is the sum (6.15). In comparison, the Dantzig-Wolfe
decomposition algorithm requires solution of the LP (4.27). The ADMM al-
gorithm is also attractive since it can be generalized to convex optimization
problems, e.g. OCPs with quadratic cost functions [CSZ+12, SL12, AHW12].
As the Dantzig-Wolfe decomposition algorithm, the ADMM algorithm can be
warm-started using a shift-initialization strategy, and it can be terminated early
to obtain a feasible suboptimal solution.

6.3.3 Subproblems

Efficient implementations of the subsystem decomposition algorithms require
efficient solution of the subproblems (4.28) and (6.14). Since the subproblems
are decoupled in j ∈ J , they can be solved in parallel. Moreover, a warm-start
for the algorithms solving the subproblems is obtained using values from the
previous iteration of the respective decomposition algorithm. In the Dantzig-
Wolfe decomposition algorithm, the subproblem (4.28) can be expressed as a
linear OCP. LPempc is a structure-exploiting IPM for solution of linear OCPs.
A crossover procedure can be applied to obtain an optimal extreme point for
(4.28), based on an interior-point solution of the subproblem [Mar99, WCS13].
In the ADMM algorithm, the subproblem (6.14) can be expressed as a quadratic
OCP. Active-set methods [JRJ04,BB06,FBD08], IPMs [WB10,RWR98,SKC10],
and first-order methods [RJM09,JGR+14], solve this type of problem efficiently.
In particular, Paper D provides an ADMM-based algorithm for solution of input-
constrained OCPs with convex objective functions. An implementation of this
algorithm is developed for input-constrained extended linear quadratic control
problems. Simulations show that the ADMM algorithm is more than an order
of magnitude faster than several state-of-the-art quadratic programming algo-
rithms.
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Table 6.1: Iteration information table based on closed-loop simulation, with
M = 2 generators. The minimum, maximum and average number
of iterations are listed for both cold-start and for warm-start (in
parentheses).

σ r DWempc ADMMempc

0 0 [6(2), 16(17), 12(11)] [47(2), 485(410), 097(66)]
0 0.01 [6(2), 15(18), 10(09)] [35(3), 469(410), 088(56)]
0 0.1 [5(2), 15(17), 07(07)] [33(6), 359(280), 149(48)]
0.01 0 [7(2), 18(19), 13(11)] [47(2), 485(410), 094(65)]
0.01 0.01 [6(2), 17(17), 10(09)] [35(2), 469(410), 088(58)]
0.01 0.1 [5(2), 13(16), 07(06)] [32(6), 380(290), 145(50)]
0.1 0 [7(2), 17(20), 12(11)] [46(2), 485(410), 091(66)]
0.1 0.01 [6(2), 17(16), 09(09)] [35(2), 469(410), 084(60)]
0.1 0.1 [5(2), 14(14), 07(06)] [32(6), 359(279), 144(47)]

6.3.4 Benchmark

The subsystem decomposition algorithms are implemented in MATLAB. We
refer to the implementation of the Dantzig-Wolfe decomposition algorithm as
DWempc, and to the implementation of the ADMM-based decomposition algo-
rithm as ADMMempc. Paper E compares DWempc and ADMMempc using a power
portfolio case study with M generators. For this case study, the decomposition
algorithms solve the subproblems (4.28) and (6.14) using CPLEX. To get well
behaved closed-loop solutions, the OCP objective function (6.9) is augmented
by an `1-regularization term in the form (5.20). Table 6.1 provides informa-
tion on the number of iterations for DWempc and ADMMempc, based on a 10 min
closed-loop simulation, with M = 2 generators. The closed-loop simulation is
performed for different values of the noise parameter, σ, and the regularization
parameter, r. The definition of σ in Paper E differs slightly from the defini-
tion (5.11). Table 6.1 shows that DWempc converges in relatively few iterations
compared to ADMMempc. The table also shows that regularization reduces the
computational time for both DWempc and for ADMMempc. E.g. for σ = 0.01 and
r = 0.1, the average number of iterations for DWempc is reduced by more than
40%, compared to the case where r = 0. Also observe that while warm-start
leads to a marginal improvement in the iteration count for DWempc, a substantial
reduction in the number of iterations is achieved for ADMMempc.

To indicate the performance of a suboptimal solution (suboptimality level), the
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Figure 6.4: Suboptimality measure in a closed-loop solution with σ = 0.01
and r = 0.01. DWempc and ADMMempc are terminated after 0.01
seconds.

following measure is defined

ω = 100
φ̃− φ∗

max(|φ∗|, 1)
, (6.16)

where φ̃ is the objective value of the OCP (6.9) associated with a suboptimal
solution, and φ∗ is the optimal objective value. We test early-termination in a
closed-loop simulation with σ = 0.01 and r = 0.01. The algorithms are termi-
nated after 0.01 seconds. Fig. 6.4 shows the values of ω over the closed-loop
simulation. DWempc is up to approximately 30% suboptimal when cold-started,
and not more than 5% suboptimal when warm-started. Warm-start also im-
proves the performance of ADMMempc significantly. Fig. 6.5 shows the value of
ω as a function of the elapsed CPU time for a single instance of the OCP with
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Figure 6.5: Suboptimality measure as a function of the CPU time, for a single
instance of the OCP with 128 power generators.

M = 128 power generators. The figure shows that DWempc converges at a fast
rate. After approximately 0.3 seconds, a solution which is less than 1% sub-
optimal is obtained by DWempc. The convergence rate of ADMMempc is relatively
slow. More than 10 seconds is required to find a 1% suboptimal solution for
ADMMempc. Fig. 6.6 shows the CPU time to solve (6.9) as a function of M , for
DWempc, ADMMempc, Gurobi, CPLEX, and MOSEK. The reported timings assume
that the subproblems (4.28) and (6.14) are solved in parallel. This is done to
demonstrate the full parallelization capabilities of the subsystem decomposition
algorithms. Case study details and solver specifications are provided in Paper
E. Fig. 6.6 shows that for large problems, DWempc is 5 times faster than CPLEX

and more than an order of magnitude faster than Gurobi and MOSEK. Paper E
reports that for high accuracy solutions, DWempc is 2 times faster than CPLEX

and approximately 5 times faster than Gurobi and MOSEK. Around M = 3000
memory becomes an issue for Gurobi, CPLEX and MOSEK. DWempc and ADMMempc

solve OCPs with M � 3000 without any memory issues.

Table 6.1 reports that ADMMempc requires more iterations than DWempc. Pro-
vided that the number of iterations is small, the computational cost per itera-
tion is approximately equal for DWempc and ADMMempc. For this reason, DWempc
outperforms ADMMempc by a significant margin. Considering both CPU time
and memory requirements, DWempc is an attractive optimization algorithm for
(6.9), when M is large. For this particular problem ADMM is less attrac-
tive, as it requires many iterations to converge to even a moderately accu-
rate solution. In general, the convergence rate of ADMM is very problem-
dependent [SLY+14,TGS+13,GTSJ13].
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Figure 6.6: CPU time to solve the OCP (6.9) as a function of the number of
power generators, M .

6.4 Scenario Decomposition

The size of the OCP solved in MV-EMPC increases with the number of uncer-
tainty scenarios, S. Paper F shows that MV-EMPC usually requires S > 1000
to work well. Direct solution of the OCP (5.18) is intractable in real-time, for
large S. To overcome this challenge, Paper G presents a novel ADMM-based
decomposition algorithm for MV-EMPC of linear stochastic systems. The al-
gorithm decomposes the OCP into S independent convex subproblems, and a
number of computationally inexpensive operations. This section summarizes
the scenario decomposition algorithm.

The OCP (5.18) is a convex optimization problem when U is a convex set, and
φ is an affine function. If the equality constraint (5.18d) is replaced by the
inequality constraint

ϕs ≥ φ(us, xs, zs), s ∈ S, (6.17)

the requirement on φ can be loosened to convexity. Using the relaxed condition
(6.17) is attractive since it preserves convexity of the overall problem for a wide
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Figure 6.7: CPU time to solve the OCP (5.18) and its convex relaxation (6.18)
as a function of the number of uncertainty scenarios, S.

range of cost functions. We write the relaxed OCP as

min.
{us∈U,xs,zs,ϕs}s∈S ,µ

αµ+ α̃
∑

s∈S
(ϕs − µ)

2
, (6.18a)

s.t. xsk+1 = Axsk +Busk + Edk + wsk, k ∈ N0, s ∈ S, (6.18b)

zsk = Czx
s
k, k ∈ N1, s ∈ S, (6.18c)

ϕs ≥ φ(us, xs, zs), s ∈ S, (6.18d)

µ =
1

S

∑

s∈S
ϕs, (6.18e)

us1k = us2k , s1, s2 ∈ S, k ∈ Q. (6.18f)

The solution of the OCP (5.18), and the solution of the relaxed OCP (6.18)
often only differ when α ≈ 0 [SDMJ14b]. A small α means that MV-EMPC
emphasizes on minimizing the cost variance. When α ≈ 0, a significant cost
reduction can often be achieved by increasing α marginally. For this reason,
cases where α ≈ 0 are generally disregarded in practice [Mar52,Ste01].

Paper F solves the relaxed OCP (6.18) in a conceptual example of MV-EMPC.
The example concerns MV-EMPC of the portfolio system (2.9), subject to the
constraints (5.3) and the cost function (5.8). The relaxed OCP is expressed
as a convex QP. Fig. 6.7 shows the CPU time to solve (5.18) and (6.18) as a
function of the number of uncertainty scenarios S. The OCP (5.18) is solved
using MATLAB’s fmincon, while its convex relaxation (6.18) is solved using
Gurobi. It is verified that both optimization problems yield the same solution
(for all practical purposes). For S = 64, the CPU time to solve (5.18) is several
minutes. The relaxed problem is solved in under 5 seconds, even for S = 1024.
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For this example, the time to solve the OCP associated with CE-EMPC, (5.10),
is approximately 0.1 seconds.

Fig. 6.7 reports CPU times based on an example with a single power generator
and a short prediction horizon. For larger problems, the time to solve even the
relaxed OCP, is significantly more than 5 seconds. Moreover, memory becomes
a problem as S is increased. Paper G presents an ADMM-based decomposition
algorithm to solve large instances of the relaxed OCP (6.18), in a reasonable
amount of time. To describe the algorithm, (6.18) is written in the compact
form

min.
u∈Ũ,x,z,ϕ,µ

αµ+ α̃ϕTϕ+ Sα̃µ2 − 2α̃µ1Tϕ, (6.19a)

s.t. Ãx+ B̃u+ Ẽd+ w̃ = 0, (6.19b)

z = C̃x, (6.19c)

ϕ ≥ φ̃(u, x, z), (6.19d)

µ = 1Tϕ/S (6.19e)

L̃u = 0, (6.19f)

where we have defined the stacked vectors

u =




u1

u2

...
uS


 , x =




x1

x2

...
xS


 , z =




z1

z2

...
zS


 , ϕ =




ϕ1

ϕ2

...
ϕS


 . (6.20)

Ũ = U × U × · · · × U is the Cartesian power of the set U , such that us ∈ U for
s ∈ S, can be expressed as u ∈ Ũ . Constraints (6.19b) and (6.19c) correspond
to (6.18b) and (6.18c). Constraint (6.19d) corresponds to (6.18d). Constraint
(6.19e) corresponds to (6.18e), and Constraint (6.18f) corresponds to (6.18f).
We refer to Paper G for a description of the data structures in (6.19).

Introduce the auxiliary variables µ̌, ǔ and ϕ̌. Moreover, define the sets

V1 = {v1|ǔ ∈ Ũ , Ãx+ B̃ǔ+ Ẽd+ w̃ = 0, z = C̃x, ϕ̌ ≥ φ̃(ǔ, x, z)},
V2 = {v2|L̃u = 0},

where v1 = (ǔ, x, z, ϕ̌, µ̌) and v2 = (u, ϕ, µ) for compact notation. Using the
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indicator function, (6.19) is written as

min.
v1,v2

(αµ̌+ IV1(v1)) +
(
α̃ϕTϕ+ Sα̃µ2 − 2α̃µ1Tϕ+ IV2(v2)

)
, (6.21a)

s.t. µ̌− 1Tϕ/S = 0, (6.21b)

µ̌− µ = 0, (6.21c)

ǔ− u = 0, (6.21d)

ϕ̌− ϕ = 0. (6.21e)

Problem (6.21) is in the standard ADMM form (4.29), with variables v1 =
(ǔ, x, z, ϕ̌, µ̌) and v2 = (u, ϕ, µ). The ADMM recursions for solution of (6.21)
are given by (4.29). Paper G develops a computationally efficient formulation
of the ADMM recursions that scales linearly in S. To keep the notation simple,
we state the recursions for a fixed iteration number and drop superscript i for
the iteration number. The v1-update in the ADMM algorithm is expressed as
the solution of the convex OCPs

min.
ǔs∈U,xs,zs,ϕ̌s

1
2 ((ǔs)T ǔs + (ϕ̌s)T ϕ̌s) + (ms

3)T ǔs +ms
4ϕ̌

s, (6.22a)

s.t. xsk+1 = Axsk +Busk + Edk + ws, k ∈ N0, (6.22b)

zsk = Czx
s
k, k ∈ N1, (6.22c)

ϕ̌s ≥ φ(ǔs, xs, zs), (6.22d)

for s ∈ S, and computation of

µ̌∗ = − 1
2ρ ((m1 +m2)ρ+ α). (6.23)

The vectors m1, m2, m3 and m4 are updated in every iteration of the ADMM
algorithm. ms

1,m
s
2,m

s
3 and ms

3, s ∈ S, are components of these vectors. The
v2-update in the ADMM algorithm is expressed as the solution of the convex
optimization problem

min.
u,ϕ,µ

1

2
ρuTu+ ϕTΘϕ+ θµ2 − 2α̃1Tµϕ− ρn2µ− ρnT3 u, (6.24a)

s.t. L̃u = 0, (6.24b)

where θ = Sα̃ + 1
2ρ and Θ = α̃I + 1

2ρ((1/S2)11T + I). The vectors n1, n2,
n3 and n4 are updated in every iteration of the ADMM algorithm. Paper G
splits (6.24) into an optimization problem in u, and an optimization problem
in (ϕ, µ). Simple closed-form expressions are derived for the solution of each of
these optimization problems.

Solving the S subproblems in the form (6.22) is the main computational bot-
tleneck of the proposed scenario decomposition algorithm. The dimensions of
the subproblem, (6.22), are approximately the same as the dimensions of the
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Figure 6.8: CPU time to solve (6.18) as a function of the number of scenarios,
S.

OCP solved in CE-EMPC. Warm-started algorithms that are tailored to con-
vex OCPs, e.g. the ADMM algorithm of Paper D, can be used as efficient
subproblem solvers for the scenario decomposition algorithm. In MV-EMPC
of dynamically decoupled subsystems, the subproblem (6.22) is a block-angular
convex optimization problem. ADMMempc can be generalized to solve problems
of this type. We remark that the subproblems can be solved in parallel.

6.4.1 Benchmark

MVadmm is a MATLAB implementation of the scenario decomposition algorithm.
The algorithm is specialized to the QP that arises in MV-EMPC of the portfolio
system (2.9), subject to the constraints (5.3) and the cost function (5.8). MVadmm
solves the subproblem (6.22) using CVXGEN. Paper G compares MVadmm to CPLEX,
MOSEK and Gurobi using a small power portfolio case study with a single power
generator. The length of the prediction horizon is N = 40 time steps. Moreover
q = 1, i.e. Q = {0}. In this way, the OCP (6.18) accounts for the possibility of
recourse in the following sampling instant (in an approximate manner).

Fig. 6.8 reports the CPU time to solve the relaxed OCP (6.18) for MVadmm,
CPLEX, MOSEK and Gurobi as a function S. The reported CPU times assume
that the subproblems defined by (6.22) are solved in parallel. Fig. 6.8 shows that
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MVadmm scales better than the general-purpose solvers in terms of computational
time. For large S, MVadmm is several orders of magnitude faster than the general-
purpose solvers. For S = 8192, CPLEX, MOSEK and Gurobi fail due to memory
issues. MVadmm solves the relaxed OCP in approximately 5 seconds for this value
of S.

6.5 Summary

In this chapter, we have developed tailored algorithms for EMPC in power
production planning. The algorithms can be categorized as follows:

• General EMPC algorithms: We presented a homogeneous and self-dual
IPM for EMPC of linear systems with linear constraints and linear ob-
jective functions. An ADMM-based algorithm was described for input-
constrained EMPC of linear systems with convex objective functions. The
algorithms scale linearly in the length of the prediction horizon, N . This
is important, as stability of EMPC schemes depends on N . The pro-
posed algorithms can be used independently, or as subproblem solvers in
decomposition algorithms for EMPC.

• Subsystem decomposition algorithms: We presented a Dantzig-Wolfe de-
composition algorithm and an ADMM-based decomposition algorithm for
EMPC of dynamically decoupled subsystems. While the Dantzig-Wolfe
decomposition algorithm is limited to LPs, the ADMM-based decomposi-
tion algorithm can be generalized to convex optimization problems. The
subsystem decomposition algorithms accommodate the need for EMPC of
power systems with a large number of power generators, M . The subsys-
tem decomposition algorithms scale linearly in M .

• Scenario decomposition algorithms: An ADMM-based decomposition al-
gorithm was develop for MV-EMPC of linear stochastic systems. The
algorithm scales linearly in the number of uncertainty scenarios, S.

Simulations show that the tailored EMPC algorithms are significantly faster
than current state-of-the-art solvers, and that the difference in computational
time increases with the size of the OCPs. Moreover, the proposed decomposition
algorithms can solve much larger problems than general-purpose solvers without
any memory issues.
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Isolated Power Systems

The contributions of this chapter are methods for power production planning
in small isolated power systems. The ORPP is presented for unit commitment
and economic dispatch of the system power generators, considering a set of pre-
defined contingencies. Frequency control is handled using a reserve activation
scheme based on EMPC. The methods proposed in this chapter, are tested using
a Faroe Islands simulation case study. The ORPP is currently being tested in
the actual Faroese power system.

7.1 Contributions

Small isolated power systems are characterized by low inertia provided by a
relatively small number of generators [HCM+01, GB11, CFP95, UBA14, KO96,
ORF+14,TF94,Lal05,LRFO05,LMO05]. This characteristic makes the system
frequency in small isolated power systems very sensitive to power imbalances.
Imbalances are a result of e.g. loss of power generators, fluctuations in non-
controllable production or consumption, and errors in the prediction of renew-
able energy production. We refer to such power imbalance triggering events as
contingencies. Significant frequency deviations from the nominal frequency lead
to load-shedding, cascading generator trips, power outages, and ultimately total
blackouts.
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Due to the limited inertia and the inability to exchange power with neighboring
regions, power production planning in small isolated power systems is challeng-
ing, especially for systems with a high penetration of renewable energy sources.
At the same time, small isolated power systems are ideal for testing smart grid
technologies. Full system-level experiments only require a small-scale imple-
mentation. Moreover, the volatile conditions in isolated power systems make it
possible to test the technologies at their limits.

Paper H and Paper I address two related challenges associated with power pro-
duction planning in small isolated power systems. These challenges are:

• Reserve planning: Reserve planning is an integral part of the UC problem.
In small isolated power systems, the system inertia (and reserve require-
ments) vary significantly with the committed power generators. This is
challenging to handle in the UC problem. Paper H addresses reserve plan-
ning in small isolated power systems using a novel formulation of the UC
problem, which is referred to as the ORPP. The ORPP guarantees that
the system frequency is kept above a pre-defined limit in the event of a
contingency.

• Reserve activation: The cost of active reserves is different from generator
to generator. This is often neglected by the controllers that activate oper-
ational reserves. Using cost information in the reserve activation process
is a challenging problem. Paper I presents an EMPC scheme for activation
of reserves. The OCP solved in this EMPC scheme trades off the cost of
operation and setpoint tracking.

We have organized this chapter as follows. Section 7.2 describes the Faroe
Islands’ power system and its challenges. Section 7.3 defines a single-area model
for a small isolated power system. The model consists of a bus connected to
a collection of generators and an aggregate of loads. The role of operating
reserves in conventional and isolated power systems is discussed in Section 7.4.
Section 7.4 also defines the two main types of operating reserves in isolated
power systems: FCR and FRR. Section 7.5 describes scheduling of FCR via the
ORPP, and Section 7.6 gives an overview of EMPC for cost-efficient frequency
control using FRR. Section 7.7 summarizes the main results in this chapter.

7.2 The Faroe Islands

The Faroe Islands are a group of islands situated in the North Atlantic Ocean.
The Faroese power system is isolated; it has no interconnectors to other coun-
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tries. The Faroe Islands have a target to increase the amount of renewable
energy production from 38% in 2011 to 75% in 2020. The increase in renewable
energy is expected to come from a combination of hydro and wind power. In
2009 a joint venture between the Faroe Islands and DONG Energy was formed.
The cooperation focuses on methods to integrate renewable energy sources into
isolated power systems. Since 2009, DONG Energy has tested several smart grid
technologies in the Faroe Islands [Twe13]. This includes the proposed ORPP.

The Faroe Islands are inhabited by almost 50,000 people, and the total area is
approximately 1,400 km2. The Faroe Islands’ electricity demand varies from 15
MW at night time up to 45 MW in the afternoons. In 2014, the installed wind
power was 18 MW, corresponding to 122% of the minimum load and 41% of
the maximum load. Diesel generators produced 49% of the energy consumed
in 2014, while the remaining 51% was produced by hydro generators and wind
turbines [SEV15]. There are no liberalized electricity markets in the Faroe
Islands. The power system is operated by the municipality-owned company
SEV, which is responsible for both generation, transmission and distribution of
power.

The Faroe Islands have some of the world’s best wind resources, due to their
position in the Atlantic Ocean. However, the power system is small and vul-
nerable with a high number of power outages compared to Continental Europe.
Historically, the Faroe Islands have around 30 power outages each year [Twe13].
Power production planning in the Faroe Islands is currently based on manual
ad-hoc methods. As more renewable energy is integrated into Faroe Islands’
power system, the need for more intelligent power production planning strate-
gies increases.

7.3 Single-Area Model

This section introduces a model of a single-area power system. The level of
detail in the model is fit to the proposed control and planning methods. Figure
7.1 is a diagram of the single-area power system. The system consists of three
main components: a collection of power generators, a load, and a bus. The
balance between production and consumption in the system is

∆P (t) =


∑

j∈M
Pj(t)


− Pl(t), (7.1)

where Pj(t) is the power production of generator j, and Pl(t) is the system load.
We use the swing equation for a synchronous machine to model the frequency in
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Unit 1

G L

Figure 7.1: Schematic diagram of the single-area power system. The system
consists of a bus connected to a collection of generators (G) and
an aggregate of loads (L).

the system [And12a,KBL94]. The equation is written as an ordinary differential
equation (ODE) in the form

ḟ(t) =
(fnom)

2

2HRf(t)
∆P (t), (7.2)

where

H =
∑

j∈M
HjRj/R, R =

∑

j∈M
Rj . (7.3a)

In (7.2), f(t) [Hz] is the system frequency, and fnom [Hz] is the nominal fre-
quency. Moreover, Hj [s] is the constant of inertia of generator j, and Rj [MVA]
is the rated power of generator j. Model (7.2) assumes that fj(t) = f(t) for all
j ∈ M, i.e. that the power system is a single-bus system with no line capacity
constraints or transmission losses. This assumption can be justified for highly
meshed systems, where the relative impedances between nodes in the system
are small [Lal05,And12a,UBA14,ORF+14,HTM91,KO96]. The Faroese power
system is a fairly meshed system, where line capacity constraints and transmis-
sion losses are negligible for the applications presented in this chapter. Model
(7.2) also assumes that the loads in the system are frequency-independent, i.e.
load-damping is neglected. This is a conservative assumption for most control
and planning applications, since frequency-dependent loads have a stabilizing
effect on the frequency [And12a].

7.4 Operating Reserves

Operating reserves are activated to balance production and consumption in real-
time. The European network of transmission system operators (ENTOSO-E)
has defined the following three main types of operating reserve [EE12]:

• Frequency containment reserve (FCR): Reserve for containment of fre-
quency deviations (fluctuations) that maintains the power balance in the
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Figure 7.2: Frequency drop in the Faroese power system after intentionally
tripping a generator, October 2012.

whole synchronously interconnected system. Activation of FCR results in
a restored power balance at a frequency that deviates from the nominal
frequency. Activation time for FCR is typically up to 30 seconds. The
power generators activate FCR automatically and autonomously using lo-
cal frequency-based proportional controllers. The FCR is also referred to
as the primary reserve.

• Frequency restoration reserve (FRR): Reserve for restoring the frequency
to its nominal value. Activation time for FRR is typically up to 15 minutes.
The power generators activate FRR manually or automatically. The FRR
is also referred to as the secondary reserve.

• Replacement reserve (RR): Reserve for restoring the required level of FCR
and FRR. Activation time for RR is typically from 15 minutes up to a
number of hours. The RR is also referred to as the tertiary reserve.

The ENTOSO-E reserve specifications are tailored to Continental Europe. In
small isolated power systems, the reserve requirements are more strict. Fig. 7.2
shows the frequency in the Faroese power system after intentionally tripping
a generator at the Sund power plant in October 2012 [Twe13]. The generator
trips around t = 3 seconds. Approximately 12% of the total power production
in the system is lost due to the generator trip. As a result, the frequency drops
more than 1.5 Hz in 3 seconds. In the Faroe Islands, frequency drops of more
than 2 Hz are critical. Since the frequency can drop at a rate of 0.5 Hz/s, FCR
has to be available within a few seconds to keep the system stable. The nominal
frequency in the Faroe Islands’ power system is 50Hz. Fig. 7.3 shows a reserve
activation diagram for Continental Europe and for the Faroe Islands. Due to the
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(a) Continental Europe.

(b) Faroe Islands.

Figure 7.3: Reserve activation diagram.

limited generation capacity, RR is not considered in the Faroe Islands. Instead,
a re-optimization of the production plan is performed to restore the FCR and
the FRR to their original levels.

7.5 Unit Commitment

The UC problem is solved to determine an hours-ahead production plan for
the system generators. The production plan includes the amount of reserve
each generator should provide. In contingency-constrained UC problems, the
production plan is required to be able to withstand a number of pre-defined
contingencies. This means that the system frequency must remain within a
safe operating range, in the event of a pre-defined contingency. In small iso-
lated power systems, the frequency dynamics (7.2) depends significantly on the
committed power generators [VFF15, SVB+15]. This dependence is important
to consider in contingency-constrained UC problems for small isolated power
systems. The ORPP is a contingency-constrained UC problem, which accounts
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for the system frequency dynamics in an explicit way. Minimum frequency
constraints are formulated using a model of the system inertia and an FCR ac-
tivation model for each power generator. The advantages of the ORPP are that
it can be formulated as a single MILP, it does not impose any strict assump-
tions on the generators, and that the parameters in the FCR activation model
are simple to obtain. Finally, the ORPP does not require any simulation model
of the system.

This section gives an overview of the ORPP. In this thesis, contingencies only
refer to loss of power generators. The ORPP generalizes to other types of
contingencies as well. Paper H provides proofs and details.

7.5.1 System Dynamics

To determine the minimum frequency resulting from a contingency, we consider
the model (7.2). Let t = 0 denote the time at which the contingency occurs.
The generators that fail during the contingency are indexed by the subset

M̄ ⊆M.

Prior to a contingency, the system is in steady-state. This means that ∆P (t) = 0
for t < 0. The power lost in the contingency is

P lost =
∑

j∈M̄

P lost
j .

P lost
j is the power production of generator j prior to the contingency. Generators

that trip do not contribute to the system inertia. Consequently, H and R in
(7.3) are computed as

H =
∑

j∈M\M̄

HjRj/R, (7.4a)

R =
∑

j∈M\M̄

Rj . (7.4b)

Define the total amount of active FCR

PFCR(t) =
∑

j∈M
PFCR
j (t). (7.5)

PFCR
j (t) is the active FCR at power generator j. Using (7.2), we get

ḟ(t) =
(fnom)

2

2HRf(t)
(PFCR(t)− P lost), (7.6)
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Figure 7.4: Block diagram of the coupled frequency and generator FCR dy-
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Figure 7.5: Generator FCR activation diagram.

Equation (7.6) is a model of the system frequency in the seconds that follow a
contingency. The FRR is activated at a much slower time scale than the FCR.
Therefore, FRR is not included in (7.6).

For t = 0, the active FCR is zero and f ′(t) < 0. As time increases, the fre-
quency begins to deviate from the nominal frequency. The generators respond
to frequency deviations by activating FCR. The FCR is activated locally at each
power generator via frequency-based proportional controllers [And12a, KBL94,
Deb88, WW13]. The desired level of active FCR (FCR setpoint) for each gen-
erator is

P̃FCR
j (t) = − (1/Dj) ∆f(t), j ∈M. (7.7)

Dj is the droop of generator j, and ∆f(t) = f(t) − fnom is the frequency
deviation from the nominal frequency. Fig. 7.4 is a block diagram of the coupled
frequency and generator FCR dynamics. Fig. 7.5 illustrates the relationship
between the frequency deviation, ∆f , the FCR setpoint, P̃FCR

j (t), and the active

FCR, PFCR
j (t). The dynamics relating the FCR setpoint and the active FCR

are described later in this section.

Provided that the system is stable, the frequency settles at a new steady-state
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Figure 7.6: Frequency dynamics. The minimum frequency occurs during the
transient phase of the post-contingent state.

f(t) = f st < fnom, for some t = tst after a contingency has occurred. Fig. 7.6
illustrates a typical system frequency response to a contingency. We refer to
the state of the system prior the contingency as the pre-contingent state, and
the state of the system after the contingency as a post-contingent state. In the
pre-contingent state f(t) = fnom. The post-contingent state is divided into a
transient phase and a stationary phase. In the transient phase, the frequency
drops to its minimum value f tr, and it then returns to the steady-state f st.
The minimum frequency, f tr, may be significantly smaller than the steady-state
frequency, f st. The offset f st − fnom is eliminated by activating FRR.

Define the steady-state values

P̃FCRst
j = P̃FCR

j (t), j ∈M,

PFCRst
j = PFCR

j (t), j ∈M,

for t ≥ tst. Equation (7.7) shows that the steady-state FCR setpoint for each
generator is

P̃FCRst
j = − (1/Dj)

(
f st − fnom

)
, j ∈M.

The active FCR at generator j is equal to the minimum of 1) its steady-state
FCR setpoint, and 2) the maximum amount of FCR that the generator can
deliver. This is written as

PFCRst
j = min

(
P̃FCRst
j , P

FCR

j

)
, j ∈M, (7.8)

where P
FCR

j is the maximum amount of FCR that can be activated at generator
j. This limit depends on the generator capabilities and the pre-contingent state
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of the generator, e.g. a generator that operates at its maximum capacity limit
cannot increase its production further.

For convenience, we define the energy contribution from active FCR as

EFCR
j (t) =

∫ t

0

PFCR
j (τ)dτ, j ∈M, (7.9)

and the sum of FCR energy as

EFCR(t) =
∑

j∈M
EFCR
j (t). (7.10)

References [RRAG12, GBAR05, RG05, GA14] model (7.8) using mixed-integer
constraints. This makes it possible to include constraints for the stationary
frequency, f st, in the UC problem. The underlying assumption is that the
power system remains in stable operation during the transient part of the post-
contingent state. This is often not the case for small isolated power systems,
as the minimum frequency, f tr, is critical in such systems. The ORPP includes
constraints for f tr.

The minimum frequency, f tr, occurs during the transient part of the post-
contingent state. Equation (7.8) is a model for the stationary part of the post-
contingent state. Paper H models the transient part of the post-contingent state
as a system of ODEs in the form




F(PFCR, f, ḟ)

G1

(
f, PFCR

1 , ṖFCR
1 , . . . , (PFCR

1 )(n1)
)

...

GM
(
f, PFCR

M , ṖFCR
M , . . . , (PFCR

M )(nM )
)




=




0
0
...
0


 , (7.11)

where (PFCR
j )(nj) is the nj ’th derivative of PFCR

j (t). Moreover

F(PFCR, f, ḟ) = 0, (7.12)

is a representation of the frequency dynamics (7.6), where

F(PFCR, f, ḟ) = ḟ(t)− (fnom)
2

2HRf(t)

(
PFCR (t)− P lost

)
. (7.13)

Finally, the ODE

Gj
(
f, PFCR

j , ṖFCR
j , . . . , (PFCR

j )(nj)
)

= 0, (7.14)
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is a dynamic model that maps the frequency deviation, ∆f , to the active FCR at
generator j, PFCR

j , i.e. a model of the dashed block in Fig. 7.5. As an example,
consider the case where the generator dynamics are first-order systems in the
form

Tj(s) =
1

τjs+ 1
, j ∈M. (7.15)

For this case

Gj
(
f, PFCR

j , ṖFCR
j

)
= τjṖ

FCR
j (t) + PFCR

j (t)− P̃FCR
j (t), j ∈M.

where P̃FCR
j (t) = − 1

Dj
∆f(t). The model (7.14) is general enough to represent

the generators in e.g. [AG14,EMB09,OO96,CB12]. The solution of (7.11) is the
frequency, f(t), and the active FCR levels, PFCR

1 (t), . . . , PFCR
M (t), that follow a

contingency.

7.5.2 Minimum Frequency Conditions

Define the minimum frequency condition

min
t≥0

f(t) = f tr ≥ f (7.16)

where f is the lower acceptable limit for the system frequency. Define ttr to be
the first time instant at which the power balance is restored

ttr = min
{
t |PFCR (t)− P lost = 0

}
. (7.17)

Under a simple stability condition it holds that f(ttr) = f tr. Therefore, a
sufficient condition for (7.16), is

f(ttr) ≥ f. (7.18)

Evaluating (7.18) requires the solution of the generally non-linear system (7.11),
and subsequent computation of ttr via (7.17). Since the UC problem is an MILP,
the condition (7.18) cannot be included directly in this problem. The ORPP
is based on a set of conservative conditions derived from (7.18). To state these
conditions, define PFCR

j (t; f̃) as the solution of (7.14) with the system frequency,

f , replaced by the function f̃ . Accordingly, introduce

EFCR
j (t; f̃) =

∫ t

0

PFCR
j (τ ; f̃)dτ, j ∈M, (7.19)
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Figure 7.7: The affine function that contains (0, fnom) and (tc, f) is an upper
bound for f(t) in the interval 0 ≤ t ≤ ttr.

and the sums

PFCR(t; f̃) =
∑

j∈M
PFCR
j (t; f̃),

EFCR(t; f̃) =
∑

j∈M
EFCR
j (t; f̃).

Note that given f = f̃ , ODEs in the form (7.14) become decoupled in j ∈ M.
Define the affine function

flin(t) = (1− t/tc) fnom + (t/tc)f, (7.20)

where tc is a user-defined parameter. The function flin provides an upper bound
for the frequency, f , in the interval 0 ≤ t ≤ ttr. Fig. 7.7 illustrates this property
of flin, in a simulated contingency example where tc = 2s and f = 48Hz.

Paper H shows that under reasonable assumptions about PFCR, the conditions

EFCR(t; flin) + ∆Erot ≥ P lostt, t ≤ tc, (7.21a)

PFCR (tc; flin) ≥ P lost, (7.21b)

are sufficient conditions for the minimum frequency condition (7.18). Condition
(7.21a) ensures that f(t) ≥ f for t ≤ tc, i.e. that the frequency is above f
for 0 ≤ t ≤ tc. The parameter ∆Erot is related the system inertia. Condition
(7.21b) ensures that ttr ≤ tc, i.e. that the minimum frequency occurs before
time tc.
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The user-defined parameter tc is an upper bound for the time at which the
minimum frequency occurs. As the power generators activate FCR in proportion
to the frequency deviation, the function EFCR(t; flin) is expected to increase
as tc decreases. Consequently, condition (7.21a) becomes less strict when tc

is small. When tc is small, condition (7.21b) becomes more strict, since the
FCR activation time is limited to tc. The choice of tc should balance these
considerations. The conditions (7.21a) and (7.21b) only need to hold for a
single value of tc, in order to be sufficient for the minimum frequency constraint
(7.18).

Conditions (7.21a) and (7.21b) include terms that can be derived from the func-
tions PFCR

1 (t; flin), . . . ,PFCR
M (t; flin). The function PFCR

j (t; flin) is the active
FCR at generator j in response to the affine frequency drop defined by (7.20).
This function depends on the dynamics of the power generator, and the pre-
contingent state of the generator. We introduce the notation

PFCR
j (t; flin) = I

(
δPFCR

j (t)
)
, j ∈M, (7.22)

where δPFCR
j (t) is the amount of active FCR at generator j in response to (7.20),

and I accounts for the implicit limits on δPFCR
j (t) due to the pre-contingent

state of the generator. The function δPFCR
j (t) is the open-loop FCR response

of power generator j, when f = flin. This function can be identified based on
simulated or experimental data.

7.5.3 Implementation

The ORPP determines a production plan for the system generators. The pro-
duction plan is optimized over the horizon

T = [0, ts, 2ts, . . . ,Kts]. (7.23)

ts [min] is the sampling time and K is the number of time steps. The set of
time step indices is denoted

K = {1, 2, . . . ,K}. (7.24)

Table 7.1 lists the ORPP parameters and Table 7.2 lists the ORPP decision
variables. The ORPP may be solved in a receding horizon manner to account
for updated forecasts of e.g. the wind power production. Paper J develops a
computationally efficient EMPC scheme for this approach.

This section describes the implementation of contingency constraints in the
ORPP. We refer to Paper H for a full description of the ORPP. The ORPP
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Table 7.1: ORPP parameters.

Parameter Description Units

dk Demand forecast MW
cpj Production cost EUR/(ts·MW)

con
j Fixed run cost EUR/ts

(csuj , c
sd
j ) Start-up/shut-down cost EUR

(cFRR
j , cFCR

j ) Reserve capacity costs EUR/(ts·MW)
(pt
j
, pt
j) Technical production limits MW

(pf
j
, pf
j) Forecasted production limits MW

(ej , ej) Energy limits MWh
(rFRR
j , rFCR

j ) Reserve limits MW
wj,k Disturbance forecast MW
Dj Droop Hz/MW
Ic
l,j Contingency matrix u.l.

∆erot
j Rotational energy available kWh

δpFCR
j,w FCR activation parameters MW

tFCR
w Discretization points s
von
j,0 Initial running state u.l.
ej,0 Initial energy level MWh

Table 7.2: ORPP decision variables.

Variable Description Units Domain

pj,k Production MW R≥0

ej,k Energy level MWh R≥0

von
j,k Running state u.l. {0, 1}
vsu
j,k Start-up indicator u.l. {0, 1}
vsd
j,k Shut-down indicator u.l. {0, 1}
rj,k Total reserve MW R≥0

rFRR
j,k FRR reservation MW R≥0

rFCR
j,k FCR reservation MW R≥0

Eres
l,k,w Post-contingent FCR energy kWh R≥0

∆Erot
l,k Post-contingent rotational energy kWh R≥0

Econ
l,k,w Post-contingent lost energy kWh R≥0

rδp,FCR
j,k,w Active FCR power MW R≥0

rδe,FCR
j,k,w Active FCR energy kWh R≥0

considers L different contingencies. The contingencies are indexed by the set

L = {1, 2, . . . , L}. (7.25)
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We define the contingency matrix Ic as

Ic
l,j =

{
1 if generator j ∈M fails in contingency l ∈ L,
0 otherwise.

(7.26)

Minimum frequency constraints based on (7.21) are formulated for each of the
contingencies. For this purpose, the FCR activation functions, defined by (7.22),
are discretized. Introduce W discretization points tFCR

1 , . . . , tFCR
W that satisfy

tFCR
1 = 0 < tFCR

2 < · · · < tFCR
W = tc. (7.27)

Also define

δpFCR
j,w = δPFCR

j (tFCR
w ), j ∈M, w ∈ W, (7.28)

such that δpFCR
j,1 , . . . , δpFCR

j,W constitute a discretization of the function δPFCR
j (t)

in the interval 0 ≤ t ≤ tc. The FCR reservation, rFCR
j,k , is restricted by the

amount of FCR that can be activated within time tc. Therefore

rFCR
j,k ≤ δpFCR

j,W , j ∈M, k ∈ K. (7.29)

The FCR that can be activated at time tFCR
w is modeled as the identified FCR

activation parameters δpFCR
j,w scaled by rFCR

j,k /δpFCR
j,W , i.e.

rδp,FCR
j,k,w =

rFCR
j,k

δpFCR
j,W

δpFCR
j,w , j ∈M, k ∈ K, w ∈ W. (7.30)

The energy released during FCR activation is approximated by the area under
the line segments that connect the points rδp,FCR

j,k,1 , . . . , rδp,FCR
j,k,W . This is expressed

as

rδe,FCR
j,k,w = rδe,FCR

j,k,w−1 + λ
(
tFCR
w − tFCR

w−1

)
rδp,FCR
j,k,w−1

+ λ
2

(
tFCR
w − tFCR

w−1

) (
rδp,FCR
j,k,w − rδp,FCR

j,k,w−1

)
,

(7.31)

j ∈M, k ∈ K, w ∈ W \ {1}, and

rδe,FCR
j,k,1 = 0, j ∈M, k ∈ K.

λ = 5/18 converts the unit of rδe,FCR
j,k,w to [kW · h]. Fig. 7.8 illustrates the

relationship between δPFCR
j (t), rδp,FCR

j,k,w , rFCR
j,k and rδe,FCR

j,k,w .

Condition (7.21a) should be satisfied in the discretization points tFCR
1 , . . . , tFCR

W ,
for each contingency l ∈ L and for each time step k ∈ K. The constraint for
this is

Eres
l,k,w + ∆Erot

l,k ≥ Econ
l,k,w, l ∈ L, k ∈ K, w ∈ W. (7.32)
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j,k,w , rFCR
j,k

and rδe,FCR
j,k,w , for a fixed time step k ∈ K, and a fixed generator

j ∈M.

Eres
l,k,w is the energy provided by the active FCR in time step k, during contin-

gency l, in discretization point w

Eres
l,k,w =

∑

j∈M

(
1− Ic

l,j

)
rδe,FCR
j,k,w , l ∈ L, k ∈ K, w ∈ W. (7.33a)

Econ
l,k,w is the energy lost in time step k, during contingency l, in discretization

point w

Econ
l,k,w =

∑

j∈M
Ic
l,jpj,kt

FCR
m , l ∈ L, k ∈ K, w ∈ W. (7.33b)

∆Erot
l,k is the rotational energy available due to the system inertia in time step

k, during contingency l

∆Erot
l,k =

∑

j∈M
(1− Ic

l,j)∆e
rot
j von

j,k, l ∈ L, k ∈ K. (7.33c)

∆erot
j is the rotational energy of generator j, when running. This parameter is

computed based on the moment of inertia Ij [kg ·m2] and the number of poles
Np
j of the generator.

The condition (7.21b) is modeled as

∑

j∈M
(1− Ic

l,j)r
FCR
j,k ≥

∑

j∈M
Ic
l,jpj,k, l ∈ L, k ∈ K. (7.34)
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Table 7.3: Case study system parameters.

# Name Type Ij Np
j pt

j
pt
j τj

1 Eidisverkid G1 Hydro 5900 8 2.7 6.8 3
2 Eidisverkid G2 Hydro 5900 8 2.7 6.8 3
3 Eidisverkid G3 Hydro 8050 8 3 7.7 3
4 Strond G1 Diesel 2116 14 1 2.2 2
5 Strond G2 Diesel 4375 10 1.3 3.6 2
6 Sundsverkid G1 Diesel 23301 12 4 8.1 5
7 Sundsverkid G2 Diesel 225500 40 7 12.7 5
8 Heygaverkid G1 Hydro 4875 8 2.1 5.3 3
9 Neshagi Wind - - 0 10 0.5

In addition to (7.34), we require that sufficient FRR is available, such that the
frequency can be restored to its nominal value. This is expressed similarly to
(7.34), expect that we replace rFCR

j,k by rFRR
j,k . Paper I presents an EMPC scheme

for activation of FRR.

Constraints (7.32) and (7.34) represent the minimum frequency conditions (7.21a)
and (7.21b), respectively. Condition (7.21a) needs to hold for all t ≤ tc. Con-
straint (7.32) only ensures that (7.21a) is satisfied for t = tFCR

1 , . . . , tFCR
W . The

number and distribution of discretization points are therefore important. In
practice, 2-5 evenly spaced points are usually adequate. Provided that there are
sufficient discretization points, (7.32) and (7.34) ensure that f(t) ≥ f in every
post-contingent state. Constraint (7.32) may be verified after solving the ORPP
for a fine grid of t-values. If it is violated for some t, the ORPP is re-solved with
this point included as an extra discretization point. Constraint (7.34) does not
depend on the discretization points.

7.5.4 Faroe Islands Case Study #1

Paper H tests the ORPP based on a Faroe Islands simulation case study. A
reduced system consisting of M = 9 generators is considered. The generator
dynamics are modeled as first order systems in the form (7.15). Upper and
lower limits for the amount of FCR a generator can provide are accounted for
by including saturation limits in the generator model. Table 7.3 lists the case
study system parameters. The sampling time is ts = 15 min, and tc = 2s. We
found that tc = 2s provides a good balance for satisfying both of the minimum
frequency conditions in (7.21). The production plan is optimized over 6 hours,
corresponding to K = 24 time steps. Fig. 7.9 shows the demand forecast,
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Figure 7.9: Case study demand and wind power forecasts.

and the (maximum) wind power forecast. The wind power production is not
allowed to be reduced by more than 5MW compared to the potential wind power
production (curtailment limit of 5MW). The production costs and the start-up
costs for the generators are

cp = (16.5, 17, 17.5, 18, 18, 18, 18, 16, 1),

csu = (3000, 3000, 3000, 3000, 3200, 3200, 3200, 3100, 100).

The costs con, csd, cFRR, and cFRR are zero in this case study. Wind turbines
provide the cheapest source of energy. Hydro generators are cheaper to use
than diesel generators, when available, but they have limited reservoirs. For
simplicity, we consider an example with unlimited reservoirs, and we define the
disturbance, wj,k, to be zero for all j ∈ M and k ∈ K. Except for Neshagi,
the power generators can deliver 100% of their technical maximum production
in FCR and FRR. Neshagi does not have any FCR capabilities. The droop is
5% for all the power generators. The minimum frequency is f = 48Hz, and the
nominal frequency is fnom = 50Hz.

The functions δPFCR
1 , . . . , δPFCR

M are identified based on the generators’ simu-
lated open-loop FCR response to the affine frequency drop (7.20). The same
approach can, and is, used in actual experiments in the Faroe Islands. The
FCR activation functions are discretized using W = 4 discretization points with
tFCR = (0, 2/3, 4/3, 2). Figure 7.10 illustrates the identified FCR activation
functions. The number of contingencies is L = 7 in this case study, and the
contingency matrix, (7.26), is

Ic =
[
I7 0

]
,
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Figure 7.10: The FCR activation functions defined by (7.22). The discretiza-
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where I7 is the identity matrix of size 7. This means that any (single) of the
7 first generators listed in Table 7.3 may trip within one of the 15-minutes
sampling intervals, during the 6-hour planning horizon. The production plan
obtained by solving the ORPP can withstand any of these 7 contingencies. The
CPU time to solve the ORPP is approximately 5 seconds using CPLEX.

Paper H compares the ORPP to the UC problem presented in [RRAG12,GBAR05,
RG05,GA14], which we refer to as the baseline UC problem (BLUC). The BLUC
only includes constraints for the steady-state frequency, f st. Fig. 7.11 illustrates
the ORPP production plan and the BLUC production plan. The main differ-
ences between the two production plans occur between hours 1-2 and hours
3.5-4.5. Between hours 1-2, the ORPP keeps more generators running than the
BLUC, at the expense of reduced wind power production. This increases the sys-
tem inertia, as well as the available FCR in the system. Between hours 3.5-4.5,
Eidisverkid G1 and Heygaverkid G1 are operated at their limits for the BLUC.
These generators back-off from their constraints for the ORPP. This increases
the available FCR in the system. The ORPP increases the power production of
the more expensive generator Eidisverkid G2, to compensate for the back-off.
The cost associated with the BLUC is EUR 89039 and the cost associated with
the ORPP is EUR 91680. This corresponds to a cost increase of less than 3%
for the ORPP.

Contingencies are simulated by numerical solution of the system (7.11). A
simulation is performed for each contingency l ∈ L and for each time step k ∈ K.
We record the minimum frequency, f tr, and the stationary frequency, f st, for



104 Isolated Power Systems

1 2 3 4 5 6

0

2

4

6

8

p
o
w

er
[M

W
]

Eidisverkid G1

1 2 3 4 5 6

0

2

4

6

8

Eidisverkid G2

1 2 3 4 5 6

0

5

10
Eidisverkid G3

Limits BLUC ORPP

1 2 3 4 5 6

0

1

2

p
o
w

er
[M

W
]

Strond G1

1 2 3 4 5 6

0

1

2

3

Strond G2

1 2 3 4 5 6

0

2

4

6

8

Sundsverkid G1

1 2 3 4 5 6

0

5

10

time [hours]

p
o
w

er
[M

W
]

Sundsverkid G2

1 2 3 4 5 6

2

3

4

5

time [hours]

Heygaverkid G1

1 2 3 4 5 6

0

5

10

time [hours]

Neshagi

Figure 7.11: Solution of the ORPP and the BLUC.

both the ORPP and the BLUC. Fig. 7.12 reports the worst-case frequencies over
the contingencies l ∈ L, for each time step k ∈ K. The stationary frequency is
maintained above 48Hz for both the ORPP and the BLUC. The ORPP keeps
the minimum frequency above 48Hz as well. Potential blackouts and power
outages are therefore avoided by the ORPP. Between hours 1-2 and hours 3.5-
4.5, the minimum frequency drops below 48Hz for the BLUC. In particular, if
Eidisverkid G1 trips between hours 1-2, the frequency drops to 47Hz. This is
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Figure 7.12: Worst-case (stationary and minimum) frequencies over the con-
tingencies l ∈ L, for each time step k ∈ K.

very critical for the system stability. Fig. 7.13 illustrates the system frequency
and FCR response when Eidisverkid G1 trips between hours 1-2. The actual
FCR response, PFCR(t), and the prediction (7.30) are indicated in Fig 7.13(b).
The predicted FCR response underestimates the actual FCR response, without
being significantly smaller than the actual FCR response. This indicates that
the ORPP is not overly conservative.

7.6 Frequency Control

The FCR is activated to stabilize the system frequency. The FRR is activated
to restore the system frequency to its nominal value. Activation of the FRR
is known as automatic generation control (AGC) or as load frequency control
(LFC).

Activating reserves has a cost. For generators with a low price of utilization
(e.g. wind and hydro turbines), the cost is usually low, and for generators with
a high price of utilization (e.g. diesel generators and gas turbines), the cost is
usually high. While cost information is included in the UC problem, it is often
neglected in the LFC layer. An approximate method to include cost information
in the LFC layer is to combine a PI-control structure with so-called participation
factors [KNS97,Bev09,Car85,And12a,IKK05]. The participation factor of a gen-
erator is a gain that determines its degree of participation in the LFC. The par-
ticipation factors do not distinguish between up and down regulation, which is
a significant economic disadvantage. Moreover, the approach does not consider
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Figure 7.13: System response after Eidisverkid G1 trips (contingency l = 1)
at hour 1-1.25 (time step k = 4).

the frequency dynamics. For example, it is desirable to activate fast (but possi-
bly expensive) generators in situations where the frequency drops at a fast rate.
Conversely, slower generators can be activated in situations when the frequency
drops at a slow rate. Paper I presents an EMPC scheme for LFC that accounts
for both the reserve activation costs and for the system frequency dynamics.
The OCP objective function is formulated as a bi-criterion that trades off the
cost of operation and setpoint tracking. Setpoint-based MPC have been con-
sidered for LFC in [ARF03,KX07,RAF03,VHRW08,MBHH11,MCLA14]. This
section provides a summary of the proposed EMPC scheme for cost-effective
frequency control.



7.6 Frequency Control 107

7.6.1 Model

A combined FCR and FRR model is developed for the single-area system in Fig.
7.1. The model is used for minutes-ahead EMPC of the FRR. On/off decisions
are made in advance by solving a UC problem, e.g. the ORPP. This means
that unit commitment decisions are fixed in the model. The pre-computed
production plan provided by the UC problem is referred to as the nominal
production plan. We refer to Paper I for a detailed description of the model.

The system power generators are modelled as state-space systems in the form
(2.5). In a continuous-time form, the power generator model is

ẋgj (t) = Agjxgj (t) +Bgjugj (t), j ∈M, (7.35a)

zgj (t) = Cgj ,zxgj (t), j ∈M, (7.35b)

where (Agj , Bgj , Egj , Cgj ,z) denote continuous-time state-space matrices. To
keep the notation simple, we assume that each generator is a SISO system.
ugj (t) [MW] is the power production setpoint for generator j, and zgj (t) [MW]
is the power production of generator j.

The load in Fig. 7.1 represents an aggregate of all the loads in the system. The
aggregate includes the power production of non-controllable power generators,
such as non-controllable wind turbines and solar cells. We model the load using
a linear state-space model in the form

ẋl(t) = Alxl(t) +Bldl(t), (7.36a)

zl(t) = Clxl(t), (7.36b)

dl(t) [MW] is the load setpoint, and zl(t) [MW] is the load.

The power balance at the bus is

zb(t) =
∑

j∈M
zgj (t) + zl(t) =

∑

i∈M
Cgjxgj (t) + Clxl(t), (7.37)

This corresponds to (7.1) with ∆P (t) = zb(t), Pj(t) = zgj (t), and Pl(t) = −zl(t).
Using (7.2), the frequency in the system is modelled as

ḟ(t) =
(fnom)

2

2HRf(t)
zb(t), (7.38)

where H and R are computed as in (7.3). The power generator setpoints are
composed of two main terms

ugj (t) = ũgj (t)︸ ︷︷ ︸
Portfolio Level

− 1

Dj
(f(t)− fnom)

︸ ︷︷ ︸
Generator Level

, j ∈M. (7.39)
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The portfolio-level setpoint is determined at a centralized level, in which inter-
actions between the power generators are considered. This component includes
the nominal setpoint (production plan), as well as setpoint adjustments pro-
vided by active FRR. The generator-level setpoint is the contribution of active
FCR. As in (7.7), FCR is activated in direct proportion to frequency deviations
from the nominal frequency.

Equations (7.35), (7.36), (7.37), and (7.38), constitute a non-linear model of the
single-area power system. Equation (7.39) is a setpoint model that accounts for
frequency-based proportional control of FCR. Paper I collects equations (7.35),
(7.36), (7.37), (7.38), and (7.39), into a non-linear simulation model. The model
is augmented by process and measurement noise. A piecewise constant (unmea-
sured) disturbance, denoted bk, is added to the system as well. The random
terms model the stochastic nature of renewable energy sources. The non-linear
simulation model is linearized for control purposes. The non-linear part of the
simulation model is (7.38). Due to tight frequency control via activation of FCR
and FRR, it is reasonable to assume that f(t) ≈ fnom. Under this assumption,
(7.38) can be written as

ḟ(t) =
fnom

2HR
zb(t), (7.40)

or in the state-space form

ẋf (t) = Afzb(t), (7.41a)

zf (t) = xf (t), (7.41b)

where zf (t) is the system frequency, and

Af = fnom/2HS. (7.42)

In discrete-time state-space form, the linearized (stochastic) model for the single-
area power system is

xk+1 = Axk +Buk + Edk + wk, (7.43a)

yk = Cyxk + vk, (7.43b)

zk = Czxk. (7.43c)

The process noise and the measurement noise are independent and identically
distributed random variables with

wk ∼ N(0, Rw),

vk ∼ N(0, Rv).

In the system (7.43)

uk = ũg,k, dk = dl,k, xk =




xg,k
xl,k
x∆f,k

ηk


 , zk =




zgk
zl,k,
zb,k,
z∆f,k


 , (7.44)
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where xg,k =
[
xTg1,k, x

T
g2,k

, . . . , xTgM ,k

]T
, and similarly for ug,k and zg,k. Finally

z∆f,k = x∆f,k = zf,k − fnom = fk − fnom.

The state variable ηk is included in (7.43) to model piecewise constant distur-
bances. This makes it possible to estimate and predict the unmeasured distur-
bance, bk [PR03, BM07]. We use the Kalman filter defined in Section 3.2 for
this purpose.

7.6.2 Nominal Production Plan

The solution of the UC problem provides a nominal production plan for the
generators. To account for the nominal production plan in the model (7.43),
the input, state, disturbance, and output, are written as

uk = unom
k + uFRR

k , dk = dnom
k + dFRR

k , (7.45a)

xk = xnom
k + xFRR

k , zk = znom
k + zFRR

k . (7.45b)

The input unom
k is the pre-computed nominal setpoint, and uFRR

k is the FRR
contribution to the setpoint. The FRR contribution, uFRR

k , is computed in real-
time using EMPC. The disturbance, dk, is partitioned into dnom

k , which is known
at the time the nominal setpoints are computed, and dFRR

k , which is updated
within the proposed EMPC scheme. The nominal state and output, xnom

k and
znom
k , are computed using the state-space model (7.43), with wk = vk = 0,
uk = unom

k , and dk = dnom
k . To keep the presentation simple, the remainder

of this section assumes that unom
k = 0, dnom

k = 0, xnom
k = 0 and znom

k = 0, i.e.
that the nominal production plan is zero. Paper I treats the general case with
a non-zero nominal production plan.

7.6.3 Optimal Control Problem

An EMPC scheme is employed to activate FRR. The OCP in this EMPC scheme
is defined as

min.
uk,ug,k,x̂k,ẑk

∑

k∈N0

lk (ug,k, ẑk+1) , (7.46a)

s.t. x̂k+1 = Ax̂k +Buk + Edk, k ∈ N0, (7.46b)

ẑk = Czx̂k, k ∈ N1, (7.46c)

ug,k = uk +Kẑk, k ∈ N0, (7.46d)

uk ≤ ug,k ≤ uk, k ∈ N0, (7.46e)



110 Isolated Power Systems

where lk is the stage cost function. The input uk = ũg,k contains the portfolio-
level setpoints for the generators. Equations (7.46b) and (7.46c) are the state
and output predictions. Equation (7.46d) follows from (7.39). The matrix K is
defined such that

uk +Kẑk =




ũg1,k
ũg2,k

...
ũM,k


+




− 1
D1
ẑ∆f,k

− 1
D2
ẑ∆f,k

...
− 1
DM

ẑ∆f,k


 .

Equation (7.46d) limits the generator setpoint levels. The limits are time-
varying to account for both generator-specific technical limits, as well as limits
that are determined by external factors, e.g. the wind speed for wind turbines.
The stage cost in the OCP objective function (7.46a) is defined as

lk(ug,k, zk+1) = βϕeco(ug,k, zk+1) + (1− β)ϕsp(ug,k, zk+1), k ∈ N0. (7.47)

The function ϕeco is related to the cost of operation and ϕsp is a conventional
setpoint-based penalty function. The parameter β is a tuning parameter to
trade-off cost of operation and setpoint tracking. For the Faroe Islands case
study, the cost function ϕeco is defined as

ϕeco(ug,k, zk+1) =rT |ug,k − ug,k−1| (7.48a)

+ cT max (zg,k+1, 0) + cT max (−zg,k+1, 0) (7.48b)

+ qmax(z∆f,k+1 −∆f, 0) + qmax(∆f − z∆f,k+1, 0),

(7.48c)

where r and c are the vectors

r =




rg1
rg2
...

rgM


 , c =




cg1
cg2
...

cgM


 .

The cost function (7.48) consists of three parts. The first term, (7.48a), is an
`1-regularization term on the input-rate. The parameter r is a price vector
associated with wear and tear of the generators. The second two terms, (7.48b),
are related to the cost of generation. Let c denote a vector of utilization prices
for the generators. The parameter c is defined

c =




1/cg1
1/cg2

...
1/cgM


 .
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The price for upward activation of FRR is c = c. For downward activation
of FRR, the price is c. We do not use c for downward activation of FRR, to
avoid activation of FRR in the nominal case. The final two terms, (7.48c), are
related to the cost of frequency deviations. The cost q is imposed for frequency
deviations larger than f , and the cost q is imposed for frequency deviations

smaller than f . The limits ∆f and ∆f are the cut-off frequency deviations,
at which critical actions such as load shedding are initiated to avoid a system
blackout.

The setpoint-based penalty function, ϕsp, is defined as

ϕsp(ug,k, zk+1) = uTg,kR
spug,k + zTk+1Q

spzk+1, (7.49)

where Rsp and Qsp are weight matrices. The problem (7.46) is as a convex QP.
For β = 1, the quadratic terms (7.49) drop out of the stage cost (7.47). In this
special case, the optimization problem is an LP.

7.6.4 Faroe Islands Case Study #2

Paper I presents a Faroe Islands case study with M = 4 power generators. A
small system is considered to highlight the essential features of the proposed
EMPC scheme. A time-varying load over 5 minutes is considered. The load
includes non-controllable wind turbines, which give rise to fluctuations from the
nominal production plan. In the Faroe Islands, there are several locally owned
wind turbines that are not controlled by SEV. Fig. 7.14 illustrates the case study
load scenario. The nominal load is dnom

k = −21MW over the entire scenario. The
load disturbances bk and dFRR

k are not accounted for in the nominal production
plan. A prediction of dFRR

k is available in the EMPC scheme. The unmeasured
load disturbance, bk, is estimated via the Kalman filter. As defined by (7.43),
the system is also subject to Gaussian process and measurement noise.

The case study power generators are modeled as first order systems in the form

Zgj (s) =
1

τgjs+ 1
Ugj (s), j ∈M. (7.50)

The load has the similar form

Zl(s) =
1

τls+ 1
Ul(s), (7.51)

where τl < τgj , for j ∈ M. We use τl = 0.5s. The transfer functions (7.50) and
(7.51) are realized in the state-space forms, (7.35) and (7.36), respectively.
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Figure 7.14: Case study load scenario. The UC problem is solved based on
the nominal load forecast dnom. The proposed EMPC scheme is a
closed-loop strategy for activation of FRR, considering feedback
and updated forecasts.

Table 7.4: Case study system parameters.

# Type Hj [s] Dj [Hz/MW] uj,k [MW] uj,k [MW] τgj [s]

1 Hydro 3.1 3/20 3 20 8
2 Hydro 2.5 1/2 2 6 6
3 Diesel 1.8 3/5 1 5 1
4 Diesel 8.2 1/5 5 15 3

Table 7.4 lists the case study system parameters. The data represents actual
generators in the Faroe Islands. The inertia provided by each generator is scaled
up to better represent a full-scale system. The generator rating, Rj , is defined
to have the same magnitude as uj,k. The price of utilization for the generators
in EUR/MWh, are 4, 8, 80, and 60. The input-rate price for each generator is
0.05 EUR/MW. The hydro generators have a lower production cost than the
diesel generators. Within each generator group, the smaller and faster generator
has the highest utilization cost.

The nominal setpoint is unom
g,k = [8, 6, 1, 6]. The simulation is started from

steady-state, such that znom
g,k = unom

g,k . The sampling time is Ts = 0.5s and the
length of the prediction horizon is N = 80 time steps. The cut-off frequency
deviations are ∆f = −∆f = 1Hz. Frequency deviations larger than ±1Hz have
a very high cost. We define the price to be 1000 EUR/(Hz · s). The weight



7.6 Frequency Control 113

Table 7.5: Cost of operation and frequency deviations for the different EMPC
trade-off specifications, and for PI-control.

Cost min{∆f} max{∆f}
EMPC: α = 0 15.8 -0.39 0.43
EMPC: α = 0.1 10.9 -0.45 0.48
EMPC: α = 0.2 7.20 -0.48 0.61
EMPC: α = 0.3 4.67 -0.52 0.76
EMPC: α = 0.5 2.68 -0.76 0.87
EMPC: α = 1 2.10 -1.01 0.91
PI control 14.2 -1.19 1.10

specifications in (7.49) are Qsp = blkdiag (Qsp
g , Q

sp
l , Q

sp
b , Q

sp
∆f ), and Rsp = Rsp

g .

We use Qsp
g = I, Qsp

l = Qsp
b = 0, Qsp

∆f = 100, and Rsp
g = I. This means

that deviations from the nominal frequency have a large penalty, compared
to deviations from the generators’ production plan. We scale the weights Qsp

and Rsp by a factor Ts/3600, such that the economic criterion, (7.48), and the
setpoint-based criterion, (7.49), are in a comparable scale.

Fig. 7.15 and Fig. 7.16 illustrate closed-loop simulations for β = 0, β = 0.5
and β = 1. Fig. 7.15 shows the generator power production levels, and Fig.
7.16 shows the system frequency deviation. The case β = 0 corresponds to
setpoint-based MPC, and β = 1 corresponds to CE-EMPC with a pure economic
objective function. A frequency-based PI-controller is also tested. For β = 0,
all generators with free generation capacity activate a significant amount of
FCR. Similar behavior is observed for the PI-controller. For β = 0.5, low-cost
generators are prioritized over high-cost generators, at the expense of slightly
larger frequency deviations than for β = 0. Although the frequency deviations
are larger for β = 0.5 than for β = 0, no critical deviations occur. When β = 1,
the frequency is operated close to the cut-off frequencies. Since the controlled
system is a stochastic system, frequency deviations larger than ±1Hz occur for
this value of β. As discussed previously, CE-EMPC (corresponding to β = 1)
does not work well in practice. The use of a setpoint-based term in (7.47) can
be interpreted as a heuristic for CE-EMPC, similar to the constraint back-off
heuristic (5.19). The heuristic ensures that the frequency is operated with a
safety margin from the cut-off frequencies. Paper F achieves similar behavior in
a more systematic way using MV-EMPC. In contrast to the proposed EMPC
scheme, MV-EMPC guarantees the economic performance of the controller.

Table 7.5 provides key simulation results for different values of the trade-off
parameter β. Over the course of one year, the price difference between setpoint-
based MPC and the proposed EMPC scheme with β = 0.5, sums to over EUR



114 Isolated Power Systems

1.3 million. This corresponds to approximately 3% of the revenues generated
by SEV in 2012 [SEV13].

7.7 Summary

In this chapter, we have developed the ORPP for economic dispatch of power
generators in a small isolated power system, and an EMPC scheme for fre-
quency control. The ORPP ensures that the systems frequency remains in a
safe operating range, in the event of a contingency. The transient dynamics of
the frequency response is accounted for in the ORPP, based on a model of the
system inertia and an open-loop FCR response of the system generators. The
EMPC scheme activates FRR to restore the frequency to the nominal frequency.
The EMPC scheme accounts for generator costs and and the frequency dynam-
ics. The OCP objective function is a bi-criterion that trades-off the cost of
operation and setpoint tracking. The setpoint-based term in the OCP objective
function ensures that the stochastic system is operated with a safety margin
from the system constraints. This can be viewed as a computationally efficient
approach to approximate the behavior of MV-EMPC.

The proposed ORPP and EMPC scheme were tested using a Faroe Island case
study. A single-area model of the system was developed. Simulations show that
potential blackouts and power outages can be avoided using the ORPP, at a cost
increase of less than 3%. The EMPC scheme for frequency control yields a 3%
reduction in the yearly operating cost, compared to conventional LFC schemes.
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(a) EMPC with β = 0
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(b) EMPC with β = 0.5
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(c) EMPC with β = 1
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(d) PI control

Figure 7.15: Closed-loop simulation: Generator power production levels.
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(b) EMPC with β = 0.5
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(c) EMPC with β = 1
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Figure 7.16: Closed-loop simulation: System frequency deviation.
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Conclusions

In this thesis, we have developed methods and algorithms for EMPC in power
production planning. The formulation and solution of the OCPs that arise
in EMPC of linear stochastic systems were given particular attention. We in-
troduced a conceptual portfolio system for demonstration and test purposes.
The portfolio system consists of a collection of power generators. Generators
represent generic units with the ability to produce power, consume power, or
possibly both. The main contributions of this thesis were presented in Chapter
5, Chapter 6, and Chapter 7.

Power generation based on renewable energy sources is inherently uncertain and
variable. The power portfolio system is therefore generally a stochastic system.
Chapter 5 demonstrated that CE-EMPC performs poorly under uncertainty.
Consequently, CE-EMPC is not well suited for control of the portfolio system.
For this reason, MV-EMPC was introduced as an extension of CE-EMPC that
accounts for the system uncertainty in a more economically efficient manner. In
MV-EMPC, the OCP objective function is a trade-off between cost expectation
and cost variance. Simulations show that, while CE-EMPC is a high-risk and
high-cost strategy, MV-EMPC provides attractive cost/risk trade-off options.

Computationally tractable EMPC schemes require efficient algorithms to solve
the OCPs. Chapter 6 presented novel algorithms to solve the OCPs that arise in
EMPC. A Riccati-based IPM was developed for CE-EMPC of linear stochastic
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systems. The Riccati-based IPM is a specialized algorithm for OCPs with linear
constraints and linear objective functions. Input-constrained OCPs with convex
objective functions were handled using a tailored ADMM-based algorithm. We
demonstrated that the OCP associated with EMPC of dynamically decoupled
subsystems can be expressed as a block-angular LP. Subsystem decomposition
algorithms based on Dantzig-Wolfe decomposition and ADMM were developed
to solve optimization problems of this type. The algorithms facilitate EMPC of
energy systems with a large number of generators. General-purpose solvers can-
not handle such large-scale systems due to memory limitations. The OCPs that
arise in MV-EMPC are large-scale convex optimization problems. To solve these
problems in real-time, a scenario decomposition algorithm based on ADMM was
presented. Warm-start and early-termination strategies were employed to re-
duce the computation time of the proposed EMPC algorithms. Simulations
demonstrate that the algorithms presented in this thesis are significantly faster
than current state-of-the-art solvers, and that the difference in computation
time increases with the size of the OCPs.

Chapter 7 concerned planning and control methods for small isolated power
systems. A single-area model was introduced to model a small isolated power
system. We developed an EMPC scheme for frequency control via activation
of operational reserves. The strategy accounts for generation costs and for
the system frequency dynamics. Simulations based on a Faroe Islands case
study show that significant savings can be achieved using the proposed EMPC
scheme. The ORPP was developed for unit commitment and economic dispatch
of power generators in a small isolated power system. Frequency constraints in
the ORPP ensure that the ORPP production plan is robust against a number
of pre-defined contingencies. In a Faroe Islands case study, potential blackouts
and power outages are avoided using the ORPP.

8.1 Future Work

Future work involves further investigation and development of the control and
planning methods introduced in this thesis. Two main directions for future
research are described in the following. In addition to the listed research direc-
tions, we plan to improve the proposed planning and control methods for small
isolated power systems, based on experimental results. The ORPP is currently
being tested in the Faroe Islands. Production plans generated by the ORPP
are transmitted directly to the main control room, where the plans are evalu-
ated and validated by the system operators. We would like to test the reserve
activation EMPC scheme and a in a similar setting.
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8.1.1 Risk Measures in MV-EMPC

This thesis demonstrated that MV-EMPC is a promising strategy for EMPC of
linear stochastic systems. MV-EMPC employs variance as a risk measure. We
plan to investigate other risk measures than the variance in an MV-EMPC set-
ting. Notably, Conditional Value-at-Risk (CVaR) is a risk measure with many
attractive properties; it is a convex and coherent risk measure, which is sensitive
to the tail shape of the cost distribution [MCM+14, KPU02, SFFM14]. As for
MV-EMPC, scenario decomposition algorithms are required for the computa-
tional tractability of future Monte Carlo-based EMPC schemes.

8.1.2 Algortihms for EMPC

The algorithms proposed in this thesis have a number of potential extensions to
be considered in future work:

• Quadratic programming extensions for LPempc and DWempc: Homoge-
neous and self dual IPMs can be generalized to conic optimization prob-
lems [SAY13, ART03]. We plan to implement a version of LPempc that
can handle quadratic terms (and possibly conic terms) in the OCP ob-
jective function. Similarly, we would like to extend the Dantzig-Wolfe
decomposition algorithm to quadratic programming [Sac80].

• Tuning ADMM: Several ADMM-based algorithms for EMPC have been
presented in this thesis. Tuning parameters are critical for the empirical
convergence rate of ADMM [BPC+11, EF98, GTSJ13, TGS+13]. Tuning
strategies for ADMM in EMPC applications will be investigated in future
work.

• Parallel implementations: The decomposition algorithms developed in this
thesis have good parallelization capabilities. Fully parallel implementa-
tions of the algorithms are left to future work. The potential of utilizing
structure in the subproblems that arise in the decomposition algorithms
should also be investigated further.
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[Grü13] L. Grüne. Economic Receding Horizon Control without Terminal
Constraints. Automatica, 49(3):725–734, 2013.

[GSD05] G. C. Goodwin, M. M. Seron, and J. A. De Doná. Constrained
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A Riccati Based Homogeneous and Self-Dual Interior-Point Method for
Linear Economic Model Predictive Control

Leo Emil Sokoler, Gianluca Frison, Kristian Edlund, Anders Skajaa and John Bagterp Jørgensen

Abstract— In this paper, we develop an efficient interior-point
method (IPM) for the linear programs arising in economic
model predictive control of linear systems. The novelty of our
algorithm is that it combines a homogeneous and self-dual
model, and a specialized Riccati iteration procedure. We test the
algorithm in a conceptual study of power systems management.
Simulations show that in comparison to state of the art software
implementation of IPMs, our method is significantly faster and
scales in a favourable way.

I. INTRODUCTION

During the last 30-40 years, model predictive control
(MPC) for constrained systems has become the most success-
ful advanced control technology for the process industries
[1]–[4]. Technically, MPC is attractive because of its ability
to handle constraints, time delays, and multivariate systems
in a straightforward and transparent way. The basic idea of
MPC is to optimize the forecast of a process model over a
finite horizon. At each sampling instant, a new optimization
problem is formed and solved. Conventionally, the optimiza-
tion problems associated with MPC have been formulated as
tracking problems that penalize deviations from a set-point.
Although this approach ensures that the set-point is reached
in a reasonable amount of time, it does not guarantee that the
transition between set-points is performed in an economically
efficient way. To face this challenge, economic MPC has
emerged as a promising technology [5]–[9].

Economic MPC is a variant of MPC that integrates
economic information directly in the optimization problem
defining the control law. This enables he controller to act
based on an economic incentive rather than to deviations
from a set-point. Some examples of economic MPC are
cost-efficient control of refrigeration systems [10], building
climate control [11], [12], and charging batteries in electric
vehicles [13]. In linear economic MPC, the optimization
problem solved at each sampling instant can be posed as
a highly structured linear program. The main contribution of
this paper is an efficient algorithm for large-scale problems
of this type that combines:
• The homogeneous and self-dual model described in

[14]–[17] to facilitate warm-starting
• A specialized and efficiently implemented Riccati iter-

ation procedure to speed-up the most time consuming
numerical operations

L. E. Sokoler and K. Edlund are with DONG Energy, DK-2820 Gentofte,
Denmark {leoes,kried} @ dongenergy.dk

G. Frison, A. Skajaa and J. B. Jørgensen are with the Department
of Informatics and Mathematical Modeling, Technical University of Den-
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Riccati based IPMs for MPC with �2-penalty on set-point
deviations have been reported in [18], [19], and similar
work for �1-penalty in [20]. However, while most modern
IPMs are based on the homogeneous and self-dual model, a
Riccati iteration procedure for MPC has not previously been
developed for such methods.

Our paper is organized as follows. In Section II, we
formulate the control law associated with economic MPC
as a highly structured linear program. A homogeneous and
self-dual IPM for the linear program is derived in Section III.
Section IV and Section V show how to implement the IPM
efficiently using a highly specialized Riccati iteration proce-
dure and special-purpose linear algebra operations. A MAT-
LAB implementation of our algorithm denoted LPempc is
compared against state of the art IPMs in Section VI using
a small conceptual study in power systems management.
Concluding remarks are given in Section VII. Details on our
Riccati iteration procedure for economic MPC can be found
in the appendix.

II. OPTIMAL CONTROL PROBLEM

We consider linear state space systems in the form

xxxk+1 = Axxxk +Buk +Edddk, dddk ∼ N(0,Rd), (1a)
yyyk =Cyxxxk + eeek, eeek ∼ N(0,Re), (1b)
zzzk =Czxxxk, (1c)

where xxx0∼N(x̂0,P0). Here (A,B,Cy,Cz,E) are the state space
matrices, xxxk ∈ Rnx is the state vector, uk ∈ Rnu is the input
vector, yyyk ∈ Rnz is the measurement vector, zzzk ∈ Rnz is the
output vector, dddk is the process noise vector and eeek is the
measurement noise vector. Notice that bold letters indicate
stochastic variables.

Economic MPC based on the certainty equivalence prin-
ciple is a control law for the system (1) that optimizes
the control actions with respect to an economic objective
function, input limits, input-rate limits and soft output limits.
Evaluation of this control law at time step k requires the
solution to the following linear program

min
u,x̂,ẑ,ρ ∑

j∈N0

pT
k+ juk+ j +qT

k+ j+1ρk+ j+1, (2a)

s.t. x̂k+ j+1|k = Ax̂k+ j|k +Buk+ j, j ∈N0, (2b)

ẑk+ j|k =Czx̂k+ j|k, j ∈N1, (2c)

uk+ j ≤ uk+ j ≤ uk+ j, j ∈N0, (2d)

Δuk+ j ≤ Δuk+ j ≤ Δuk+ j, j ∈N0, (2e)

zk+ j−ρk+ j ≤ ẑk+ j|k ≤ zk+ j +ρk+ j, j ∈N1, (2f)

ρk+ j ≥ 0, j ∈N1, (2g)
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where Ni := {0+ i,1+ i, . . . ,N−1+ i} and N is the length
of the prediction horizon. The problem data are the state-
space matrices (A,B,Cz), the filtered estimate x̂k|k, the input
limits uk+ j and uk+ j, the input-rate limits Δuk+ j and Δuk+ j,
the output limits zk+ j and zk+ j, the input price pk+ j and the
price for violating the output constraints qk+ j (see e.g. [21]
for details on soft output constraints in relation to MPC). The
filtered estimate x̂k|k :=E[xxxk|Yk] is the conditional expectation
of xxxk given the observations Yk :=

[
yT

0 yT
1 yT

2 . . . yT
k

]T .
We obtain this value using the Kalman filter.

The input-rate is defined in terms of the backward differ-
ence operator Δuk+ j := uk+ j−uk+ j−1, which alternately can
be written as uk+ j−Dx̂k+ j|k by augmenting the state space
system, and defining the matrix D accordingly. This refor-
mulation simplifies later computations considerably. Finally,
to keep the notation simple we assume that k = 0 and write
x̂ j := x̂0+ j|0 for conditional expressions.

A. Linear Program Formulation

By aggregating the problem data into g, F , b, H and c,
(2) can be put into the form

min
t
{gT t|Ft = b,Ht ≤ c}. (3)

As an example, consider the case for N = 2

t :=
[
uT

0 x̂T
1 ρT

1 uT
1 x̂T

2 ρT
2
]T

,

g :=
[
pT

0 0 qT
1 pT

1 0 qT
2
]T

,

and
[

F b
]

:=
[

B −I 0 0 0 0 −Ax̂0
0 A 0 B −I 0 0

]
,

[
H c

]
:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0 0 u0
0 0 0 I 0 0 u1
−I 0 0 0 0 0 −u0
0 0 0 −I 0 0 −u1
I 0 0 0 0 0 Δũ0
0 −D 0 I 0 0 Δu1
−I 0 0 0 0 0 −Δ

˜
u0

0 D 0 −I 0 0 −Δu1
0 Cz −I 0 0 0 z1
0 0 0 0 Cz −I z2
0 −Cz −I 0 0 0 −z1
0 0 0 0 −Cz −I −z2
0 0 −I 0 0 0 0
0 0 0 0 0 −I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Δũ0 := Δu0 +Dx̂0 and Δ
˜
u0 := Δu0 +Dx̂0. Hence, (2)

can be posed as a highly structured linear program with
n :=N(nu+nx+nz) variables, mE :=Nnx equality constraints
and mI :=N(4nu+3nz) inequality constraints. Notice that we
have eliminated ẑ j from the optimization problem using (2c).

III. HOMOGENEOUS AND SELF-DUAL MODEL

The dual optimization problem associated with (3) is

max
v,w

{−bT v− cT w|−FT v−HT w = g,w≥ 0}, (4)

in which v∈RmE and w∈RmI are dual variables correspond-
ing to the Lagrange multipliers for the equality constraints
and the inequality constraint of (3), respectively.

Problem (3) and (4) can be solved in polynomial time by a
standard primal-dual IPM [22]. However, instead of solving
the problems directly [14]–[17] have shown that it is has
several advantages to consider a related homogeneous and
self-dual linear program. This approach makes it simple to
detect infeasibility, find a good initial point, and facilitates
warm-starting. E.g. the warm-starting method of [17] reports
a speed-up of 30-75% for an extensive amount of diverse
linear programs and quadratic conic problems.

The homogeneous and self-dual linear program associated
with (3) and (4), may be stated in the form

min
t̃,ṽ,w̃,s̃,τ̃,κ̃

0, (5a)

s.t. FT ṽ+HT w̃+gτ̃ = 0, (5b)
bτ̃−Ft̃ = 0, (5c)
cτ̃−Ht̃− s̃ = 0, (5d)

−gT t̃−bT ṽ− cT w̃+ κ̃ = 0, (5e)
(w̃, s̃, τ̃, κ̃)≥ 0. (5f)

This linear program is a pure feasibility problem since the
objective function is constant. Moreover, it always has a
strict complimentary solution (t̃∗, ṽ∗, w̃∗, s̃∗, τ̃∗, κ̃∗) satisfying
s̃∗j w̃

∗
j = 0 for j = 1,2, . . . ,mI and τ̃∗κ̃∗ = 0 (for proofs and

derivations see [16]).
The following proposition states that a solution to (5) is

either a scaled solution to (3) and (4) or a certificate of
infeasibility.

Proposition 1: For a strict complementary solution of (5),
one of the following statements hold:
• I. τ̃∗ > 0 and κ̃∗ = 0

The scaled solution (t∗,v∗,w∗,s∗) = (t̃∗, ṽ∗, w̃∗, s̃∗)/τ̃∗ is
a primal-dual optimal solution to (3) and (4).

• II. τ̃∗ = 0 and κ̃∗ > 0
The problem (3) is infeasible or unbounded; either
−bT ṽ∗ − cT w̃∗ > 0 (implies primal infeasibility), or
gT t̃∗ < 0 (implies dual infeasibility).
Proof: See [16].

Thus, we can obtain the solution to (3) and (4) indirectly
by solving (5).

A. Interior Point Method
This section presents a homogeneous and self-dual IPM

for solving (5). The algorithm tracks the central path,
which connects an initial point (t̃0, ṽ0, w̃0, s̃0, τ̃0, κ̃0) satis-
fying (s̃0, w̃0, τ̃0, κ̃0) ≥ 0 to a strict complementary solution
of (5). Such a solution satisfies the following necessary and
sufficient optimality conditions

V (t̃, ṽ, w̃, s̃, τ̃, κ̃) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

FT ṽ+HT w̃+gτ̃
bτ̃−Ft̃

cτ̃−Ht̃− s̃
−gT t̃−bT ṽ− cT w̃+ κ̃

W̃ S̃111mI

τ̃ κ̃

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
, (6)
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with (w̃, s̃, κ̃, τ̃)≥ 0. We have defined W as a diagonal matrix
with diagonal elements w1,w2, . . . ,wmI and similarly for S.
Moreover, 1mI is the column vector of all ones of size mI .

Using the definition (6), the central path may be written
as the set

C :=
{

φ |V (φ) = γr0,γ ∈ [0,1]
}
,

where φ := (t̃, ṽ, w̃, s̃, τ̃, κ̃) and

rk : =
[
V1(φ k)T V2(φ k)T V3(φ k)T V4(φ k)T μk(111mI )

T μk
]T

,

Here superscript has been introduced to represent the it-
eration number and μk := ((w̃k)T s̃k + τ̃kκ̃k)/(mI + 1) is a
measure of the duality gap. In addition, Vi(φ) denotes the
i’th set of components of V (φ) defined as in (6). Notice, that
for fixed γ = 1 the central path is the initial point, whereas
for γ = 0 the central path is a strict complementary solution
of (5).

To track the central path, we use a variant of Mehrotra’s
predictor-corrector method [22], [23]. The method is based
on repeating a two-step procedure. In the first step (affine
step) the centering parameter γ is updated and second-order
correction terms are computed. Secondly, a corrector step is
determined and a new iterate is produced.

The direction associated with the affine step corresponds
to a pure Newton direction for (6)

JV (φ k)Δφ k
aff =−V (φ k). (7)

Here φ k is the current iterate and Δφ k
aff is the affine direction

obtained by solving the system (7).
The Jacobian of V evaluated at φ k is given by

JV (φ k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 FT HT 0 g 0
−F 0 0 0 b 0
−H 0 0 −I c 0
−gT −bT −cT 0 0 1

0 0 S̃k W̃ k 0 0
0 0 0 0 κ̃k τ̃k

⎤
⎥⎥⎥⎥⎥⎥⎦
. (8)

Having solved for Δφ k
aff, the affine variables w̃k

aff, s̃k
aff, τ̃k

aff
and κ̃k

aff are computed

w̃k
aff : = w̃k +αk

affΔw̃k
aff, s̃k

aff : = s̃k +β k
affΔs̃k

aff,

τ̃k
aff : = τ̃k +αk

affΔτ̃k
aff, κ̃k

aff : = κ̃k +β k
affΔκ̃k

aff.

The damping parameters αaff and βaff are introduced to
ensure that the non-negative constraints (5f) remain satisfied

αk
aff := max

{
aaff ∈ [0,1]|

[
w̃k

τ̃k

]
+aaff

[
Δw̃k

aff
Δτ̃k

aff

]
≥ 0

}
,

β k
aff := max

{
baff ∈ [0,1]|

[
s̃k

κ̃k

]
+baff

[
Δs̃k

aff
Δκ̃k

aff

]
≥ 0

}
.

To update the centering parameter γk, we compare the affine
duality gap μk

aff with the current duality gap μk [22]

γk :=
(

μk
aff

μk

)3

=

(
((w̃k

aff)
T s̃k

aff + τ̃k
affκ̃

k
aff)

((w̃k)T s̃k + τ̃kκ̃k)

)3

. (9)

In the second step of Mehrotra’s predictor-corrector method,
(7) is solved with a modified right hand side.

The resulting linear system of equations is written as

JV (φ k)Δφ k =−V̄ (φ k),

where V̄i(φ) := (1− γk)Vi(φ) for i = 1,2,3,4 and

V̄5(φ k) :=V5(φ k)− γkμk(111mI )
T +ΔW̃ k

affΔS̃k
aff1mI ,

V̄6(φ k) :=V6(φ k)− γkμk +Δτ̃k
affΔκ̃k

aff.

Here ΔW̃ k
aff and ΔS̃k

aff are second-order correction terms
defined as diagonal matrices with the elements of w̃aff and
s̃aff appearing on their respective diagonals. Similarly Δτ̃k

aff
and Δκ̃k

aff are scalar second-order correction terms. Finally,
the terms involving γk are used to orient the search direction
towards the central path based on the updating formula (9).

As in [24], an iterate is classified as optimal if

ρk
E ≤ εE , ρk

I ≤ εI , ρk
D ≤ εD, ρk

O ≤ εO, (10a)

and infeasible if τ̃k ≤ ετ max(1, κ̃k) and

ρk
E ≤ εE , ρk

I ≤ εI , ρk
D ≤ εD, ρk

G ≤ εG. (11a)

The parameters ετ , εE , εI , εD, εO and εG are small user-
defined tolerances and

ρD : = ||V1(φ)||∞/max(1, ||
[
HT FT g

]
||∞),

ρE : = ||V2(φ)||∞/max(1, ||
[
F b

]
||∞),

ρI : = ||V3(φ)||∞/max(1, ||
[
H I c

]
||∞),

ρG : = |L− κ̃|/max(1, ||
[
gT bT cT 1

]
||∞),

ρO : = |L|/(τ̃ + |−bT ṽ− cT w̃|).
where L := gT t̃−(−bT ṽ−cT w̃) is the duality gap. An imple-
mentation of the procedure described above is summarized
in Algorithm 1. Notice that a parameter ν ∈ [0.95;0.999] is
introduced to keep the iterates away from the boundary of
the feasible region. In LPempc, ν = 0.995.

IV. RICCATI ITERATION PROCEDURE

Solving the linear systems involving the Jacobian matrix
(8) is the main computational bottleneck of Algorithm 1. For
an arbitrary right hand side, the operations can be written as

FT Δṽ+HT Δw̃+gΔτ̃ = r1, (12a)
bΔτ̃−FΔt̃ = r2, (12b)

cΔτ̃−HΔt̃−Δs̃ = r3, (12c)

gT Δt̃ +bT Δṽ+ cT Δw̃−Δκ̃ = r4, (12d)

W̃Δs̃+ S̃Δw̃ = r5, (12e)
κ̃Δτ̃ + τ̃Δκ̃ = r6. (12f)

We remark that this system is different from the case of
conventional IPMs, due to our introduction of the homoge-
neous and self-dual model. In particular, a Riccati iteration
procedure for MPC has not previously been developed for
solving (12) efficiently.

The following proposition shows that the solution of (12)
can be obtained by solving a smaller linear system, and a
number of computationally inexpensive operations.
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Algorithm 1 Homogeneous and self-dual IPM for (5)

Require:

⎧
⎨
⎩

DATA (g,F,b,H,c)
INITIAL POINT (t̃, ṽ, w̃, s̃, τ̃, κ̃)
PARAMETERS ν

// initialize
μ ← (w̃T s̃+ τ̃ κ̃)/(mI +1)
while not CONVERGED do
// affine step
Δφaff ←−JV (φ)−1V (φ)
// center parameter

αaff ←max
{

aaff ∈ [0,1]|
[

w̃
τ̃

]
+aaff

[
Δw̃aff
Δτ̃aff

]
≥ 0

}

βaff ←max
{

baff ∈ [0,1]|
[

s̃
κ̃

]
+baff

[
Δs̃aff
Δκ̃aff

]
≥ 0

}

s̃aff ← s̃+βaffΔs̃aff, κ̃aff ← κ̃ + β̃affΔκ̃aff
w̃aff ← w̃+αaffΔw̃aff, τ̃aff ← τ̃ + α̃affΔτ̃aff

μaff ← (w̃T
affs̃aff + τ̃affκ̃aff)/(mI +1)

γ ← (μaff/μ)3

// predictor-corrector step
Δφ ←−JV (φ)−1V̄ (φ)
// step update

α ←max
{

a ∈ [0,1]|
[

w̃
τ̃

]
+a

[
Δw̃
Δτ̃

]
≥ 0

}

β ←max
{

b ∈ [0,1]|
[

s̃
κ̃

]
+b

[
Δs̃
Δκ̃

]
≥ 0

}

t̃ ← t̃ +νβΔt̃, s̃← s̃+νβΔs̃, κ̃ ← κ̃ +νβΔκ̃
ṽ← ṽ+ναΔṽ, w̃← w̃+ναΔw̃, τ̃ ← τ̃ +ναΔτ̃

μ ← (w̃T s̃+ τ̃ κ̃)/(mI +1)
end while

Proposition 2: The solution to (12) can be obtained by
solving

⎡
⎣

0 FT HT

−F 0 0
−H 0 W̃−1S̃

⎤
⎦
⎡
⎣

f1 h1
f2 h2
f3 h3

⎤
⎦=

⎡
⎣

r1 −g
r2 −b
r̂3 −c

⎤
⎦ , (13)

and subsequent computation of

Δτ̃ =
r̂6− τ̃(gT f1 +bT f2 + cT f3)

κ̃ + τ̃(gT h1 +bT h2 + cT h3)
,

Δt̃ = f1 +h1Δτ̃,
Δṽ = f2 +h2Δτ̃,
Δw̃ = f3 +h3Δτ̃,
Δκ̃ = gT Δt̃ +bT Δṽ+ cT Δw̃− r4,

Δs̃ = W̃−1(rC− S̃Δw̃),

where r̂3 := r3 +W̃−1r5 and r̂6 := r6 + τ̃r4.
Proof: See [24].

To solve (13) efficiently, we have developed a Riccati
iteration procedure specifically tailored to economic MPC.
The procedure exploits the problem structure by reducing
the original system into a much smaller system, which is
then solved by a standard recursive approach. For further
details, we refer to the appendix.

The proposed method has order of complexity O(N(nu +
nx + ny)

3) per iteration. In comparison, a general purpose
solver based on dense linear algebra yields O(N3(nu +nx +
nz)

3). Thus, the computational cost per iteration is reduced
by two orders of magnitude in N. However, as described in
[25], the complexity of IPMs based on direct sparse linear
algebra is linear to quadratic for problems such as (2). Notice
also, that if the number of states nx is very large, condensing
methods using state-elimination have an advantage over a
Riccati based solver [19].

V. SPECIAL OPERATORS

To speed-up the numerical computations and reduce the
storage requirements of Algorithm 1, operations involv-
ing the structured matrices F and H are implemented as
specialized linear algebra routines. Denote the Lagrange
multipliers associated with the inequality constraints (2d)-
(2g) as Δη , Δλ , Δυ , Δω , Δγ , Δζ and Δξ where Δη :=[
ΔηT

0 ΔηT
1 . . . ΔηT

N−1
]T , and similarly for Δλ , Δυ , Δω ,

Δγ , Δζ and Δξ . Δη and Δλ are multipliers for the input
limits (2d), Δυ and Δω are multipliers for the input-rate
limits (2e), Δγ and Δζ are multipliers for the output limits
(2f) and Δξ is the vector of multipliers for the non-negative
constraints (2g). Using this notation, the optimization vari-
ables t̃, ṽ, and w̃ can be stated in the form

t̃ =
[
uT

0 x̂T
1 ρT

1 . . . uT
N−1 x̂T

N ρT
N
]T

,

ṽ =
[
ṽT

1 . . . ṽT
N
]T

,

w̃ =
[
ηT λ T υT ωT γT ζ T ξ T ]T

.

As an example consider the case N = 2. In this case the
specialized linear algebra routines are

FT ṽ =
[
ṽT

1 B ṽT
2 A− ṽT

1 0 ṽT
2 B −ṽT

2 0
]T

,

HT w̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

η0−λ0 +υ0−ω0
DT (ω1−υ1)+CT (γ1−ζ1)

−γ1−ζ1−η1
η1−λ1 +υ1−ω1

CT (γ2−ζ2)
−γ2−ζ2−η2

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and

Ht̃ =
[
uT −uT uT

0 (u1−Dx̂1)
T −uT

0 (Dx̂1−u1)
T

(Cx̂1−ρ1)
T (Cx̂2−ρ2)

T (−Cx̂1−ρ1)
T

(−Cx̂2−ρ2)
T −ρ̃T ]T

,

Ft =
[
(Bu0− x̂1)

T (Ax̂1 +Bu1− x̂2)
T ]T

,

VI. CASE STUDY - POWER SYSTEM

We now present a case study of economic MPC, which
is used to compare LPempc against state of the art IPMs.
The tolerance parameters in (10)-(11) are set to 10−8. It
has been verified that for this setup, approximately the same
accuracy in the solution is achieved for all other solvers using
their default tolerance settings. The study is performed on an
Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz with 4 GB
RAM running a 64-bit Ubuntu 12.04.1 LTS operating system.
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TABLE I
CASE STUDY PARAMETERS. THE PORTFOLIO CONSISTS OF A FAST AND

EXPENSIVE GENERATOR, AND A SLOW AND CHEAP GENERATOR.

τ pk uk uk Δuk Δuk

Power Generator 1 90 100 0 200 -20 20
Power Generator 2 30 200 0 150 -40 40

Fig. 1. Closed-loop simulation of a stochastic power system controlled
by economic MPC. A majority of the production is produced by the cheap
(slow) power generator, while the expensive unit (fast) is used only when
extra flexibility is required to satisfy the constraints.

In our study, we consider generic power generators in the
form [26]

Yi(s) =
1

(τis+1)3 Ui(s), i = 1,2, . . . ,m. (14)

Here Ui(s) is the units of fuel supplied to generator i and Yi(s)
is its power production. Moreover, the total power production
is given by

Z(s) =
m

∑
i=1

Yi(s) =
m

∑
i=1

1
(τis+1)3 Ui(s). (15)

The system (14)-(15) is realized as a state space system in the
form (1), where uk ∈ Rm is the units of fuel supplied to the
power generators, yk ∈Rm is the measured power production
of each generator and zk ∈ R is the total power production.

Fig. 1 illustrates an example with m = 2 power generators.
The simulation is performed in closed-loop over N = 400
time steps using a sampling time of Ts = 5 seconds. Thus, the
optimization problem (2) is solved 400 times. The controller
objective is to keep the total power production within a
certain pre-defined range, while minimizing input costs and
respecting capacity constraints. The case study parameters
are listed in Table I. Aside the parameters listed in the
table, we have fixed the length of the prediction horizon to
N = 80 and qk = 104 over the entire scenario. Moreover, full
information about the initial state is given xxx0 ∼ (0,0) and
Rd = Re = I.

The closed-loop solution depicted in Fig. 1 was computed
using LPempc, and IPMs from the following software
packages: SeDuMi, MOSEK, LIPSOL and GLPK. These
solvers are mainly written in low-level language such as
FORTRAN or C and rely on sparse linear algebra routines
that are specifically tailored to the solution of large-scale

TABLE II
COMPARISON OF THE NUMBER OF ITERATIONS, BASED ON OUR

CLOSED-LOOP SIMULATION.

Min Max Mean Std. Fail Rate (%)
LPempc (HSD) 11 23 17.4 2.35 0
MOSEK (HSD) 12 53 22.1 8.17 0
SeDuMi (HSD) 15 23 19.3 1.55 0
LIPSOL 12 45 19.2 9.63 11.25
GLPK 15 26 19.42 1.72 8.25

Fig. 2. CPU-time for the different solvers as a function of the number of
power generators m (fixed N = 32) and the length of the prediction horizon
N (fixed m = 32).

sparse linear and conic programs. In comparison, LPempc
is written in MATLAB with a separate MEX-file performing
the Riccati iteration procedure.

Table II lists selected results from the closed loop simula-
tion. We have tagged the IPMs based on the homogeneous
and self-dual model by (HSD).

The fail rate accounts for the cases in which numerical
instabilities occured, or more than 100 iterations were used.
Thus, the table indicates that the homogeneous and self-
dual IPMs are more reliable than the conventional IPMs.
Moreover, our simulations show that LPempc and SeDuMi
use a smaller and less fluctuating number of iterations than
MOSEK.

In Fig. 2 we have compared the CPU-time for the different
solvers, as a function of the number of power generators and
the length of the prediction horizon. The figure shows that
the advantage of using LPmpc increases with the problem
size. E.g. for 16 units, MOSEK and LPmpc are approximately
equally fast, but for 128 units the difference is a factor 4.
For 128 units LPempc is about 150 times faster than GLPK.
Similar results is observed for an increasing prediction
horizon N.

VII. CONCLUSION & FUTURE WORK

In this paper, we have developed an efficient Riccati
based homogeneous and self-dual IPM for linear economic
MPC. Simulations show that a MATLAB implementation of
our algorithm, LPempc, is significantly faster than state of
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the art IPMs based on direct sparse linear algebra. As the
problems become larger LPempc becomes relatively faster.
We have also observed that for our problem, homogeneous
and self-dual IPMs are more reliable (100% convergence)
than conventional IPMs (90-95% convergence).

Although the advantages of homogeneous and self-dual
IPMs have been widely accepted in the field of optimization,
they have not yet been adopted by the MPC community.
Our work on extending Riccati based solvers for MPC to
homogeneous and self dual IPMs is therefore a significant
contribution that allows for MPC-based controllers to exploit
important features of the homogeneous and self-dual model.
One example is the warm-starting approach of [17] which
will be implemented in the next edition of LPempc. Since
the optimization problems solved at successive sampling
instants in MPC are very similar, we expect that this method
will reduce the number of iterations for LPempc signifi-
cantly.

APPENDIX

Riccati Iteration Procedure for Economic MPC

Consider the system (13)

⎡
⎣

0 FT HT

−F 0 0
−H 0 W̃−1S̃

⎤
⎦
⎡
⎣

f1 h1
f2 h2
f3 h3

⎤
⎦=

⎡
⎣

r1 −g
r2 −b
r̂3 −c

⎤
⎦ .

For a single arbitrary right hand side, we may write this
system as

⎡
⎣

0 FT HT

−F 0 0
−H 0 W̃−1S̃

⎤
⎦
⎡
⎣

Δt̃
Δṽ
Δw̃

⎤
⎦=

⎡
⎣

rD
rE
rI

⎤
⎦ . (16)

Using the same notation as in Section V, we write the
solution to (16) in the form

Δt̃ =
[
ΔuT

0 Δx̂T
1 ΔρT

1 . . . ΔuT
N−1 Δx̂T

N ΔρT
N
]T

,

Δṽ =
[
ΔṽT

0 ΔṽT
1 . . . ΔṽT

N−1
]T

,

Δw̃ =
[
ΔηT Δλ T ΔυT ΔωT ΔγT Δζ T Δξ T ]T

.

Accordingly, we partition the right hand side such that

rD =
[
rT

u,0 rT
x,1 rT

w,1 . . . rT
u,N−1 rT

x,N rT
w,N

]T
,

rE =
[
RT

v,0 RT
v,1 . . . RT

v,N−1
]T

,

rI =
[
rT

η rT
λ rT

υ rT
ω rT

γ rT
ζ rT

ξ

]T
,

and write the diagonal matrix W̃−1S̃ in terms of diagonal
submatrices

W̃−1S̃ = diag
(

ΣT
η ,Σ

T
λ ,Σ

T
υ ,Σ

T
ω ,Σ

T
γ ,Σ

T
ζ ,Σ

T
ξ

)
.

The linear system of equations (16) can now be stated in the
form

Δηi−Δλi +Δυi−Δωi +BT Δṽi = ru,i, i ∈N0,

−Δui +Ση ,iΔηi = rη ,i, i ∈N0,

Δui +Σλ ,iΔλi = rλ ,i, i ∈N0,

−Δui +DΔx̂i +Συ ,iΔυi = rυ ,i, i ∈ ˜N0,

Δui−DΔx̂i +Σω,iΔωi = rω,i, i ∈ ˜N0,

Δx̂i+1−AΔx̂i−BΔui = Rv,i, i ∈ ˜N0,

Δρi−CzΔx̂i +Σγ,iΔγi = rγ,i, i ∈N1,

Δρi +CzΔx̂i +Σζ ,iΔζi = rζ ,i, i ∈N1,

Δρi +Σξ ,iΔξi = rξ ,i, i ∈N1,

−Δγi−Δζi−Δξi = rw,i, i ∈N1,

−Δṽi +CT
z (Δγi+1−Δζi+1)+AT Δṽi

+DT (ωi−Δυi) = rx,i, i ∈ ˜N0,

with ˜N0 := N0 \0 and the special cases

−Δu0 +Συ ,0Δυ0 = rυ ,0,

Δu0 +Σω,0Δω0 = rω,0,

Δx̂1−BΔu0 = Rv,0,

−ΔṽN−1 +CT
z (ΔγN −ΔζN) = rx,N .

By eliminating the Lagrange multipliers for the inequality
constrains Δη , Δλ , Δυ , Δω , Δγ , Δζ and Δξ we get the
reduced set of equations

BT Δṽ0 +U0Δu0 = Ru,0, (17a)

BT Δṽi +UiΔui +GiΔx̂i = Ru,i, i ∈ ˜N0, (17b)
−Δx̂1 +BΔu0 = Rv,0, (17c)

−Δx̂i+1 +AΔx̂i +BΔui = Rv,i, i ∈ ˜N0, (17d)

WiΔρi +MT
i Δx̂i = Rw,i, i ∈N1, (17e)

−Δṽi−1 +MiΔρi + X̄iΔx̂i

+GT
i Δui +AT Δṽi = R̄x,i, i ∈ ˜N0, (17f)

−ΔṽN−1 +MNΔρN + X̄NΔx̂N = R̄x,N , (17g)

where we have defined

Ui := Σ−1
η ,i +Σ−1

λ ,i +Σ−1
ω,i +Σ−1

υ ,i , i ∈N0,

Gi :=−(Σ−1
ω,i +Σ−1

υ ,i)D, i ∈ ˜N0,

Wi := Σ−1
ζ ,i +Σ−1

ξ ,i +Σ−1
γ,i , i ∈N1,

Mi :=CT
z (Σ

−1
ζ ,i −Σ−1

γ,i ), i ∈N1,

X̄i :=CT
z (Σ

−1
ζ ,i +Σ−1

υ ,i)Cz +DT (Σ−1
γ,i +Σ−1

ω,i)D, i ∈ ˜N0,

X̄N :=CT
z (Σ

−1
ζ ,N +Σ−1

υ ,N)Cz.

Furthermore

Ru,i := ru,i + r̄λ ,i + r̄ω,i− r̄η ,i− r̄υ ,i, i ∈N0,

Rv,i :=−Rv,i, i ∈N0,

Rw,i := rw,i−1 + r̄ζ ,i−1 + r̄ξ ,i + r̄γ,i, i ∈N1,

R̄x,i := rx,i +CT
z (r̄ζ ,i− r̄γ,i)+DT (r̄υ ,i− r̄ω,i), i ∈ ˜N0,

R̄x,N := rx,N +CT
z (r̄ζ ,N − r̄γ,N).
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For compact notation, we have introduced the notation r̄λ ,i :=
Σ−1

λ ,irλ ,i, and in a similar way r̄ω,i, r̄η ,i, r̄υ ,i, r̄ζ ,i, r̄ξ ,i and r̄γ,i.
Solving (17e) for Δw̃ gives

Δρi =W−1
i (Rw,i−MT

i Δx̂i), i ∈N1. (18)

Substituting back into (17) yields the equations

BT Δṽ0 +U0Δu0 = Ru,0

BT Δṽi +UiΔui +GiΔx̂i = Ru,i, i ∈ ˜N0

−Δx̂1 +BΔu0 = Rv,0

−Δx̂i+1 +AΔx̂i +BΔui = Rv,i, i ∈ ˜N0

−Δṽi−1 +XiΔx̂i +GT
i Δui +AT Δṽi = Rx,i, i ∈ ˜N0

−ΔṽN−1 +XNΔx̂N = Rx,N

where Xi := X̄i−MiW−1
i MT

i and Rx,i := R̄x,i−MiW−1
i Rw,i. As

an example let N = 3. In this case, the equations above may
be arranged as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U0 BT

B −I
−I X1 GT

1 AT

G1 U1 BT

A B −I
−I X2 GT

2 AT

G2 U2 BT

A B −I
−I X3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δu0
Δṽ0
Δx̂1
Δu1
Δṽ1
Δx̂2
Δu2
Δṽ2
Δx̂3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ru,0
Rv,0
Rx,1
Ru,1
Rv,1
Rx,2
Ru,2
Rv,2
Rx,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This system can be solved efficiently by a Riccati iteration
procedure [18], [20]. Thus, by utilizing the structure of (2)
we have reduced (13) to a smaller system which can be
solved efficiently using a recursive approach.
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Abstract—In economic model predictive control of distributed
energy systems, the constrained optimal control problem can be
expressed as a linear program with a block-angular structure. In
this paper, we present an efficient Dantzig-Wolfe decomposition
algorithm specifically tailored to problems of this type. Simula-
tions show that a MATLAB implementation of the algorithm is
significantly faster than several state-of-the-art linear program-
ming solvers and that it scales in a favorable way.

I. INTRODUCTION

Due to global concerns related to environmental issues
and security of supply, an increasing share of electricity is
being produced by renewable energy sources. Accordingly,
methods for power production planning that can handle the
volatile and unpredictable power generation associated with
technologies such as wind, solar and wave power are required.
For this reason, energy systems management has emerged as
a promising application area for economic model predictive
control (MPC).

In economic MPC of energy systems, the power production
planning is handled in real-time by an optimization algorithm
that computes an optimal production plan based on the most
recent information available such as forecasts of energy prices,
wind power production, and district heating consumption.
Examples of economic MPC in energy systems manage-
ment include cost-efficient control of refrigeration systems
[1], building climate control [2], [3], and optimal charging
strategies for batteries in electric vehicles [4].

Economic MPC requires the solution of a linear program
at every sampling instant. In energy systems management,
the solution to this linear problem, known as the optimal
control problem, provides a sequence of control moves that
yields the most cost-efficient power generation, with respect
to a process model of the power system. To compensate for
non-predictable disturbances and discrepancies between the
process model and the true system, only the first input in the
sequence of control moves is applied to the system, and the
optimization procedure is repeated using updated information
at the following sampling instant.

As the control moves are computed in real-time, one of
the key challenges in economic MPC is to solve the optimal
control problem in an efficient and reliable way. The main
contribution of this paper is an algorithm for control of
distributed energy systems that satisfies these criteria. Our
algorithm exploits that the units in a distributed energy system

are dynamically decoupled. This gives rise to a block-angular
structure in the optimal control problem, that allows it to
be decomposed into a master problem and a number of
subproblems, using Dantzig-Wolfe decomposition [5], [6]. To
solve the decomposed problem efficiently we use a column
generation procedure, which is warm-started by a strategy
that utilizes problem specific features. Similar algorithms
have been applied to coordinate the target calculation in set-
point based MPC [7], [8], building climate control [9], and
hierarchical MPC-based control [10].

A. Paper Organization

This paper is organized as follows. In Section II, we
introduce the optimal control problem solved in economic
MPC and a compact problem formulation is derived. We
decompose the problem using Dantzig-Wolfe decomposition in
Section III, and optimality conditions are derived in Section
IV. In this section we also present a warm-started column
generation procedure for solving the optimization problem.
Performance benchmarks for the proposed algorithm based
on a conceptual energy systems management case study are
provided in Section V. We give concluding remarks in Section
VI.

II. PROBLEM DEFINITION

We consider an electrical grid with M dynamically decou-
pled power generating units. The units are modelled as discrete
state space systems in the form

x j,k+1 = A jx j,k +B ju j,k, j ∈M , (1a)
y j,k =C jx j,k, j ∈M , (1b)

where M = {1,2, . . . ,M}. The state space matrices are de-
noted as (A j,B j,C j), the states as x j,k ∈ Rnx( j), the inputs as
u j,k ∈ Rnu( j), and the outputs as y j,k ∈ Rny( j).

Assuming that the power production is available as a linear
combination of the outputs in (1), the total power production
can be written as

yT,k = ∑
j∈M

ϒ jy j,k = ∑
j∈M

ϒ jC jx j,k, (2)

in which ϒ j ∈ R1×ny( j) is a row vector such that ϒ jC jx j,k is
the power production of unit j at time step k.

Economic MPC defines a control law for the generating
units (1), that optimizes the inputs (control moves) with



respect to an economic objective function, input limits, input
rate limits and soft output limits. Evaluating this control law
requires the solution to the minimization problem

min
u,x,y,yT ,ρ,γ

∑
k∈N0

qT
k+1ρk+1 + ∑

j∈M
pT

j,ku j,k + rT
j,k+1γ j,k+1, (3a)

subject to the constraints

x j,k+1 = A jx j,k +B ju j,k, k ∈N0, j ∈M , (3b)
y j,k =C jx j,k, k ∈N1, j ∈M , (3c)

yT,k = ∑
j∈M

ϒ jC jx j,k, k ∈N1, (3d)

u j,k ≤ u j,k ≤ u j,k, k ∈N0, j ∈M , (3e)

∆u j,k ≤ u j,k−u j,k−1 ≤ ∆u j,k, k ∈N0, j ∈M , (3f)

y j,k− γ j,k ≤ y j,k ≤ y j,k + γ j,k, k ∈N1, j ∈M , (3g)

0≤ γ j,k ≤ γ j,k, k ∈N1, j ∈M , (3h)

yT,k−ρk ≤ yT,k ≤ yT,k +ρk, k ∈N1, (3i)

0≤ ρk ≤ ρk, k ∈N1, (3j)

where Ni = {0 + i,1 + i, . . . ,N − 1 + i}, with N being the
length of the prediction horizon. The input data are the
input limits, (u j,k,u j,k), the input rate limits, (∆u j,k,∆u j,k), the
output limits associated with the generating units, (y j,k,y j,k),
the output limits associated with the total power production,
(yT,k,yT,k), the input prices, p j,k, the price for violating the
output limits associated with the generating units, r j,k, and
the price for violating the output limits associated with the
total power production qk. The slack variables γ j,k and ρk
represent the violation of the output constraints. We include
upper limits, (γ j,k,ρk), on these variables, as this simplifies
later computations considerably.

A. Compact Formulation
By eliminating the states using equation (1a), we can write

the output equation, (1b), as

y j,k =C jAk
jx j,0 + ∑

i∈N0

H j,k−iu j,i, j ∈M ,

where the impulse response coefficients are given by

H j,k =C jAk−1
j B j, j ∈M .

Consequently

yT,k = ∑
j∈M

(
ϒ jC jAk

jx j,0 + ∑
i∈N0

ϒ jH j,k−iu j,i

)
.

Define the vectors

y j =
[
yT

j,1 yT
j,2 · · · yT

j,N
]T
, j ∈M , (4a)

u j =
[
uT

j,0 uT
j,1 · · · uT

j,N−1
]T
, j ∈M , (4b)

and the matrices

Γ j =




H j,1 0 · · · 0
H j,2 H j,1

...
...

. . .
H j,N H j,N−1 · · · H j,1


 , Φ j =




C jA j
C jA2

j
...

C jAN−1
j


 ,

for j ∈M .
We can then write the outputs, (4a), for each of the

generating units as

y j = Γ ju j +Φ jx j,0, j ∈M . (5)

Moreover, by introducing Γ̃ j and Φ̃ j accordingly, it follows
that yT =∑ j∈M Γ̃ ju j+Φ̃ jx j,0. We simplify the notation further
by introducing

u j =
[
uT

j,0 uT
j,1 · · · uT

j,N−1
]T
, j ∈M ,

u j =
[
uT

j,0 uT
j,1 · · · uT

j,N−1
]T
, j ∈M ,

and similarly we define ∆u j, ∆u j, y j, y j, yT , yT , γ̄ j, ρ̄ , ρ , q,
p j, r j and γ j. Using this notation, the optimal control problem,
(3), can be written as

min
u,ρ,γ

qT ρ + ∑
j∈M

pT
j u j + rT

j γ j, (6a)

subject to a set of decoupled constraints

u j ≤ u j ≤ u j, j ∈M , (6b)

∆u j ≤ ∆u j ≤ ∆u j, j ∈M , (6c)

y j− γ j ≤ Γ ju j +Φ jx j,0 ≤ y j + γ j, j ∈M , (6d)

0≤ γ j ≤ γ, j ∈M , (6e)
0≤ ρ ≤ ρ, (6f)

and a set of linking constraints

yT −ρ ≤ ∑
j∈M

Γ̃ ju j + Φ̃ jx j,0 ≤ yT +ρ. (6g)

In a compact form, (6) can be stated by

min
z ∑

j∈M̄
cT

j z j, (7a)

s.t. G jz j ≥ g j, j ∈ M̄ , (7b)

∑
j∈M̄

H jz j ≥ h, (7c)

where M̄ = 1,2, . . . ,M+1 and

z j =
[
uT

j γT
j
]T
, c j =

[
pT

j rT
j
]T
, j ∈M

zM+1 = ρT , cM+1 =qT .

In (7), (7b) represents the decoupled constraints (6b)-(6f), and
(7c) represents the linking constraints (6g). The data structures
in (7) are defined as

G j =

[
Ḡ j
−Ḡ j

]
, g j =

[
g j
−g j

]
, H j =

[
H̄ j
−H̄ j

]
, h =

[
h
−h

]
,

where

[
Ḡ j g j g j

]
=




I 0 u j u j
Λ 0 ∆u

˜ j ∆ũ j
Γ j I y

˜
j ∞

Γ j −I −∞ ỹ j
0 I 0 γ j



,

[
H̄ j h h

]
=

[
Γ̃ j 0 y

˜
T ∞

Γ̃ j 0 −∞ ỹT

]
,



for j ∈M , with

y
˜

T = yT − ∑
j∈M

Φ̃ jx j,0, ỹT = yT − ∑
j∈M

Φ̃ jx j,0,

y
˜

j = y j−Φ jx j,0, ỹ j = y j−Φ jx j,0, j ∈M ,

∆u
˜ j = ∆u j + I0u j,−1, ∆ũ j = ∆u j + I0u j,−1, j ∈M ,

and Λ and I0 defined as

Λ j =




I
−I I

. . . . . .
−I I


 , I0 =




I
0
...
0


 .

In the special case j = M+1, H̄M+1 =
[
I −I

]T and
[

ḠM+1 gM+1 gM+1

]
=
[

I 0 ρ
]
.

III. DANTZIG-WOLFE DECOMPOSITION

Dantzig-Wolfe decomposition exploits that a convex set can
be characterized by its extreme points and its extreme rays [5],
[6]. For each j ∈ M̄ , the set of points satisfying the decoupled
constraints (7b), G j = {z j|G jz j ≥ g j}, may be written as

G j =

{
z j|z j = ∑

i∈P
λ i

jz
i
j, ∑

i∈P
λ i

j = 1,λ i
j ≥ 0 ∀i ∈P

}
,

where zi
j are the extreme points of G j, and λ i

j are convex com-
bination multipliers. Notice that since each of the sets G j are
bounded, extreme rays are not needed in their representation.

By replacing the decision variables in (7) by convex combi-
nation multipliers, we obtain the master problem formulation

min
λ≥0

φ = ∑
j∈M̄

∑
i∈P

ci
jλ

i
j, (8a)

s.t. ∑
j∈M̄

∑
i∈P

H i
jλ

i
j ≥ h, (8b)

∑
i∈P

λ i
j = 1, j ∈ M̄ , (8c)

where we have defined H i
j = H jzi

j and ci
j = cT

j zi
j for each j ∈

M̄ and i ∈P .
Given a solution, λ ∗, to the master problem (8), a solution

to the original problem, (7), can be obtained as

z∗j = ∑
i∈P

(λ ∗)i
jz

i
j, j ∈ M̄ .

Since the number of extreme points, |P|, can increase ex-
ponentially with the size of the original problem, solving
the master problem directly is inefficient. As demonstrated
in the following section however, the problem can be solved
efficiently using a column generation procedure that replaces
P by a subset P̃ .

IV. COLUMN GENERATION PROCEDURE

The dual linear program of (8) can be stated as

max
α≥0,β

hT α + ∑
j∈M̄

β j, (9a)

s.t. (H i
j)

T α +β j ≤ ci
j, j ∈ M̄ , i ∈P, (9b)

in which α ∈R4N and β ∈RM+1 are the Lagrange multipliers
associated with the linking constraints, (8b), and the convexity
constraints, (8c), respectively. The necessary and sufficient
optimality conditions for (8) and (9) are

∑
j∈M̄

∑
i∈P

H i
jλ

i
j ≥ h, (10a)

∑
i∈P

λ i
j = 1, j ∈ M̄ , (10b)

λ i
j ≥ 0, j ∈ M̄ , i ∈P, (10c)

ci
j− (H i

j)
T α−β j ≥ 0, j ∈ M̄ , i ∈P, (10d)

α ≥ 0, (10e)

λ i
j(c

i
j− (H i

j)
T α−β j) = 0, j ∈ M̄ , i ∈P, (10f)

In Proposition 1 we derive conditions for which a solution
satisfying this set of optimality conditions, can be obtained by
solving the master problem (8) over a subset of the original
variables.

Proposition 1: Let P̃ ⊆P , and define (λ̃ , α̃, β̃ ) as a primal-
dual solution to (8) and (9) restricted to the subset P̃ . Then
the solution

α∗ = α̃,
β ∗j = β̃ j, j ∈ M̄ ,

(λ ∗)i
j =

{
λ̃ i

j if i ∈ P̃

0 if i ∈P \P̃ , j ∈ M̄ , i ∈P,

satisfies the conditions, (10), if the optimal objective value of
the subproblem

ϕ j = min
z̃ j
{(c j−HT

j α∗)T z̃ j−β ∗j |G j z̃ j ≥ g j}, (11)

is non-negative for each j ∈ M̄ .

Proof The solution (λ ∗,α∗,β ∗) satisfies (10a) since

∑
j∈M̄

∑
i∈P

H i
j(λ
∗)i

j = ∑
j∈M̄

∑
i∈P̃

H i
jλ̃

i
j ≥ h,

which follows from the definition of (λ̃ , α̃, β̃ ). Similarly, it is
easy to verify that the conditions (10c), (10b), (10e) and (10f)
are fulfilled.

Provided that (λ ∗,α∗,β ∗) is optimal, (10d) yields

ci
j− (H i

j)
T α∗−β ∗j = (c j−HT

j α∗)T zi
j−β ∗j ≥ 0, (12)

for all j ∈ M̄ and i ∈P . By construction of the solution,
(12) is satisfied for all i ∈ P̃ . To check that the condition
holds for all i∈P \P̃ , we consider the optimization problem
(11). Since this linear program minimizes the left hand side
of (12) over all possible extreme points, z̃ j, of G j, the solution



(λ ∗,α∗,β ∗) also satisfies the remaining optimality condition
(12) if ϕ j is non-negative for all j ∈ M̄ . �
In Algorithm 1, we have outlined a column generation pro-
cedure based on Proposition 1. The algorithm exploits that if
(12) is violated, then the solution to the subproblems, (11),
provides a set of extreme points that can be added to the
master problem. Notice that when P is restricted to the subset
P̃ , the master problem (8) is much smaller than the original
problem. Therefore, the column generation procedure requires
less memory than conventional linear programming methods.
Moreover, solving the subproblems is computationally inex-
pensive as they do not grow with the number of units M. We
remark that this step may be performed in parallel.

Algorithm 1 Column generation procedure for solving (8).

Require: {z0
j}M̄j=1

i = 0, converged = false
while not converged do

P̃ = {0,1, . . . , i}
for j ∈ M̄ , i ∈ P̃ do

H i
j = H jzi

j, ci
j = cT

j zi
j

end for
(φ ∗,λ ∗,α∗,β ∗)← solve (8) with P = P̃
for j ∈ M̄ do
(ϕ∗j , z̃∗j)← solve (11)

end for
if ϕ j ≥ 0∀ j ∈ M̄ then
converged = true

else
for j ∈ M̄ do

zi+1
j = z̃∗j

end for
i = i+1

end if
end while

A. Warm-Starting

Algorithm 1 requires a set of initial points {z0
j}M̄j=1 that

are feasible for both the subproblems (11) and the original
problem (7). As economic MPC is a receding horizon strategy,
we can generate such a set of points by exploiting the solution
from a previous time step.

Given the solution to (11)

z∗j =
[
u∗Tj,0 · · · u∗Tj,N−1 γ∗Tj,1 · · · γ∗Tj,N

]T
,

z∗M+1 =
[
ρ∗T1 · · · ρ∗TN

]T
,

we build a set of initial points in the following sampling instant
as

z0
j =
[
u∗Tj,1 · · · u∗Tj,N−1 ǔT

j γ∗Tj,2 · · · γ∗Tj,N γ̌T
j
]T
,

z0
M+1 =

[
ρ∗T2 · · · ρ∗TN ρ̌T ]T ,

for each j ∈M . Hence, the original solution values are shifted
forward in time, and the variables ǔ j, γ̌ j and ρ̌ are appended

to the initial points. In our implementation, we let

ǔ j = u∗j,N−1, j ∈M , (13)

which leads to an initial input sequence with constant input
in the two final sampling intervals. Using the state space
equations (1)-(2), we compute the outputs y̌ j,N and y̌T,N
associated with this input sequence. Based on these values
we let

γ̌ j = max(y j,N− y̌ j,N ,0)+max(y̌ j,N− y j,N ,0),

ρ̌ = max(yT,N− y̌T,N ,0)+max(y̌T,N− yT,N ,0),

where the maximum function is evaluated element-wise.
Assuming that the inputs (13) satisfy the input constraints

for the updated problem data, and that the upper limits on
γ j and ρ are sufficiently large, the strategy above yields a
set of feasible initial points for Algorithm 1, {z0

j}M̄j=1, which
exploits the solution obtained in the previous time step. As
the solution in successive time steps are closely related in
MPC applications, this approach provides a warm-start for
Algorithm 1. In case no previous solution is available, a
similar strategy can be used to adjust the slack variables for
an arbitrary feasible input sequence.

V. RESULTS

In this section, we compare a MATLAB implementation of
Algorithm 1, denoted DWempc, to linear programming solvers
from the following software packages: CPLEX, Gurobi and
MOSEK. The algorithms are run on an Intel(R) Core(TM) i5-
2520M CPU @ 2.50GHz with 4 GB RAM running a 64-
bit Windows 7 Enterprise operating system. In DWempc, the
restricted master problem and the subproblems are solved
using CPLEX.

As a conceptual case study, we consider a collection of
power generating units in the form

Yj(s) = 1/(τ js+1)3U j(s), j ∈M , (14)

where U j(s) is the fuel input and the Yj(s) is the power
production. The third order model, (14), has been validated
against actual measurement data in [11]. In our study, we
vary the time constant, τ j, to represent different types of
power generating units. Time constants in the range 80-120
are associated with slow units, such as centralized thermal
power plants, while time constants in the range 20-60 represent
units with faster dynamics such as diesel generators and gas
turbines. To control the units, (14), using economic MPC,
we realize the system in the discrete state space form (1)-
(2) using a sampling time of Ts = 5 seconds. In the resulting
model structure, u j,k ∈ R is fuel input, y j,k ∈ R is the power
production, and yT,k ∈ R is the total power production. Thus,
ϒ j = 1, for all j ∈M . Fig. 1 demonstrates the production
plan obtained using economic MPC in a case study with
M = 3 power generating units. The graphs show the individual
outputs, as well as the output limits for the total power
production. The case study parameters are listed in Table I. All
parameters listed in the table, are kept constant over the entire



Fig. 1. Closed-loop simulation study of economic MPC.

TABLE I
CASE STUDY PARAMETERS

τ j p j,k u j,k u j,k ∆u j,k ∆u j,k

Generating Unit 1 40 24 0 50 -30 30
Generating Unit 2 90 12 0 100 -20 20
Generating Unit 3 100 6 0 200 -5 5

Fig. 2. CPU-time for solving (3) as a function of the number of power
generating units, and fixed N = 50. Active-set methods are denoted by (AS)
and interior-point methods are denoted by (IPM).

horizon. The values, p j,k, are the prices pr. unit of fuel (e.g oil,
natural gas or coal). We have defined these parameters such
that the fuel price for fast units is higher than the fuel price for
slow units. The price for imbalances is fixed to qk = 10000.

Based on a similar case study as above, we have solved the
constrained optimal control problem, (3), for an increasing
number of generating units. The computation time is depicted
in Fig. 2. In the simulations DWempc outperforms conven-
tional linear programming solvers with a significant margin,
and the difference in computing time grows with the number of
units controlled. As the subproblems are solved sequentially
in our implementation, the performance of DWempc can be
improved even further using parallel computing. To make a
fair comparison, we have initialized all algorithms using their
default cold-starting point. For DWempc we define such a cold-
starting point by setting all inputs, u j,k to zero, and increase
the slack variables, γ j,k and ρk, to their upper bounds. In
Table II, we have listed the iteration numbers associated with
Figure 2. For DWempc, increasing the number of generating

TABLE II
COMPARISON OF THE NUMBER OF ITERATIONS

M MOS GUR GUR CPL CPL DWempc
[IPM] [AS] [IPM] [AS] [IPM]

16 19 692 22 590 20 30
32 33 700 49 486 44 31
64 34 902 55 559 43 25
128 36 1452 46 1058 40 24
256 36 2221 60 1168 47 23
512 42 3087 65 1737 62 20

units decreases the number of iterations, while for all other
solvers the number of iterations increases. We expect that the
number of iterations can be reduced additionally in closed-loop
by employing the warm-starting strategy proposed in Section
IV-A.

VI. CONCLUSIONS

In this paper, we have presented a warm-started Dantzig-
Wolfe decomposition algorithm for economic MPC of dis-
tributed energy systems. Our results show that a MATLAB
implementation of the algorithm is significantly faster than
both active-set methods and interior-point methods, provided
by MOSEK, CPLEX and Gurobi. Moreover, DWempc has
several desirable features, such as low memory costs and
parallelization capabilities, which makes it favorable for real-
time applications such as economic MPC.
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A Warm-Started Homogeneous and Self-Dual Interior-Point Method for
Linear Economic Model Predictive Control

Leo Emil Sokoler, Anders Skajaa, Gianluca Frison, Rasmus Halvgaard, and John Bagterp Jørgensen

Abstract— In this paper, we present a warm-started homoge-
nous and self-dual interior-point method (IPM) for the linear
programs arising in economic model predictive control (MPC)
of linear systems. To exploit the structure in the optimization
problems, our algorithm utilizes a Riccati iteration procedure
which is adapted to the non-standard system solved in homoge-
nous and self-dual IPMs, and specifically tailored to economic
MPC. Fast convergence is further achieved by means of a recent
warm-starting strategy for homogenous and self-dual IPMs
that has not previously been applied to MPC. We implement
our algorithm in MATLAB and its performance is analyzed
based on a smart grid power management case study. Closed
loop simulations show that 1) our algorithm is significantly
faster than state-of-the-art IPMs based on sparse linear algebra
routines, and 2) warm-starting reduces the number of iterations
by approximately 15-35%.

I. INTRODUCTION

In conventional linear model predictive control (MPC),
the control problem is formulated as a convex program that
penalizes deviations between a desired set-point and the con-
trolled output(s) [1]–[4]. Although this classical approach has
become the standard way of formulating the control problem
in MPC applications, recent studies show that for energy
systems it is often more convenient to use an MPC-based
controller with a pure economic objective function [5]–[9].
This variant of MPC, known as economic MPC, guarantees
that the set-point is reached in the most profitable way (which
is not necessarily the fastest). Applications where economic
MPC have been applied to minimize operating costs include
control of refrigeration systems [10], building climate control
[11], [12], charging batteries in electric vehicles [13], as well
as control of non-linear chemical processes [14]. Stability of
economic MPC has been addressed in [8] and [6].

Aside the requirement of a predictive model, the main
challenge in linear economic MPC is that a linear program
has to be solved at each sampling instant. For large systems,
the computation time of solving this optimization problem
may render the method infeasible. To overcome this problem,
our paper develops an efficient and reliable IPM for the linear
programs arising in linear economic MPC. The proposed
algorithm is a homogeneous and self-dual variant of Mehro-
tra’s predictor-corrector method [15], [16] that exploits the
following problem specific features:
• Structure: The optimal control problem solved in linear

economic MPC can be posed as a highly structured
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linear program. We utilize this structure to speed-up
the most time consuming numerical operations using
a Riccati iteration procedure specifically tailored to
economic MPC.

• Warm-Start: In MPC applications, the optimization
problems solved at successive time steps are closely
related. To take advantage of the solution from the
previous sampling instant, we implement a recently
developed warm-starting strategy for homogeneous and
self-dual IPMs. This method does not introduce any ad-
ditional significant computations and has been reported
to reduce the number of iterations by 30-75% for an
extensive amount of linear programs and quadratic conic
problems [17].

Although Riccati based IPMs have been developed in [18]–
[21] for set-point based MPC with `2-penalty, and `1-penalty
in [22], these results are not directly applicable to the
homogeneous and self-dual model, which has become widely
adopted by state-of-the-art IPMs for linear programming. In
our previous work [23], the main emphasis was to develop a
Riccati iteration procedure specifically tailored to economic
MPC, while the focus of this paper is to further improve our
algorithm using the warm-starting strategy of [17].

We have organized the paper as follows. In Section II,
we introduce the control problem solved in economic MPC.
A homogeneous and self-dual IPM for solving this problem
tailored to economic MPC is derived in Section III-IV, and
warm-starting is discussed in Section V. Finally, section
VI presents simulation results based on a MATLAB imple-
mentation of our algorithm denoted LPempc. Concluding
remarks are given in Section VII.

II. PROBLEM DEFINITION

In linear economic MPC, the constrained optimal control
problem solved at each sampling instant may be formulated
as

min
u,x,ρ

N−1

∑
k=0

pT
k uk +qT

k+1ρk+1, (1a)

s.t. xk+1 = Axk +Buk, k = 0,1, . . . ,N−1, (1b)
uk ≤ uk ≤ uk, k = 0,1, . . . ,N−1, (1c)
∆uk ≤ ∆uk ≤ ∆uk, k = 0,1, . . . ,N−1, (1d)
zk−ρk ≤Cxk ≤ zk +ρk, k = 1,2, . . . ,N, (1e)
ρk ≥ 0, k = 1,2, . . . ,N, (1f)

where N is the length of the prediction horizon. The problem
data are the state-space matrices, (A,B,C), defining the
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linear system controlled, the initial state, x0, the input limits,
(uk,uk), the input-rate limits, (∆uk,∆uk), the output limits,
(zk,zk), the input prices, pk, and the price for violating the
output constraints qk. As an example, in power systems pk
may be the cost of fuel and qk may be the cost of not meeting
the power demand.

The input-rate is defined in terms of the backward differ-
ence operator

∆uk := uk−uk−1, k = 0,1, . . . ,N−1.

By augmenting the state-space system such that

A :=
[

A 0
0 0

]
, xk :=

[
xk

uk−1

]
, B :=

[
B
I

]
,

E :=
[

E
0

]
, C: =

[
C 0

]
,

we can express (1d) as

∆uk ≤uk−Dxk ≤ ∆uk, k = 0,1, . . . ,N−1

in which D :=
[
0 I

]
. This formulation simplifies computa-

tions in our Riccati iteration procedure considerably.

III. HOMOGENEOUS AND SELF-DUAL MODEL

By aggregating the problem data into the structures g∈Rn,
F ∈ RmE×n, b ∈ RmE , H ∈ RmI×n and c ∈ RmI , (1) can be
written as the linear program

min
t
{gT t|Ft = b,Ht ≤ c}, (2)

where n := N(nu + nx + nz), mE := Nnx and mI := N(4nu +
3nz). As an example, consider the case for N = 2

t :=
[
uT

0 xT
1 ρT

1 uT
1 xT

2 ρT
2
]T

,

g :=
[
pT

0 0 qT
1 pT

1 0 qT
2
]T

,

and[
F b

]
:=
[

B −I 0 0 0 0 −Ax0
0 A 0 B −I 0 0

]
,

[
H c

]
:=



I 0 0 0 0 0 u0
0 0 0 I 0 0 u1
−I 0 0 0 0 0 −u0
0 0 0 −I 0 0 −u1
I 0 0 0 0 0 ∆ũ0
0 −D 0 I 0 0 ∆u1
−I 0 0 0 0 0 −∆

˜
u0

0 D 0 −I 0 0 −∆u1
0 C −I 0 0 0 z1
0 0 0 0 C −I z2
0 −C −I 0 0 0 −z1
0 0 0 0 −C −I −z2
0 0 −I 0 0 0 0
0 0 0 0 0 −I 0



,

in which we have defined

∆ũ0 := ∆u0 +Dx0,

∆
˜
u0 := ∆u0 +Dx0.

Hence, the control problem (1) can be posed as a highly
structured linear program.

The dual of the linear program (2) is

max
v,w
{−bT v− cT w|−FT v−HT w = g,w≥ 0}. (3)

In homogeneous and self-dual IPMs, the solution to (2)-(3)
is obtained by solving a related homogeneous and self-dual
linear program [24]–[26]. Aside from an inherent ability to
detect infeasibility, recent advances show that IPMs based
on this approach can be warm-started efficiently [17].

If we introduce a new set of optimization variables
(t̃, ṽ, w̃, s̃), and the additional scalar variables (τ̃, κ̃), the self-
dual and homogeneous problem associated with (2)-(3), may
be stated as the linear feasibility problem

min
t̃,ṽ,w̃,s̃,τ̃,κ̃

0, (4a)

s.t. FT ṽ+HT w̃+gτ̃ = 0, (4b)
bτ̃−Ft̃ = 0, (4c)
cτ̃−Ht̃− s̃ = 0, (4d)

−gT t̃−bT ṽ− cT w̃+ κ̃ = 0, (4e)
(w̃, s̃, τ̃, κ̃)≥ 0, (4f)

Proposition 1 shows that the solution to (2)-(3), can be
obtained by solving (4).

Proposition 1: The linear feasibility problem (4) always
has a strict complimentary solution (t̃∗, ṽ∗, w̃∗, s̃∗, τ̃∗, κ̃∗) sat-
isfying s̃∗j w̃

∗
j = 0 for j = 1,2, . . . ,mI and τ̃∗κ̃∗ = 0. For such

a solution, one of the following conditions hold
• I). τ̃∗ > 0, κ̃∗ = 0: The scaled solution (t∗,v∗,w∗,s∗) =
(t̃∗, ṽ∗, w̃∗, s̃∗)/τ̃∗ is a primal-dual optimal solution to
(2)-(3).

• II). τ̃∗ = 0, κ̃∗ > 0: The problem (2) is infeasible or
unbounded; either −bT ṽ∗ − cT w̃∗ > 0 (implies primal
infeasibility), or gT t̃∗ < 0 (implies dual infeasibility).
Proof: See [26].

A. Interior Point Method

We now present a homogeneous and self-dual IPM for
solving (4). For compact notation, we denote the optimiza-
tion variables by φ := (t̃, ṽ, w̃, s̃, τ̃, κ̃), and introduce super-
script k to indicate a particular iteration number.

The necessary and sufficient optimality conditions for (4)
are (w̃, s̃, κ̃, τ̃)≥ 0 and

V (φ) :=


FT ṽ+HT w̃+gτ̃

bτ̃−Ft̃
cτ̃−Ht̃− s̃

−gT t̃−bT ṽ− cT w̃+ κ̃

W̃ S̃111mI

τ̃ κ̃

=


0
0
0
0
0
0

 , (5)

W is a diagonal matrix with the elements of w on its diagonal,
and similarly for S. Moreover, 111mI is the column vector of
all ones of size mI .

To find a point satisfying the optimality conditions, we
use a variant of Mehrotra’s predictor-corrector method [15],
[16]. The method tracks the central path C , which connects
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an initial point φ 0 satisfying (w̃0, s̃0, κ̃0, τ̃0) ≥ 0 to a strict
complementary solution of (4), denoted φ ∗. Formally, we
can write the central path as

C :=
{

φ |V (φ) = γr0,(w̃, s̃, κ̃, τ̃)≥ 0,γ ∈ [0,1]
}
.

In this definition

r0 : =
[
V1(φ

0)T V2(φ
0)T V3(φ

0)T V4(φ
0)T µ0(111mI )

T µ0
]T

,

where µ0 := ((w̃0)T s̃0 + τ̃0κ̃0)/(mI +1) is a measure of the
duality gap, and Vi(φ) is the i’th set of components of V (φ),
defined as in (5).

The basic idea in IPMs is to generate a sequence of
iterates along the central path {φ 0,φ 1, . . . ,φ k, . . . ,φ N}, such
that φ N → φ ∗ as N → ∞. In Mehrotra’s predictor-corrector
method, the iterates are computed by repeating a two-step
procedure. The first part of this procedure, known as the
affine step, updates the value of γ and computes second-order
correction terms. Secondly, a corrector step is determined and
a new iterate is produced.

1) Affine Step: The affine direction ∆φ k
aff is obtained by

solving the linear system

JV (φ
k)∆φ

k
aff =−V (φ k), (6)

which corresponds to the Newton direction for (5). The
Jacobian of V evaluated at φ k is

JV (φ
k) =


0 FT HT 0 g 0
−F 0 0 0 b 0
−H 0 0 −I c 0
−gT −bT −cT 0 0 1

0 0 S̃k W̃ k 0 0
0 0 0 0 κ̃k τ̃k

 . (7)

Given the solution to (6), we compute the maximum step
length in the affine direction for the primal and dual vari-
ables, such that (4f) remains satisfied

α
k
aff := max

{
aaff ∈ [0,1]|

[
w̃k

τ̃k

]
+aaff

[
∆w̃k

aff
∆τ̃k

aff

]
≥ 0
}
,

β
k
aff := max

{
baff ∈ [0,1]|

[
s̃k

κ̃k

]
+baff

[
∆s̃k

aff
∆κ̃k

aff

]
≥ 0
}
.

Accordingly, affine variables are computed

w̃k
aff : = w̃k +α

k
aff∆w̃k

aff, s̃k
aff : = s̃k +β

k
aff∆s̃k

aff,

τ̃
k
aff : = τ̃

k +α
k
aff∆τ̃

k
aff, κ̃

k
aff : = κ̃

k +β
k
aff∆κ̃

k
aff.

The affine variables provide a measure of the relative re-
duction in the duality gap, in the affine direction. This
information is used to update the centering parameter γ . For
this purpose, we use the heuristic [16]

γ
k :=

[
µk

aff
µk

]3

=

[
((w̃k

aff)
T s̃k

aff + τ̃k
affκ̃

k
aff)

((w̃k)T s̃k + τ̃kκ̃k)

]3

. (8)

2) Predictor-Corrector Step: In the predictor-corrector
step, we compute the search direction ∆φ k by solving (6)
with a modified right hand side

JV (φ
k)∆φ

k =−V̄ (φ k). (9)

V̄i(φ) := (1− γk)Vi(φ) for i = 1,2,3,4 and

V̄5(φ
k) :=V5(φ

k)+∆W̃ k
aff∆S̃k

aff111mI − γ
k
µ

k111T
mI
,

V̄6(φ
k) :=V6(φ

k)+∆τ̃
k
aff∆κ̃

k
aff− γ

k
µ

k.

The diagonal matrices ∆W̃ k
aff and ∆S̃k

aff are defined in a similar
way to W and S. Terms involving these matrices are, as well
as ∆τ̃k

aff and ∆κ̃k
aff, included to compensate for linearization

errors [16]. We also notice that by employing the heuristic
(8), the search direction is forced towards the central path if
µk

aff ≈ µk, meaning that only a small step in the non-negative
orthant (w̃, s̃, κ̃, τ̃)≥ 0 is available in the affine direction.

3) Stopping Criteria: To classify a solution as optimal,
we adopt the criteria proposed in [27]

ρ
k
E ≤ εE , ρ

k
I ≤ εI , ρ

k
D ≤ εD, ρ

k
O ≤ εO. (10)

Moreover, the problem is considered to be infeasible if τ̃k ≤
ετ max(1, κ̃k), and

ρ
k
E ≤ εE , ρ

k
I ≤ εI , ρ

k
D ≤ εD, ρ

k
G ≤ εG. (11)

ετ , εE , εI , εD, εO and εG are small user-defined tolerances
and

ρD : = ||V1(φ)||∞/max(1, ||
[
HT FT g

]
||∞),

ρE : = ||V2(φ)||∞/max(1, ||
[
F b

]
||∞),

ρI : = ||V3(φ)||∞/max(1, ||
[
H I c

]
||∞),

ρG : = |L− κ̃|/max(1, ||
[
gT bT cT 1

]
||∞),

ρO : = |L|/(τ̃ + |−bT ṽ− cT w̃|).

where L := gT t̃− (−bT ṽ− cT w̃) is the duality gap.
4) Algorithm: Algorithm 1 summarizes the homogeneous

and self-dual IPM described in this paper. We use a damping
parameter, ν , to keep the iterates well inside the interior of
the non-negative orthant (w̃, s̃, τ̃, κ̃)≥ 0, as they approach the
solution. To speed-up numerical computations and reduce the
storage requirements of LPempc, operations involving the
structured matrices F and H are implemented as specialized
linear algebra routines [28].

IV. RICCATI ITERATION PROCEDURE

The main computational efforts in Algorithm 1 are the
solution of the linear systems (6) and (9). In a generic form,
we can write these operations as

FT
∆ṽ+HT

∆w̃+g∆τ̃ = r1, (12a)
b∆τ̃−F∆t̃ = r2, (12b)

c∆τ̃−H∆t̃−∆s̃ = r3, (12c)

gT
∆t̃ +bT

∆ṽ+ cT
∆w̃−∆κ̃ = r4, (12d)

W̃∆s̃+ S̃∆w̃ = r5, (12e)
κ̃∆τ̃ + τ̃∆κ̃ = r6. (12f)
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Algorithm 1 Homogeneous and self-dual IPM for (4)

Require:

 DATA (g,F,b,H,c)
INITIAL POINT (t̃, ṽ, w̃, s̃, τ̃, κ̃)
PARAMETERS ν ∈ [0.95;0.999]

// initialize
µ ← (w̃T s̃+ τ̃ κ̃)/(mI +1)
while not CONVERGED do
// affine step
∆φaff←−JV (φ)

−1V (φ)

αaff←max
{

aaff ∈ [0,1]|
[

w̃
τ̃

]
+aaff

[
∆w̃aff
∆τ̃aff

]
≥ 0
}

βaff←max
{

baff ∈ [0,1]|
[

s̃
κ̃

]
+baff

[
∆s̃aff
∆κ̃aff

]
≥ 0
}

s̃aff← s̃+βaff∆s̃aff, κ̃aff← κ̃ + β̃aff∆κ̃aff
w̃aff← w̃+αaff∆w̃aff, τ̃aff← τ̃ + α̃aff∆τ̃aff

µaff← (w̃T
affs̃aff + τ̃affκ̃aff)/(mI +1)

γ ← (µaff/µ)3

// predictor-corrector step
∆φ ←−JV (φ)

−1V̄ (φ)

α ←max
{

a ∈ [0,1]|
[

w̃
τ̃

]
+a
[

∆w̃
∆τ̃

]
≥ 0
}

β ←max
{

b ∈ [0,1]|
[

s̃
κ̃

]
+b
[

∆s̃
∆κ̃

]
≥ 0
}

t̃← t̃ +νβ∆t̃, s̃← s̃+νβ∆s̃, κ̃ ← κ̃ +νβ∆κ̃

ṽ← ṽ+να∆ṽ, w̃← w̃+να∆w̃, τ̃ ← τ̃ +να∆τ̃

µ ← (w̃T s̃+ τ̃ κ̃)/(mI +1)
end while

We notice that the system (12) is different from the system
solved in standard IPMs. Consequently, existing Riccati
iteration procedures for MPC cannot be applied directly.
However, as shown in Proposition 2, the solution to (12)
can be obtained by solving a reduced linear system and a
number of computationally inexpensive operations.

Proposition 2: The solution to (12) can be computed as 0 FT HT

−F 0 0
−H 0 W̃−1S̃

 f1 h1
f2 h2
f3 h3

=

r1 −g
r2 −b
r3 −c

 , (13)

and subsequent computation of

∆τ̃ =
r6− τ̃(gT f1 +bT f2 + cT f3)

κ̃ + τ̃(gT h1 +bT h2 + cT h3)
,

∆t̃ = f1 +h1∆τ̃,

∆ṽ = f2 +h2∆τ̃,

∆w̃ = f3 +h3∆τ̃,

∆κ̃ = gT
∆t̃ +bT

∆ṽ+ cT
∆w̃− r4,

∆s̃ = W̃−1(rC− S̃∆w̃),

where r3 := r3 +W̃−1r5 and r6 := r6 + τ̃r4.
Proof: See [27].

In the appendix, an efficient solution procedure for (13)
using a Riccati iteration procedure specifically tailored to
economic MPC is derived. The order of complexity of the

proposed method is O(N(nu +nx +nz)
3). In comparison, the

complexity of solving the system directly using sparse linear
algebra routines is linear to quadratic in N. Finally, a general
purpose dense solver yields the complexity O(N3(nu +nx +
nz)

3) which is two orders of magnitude larger in N compared
to our approach.

V. WARM-STARTING

We apply the warm-starting strategy from [17] to pick an
initial point for Algorithm 1. The main idea is to construct
such a point by combining a guess of the solution (candidate
point) with a standard cold starting point. The initial point
is defined as

w0 = λ w̄+(1−λ )111mI , s0 =λ s̄+(1−λ )111mI ,

t0 = λ t̄, v0 =λ v̄,

τ
0 = 1, κ

0 =(w0)T s0/N,

where (t̄, v̄, w̄, s̄) is the candidate point and λ ∈ [0,1[ is
a tuning parameter. Notice that in case λ = 0, the ini-
tial point becomes the standard cold-starting point φ 0 =
(0,0,111mI ,111mI ,1,1). Conversely, λ = 1 corresponds to using
the candidate point as the initial solution. Since this point
typically lies close to the boundary of the non-negative
orthant (w̃, s̃, κ̃, τ̃) ≥ 0, λ = 1 can lead to ill-conditioned
linear systems and/or blocking of the search direction [29].

For MPC applications, a good choice of the candidate
point at time k can be constructed using the solution from
the previous time step. As an example consider the solution
at time step k = 0, for N = 3

t :=
[
u∗T0 x∗T1 ρ∗T1 u∗T1 x∗T2 ρ∗T2 u∗T2 x∗T3 ρ∗T3

]T
.

In this case we use the following candidate point at time step
k = 1

t̄ :=
[
u∗T1 x∗T2 ρ∗T2 u∗T2 x∗T3 ρ∗T3 u∗T2 x∗T3 ρ∗T3

]T
.

Similarly, we left-shift the slack variables, s, and the dual
variables, v and w.

VI. CASE STUDY - SMART GRID POWER
MANAGEMENT

In this section we compare LPempc against IPMs from
the following software packages: Gurobi, SeDuMi and
MOSEK. These state-of-the-art IPMs are mainly written in
low-level language such as FORTRAN and C, and rely on
sparse linear algebra that are specifically tailored to the
solution of large-scale sparse linear and conic programs. We
also include CPLEX in our comparison.

The tolerance parameters for LPempc in (10)-(11) are set
to 10−8. With these settings LPempc achieves the same
solution accuracy as the other solvers using their default
tolerance settings. We have performed our simulations on
an Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz with 4
GB RAM running a 64-bit Ubuntu 12.04.1 LTS operating
system.
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TABLE I
CASE STUDY PARAMETERS

τi pk uk uk ∆uk ∆uk

Power Plant 1 90 100 0 200 -20 20
Power Plant 2 30 200 0 150 -40 40

In the case study, we represent a system of m power
generating units by a collection of simple third order systems
in the form

Yi(s) =
1

(τis+1)3 Ui(s), i = 1,2, . . . ,m. (14)

where Ui(s) is the amount of fuel fed to the i’th power unit
and Yi(s) is its power production. In [30] the model (14) has
been validated against actual measurement data.

The total production from the m power generating units is
the sum

Z(s) =
m

∑
i=1

Yi(s) =
m

∑
i=1

1
(τis+1)3 Ui(s). (15)

In state space form, the system (14)-(15) can be written as

xxxk+1 = Axxxk +Buk +Edddk, dddk ∼ N(0,Rd), (16a)
yyyk =Cyxxxk + eeek, eeek ∼ N(0,Re), (16b)
zzzk =Czxxxk. (16c)

uk ∈ Rnu is the amount of fuel fed to the power generating
units, yyyk ∈Rny is the measured power production from each
of the units and zzzk ∈Rnz is the total power production. Notice
that we have introduced process noise dddk, and measurement
noise eeek. To control the stochastic system (16), we use
economic MPC based on the certainty equivalence principle.
Hence, stochastic variables are replaced by estimates of their
conditional mean value in (1). The estimates are computed
using the Kalman filter.

A. Closed-Loop Simulation

The following results are generated using an example
with two power generating units; a cheap/slow unit, and an
expensive/fast unit. This can represent a common situation
in the power industry where large thermal power plants often
produce a majority of the electricity, while units with faster
dynamics such as diesel generators are used only in critical
peak periods.

In our example, the controller objective is to coordinate
the most cost-efficient power production, respecting capacity
constraints and a time-varying electricity demand. It is as-
sumed that full information about the initial state is given
x0 ∼ (0,0), and that the penalty of violating the output
constraints is qk = 104 for all time steps. The system and
controller parameters are listed in Table I. We set the
prediction horizon to N = 80 time steps and use a sampling
time of Ts = 5 seconds. Moreover, we let Rd = Re = σ I.
A closed-loop simulation with σ = 1 is depicted in Fig. 1.
The plot illustrates how the work load is distributed among
the power generating units. It can be read that the cheap
unit accounts for the main load, while the expensive unit is

Fig. 1. Closed-loop simulation of a power system controlled by economic
MPC. Warm-starting (λ = 0.99) yields a significant reduction in the number
of iterations.

Fig. 2. Number of iterations needed to converge as a function of the tuning
parameter λ , and the noise parameter σ . Each box-plot has been generated
based on an entire closed-loop simulation. In the top plot we have fixed
σ = 1, and in the bottom plot λ = 0.99.

activated only when faster dynamics are needed to satisfy
the electricity demand. The figure also shows that warm-
starting LPempc reduces the number of iterations needed
to find a solution with the desired accuracy. On average
the number of iterations is reduced by approximately 35%,
which is significant as it is achieved without introducing
any additional expensive computations. To tune λ , we have
generated the box-plots depicted in Fig. 2. The case λ = 0
corresponds to a cold-start. Thus, in all cases warm-starting
reduces the average number of iterations. We have chosen
λ = 0.99 for our controller. For this value of λ , the initial
point lies well inside the interior of the non-negative orthant,
(w̃, s̃, κ̃, τ̃)≥ 0, while it still maintains characteristics of the
candidate point. Fig 2 shows that for this value of λ the
number of iterations is reduced even when the variance of
the noise is increased significantly.

Fig. 3 shows CPU-timings based on a closed-loop simula-
tion with 10 power generating units and a prediction horizon
of N = 200 time steps. In this simulation LPempc is up to an
order of magnitude faster than CPLEX, Gurobi, SeDuMi
and MOSEK, depending on the problem data. On average,
LPempc is approximately 7 times faster than Gurobi, 5
times faster than MOSEK and 15 times faster than both
SeDuMi and CPLEX. As demonstrated in [23], this differ-
ence grows with the problem size, as LPempc scales in a
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Fig. 3. CPU-time for solving (1) with 10 power generating units and a
prediction horizon of 200 time steps.

favourable way.

VII. CONCLUSIONS

In this paper, we have developed an efficient IPM for
linear economic MPC. The algorithm combines a homoge-
neous and self-dual model, and a Riccati iteration procedure
specifically tailored to MPC. To speed up convergence, a
recent warm-starting strategy for homogeneous and self-
dual IPMs was implemented. Our simulations show that this
strategy reduces the number of iterations by 10-35%, and
that a MATLAB implementation of our algorithm, LPempc,
is up to an order of magnitude faster than CPLEX, Gurobi,
SeDuMi and MOSEK.

APPENDIX

RICCATI ITERATION PROCEDURE FOR ECONOMIC MPC

Following the derivation in [23], we write the system (13)
in the form  0 FT HT

−F 0 0
−H 0 W̃−1S̃

 t̃
ṽ
w̃

=

r̄1
r̄2
r̄3

 . (17)

where we have only included a single right hand side. We
write the solution to this system as

t̃ =
[
uT

0 xT
1 ρT

1 . . . uT
N−1 xT

N ρT
N
]T

,

ṽ =
[
ṽT

0 ṽT
1 . . . ṽT

N−1
]T

,

w̃ =
[
ηT λ T υT ωT γT ζ T ξ T ]T .

η :=
[
ηT

0 ηT
1 . . . ηT

N−1
]T , and similarly for λ , υ , ω , γ ,

ζ and ξ . Accordingly, the right hand side is partitioned such
that

r̄1 =
[
rT

u,0 rT
x,1 rT

w,1 . . . rT
u,N−1 rT

x,N rT
w,N
]T

,

r̄2 =
[
RT

v,0 RT
v,1 . . . RT

v,N−1
]T

,

r̄3 =
[
rT

η rT
λ

rT
υ rT

ω rT
γ rT

ζ
rT

ξ

]T
.

The diagonal matrix W̃−1S̃ is written in terms of diagonal
submatrices

W̃−1S̃ = diag
(

Σ
T
η ,Σ

T
λ
,ΣT

υ ,Σ
T
ω ,Σ

T
γ ,Σ

T
ζ
,ΣT

ξ

)

For compact notation, we also introduce Ni := {0+ i,1+
i, . . . ,N−1+ i}.

Based on the notation above and the definition of F and
H, the linear system of equations (17) can be stated in the
form

ηi−λi +υi−ωi +BT ṽi = ru,i, i ∈N0,

−ui +Ση ,iηi = rη ,i, i ∈N0,

ui +Σλ ,iλi = rλ ,i, i ∈N0,

−ui +Dxi +Συ ,iυi = rυ ,i, i ∈ ˜N0,

ui−Dxi +Σω,iωi = rω,i, i ∈ ˜N0,

xi+1−Axi−Bui = Rv,i, i ∈ ˜N0,

ρi−Cxi +Σγ,iγi = rγ,i, i ∈N1,

ρi +Cxi +Σζ ,iζi = rζ ,i, i ∈N1,

ρi +Σξ ,iξi = rξ ,i, i ∈N1,

−γi−ζi−ξi = rw,i, i ∈N1,

−ṽi +CT (γi+1−ζi+1)+AT ṽi

+DT (ωi−υi) = rx,i, i ∈ ˜N0,

with ˜N0 := N0 \0 and the special cases

−u0 +Συ ,0υ0 = rυ ,0,

u0 +Σω,0ω0 = rω,0,

x1−Bu0 = Rv,0,

−ṽN−1 +CT (γN −ζN) = rx,N .

By eliminating η , λ , υ , ω , γ , ζ and ξ we get

BT ṽ0 +U0u0 = Ru,0, (18a)

BT ṽi +Uiui +Gixi = Ru,i, i ∈ ˜N0, (18b)
−x1 +Bu0 = Rv,0, (18c)

−xi+1 +Axi +Bui = Rv,i, i ∈ ˜N0, (18d)

Wiρi +MT
i xi = Rw,i, i ∈N1, (18e)

−ṽi−1 +Miρi + X̄ixi +GT
i ui +AT ṽi = R̄x,i, i ∈ ˜N0, (18f)

−ṽN−1 +MNρN + X̄NxN = R̄x,N , (18g)

where we have defined

Ui := Σ
−1
η ,i +Σ

−1
λ ,i +Σ

−1
ω,i +Σ

−1
υ ,i , i ∈N0,

Gi :=−(Σ−1
ω,i +Σ

−1
υ ,i)D, i ∈ ˜N0,

Wi := Σ
−1
ζ ,i +Σ

−1
ξ ,i +Σ

−1
γ,i , i ∈N1,

Mi :=CT (Σ−1
ζ ,i −Σ

−1
γ,i ), i ∈N1,

X̄i :=CT (Σ−1
ζ ,i +Σ

−1
υ ,i)C+DT (Σ−1

γ,i +Σ
−1
ω,i)D, i ∈ ˜N0,

X̄N :=CT (Σ−1
ζ ,N +Σ

−1
υ ,N)C.

Furthermore

Ru,i := ru,i + r̄λ ,i + r̄ω,i− r̄η ,i− r̄υ ,i, i ∈N0,

Rv,i :=−Rv,i, i ∈N0,

Rw,i := rw,i−1 + r̄ζ ,i−1 + r̄ξ ,i + r̄γ,i, i ∈N1,

R̄x,i := rx,i +CT (r̄ζ ,i− r̄γ,i)+DT (r̄υ ,i− r̄ω,i), i ∈ ˜N0,

R̄x,N := rx,N +CT (r̄ζ ,N− r̄γ,N).
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r̄λ ,i := Σ
−1
λ ,irλ ,i, and similarly for r̄ω,i, r̄η ,i, r̄υ ,i, r̄ζ ,i, r̄ξ ,i and

r̄γ,i. Solving (18e) for w̃ gives

ρi =W−1
i (Rw,i−MT

i xi), i ∈N1. (19)

Substituting back into (18) yields the equations

BT ṽ0 +U0u0 = Ru,0

BT ṽi +Uiui +Gixi = Ru,i, i ∈ ˜N0

−x1 +Bu0 = Rv,0

−xi+1 +Axi +Bui = Rv,i, i ∈ ˜N0

−ṽi−1 +Xixi +GT
i ui +AT ṽi = Rx,i, i ∈ ˜N0

−ṽN−1 +XNxN = Rx,N

where Xi := X̄i −MiW−1
i MT

i and Rx,i := R̄x,i −MiW−1
i Rw,i.

This set of equations can be solved efficiently by a Riccati
iteration procedure [18]–[22]. Thus, by utilizing the structure
of (1) we have reduced (13) to a smaller system which can
be solved efficiently using a recursive approach.
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Input-Constrained Model Predictive Control via the Alternating
Direction Method of Multipliers

Leo Emil Sokoler, Gianluca Frison, Martin S. Andersen, and John Bagterp Jørgensen

Abstract— This paper presents an algorithm, based on the
alternating direction method of multipliers, for the convex
optimal control problem arising in input-constrained model
predictive control. We develop an efficient implementation of
the algorithm for the extended linear quadratic control prob-
lem (LQCP) with input and input-rate limits. The algorithm
alternates between solving an extended LQCP and a highly
structured quadratic program. These quadratic programs are
solved using a Riccati iteration procedure, and a structure-
exploiting interior-point method, respectively. The computa-
tional cost per iteration is quadratic in the dimensions of the
controlled system, and linear in the length of the prediction
horizon. Simulations show that the approach proposed in this
paper is more than an order of magnitude faster than several
state-of-the-art quadratic programming algorithms, and that
the difference in computation time grows with the problem size.
We improve the method further using a warm-start procedure.

I. INTRODUCTION
In model predictive control (MPC) an optimal control

problem (OCP) is solved to optimize the predicted behavior
of a dynamic model over a finite horizon. The solution to the
OCP provides a sequence of inputs, of which only the first
input is applied to the controlled system. At the following
sampling instant the procedure is repeated, such that the in-
puts are computed in a closed-loop fashion. Model predictive
control is one of the most industrially successful advanced
control technology for constrained dynamic systems [1]–[3].

Since MPC requires the solution of the OCP at every
sampling instant, its use has conventionally been limited
to systems with slow dynamics. In addition to increased
available computing power, however, the development of
new algorithms have extended the use of MPC to sys-
tems with dynamics even in the kHz range. These algo-
rithms are based on multi-parametric programming [4], [5],
interior-point methods [6]–[11] and first-order methods [11],
[12]. Another emerging research area within computational
methods for MPC is the alternating direction method of
multipliers (ADMM) [13]–[15]. Numerical examples show
that ADMM often outperforms accelerated gradient methods
[12], [13], [16]. Applications of ADMM for MPC include
distributed MPC for dynamically coupled systems [17],
[18], `1-regularized MPC [19], as well as state and input-
constrained MPC [12], [20], [21]. In [20] the OCP arising in
state and input-constrained MPC is solved by decomposing
the optimization problem into smaller subproblems along
the time-axis, while [21] handles the optimization problem

The authors are with the Department of Applied Mathematics and Com-
puter Science, Technical University of Denmark, DK-2800 Kgs. Lyngby,
Denmark. Email: {leso, giaf, mskan, jbjo}@dtu.dk

via a combination of ADMM and Nesterov’s fast gradient
method. A more general class of convex OCPs is discussed
in relation to ADMM in [22]. The ADMM method proposed
in [22] introduces a set of auxiliary input and state variables,
which allows both input and state constraints to be handled
efficiently. Finally, [12] provides a comprehensive study
on first-order methods for MPC on resource-constrained
embedded platforms

The algorithm presented in this paper is specifically tai-
lored to input-constrained MPC. We split the OCP into a
part related to the dynamic state constraints, and a part
related to the input constraints. In contrast to [22], auxiliary
state variables are not introduced. Moreover, we provide
an efficient implementation of the ADMM algorithm for
the extended linear quadratic control problem (LQCP) [23]
with input and input-rate limits. The optimization problem
associated with the dynamic state constraints is solved using
a Riccati iteration procedure, whereas the input constraints
are handled by a structure-exploiting interior-point method.

A. Paper Organization

This paper is organized as follows. Section II presents
a generic ADMM algorithm for the OCP arising in input-
constrained MPC. Section III develops an efficient imple-
mentation of the algorithm for the extended LQCP with
limits on the input and the input-rate. Section IV tests a C
version of the algorithm, denoted ADMMmpc, using a closed-
loop simulation study of a simple mass-spring system. This
section also presents a large-scale benchmark that compares
ADMMmpc to state-of-the-art quadratic programming algo-
rithms. Concluding remarks are given in Section V.

II. PROBLEM DEFINITION

Let {uk}N−1
k=0 denote a sequence of control variables with

uk ∈ Rnu , and {xk}N
k=0 denote a sequence of system states

with xk ∈Rnx . In addition introduce the optimization vectors

u =
[
uT

0 uT
1 . . . uT

N−1
]T

, x =
[
xT

1 xT
2 . . . xT

N
]T

.

The OCP associated with input-constrained MPC may be
stated as

min
{uk,xk+1}N−1

k=0

{V (x,u) |u ∈ U,(x,u) ∈ X}. (1)

We assume that V (x,u) is a convex function, and that X is
a convex set accounting for dynamic state constraints such
that

X= {(x,u) |xk+1 = fk(xk,uk), k ∈N }, (2)

2014 European Control Conference (ECC)
June 24-27, 2014. Strasbourg, France

978-3-9524269-1-3 © EUCA 115



where x0 is a known (or estimated) initial state, N =
{0,1, . . . ,N − 1} is the prediction horizon, and fk : Rnx ×
Rnu 7→ Rnx . It is further assumed that the input constraint
set, U, is a convex set.

A. Optimization Algorithm

The optimization problem (1) can be written as

min
{uk,xk+1,vk}N−1

k=0

{V (x,u)+ IX(x,u)+ IU(v) |u = v} (3)

where IA is the indicator function of a set A and v =[
vT

0 vT
1 . . . vT

N−1
]T , vk ∈ Rnu , is a vector of auxiliary

variables.
The Lagrangian, L (x,u,v,z), associated with (3) is

L (x,u,v,z) = V (x,u)+ IX(x,u)+ IU(v)+ zT (u− v), (4)

and a stationary point of the Lagrangian satisfies

0 ∈ ∂xL (x,u,v,z) = ∂x(V (x,u)+ IX(x,u)), (5a)
0 ∈ ∂uL (x,u,v,z) = ∂u(V (x,u)+ IX(x,u))+ z, (5b)
0 ∈ ∂vL (x,u,v,z) = ∂v(IU(v))− z, (5c)

where z =
[
zT

0 zT
1 . . . zT

N−1
]T , zk ∈ Rnu , denotes the

Lagrange multipliers associated with the equality constraints
of (3), and ∂ is the subdifferential operator. Hence, the
necessary and sufficient optimality conditions for (3) may
be stated as the primal feasibility condition, u = v, and the
stationarity condition (5). For details and proofs, see e.g.
[13]–[15].

In ADMM a point satisfying the optimality conditions for
(3), is obtained via the recursions

(u,x)i+1 = argmin
{uk,xk+1}N−1

k=0

Lρ(x,u,vi,zi), (6a)

vi+1 = argmin
{vk}N−1

k=0

Lρ(xi+1,ui+1,v,zi), (6b)

zi+1 = zi +ρ(ui+1− vi+1), (6c)

in which Lρ(x,u,v,z) = L (x,u,v,z) + ρ

2 ||u − v||22 is the
augmented Lagrangian with penalty parameter ρ > 0 [13].
Using the definition (4), we get

(u,x)i+1 = argmin
{uk,xk+1}N−1

k=0

(
V (x,u)+ IX(x,u)+

ρ

2 ||u− vi +wi||22
)
,

(7a)

vi+1 = argmin
{vk}N−1

k=0

(
IU(v)+

ρ

2 ||u
i+1− v+wi||22

)
, (7b)

wi+1 = wi +ui+1− vi+1, (7c)

where w = 1
ρ

z is a scaled dual variable.
To speed up convergence ui+1 is replaced by ũi+1 =

α iui+1−(1−α)(−vi) in the recursions for v and w [13], [24].
The relaxation parameter α ∈ (0,2) is tuned to the particular
application.

B. Stopping Criteria

To detect an optimal solution in (3), we adopt the stopping
criteria proposed in [13]. For the specific problem formula-
tion, (3), these criteria are

||ui− vi||2 ≤ εP, (8a)

ρ||vi+1− vi||2 ≤ εD. (8b)

The conditions test primal and dual feasibility of the updated
values in (7), i.e. if the necessary and sufficient optimality
conditions for (3) are satisfied. The tolerance levels, εP
and εD, are updated with respect to an absolute tolerance
parameter, εA, and a relative tolerance parameter, εR, as
follows

εP =
√

NnuεA + εR max{||ui||2, ||vi||2},
εD =

√
NnuεA + εRρ||wi||2,

where nu is the dimension of the control variables, and N is
the length of the prediction horizon.

C. Warm-Start Procedure

The ADMM recursions (7) are initialized using the values
v0 and w0. As MPC requires solving the OCP in every
sampling instant, a warm start is usually available for these
initial values. Such a warm start is obtained by shifting the
solution from the previous sampling instant forward in time.
As an example consider the solution at sampling interval
k = 0

v∗ =
[
v∗T0 v∗T1 . . . v∗TN−2 v∗TN−1

]T
,

w∗ =
[
w∗T0 w∗T1 . . . w∗TN−2 w∗TN−1

]T
.

We use the following initial values at sampling interval k = 1

v∗ =
[
v∗T1 v∗T2 . . . v∗TN−1 v∗TN−1

]T
,

w∗ =
[
w∗T1 w∗T2 . . . w∗TN−1 w∗TN−1

]T
.

As can be read, the last components of these vectors occur
twice. This means that the initial guess for the final input
move is the input move from the previous time step.

If no warm start is available, we use the standard cold-
starting point (v0,w0) = (000,000).

D. Summary

Algorithm 1 summarizes the solution method for input-
constrained MPC outlined above.

The convergence rate of Algorithm 1 can be very sensitive
to the penalty parameter ρ [12], [13], [16], [25]. To overcome
this issue, updating strategies for ρ have been proposed in
e.g. [13], [25]. We also remark that Algorithm 1 requires
the solution of two convex optimization problems in each
iteration. As illustrated in the subsequent section, the overall
complexity of Algorithm 1 is often attractive due to the
structure of these problems.
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Algorithm 1 ADMM Algorithm for Input-Constrained MPC

Require: ρ , (v0,w0), (εP,εD)
i = 0, converged = false
while not converged do
(x,u)i+1 = argmin

{uk,xk+1}N−1
k=0

V (x,u)+IX(x,u)+
ρ

2 ||u−vi+wi||22

vi+1 = argmin
{vk}N−1

k=0

IU(v)+
ρ

2 ||u
i+1− v+wi||22

wi+1 = wi +ui+1− vi+1

ri+1
P = ui+1− vi+1, ri+1

D = ρ(vi+1− vi)
if ||ri+1

P ||2 ≤ εP and ||ri+1
D ||2 ≤ εD then

converged = true
end if
i← i+1

end while

III. INPUT-CONSTRAINED EXTENDED LINEAR
QUADRATIC CONTROL PROBLEM

As a special case of input-constrained MPC, we consider
the extended LQCP [23]. The dynamic state constraints, (2),
are governed by the parameters {Ak,Bk,bk}N−1

k=0 , such that

X= {(x,u) |xk+1 = Akxk +Bkuk +bk, k ∈N }.

Moreover, the objective function is given by V (x,u) =

∑
N−1
k=0 `k(xk,uk)+ `N(xN), with the stage cost defined as

`k(xk,uk) =
1
2

[
xk
uk

]T [Qk MT
k

Mk Rk

][
xk
uk

]T

+

[
qk
sk

]T [xk
uk

]
+σk,

and the terminal cost `N(xN) =
1
2 xT

NPxN + pT xN +σN . We
impose box constraints on both the input and the input-rate.
This is achieved by defining the input constraint set, U, as

U= {u|uk ≤ uk ≤ uk,∆uk ≤ ∆uk ≤ ∆uk, k ∈N },

where the input-rate is given by ∆uk = uk−uk−1.
For the input-constrained extended LQCP defined above,

the optimization problem for computing the (x,u)-update,
(7a), becomes

min .
{uk,xk+1}N−1

k=0

N−1

∑
k=0

`k(xk,uk)+ `N(xN)+
ρ

2 ||u− vi +wi||22, (9a)

s.t. xk+1 = Akxk +Bkuk +bk, k ∈N , (9b)

and for the v-update, (7b), we have

min .
{vk}N−1

k=0

ρ

2 ||u
i+1− v+wi||22, (10a)

s.t. uk ≤ vk ≤ uk, k ∈N , (10b)
∆uk ≤ ∆vk ≤ ∆uk, k ∈N . (10c)

The following results show that the optimization problems
(9) and (10) can be solved with high efficiency.

A. The (x,u)-update

By re-defining the stage cost, `k(xk,uk), such that

Rk← Rk +ρI,

sk← sk +ρ(−vi
k +wi

k),

the optimization problem (9) can be posed as an instance
of the extended LQCP (with no input constraints) [23].
As demonstrated in [8], [23], [26]–[29], Riccati-based algo-
rithms may be applied to solve such problems efficiently.
These algorithms consist of a factorization part, and a
backward and forward substitution part. The factorizations
require O(N(nx + nu)

3) operations, while the substitutions
require O(N(nx +nu)

2) operations.
In the context of Algorithm 1, it is important to note that

only sk changes as a function of the iteration number. This
means that the factorizations can be computed outside the
inner iteration loop, and that subsequent (x,u)-updates only
require O(N(nx +nu)

2) operations.

B. The v-update

Let v =
[
v0 v1 . . . vN−1

]T , and further denote v j
k ∈R

as the j’th input component of the vector vk ∈Rnu . Then the
optimization vector v may be written as

v =
[(

v0
0 . . . vnu

0

)
. . .

(
v0

N−1 . . . vnu
N−1
)]
.

The problem (10) is separable across the input components.
Therefore a problem in the form (10) may be solved for each
v j =

[
v j

0 . . . v j
N−1

]
. Consequently, a solution method for

(10) can assume that nu = 1.
To write the optimization problem in a more compact

form, we define the structures

Λ =


1
−1 1

. . . . . .
−1 1

 , I0 =


1
0
...
0

 ,
and express (10) as the constrained quadratic program

min
{vk}N−1

k=0

{ 1
2 vT Hv+gT v |Fv≥ f

}
, (11)

in which the problem data are

H = ρI, g = ρ(−ui+1−wi),

F =
[
ΛT −ΛT I −I

]T
,

f =
[
(∆uk + I0u−1)

T −(∆uk− I0u−1)
T uT

k −uT
k

]T
.

The main computational bottleneck in solving (11) using an
interior-point method is solving a linear system of equations
(in each iteration of the interior-point method) [30]. One way
to express the linear system of equations solved is

(H +FT DF)∆v = r, (12)

where D is a diagonal matrix, r is a residual vector, and ∆v
is the optimization search direction. Proposition 1 provides
a method for solving the structured system (12), that scales
linearly in the length of the prediction horizon.
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TABLE I
COMPLEXITY OF ALGORITHM 1 FOR THE INPUT-CONSTRAINED

EXTENDED LQCP.

(x,u)-update v-update w-update Total

Off-line O(N(nx +nu)
3) - - O(N(nx +nu)

3)
On-line O(N(nx +nu)

2) O(Nnu) O(Nnu) O(N(nx +nu)
2)

Proposition 1: The operation (12) can be performed in
O(N) operations.

Proof: We write (12) as H̃∆v = r where H̃ = H +
FT DF . Let D = blkdiag(D1,D2,D3,D4) denote block par-
titions of the diagonal matrix D. Then H̃ = (H +FT DF) =
D̃1 +ΛT D̃2Λ, where D̃1 = ρI +D3 +D4 and D̃2 = D1 +D2
are diagonal matrices. Since D̃1 is diagonal and ΛT D̃2Λ is
symmetric tridiagonal, H̃ is tridiagonal. Each iteration of the
of the interior-point method, thus requires the solution of a
symmetric tridiagonal system. Such a system can be solved
in O(N) operations [31].

Since solving (10) for each input component, v j, requires
O(N) operations, the overall complexity of solving (10) is
O(Nnu). Note however, that the problems can be solved in
parallel for each j = 0,1, . . . ,nu.

C. Summary

Table I summarizes the computational complexity of Al-
gorithm 1 for the input-constrained extended LQCP. As
discussed previously, the matrix factorizations computed in
the (x,u)-update are constant for all iterations of the ADMM
algorithm. These factorizations can be reused every time a
new OCP is solved, meaning that the computations with
cubic complexity can be performed off-line. This is a big
advantage, since the on-line computation time is critical
in MPC applications. In this regard the ADMM algorithm
requires O(N(nx +nu)

2) operations per iteration.

IV. NUMERICAL EXAMPLES
This section tests the warm-start procedure introduced

in Section II-C, and provides a large-scale benchmark that
compares ADMMmpc against state-of-the-art quadratic pro-
gramming algorithms. ADMMmpc is implemented in C with
the use of BLAS and LAPACK linear algebra routines. We
access ADMMmpc from MATLAB via a MEX-interface. The
tolerance specifications in (8) are set to εA = εR = 10−4.
These tolerance levels yield, in the worst case, less than a
1% relative increase in the objective function compared to a
high accuracy solution.

A. Closed-Loop Simulation

As a special case of the extended LQCP, we consider an
`2-based tracking objective that penalizes deviations from a
desired set-point, ȳk, with

`(xk,uk) =
1
2 (yk− ȳk)

T Qk(yk− ȳk)+
1
2 ∆uT

k Rk∆uk, k ∈N ,

`N(xN) =
1
2 (yN− ȳN)

T QN(yN − ȳN),

where the system output is given by yk = Cxk. As demon-
strated in [23], a problem with the cost functions defined

Fig. 1. Illustration of the mass-spring system.

TABLE II
CONTROLLER PARAMETERS.

j u j
k u j

k ∆u j
k ∆u j

k r j
k

1 -0.4 0 -0.15 0.15 0.1
2 -0.1 0.1 -0.05 0.05 0.1
3 0 0.4 -0.15 0.15 0.1

above can be transformed into an instance of the extended
LQCP.

Fig. 1 illustrates the dynamic system considered in this
case study. The system is a mass-spring system [6], [9],
which consists of three 1 kg masses connected by springs,
and walls at the end. No damping is assumed and the spring
constant is 1 N/m. Actuators are attached to each of the
masses. The first actuator can apply a force only in the
negative direction, whereas the last actuator can apply a force
only in the positive direction. The second actuator can apply
a force in both directions, but its operating range is very
limited. Table II lists the input limits, (u j

k,u
j
k), the input-rate

limits, (∆u j
k,∆u j

k), and the regularization parameters, Rk =
diag(rk). These values are fixed over the entire prediction
horizon k ∈ N . The controller objective is to control the
displacement of the second mass, yk, with respect to a time-
varying reference ȳk. The penalty for deviating from the
reference is Qk = 1 for all time steps, and the length of the
prediction horizon is N = 120. The system is realized in a
discrete state space form (A,B,C) using a sampling time of
Ts = 0.5 seconds.

Fig. 2 illustrates a closed-loop simulation with 2400
sampling intervals. For each of the 2400 OCPs solved,
we use the penalty parameter ρ = 1 and the relaxation
parameter α = 1.8. To make warm-start non-trivial in periods
with a constant reference, we include Gaussian process and
measurement noise in the simulation.

Fig. 2 shows that the displacement of the second mass
tracks the desired reference very well, and that there are
periods in which the input limits are reached. As the dy-
namic state constraints and the input constraints are handled
separately in the ADMM recursions, (7), active constraints
make the OCP more challenging for ADMMmpc.

Fig. 3 depicts the number of iterations used by the ADMM
algorithm for a cold start and a warm start, respectively,
as well as the number of active constraints in the solution.
We observe that warm-start reduces the number of iterations
significantly, even when a large fraction of the constraints
is active. On average the time saved per problem solved is
80%. Fig. 3 also shows that the advantage over cold start
is less significant in time steps where the active set changes
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Fig. 2. Closed-loop simulation of the mass-spring system controlled by
input-constrained MPC with an `2 penalty on deviations from the reference,
and an `2 regularization term on the input-rate.
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Fig. 3. Number of iterations used by ADMMmpc to converge to a solution
with the desired accuracy, and the number of active constraints in the
solution.

dramatically compared to the previous time step.

B. Large-Scale Benchmark

We compare ADMMmpc to the general purpose interior-
point methods provided by CPLEX, MOSEK and Gurobi,
in an open-loop simulation. The comparison also incldues
an implementation of the structure exploiting primal barrier
interior-point method for MPC, fast_mpc, provided in [6],
as well as the automatic code generation based interior-
point method FORCES [32]. Similar to ADMMmpc, these
algorithms are run in MATLAB via MEX interfaces using
low accuracy settings. All simulations are performed on
an Intel(R) Xenon(R) CPU X5650 @ 2.67GHz with 12
GB RAM running a 64-bit Ubuntu 12.04 operating system.
Warm-start is not employed in the benchmark.

As a scalable dense test problem, we construct a random
dynamic system with the largest eigenvalue close to the unit
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Fig. 4. Computation time of solving the OCP, (1), as a function of the
number of states, nx (nu = 16, N = 16), the number of inputs, nu (nx = 128,
N = 16), and the length of the prediction horizon, N (nx = 64, nu = 64).

circle. The state transition matrix A ∈ Rnx×nx is build as a
dense random matrix with non-negative elements, which is
then scaled by the largest row (column) sum [33]. We gen-
erate B ∈ Rnu×nx and C ∈ Rny×nx as random dense matrices
as well, and set ny = nx. Using a similar problem setting as
in the mass-spring system case study, we ensure that a large
fraction of the constraints is active in the solution to make
the problem challenging for ADMMmpc.

Fig. 4 shows the computation time of solving the OCP,
(1), as a function of the problem size. The optimiza-
tion problems are solved using the penalty parameter ρ =√

nx/nu(1/ log(N)), which we found to work well in prac-
tice. The relaxation parameter is set to α = 1.9. For these
parameter specifications, the number of iterations used by
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ADMMmpc fluctuates between 100-200 for all problem sizes
considered. Fig. 4 shows that the ADMM algorithm is
more than an order of magnitude faster than the interior-
point methods for large problems (although the interior-point
methods only require 10-20 iterations, the computational cost
per iteration is much more expensive than for ADMMmpc).

Fig. 4 also shows that the off-line computation time of
ADMMmpc grows faster than its on-line computation time.
The off-line computation time is however, not critical in
MPC applications. We note that although ADMMmpc con-
verges faster than the interior-point methods to a solution
with the tolerance levels εA = εR = 10−4, the number of
iterations required for a highly accurate solution may be very
large [13]. In this case, we suggest to combine the ADMM
algorithm with a higher order optimization method.

V. CONCLUSIONS
This paper presented a generic ADMM algorithm for

solving the convex optimal control problem arising in input-
constrained MPC. As a special case, we focused on an effi-
cient implementation of the algorithm for the extended LQCP
with limits on the inputs and the input-rate. Simulations
show that for this classical MPC formulation, a C version
of the algorithm denoted ADMMmpc is faster than several
state-of-the-art quadratic programming algorithms with a
significant margin, and that it scales in a favorable way.
Moreover, we also demonstrated that by reusing information
from the previous sampling instant, the computation time can
be reduced further using a simple warm-start procedure.
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a  b  s  t  r  a  c  t

This  paper  presents  a warm-started  Dantzig–Wolfe  decomposition  algorithm  tailored  to economic  model
predictive  control  of  dynamically  decoupled  subsystems.  We  formulate  the constrained  optimal  control
problem  solved  at each  sampling  instant  as a linear  program  with  state space  constraints,  input limits,
input  rate  limits,  and  soft  output  limits.  The  objective  function  of the  linear  program  is  related  directly  to
the cost  of operating  the  subsystems,  and  the  cost  of  violating  the  soft  output  constraints.  Simulations  for
large-scale  economic  power  dispatch  problems  show  that  the  proposed  algorithm  is significantly  faster
than  both  state-of-the-art  linear  programming  solvers,  and  a  structure  exploiting  implementation  of  the
alternating  direction  method  of  multipliers.  It is also  demonstrated  that  the  control  strategy  presented  in
this  paper  can  be tuned  using  a weighted  �1-regularization  term.  In  the  presence  of process  and  measure-
ment  noise,  such  a  regularization  term  is  critical  for  achieving  a  well-behaved  closed-loop  performance.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Conventionally, the optimal control problem (OCP) solved in
model predictive control (MPC) is formulated as a convex pro-
gram that penalizes deviations between the controlled output and
a setpoint [1–4]. While this approach ensures that the setpoint is
reached in a reasonable amount of time, it does not guarantee that
the transition between setpoints is performed in an economically
efficient way. To overcome this problem, MPC  has been extended to
solve OCPs with more general cost functions, providing a system-
atic method for optimizing economic performance [5–11]. Stability
and other properties of such economic MPC  (EMPC) schemes have
been addressed in [5–9,12–14].

The main contribution of this paper is a Dantzig–Wolfe decom-
position algorithm for EMPC of dynamically decoupled subsystems
that solves the OCP in an efficient and reliable way. As the con-
trol law is computed in real-time, such an algorithm allows EMPC
to be employed even for applications with thousands of sub-
systems. In particular, we consider an �1-regularized linear type
of OCP with input constraints, input rate constraints and soft

∗ Corresponding author. Tel.: +45 45253088.
E-mail addresses: leso@dtu.dk (L.E. Sokoler), laus@dtu.dk (L. Standardi),

kried@dongenergy.dk (K. Edlund), nkpo@dtu.dk (N.K. Poulsen), hmad@dtu.dk
(H. Madsen), jbjo@dtu.dk (J.B. Jørgensen).

output constraints. Each subsystem is governed by a discrete state
space model. The coupling of the subsystems occurs through a set
of aggregated variables.

The Dantzig–Wolfe decomposition algorithm, presented in this
paper, exploits that dynamically decoupled subsystems give rise to
a block-angular structure in the OCP constraint matrix. This allows
the OCP to be decomposed into a master problem and a number of
subproblems [15–17]. The master problem includes a set of linking
constraints which couples the subsystems, whereas the subprob-
lems are concerned only with the individual subsystems. Using an
iterative approach illustrated in Fig. 1, the decomposed problem can
be solved via a delayed column generation procedure. Such tech-
niques have previously been applied to conventional norm-based
MPC  in [18–20].

The block-angular constraint matrix structure appears for
dynamically decoupled subsystems with linking constraints [21].
Dynamic multi-plant models as well as dynamic multi-product
models are examples of such models [22]. Dynamic multi-plant
models occur e.g. in the production planning for multiple refiner-
ies [23]. For process systems, dynamically decoupled systems with
linking constraints occur when independent units are connected
to shared process equipment such as pipes. A boiler-turbine sys-
tem producing high pressure (HP), middle pressure (MP) and low
pressure (LP) steam as well as electricity is a common example of
a system that can be modeled as dynamically decoupled subsys-
tems (the boilers) that have linking constraints (the demand for

http://dx.doi.org/10.1016/j.jprocont.2014.05.013
0959-1524/© 2014 Elsevier Ltd. All rights reserved.
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Fig. 1. Flowchart of the delayed column generation procedure used in the
Dantzig–Wolfe decomposition algorithm for EMPC of dynamically decoupled sub-
systems with linking constraints. In each iteration, dual prices associated with the
linking constraints are obtained by solving the master problem. These prices are
used by the subsystems to compute an updated solution that improves the overall
objective function.

various steam qualities and electrical power) [18,24]. In upstream
offshore oil production, the compressors and pumps of a number
of production wells share the pipeline, separators and compressors
to bring the oil onshore [25,26]. This is also an example of a system
that can be modeled as dynamically decoupled subsystems with
linking constraints. Smart Grid systems in which a number of inde-
pendent energy producers and consumers are controlled to balance
power production and consumption represent yet another instance
of dynamically decoupled systems with linking constraints [20,27].
The temperature regulation of multi-room buildings can also be
formulated as dynamically decoupled subsystems with linking con-
straints [28]. As is evident by this list of examples, dynamically
decoupled subsystems with linking constraints are common in pro-
cess systems.

To test a MATLAB implementation of the Dantzig–Wolfe decom-
position algorithm, denoted DWempc, a simple energy systems
management case study is presented. We  show that as more units
are added to a network of controllable generators, DWempc becomes
increasingly favorable over state-of-the-art sparse linear program-
ming solvers provided by Gurobi, CPLEX,  and MOSEK.  It is further
demonstrated that a nearly optimal solution can be acquired, even
if DWempc is terminated early. This is an attractive property in real-
time applications such as EMPC, since only a limited amount of time
is available for solving the OCP.

In addition to the general purpose solvers, DWempc is compared
to a structure exploiting implementation of the alternating direc-
tion method of multipliers (ADMM)  [29–32], denoted ADMMempc,
with similar parallelization capabilities to DWempc. Simulations
illustrate that unless a highly suboptimal control performance is
tolerated, DWempc outperforms ADMMempc with a significant mar-
gin. Results also show that for both algorithms, a simple warm-start
strategy yields a substantial improvement over cold start, and that
the performance of this strategy increases with the weights on the
�1-regularization term. Inclusion of the regularization term is crit-
ical for the controller performance in the face of stochastic process
and measurement noise as well as model-plant mismatch.

1.1. Paper organization

We  have organized the paper as follows. In Section 2, the OCP
solved in this paper is introduced. We  decompose the problem
using Dantzig–Wolfe decomposition in Section 3, and a column

generation procedure for solving the decomposed problem is pre-
sented. Section 4 describes a distributed implementation of ADMM
for solving the OCP. Section 5 reports performance indicators for
the proposed algorithms. These performance indicators are com-
puted using a conceptual energy systems management case study.
Concluding remarks are given in Section 6.

2. Problem definition

We  consider M dynamically decoupled discrete state space
models in the form

xj,k+1 = Ajxj,k + Bjuj,k, j ∈ M, (1a)

yj,k = Cjxj,k, j ∈ M, (1b)

where M = {1, 2, . . .,  M}.  The state space matrices are denoted by
(Aj, Bj, Cj), the states by xj,k ∈ R

nx(j), the inputs by uj,k ∈ R
nu(j), and

the outputs by yj,k ∈ R
ny(j). Moreover, we define the aggregated

variables

yT,k =
∑

j∈M
�jyj,k =

∑

j∈M
�jCjxj,k, (2)

in which �j ∈ R
nyT ×ny(j) are subsystem multipliers.

The OCP defining the EMPC control law for the subsystems (1),
is in this paper defined as

min
u,x,y,yT ,�,�

  =  eco +  reg, (3a)

with

 eco =
∑

k∈N0

⎛
⎝qTk+1�k+1 +

∑

j∈M
pTj,kuj,k + rTj,k+1�j,k+1

⎞
⎠ , (3b)

 reg =
∑

k∈N0

∑

j∈M
wj,k||�uj,k||1, (3c)

and subject to the constraints

xj,k+1 = Ajxj,k + Bjuj,k, k ∈ N0, j ∈ M, (3d)

yj,k = Cjxj,k, k ∈ N1, j ∈ M, (3e)

yT,k =
∑

j∈M
�jCjxj,k, k ∈ N1, (3f)

uj,k ≤ uj,k ≤ uj,k, k ∈ N0, j ∈ M, (3g)

�uj,k ≤ �uj,k ≤ �uj,k, k ∈ N0, j ∈ M, (3h)

y
j,k
− �j,k ≤ yj,k ≤ yj,k + �j,k, k ∈ N1, j ∈ M, (3i)

0 ≤ �j,k ≤ �j,k, k ∈ N1, j ∈ M, (3j)

y
T,k
− �k ≤ yT,k ≤ yT,k + �k, k ∈ N1, (3k)

0 ≤ �k ≤ �k, k ∈ N1, (3l)

where ≤ and ≥ denote element-wise inequalities. The input rate is
defined as �uk = uk− uk−1 and Ni = {0 + i, 1 + i, . . .,  N − 1 + i}, with
N being the length of the control and prediction horizon.

The input data to (3) are the input limits, (uj,k, uj,k), the input
rate limits, (�uj,k, �uj,k), the subsystem output limits, (y

j,k
, yj,k),

the aggregated variable limits, (y
T,k
, yT,k), the input prices, pj,k, the

price for violating the subsystem output limits, rj,k, and the price for
violating the aggregated variable limits, qk. The slack variables, � j,k
and �k, account for the violation of the soft output constraints. We
impose upper limits, (�j,k, �k), on these variables, as this simplifies
later computations considerably.



L.E. Sokoler et al. / Journal of Process Control 24 (2014) 1225–1236 1227

The objective function (3a) consists of an economic term (3b)
and a regularization term (3c). The economic term (3b) represents
the cost of operating the subsystems and the cost of violating the
soft output constraints. The regularization term (3c) is included
to obtain a well behaved solution. In our paper, the regularization
term is formulated as a weighted �1-penalty on the input rate. Using
an �1-penalty ensures that the resulting OCP is a linear program that
can be solved using Dantzig–Wolfe decomposition.

Remark 1. An alternative way of expressing the OCP objective
function (3a) is as a trade-off between the economic term and the
regularization term, such that

  = ˛ eco + (1 − ˛) reg,  ̨ ∈ [0,  1], (4)

where  ̨ is a user-defined parameter. Amrit et al. [12] discuss the
trade-off between the economic term and an �2-regularization
term.

The regularization term (3c) is a special case of

 reg =
∑

k∈N0

⎛
⎝∑

j∈M
wxj,k+1||xj,k+1 − xj,k+1||1

+
∑

j∈M
wuj,k||uj,k − uj,k||1 + w�uj,k ||�uj,k||1

⎞
⎠ , (5)

in which {xj,k+1, uj,k}k∈N0,j∈M are target values that may  be com-
puted by a target calculator or a real-time optimization layer. An
objective function consisting only of (5) corresponds to conven-
tional �1 norm-based MPC. Edlund et al. [20] solves such problems
using Dantzig–Wolfe decomposition.

Remark 2. The objective function (4) is similar to the mean-
variance-based economic objective function introduced in [33] for
production optimization in an oil field. For a random cost variable,
 eco, the mean-variance optimization criterion is

 MV = ˛E[ eco] + (1 − ˛)V [ eco].

E[ eco] is the cost expectation and V[ eco] is the cost variance.
In (4),  eco can be interpreted as a certainty-equivalent approxi-
mation of the mean of the random cost variable,  eco, while the
regularization term,  reg, is included to make the controller less
sensitive to noise. The key advantage in using the deterministic for-
mulation (4) is that the computational load is significantly reduced
compared to a mean-variance approach based on Monte Carlo
simulations. Other measures of risk than the mean-variance formu-
lation that can be used to regularize the solution are Value-at-Risk
(VaR) and Conditional Value-at-Risk (CVaR) [34].

Remark 3. The Dantzig–Wolfe decomposition algorithm is an
algorithm for solving linear programs. Consequently, the approach
described in this paper is limited to solve OCPs with a linear objec-
tive function, linear dynamics, and linear constraints. Rao and
Rawlings [35] provide a number of penalty functions that can be
expressed as linear programs. Penalty functions based on �1 norms,
such as (3c) and (5), as well as �∞ norms can be expressed as linear
programs. Piecewise linear approximations accommodate the need
for solving OCPs with more general convex economic cost functions
[26,36,37]. The disadvantage of using piecewise linear approxima-
tions is that the size of the resulting linear program may  increase
considerably.

Remark 4. The expression (2) for the aggregated variables is
tailored to dynamically decoupled subsystems that collaborate to

meet a common objective. The expression (2) is a special case of
the more general expression

yT,k =
∑

j∈M
�y
j
yj,k + �uj uj,k, k ∈ N1, (6)

for the aggregated variables. The general expression (6) may
be used to describe couplings between subsystems (e.g. interac-
tions between 1) process units in a process system; and 2) the
transmission lines coupling producers and consumers in a power
system) [18]. When the number of aggregated variables increases,
the number of linking constraints increases. The Dantzig–Wolfe
decomposition algorithm is most efficient when the number of
linking constraints is small compared to the total number of con-
straints.

2.1. Compact formulation

By eliminating the states using Eq. (1a), we  can write the output
Eq. (1b), as

yj,k = CjA
k
j xj,0 +

∑

i∈N0

Hj,k−iuj,i, j ∈ M, k ∈ N1,

where the impulse response coefficients are given by

Hj,k = CjA
k−1
j
Bj, j ∈ M, k ∈ N1.

Consequently

yT,k =
∑

j∈M

⎛
⎝�jCjAkj xj,0 +

∑

i∈N0

�jHj,k−iuj,i

⎞
⎠ , k ∈ N1.

Define the vectors

yj =
[
yT
j,1 yT

j,2 · · · yT
j,N

]T
, j ∈ M, (7a)

uj =
[
uT
j,0 uT

j,1 · · · uT
j,N−1

]T
, j ∈ M, (7b)

and the matrices

�j =

⎡
⎢⎢⎢⎢⎣

Hj,1 0 · · · 0

Hj,2 Hj,1

...
...

. . .

Hj,N Hj,N−1 · · · Hj,1

⎤
⎥⎥⎥⎥⎦
, ˚j =

⎡
⎢⎢⎢⎢⎢⎣

CjAj

CjA
2
j

...

CjA
N−1
j

⎤
⎥⎥⎥⎥⎥⎦
,

for j ∈ M. Then, for each of the subsystems (7a)

yj = �juj + ˚jxj,0, j ∈ M. (8)

By introducing �̃j and ˜̊
j accordingly, it follows that yT =∑

j∈M�̃juj + ˜̊
jxj,0.

The notation is simplified further with

uj =
[
uT
j,0 uT

j,1 · · · uT
j,N−1

]T
, j ∈ M,

uj =
[
uTj,0 uTj,1 · · · uTj,N−1

]T
, j ∈ M,

and similarly we  define �uj , �uj , y
j
, yj , y

T
, yT , �j , �, �, �j , �j, q, pj,

rj, wj and � j. Using these definitions, the OCP (3) may  be written in
the form

min
u,�,�,�

  = qT� +
∑

j∈M
pTj uj + rTj �j + wTj �j (9a)

subject to a set of decoupled constraints

uj ≤ uj ≤ uj, j ∈ M, (9b)

�uj − I0uj,−1 ≤ 	uj ≤ �uj − I0uj,−1, j ∈ M, (9c)
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Fig. 2. The block-angular structure of the constraint matrix in (9). The efficiency of
the Dantzig–Wolfe decomposition method depends on this structure.

y
j
− �j ≤ �juj + ˚jxj,0 ≤ yj + �j, j ∈ M, (9d)

I0uj,−1 − �j ≤ 	uj ≤ I0uj,−1 + �j, j ∈ M, (9e)

0 ≤ �j ≤ �, j ∈ M, (9f)

0 ≤ �j ≤ �, j ∈ M, (9g)

and a set of linking constraints

y
T
− � ≤

∑

j∈M
�̃juj + ˜̊

jxj,0 ≤ yT + �. (9h)

0 ≤ � ≤ �, (9i)

where 	 and I0 are defined as

	j =

⎡
⎢⎢⎢⎣

I

−I I

. . .
. . .

−I I

⎤
⎥⎥⎥⎦ , I0 =

⎡
⎢⎢⎢⎣

I

0
...

0

⎤
⎥⎥⎥⎦ .

We  remark that (9e) and (9f) imply that �j,k ≥ |�uj,k|. Note also,
that the structure of the constraint matrix in (9), can be stated in
the block-angular form illustrated in Fig. 2.

In particular, (9) is written as

min
z

  =
∑

j∈M

cTj zj, (10a)

s.t. Gjzj≥gj, j ∈ M, (10b)

∑

j∈M

Hjzj≥h, (10c)

with M = 1, 2, . . .,  M + 1, and

zj =
[
uT
j
�T
j
�T
j

]T
, cj =

[
pT
j
rT
j
wT
j

]T
, j ∈ M,

zM+1 = �T , cM+1 = qT .

(10b) represents the decoupled constraints (9b)–(9g), and (10c)
represents the linking constraints (9h) and (9i).

The data structures in (10) are defined as

Gj =
[
Gj

−Gj

]
, gj =

[
g
j

−gj

]
, Hj =

[
Hj

−Hj

]
, h =

[
h

−h

]
,

in which

[
Gj g

j
gj
]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 uj uj

	 0 0 �u∼ j �ũj

�j I 0 y
∼ j

∞
�j −I 0 −∞ ỹj

0 I 0 0 �j

−	 0 I −I0uj,−1 ∞
	 0 I I0uj,−1 ∞
0 0 I 0 �j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[
Hj h h

]
=
[
�̃j 0 y

∼T
∞

�̃j 0 −∞ ỹT

]
,

for j ∈ M, with

y
∼T
= y

T
−
∑

j∈M

˜̊
jxj,0, ỹT = yT −

∑

j∈M

˜̊
jxj,0,

y
∼ j
= y

j
− ˚jxj,0, ỹj = yj − ˚jxj,0, j ∈ M,

�u∼ j = �uj + I0uj,−1, �ũj = �uj + I0uj,−1, j ∈ M,

In the special case j = M + 1

[
GM+1 g

M+1
gM+1

]
=
[
I 0 �

]
,

HM+1 =
[
I −I

]T
.

Remark 5. We only use (10) to have a convenient notation. In the
actual solution of all the linear and quadratic programs reported in
this paper, the bound constraints are exploited.

3. Dantzig–Wolfe decomposition

Dantzig–Wolfe decomposition utilizes the fact that a convex set
can be characterized by its extreme points and its extreme rays
[15–17]. In particular, for each j ∈ M, the set of points satisfying
the decoupled constraints (10b) may  be written as

Gj = {zj|Gjzj≥gj} =
{
zj|zj =

∑

i∈P

ijz

i
j,
∑

i∈P

ij = 1, 
ij≥0 ∀i ∈ P

}
,

(11)

where zi
j

are the extreme points of Gj , and 
i
j

are convex combina-
tion multipliers. Note that since each of the sets Gj are bounded,
extreme rays are not needed in their representation. P is a set
defined such that all extreme points of the set defined by (10b) can
be represented as zi = [zi

j
]
j∈M = [zi1; zi2; . . .;  zi|M|] for i ∈ P. Note that

with this definition, the same extreme point, zi
j
, may  appear several

times in (11). This mathematical representation, with the possi-
bility that the same subproblem extreme point, zi

j
, is represented

several times, facilitates a computationally efficient implementa-
tion of the Dantzig–Wolfe decomposition algorithm.
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By replacing the decision variables in (10) by convex combina-
tion multipliers, we obtain the master problem formulation

min



  =
∑

j∈M

∑

i∈P
cij


i
j, (12a)

s.t.
∑

j∈M

∑

i∈P
Hij


i
j≥h, (12b)

∑

i∈P

ij = 1, j ∈ M, (12c)


ij≥0, j ∈ M, i ∈ P, (12d)

where we have defined

Hij = Hjz
i
j, j ∈ M, i ∈ P, (13a)

cij = cTj z
i
j, j ∈ M, i ∈ P. (13b)

Given a solution, 
*, to the master problem (12), a solution to the
original problem (10) can be obtained as

z∗j =
∑

i∈P
(
∗)ijz

i
j , j ∈ M.

The number of extreme points, |P|, can increase exponentially with
the size of the original problem. In such cases, it is computationally
inefficient to solve the master problem directly. In the following
section, we overcome this issue by employing a column generation
procedure that replaces P by a subset P̃.

3.1. Column generation procedure

The dual linear program of (12) may  be stated as

max
˛,ˇ

� = ˛Th +
∑

j∈M

ˇj, (14a)

s.t. (Hij)
T

 ̨+ ˇj ≤ cij, j ∈ M, i ∈ P, (14b)

˛≥0. (14c)

 ̨ ∈ R
4N and  ̌ ∈ R

M+1 are the Lagrange multipliers associated with
the linking constraints (12b) and the convexity constraints (12c),
respectively.

The necessary and sufficient optimality conditions for (12) and
(14) are
∑

j∈M

∑

i∈P
Hij


i
j≥h, (15a)

∑

i∈P

ij = 1, j ∈ M, (15b)


ij≥0, j ∈ M, i ∈ P, (15c)

cij − (Hij)
T

 ̨− ˇj≥0, j ∈ M, i ∈ P, (15d)

˛≥0, (15e)


ij(c
i
j − (Hij)

T
 ̨− ˇj) = 0, j ∈ M, i ∈ P, (15f)

Proposition 1 shows that a solution to the master problem (12) can
be obtained by solving a restricted master problem in which P in
(12) is replaced by P̃ ⊆ P. This implies that a solution to (12) can
be obtained by solving a linear program that is often much smaller
than (12).

Proposition 1. Let P̃ ⊆ P and define (
̃, ˜̨ , ˜̌ )  as a primal-dual solu-
tion to (12) and (14) with P replaced by P̃.  Define (
*, ˛*, ˇ*) as

˛∗ = ˛,

ˇ∗
j
= ˇj, j ∈ M,

(
∗)ij =
{

̃i
j

if i ∈ P̃
0  if i ∈ P \ P̃

, j ∈ M, i ∈ P.

If the optimal objective value of the subproblem

min
z̃j

ϕj = (cj − HTj ˛
∗)
T
z̃j − ˇ∗j (16a)

s.t. Gjz̃j≥gj, (16b)

is non-negative for each j ∈ M, i.e. ϕ∗
j
≥0 ∀j ∈ M, then (
*, ˛*, ˇ*) sat-

isfies the necessary and sufficient optimality conditions (15), 
* is a
minimizer of (12), and (˛*, ˇ*) is a maximizer of (14).

Proof. The solution (
*, ˛*, ˇ*) satisfies (15a) since
∑

j∈M

∑

i∈P
Hij(


∗)ij =
∑

j∈M

∑

i∈P̃
Hij 
̃

i
j≥h,

which follows from the definition of (
̃, ˜̨ , ˜̌ ). Similarly, it can be
verified that the conditions (15b), (15c), (15e) and (15f) are fulfilled.

Provided that (
*, ˛*, ˇ*) is optimal, (15d) yields

cij − (Hij)
T
˛∗ − ˇ∗j = (cj − HTj ˛

∗)
T
zij − ˇ∗j ≥0, (17)

for all j ∈ M and i ∈ P. By construction of (
*, ˛*, ˇ*), (17) is satisfied
for all i ∈ P̃. To check that the condition holds for all i ∈ P \ P̃,  we
consider the optimization problem (16). Since this linear program
minimizes the left hand side of (17) over all possible extreme points,
z̃j , of Gj , (
*, ˛*, ˇ*) also satisfies the remaining optimality condition
(17) if ϕj is non-negative for all j ∈ M. �

Algorithm 1 summarizes a column generation procedure based on
Proposition 1.

Remark 6. The problem (16) is an OCP with linear constraints and
a linear objective function. Refs. [10,11,38,39] provide an efficient

Algorithm 1. Column generation procedure for solution of (12).
Require: (imax, ε), {z0

j
}
j∈M

i = 0, converged = false

while not converged and i < imax do
P̃ = {0, 1, . . .,  i}
COMPUTE PROBLEM DATA

for j ∈ M do
Hi
j
= Hjz

i
j

ci
j
= cT

j
zi
j

end for
SOLVE RESTRICTED MASTER PROBLEM

(�*, 
*, ˛*, ˇ*)← solve (12) with P = P̃
SOLVE SUBPROBLEMS

for j ∈ M do
(ϕ∗
j
, z̃∗
j
) ← solve (16)

end for
CHECK IF CONVERGED

if |ϕj |≥ε ∀j ∈ M then
converged = true

else
UPDATE EXTREME POINTS

for j ∈ M do
zi+1
j
= z̃∗

j

end for
end if

i = i + 1
end while
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Riccati-based homogeneous and self-dual interior-point linear pro-
gramming algorithm for such problems. Using the optimal interior
point solution found by this algorithm, crossover methods can be
applied to obtain an optimal extreme point for the column gener-
ation procedure [17].

3.2. Warm-start

A sequence of closely related OCPs are solved in a moving hori-
zon implementation of EMPC. Therefore, in Algorithm 1 the feasible
initial guess of the solution, {z0

j
}
j∈M, at the current sampling instant

is constructed from the solution at the previous sampling instant.
Given the solution to (16)

u∗
j
=
[
u∗T
j,0 · · · u∗T

j,N−1

]T
, j ∈ M,

�∗
j
=
[
�∗T
j,1 · · · �∗T

j,N

]T
, j ∈ M,

�∗
j
=
[
�∗T
j,0 · · · �∗T

j,N−1

]T
, j ∈ M,

�∗ =
[
�∗T1 · · · �∗TN

]T
,

we construct an initial point for the following sampling instant as

z0
j =

[
(u0
j
)
T

(�0
j

)
T

(�0
j
)
T
]T
, j ∈ M,

where

u0
j
=
[
u∗T
j,1 · · · u∗T

j,N−1 (u0
j,N

)
T
]T
, j ∈ M,

�0
j
=
[
�∗T
j,2 · · · �∗T

j,N
(�0)

T
j,N+1

]T
, j ∈ M,

�0
j
=
[
�∗T
j,1 · · · �∗T

j,N−1 (�0)
T
j,N

]T
, j ∈ M.

Finally

z0
M+1 = �0 =

[
�∗T2 · · · �∗TN (�0)

T
N+1

]T
.

The original solution values are thus shifted forward in time, and
u0
j,N

, �0
j,N+1, �0

j,N
and �0

N+1 are appended to the resulting initial point.
In our implementation, we use

u0
j,N
= u∗

j,N−1, j ∈ M,

�0
j,N
= 0, j ∈ M.

We  use the state space equations (1) and (2) to compute y0
j,N+1 and

y0
T,N+1 associated with the input sequence {u0

j
}
j∈M. We  construct

the initial slack values as

�0
j,N+1 = max(y

j,N+1
− y0

j,N+1, 0) + max(y0
j,N+1 − yj,N+1, 0),

for each j ∈ M, and

�0
N+1 = max(y

T,N+1
− y0

T,N+1, 0) + max(y0
T,N+1 − yT,N+1, 0).

As the solution to the OCP often only differs slightly between
successive sampling instants, the initial point generated as above
provides a warm-start for Algorithm 1.

3.3. Cold-start

In the case that no previous solution is available for generat-
ing a warm start, a feasible initial guess of the solution, {z0

j
}
j∈M, in

Algorithm 1 can be constructed by adjusting the slack variables, �0
j

and �0. Let {u0
j
}
j∈M be feasible with respect to the input constraints

and the input-rate constraints. Such a point is easily obtained in

practice. As an example consider u0
j
= uj for each j ∈ M. Then, in a

similar way  as for the warm-start strategy, we compute

�0
j,k = max(y

j,k
− y0

j,k, 0) + max(y0
j,k − yj,k, 0),

�0
k = max(y

T,k
− y0

T,k, 0) + max(y0
T,k − yT,k, 0),

where k ∈ N1, j ∈ M. The values, y0
j,k

and y0
T,k

are the subsystem
outputs and the aggregated variables associated with the inputs,
{u0
j
}
j∈M, computed via (1) and (2). Finally, �0

j
= �u0

j
for each j ∈ M.

4. The alternating direction method of multipliers

ADMM has been demonstrated as a powerful algorithm for solv-
ing large-scale structured convex optimization problems [29]. The
problems successfully solved by ADMM includes a range of OCPs
arising in MPC  applications [30–32]. In this section, we  present a
distributed ADMM scheme for solving the OCP (10) that exploits
the block-angular structure of (10). We  refer to [29] for details and
proofs related to ADDM.

To solve (10) via ADMM,  we first introduce the auxiliary vari-
ables vj ∈ R

4NnyT for j = 1, 2, . . .,  M and vM+1 ∈ R
4N , and write the

OCP as

min
z,v

  =
∑

j∈M

cTj zj,

s.t. Gjzj≥gj, j ∈ M,

Hjzj = vj, j ∈ M,
∑

j∈M

vj≥h,

Using indicator functions, this problem can be stated in the
standard ADMM form

min
z,v

  =
∑

j∈M

(
cTj zj + IZj (zj)

)
+ IV(v), (18a)

s.t. Hjzj = vj, j ∈ M (18b)

where Zj =
{
zj|Gjzj≥gj

}
, V =

{
v|
∑

j∈Mvj≥h
}

, and IA is the indicator
function of a set A  defined as

IA(x) =
{

0 if x ∈ A,

∞ otherwise.

For the problem (18), the ADMM recursions described in [29]
becomes

zi+1
j
= argmin

zj∈Zj
cTj zj +

�

2
||Hjzj − vij + uij||

2

2
, j ∈ M, (19a)

vi+1 = argmin
v∈V

�

2

∑

j∈M

||Hjzi+1
j
− vj + uij||

2

2
, (19b)

ui+1
j
= uij + Hjz

i+1
j
− vi+1

j
, j ∈ M, (19c)

where ui is a scaled dual variable.
The update of zj, (19a), thus consists of solving the constrained

quadratic program

min
zj

�

2
zTj H

T
j Hjzj + (cj + �(−vij + uij)

T
Hj)

T
zj, (20a)

s.t. Gjzj≥gj (20b)

for each j ∈ M.
The update for v, (19b), yields the explicit solution

vi+1
j
= Hjz

i+1
j
+ uij + max(l/(M + 1),  0),  j ∈ M,
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Algorithm 2. ADMM algorithm for the solution of (10)
Require: (�, ˛, imax, �P , �D), (v0, u0), (�P , �D)

i  = 0, converged = false

while converged = false and i < imax do
UPDATE VARIABLES

for j ∈ M do

zi+1
j
= argmin

zj∈Zj
cT
j
zj + �

2 ||Hjzj − vi
j
+ ui

j
||2

2

end for
l = h −

∑
j∈M˛Hjz

i+1 − (1 − ˛)(−vi
j
) + ui

j

for j ∈ M do
vi+1
j
= ˛Hjzi+1 − (1 − ˛)(−vi

j
) + ui

j
+ max(l/(M + 1),  0)

ui+1
j
= ui

j
+ ˛Hjzi+1 − (1 − ˛)(−vi

j
) − vi+1

j

end for
COMPUTE RESIDUALS

for j ∈ M do
ri+1
j
= �Hjz

i+1
j
− vi+1

j

si+1
j
= −�HT

j
(vi+1 − vi)

end for
CHECK IF CONVERGED

if  ||ri+1||2 ≤ �P and ||si+1||2 ≤ �D then
converged = true

end if
i ← i + 1

end while

where l = h −
∑

j∈MHjz
i+1
j
+ ui

j
. Each subsystem can thus perform

its own update of zj. Having computed l with a contribution from
all the subsystems, vj and uj can be determined individually as well.

Algorithm 2 provides an overview of the ADMM steps described
above. Under mild assumptions, the ADMM algorithm converges
with a linear convergence rate to the optimal solution of the OCP
[29,40]. Note that we have replaced Hjz

i+1
j

with ˛Hjz
i+1 − (1 −

˛)(−vi
j
) in the recursions for vj and uj. As described in [29,41] such a

relaxation often speeds up convergence. The relaxation parameter
 ̨∈ [0, 2] is tuned to the particular application.

To detect an optimal solution in Algorithm 2, we have adopted
the stopping criteria proposed in [29]. For the specific problem
formulation (18), these criteria can be written as

||ri||2 ≤ �p, ||si||2 ≤ �d,

in which

si+1
j
= −�HTj (vi+1 − vi), ri+1

j
= �Hjz

i+1
j
− vi+1

j
,

measure the primal and dual residual. These stopping criteria may
be extended to include a relative measure as well [29].

As for the Dantzig–Wolfe decomposition algorithm, a warm
start for Algorithm 2 can be constructed by shifting the closed-
loop solution values, v∗ and u*, forward in time. If such a solution
is not available, the standard cold-starting point (v0, u0) = (0, 0) is
used. We  remark that in comparison to the Dantzig–Wolfe decom-
position algorithm, the initial point does not need to be feasible.
Moreover, the extensions of Algorithm 2 are not restricted only
to linear programming [30–32]. One could consider more general
regularization terms in (4), e.g. �2-regularization terms.

Remark 7. The optimization problem (20) is an OCP with a
quadratic cost function and linear constraints. Efficient algo-
rithms for such structured QPs include active-set methods [42–44],
interior-point methods [10,45–50] and first-order methods [49,51].

5. Smart energy systems case study

To handle the volatile and unpredictable power generation asso-
ciated with technologies such as wind, solar and wave power,
energy systems management has emerged as a promising appli-
cation area for EMPC. In EMPC of energy systems, the power

Fig. 3. EMPC diagram for the Dantzig–Wolfe decomposition algorithm for a dynamic
multi-plant system with linking constraints.

production planning is handled in real-time by computing an
optimal production plan based on the most recent information
available such as forecasts of energy prices, wind power production,
and district heating consumption [52–57].

In this section we  use a conceptual energy systems manage-
ment case study to test a MATLAB implementation of Algorithm 1,
DWempc, and a MATLAB implementation of Algorithm 2, ADMMempc.
The energy system considered, consists of a collection of power
generating units in the form

Yj(s) = 1

(�js + 1)3
(Uj(s) + Dj(s)) + Ej(s), j ∈ M, (21)

where Dj(s) is the process noise, Ej(s) is the measurement noise,
Uj(s) is the input (power production setpoint) to the jth power
unit and Yj(s) is its power production. The third order model,
(21), has been validated against actual measurement data in [58].
This system is a dynamic multi-plant system. Fig. 3 illustrates the
Dantzig–Wolfe decomposition algorithm for a dynamic multi-plant
system.

To represent different types of power generating units, we vary
the time constants, �j; values in the range 40–80 are associated with
slow units such as centralized thermal power plants, while values
in the range 20–40 represent units with faster dynamics such as
diesel generators and gas turbines.

In the case study, the controller must compute the most cost-
efficient feasible power setpoint for each power generating unit
such that the total power production satisfies the time varying
power demand.

The total power produced by the M generating units is

YT (s) =
M∑

j=1

1

(�js + 1)3
(Uj(s) + Dj(s)). (22)

Using a discrete state space representation, (21) and (22) may  be
expressed as

xj,k+1 = Ajxj,k + Bjuj,k + Ejdj,k, j ∈ M, (23a)

yj,k = Cjxj,k + ej,k, j ∈ M, (23b)

yT,k =
∑

j∈M
Cjxj,k, (23c)

In the resulting model structure, uj,k ∈ R  is the unit input (power
setpoint), yj,k ∈ R  is the unit power production, and yT,k ∈ R  is
the total power production. We  assume that xj,0∼N(x̂j,0, Pj,0),
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dj,k∼ N(0, Rj,d), and that ej,k∼ N(0, Rj,e). By employing the Kalman
filter, the separation principle, and the certainty equivalence prin-
ciple, the OCP in EMPC for (23) can be stated in the form (3) with
� j = 1 for all j ∈ M, see e.g. [38].

5.1. Suboptimality measure

The Dantzig–Wolfe decomposition algorithm and the ADMM
algorithm satisfy the subsystem constraints (10b) in every itera-
tion. Therefore, a set of feasible but not necessarily optimal inputs,
{ûj}Mj=1, is available for the power generating units at each iteration
of the algorithms. Consequently, the algorithms may  be terminated
early and still provide a feasible suboptimal solution. Using (9), we
can compute the cost associated with the suboptimal inputs as

 ̂ = qT �̂ +
∑

j∈M
pTj ûj + rTj �̂j + wTj �̂,

where �̂, �̂j and �̂j are completely determined by ûj . Based on  ̂ and
the optimal value  *, we define the level of suboptimality as

ω = 100
 ̂ −  ∗

max(| ∗|, 1)
.  (24)

This definition of suboptimality provides a quality measure of the
current available inputs.

Remark 8. In Dantzig–Wolfe decomposition, the solution to the
restricted master problem, (12) with P replaced by P̃ ⊂ P, pro-
vides an upper bound on the optimal objective value. Moreover,
a lower bound can be determined without much extra work via
the Lagrangian relaxation techniques described in [59]. Therefore,
a bound on (24) can be computed in each iteration of Algorithm 1.

5.2. Simulation parameters

In the simulations presented below, the control and predic-
tion horizon is N = 60 time steps, and a sampling time of Ts = 5 s
is used. Each generating unit is represented by a system in the
form (21) with a time constant, �j, sampled from the uniform dis-
tribution over the interval [20, 80]. For simplicity, it is assumed
that dj,k∼ N(0, (10�)2I), ej,k∼ N(0, �2I), and that full initial state
information is given such that xj,0∼ (0, 0).

The power generating unit input price is pj,k = 1/�j. This implies
that fast units are more expensive to use than slow units. The
conflict between response time and operating costs represents a
common situation in the power industry: Large thermal power
plants often produce a majority of the electricity, while the use
of units with faster dynamics such as diesel generators and gas
turbines are limited to critical peak periods.

We define the input limits and the input rate limits as

(uj,k, uj,k, �uj,k, �uj,k) = (0,  8/M,  −M/4, M/4).

In this way, the possible contribution from each unit to the overall
power production diminishes as the number of units is increased.
Local output constraints in the form (3i) and (3j) are not present.
The local output variables, yj,k, and the local slack variables, � j,k, are
thus excluded from the optimization problem.

The penalty for not satisfying the electricity demand (3k) is
fixed to �k = 10. For ADMMmpc, we use the algorithm parameters
� = 1 and  ̨ = 1.8. These parameters have been carefully tuned to
this particular application. The tolerance parameter for DWempc is
set to ε = 1e − 4. ADMMmpc uses the following primal and dual tol-
erance specification: �P = �D = 1e − 2. Both DWempc and ADMMempc
use CPLEX for solving the subproblems. Although the subproblems
are solved sequentially, we refer to their effective CPU time in this
paper, assuming that the subproblems are solved in parallel. The

Table 1
Case study simulation and controller parameters.

� i pk uk uk �uk �uk

Generating Unit 1 65 1/65 0 4 −1 1
Generating Unit 2 75 1/75 0 4 −1 1

reason for this is to report the full potential of the distributed opti-
mization algorithms.

5.3. Closed-loop simulations

We  first consider an example with M = 2 power generating units.
Table 1 lists the system and controller parameters.

Fig. 4 illustrates closed-loop simulations for different values of
the noise parameter, �, and the regularization weights, w = wj,k.
As indicated in Fig. 4(b), the closed-loop input variance increases
significantly if no penalty is imposed on the input rate. This hap-
pens even for small values of the noise parameter. By assigning a
penalty to the input-rate, the solution becomes more well-behaved
and better suited for practical applications. Table 2 shows that
the addition of regularization also reduces the computing time for
DWempc as well as for ADMMempc.  E.g. for scenario s6, corresponding
to � = 0.01 and w = 0.1, the average number of iterations performed
by DWempc is reduced by more than 40% compared to the case with-
out regularization, i.e. the case with w = 0. Also observe that while
warm-start only leads to a marginal improvement in the itera-
tion count for DWempc, a substantial reduction in the number of
iterations is achieved for ADMMempc.

Fig. 5 shows the level of suboptimality, ω, computed via (24), for
scenario s5 when the run time of DWempc and ADMMempc is limited
to 0.01 s.

We  observe that DWempc is up to approximately 30% suboptimal
when cold-started, and not more than 5% suboptimal when warm-
started. Hence, although the number of iterations only decreases
slightly when DWempc is warm-started, the quality of the solu-
tion obtained after terminating early improves significantly. By
the same token, warm-start reduces the level of suboptimality for
ADMMempc by several orders of magnitude.

Provided that the number of iterations is small, the effort per
iteration is approximately equal for DWempc and ADMMempc.  Table 2
reports that ADMMempc requires many more iterations than DWempc.
Accordingly, we  expect DWempc to provide a more accurate solu-
tion than ADMMempc within the same time frame. This is confirmed
by Fig. 5. Note however, that the computing time per iteration is
constant for ADMMempc,  while each iteration of DWempc requires
an increasing work-load since extreme points are added to the
restricted master problem on the fly. Nonetheless, in all our simu-
lations DWempc outperforms ADMMempc by a significant margin.

Fig. 6 depicts the level of suboptimality as a function of the CPU
time for DWempc and ADMMempc.  A single instance of the OCP with
128 generating units is solved.

Table 2
Iteration information table for the closed-loop simulation scenarios depicted in
Fig. 4. The minimum, maximum and average number of iterations is listed for both
cold start and for warm start (in parentheses).

� w DWempc ADMMempc

s1 0 0 [6(2), 16(17), 12(11)] [47(2), 485(410), 097(66)]
s2 0 0.01 [6(2), 15(18), 10(09)] [35(3), 469(410), 088(56)]
s3 0 0.1 [5(2), 15(17), 07(07)] [33(6), 359(280), 149(48)]
s4 0.01 0 [7(2), 18(19), 13(11)] [47(2), 485(410), 094(65)]
s5 0.01 0.01 [6(2), 17(17), 10(09)] [35(2), 469(410), 088(58)]
s6 0.01 0.1 [5(2), 13(16), 07(06)] [32(6), 380(290), 145(50)]
s7 0.1 0 [7(2), 17(20), 12(11)] [46(2), 485(410), 091(66)]
s8 0.1 0.01 [6(2), 17(16), 09(09)] [35(2), 469(410), 084(60)]
s9 0.1 0.1 [5(2), 14(14), 07(06)] [32(6), 359(279), 144(47)]
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Fig. 4. Closed-loop simulations of the system (23) controlled by EMPC. The OCP (3) representing the EMPC is solved to a specified tolerance using CPLEX. The figures illustrate
the  total output and the inputs for different values of the noise parameter, �, and the regularization weights, w. The effect of the regularization is most clearly observed in
the  inputs. At the expense of slightly less tight control on the total power output, the inputs become less volatile when the regularization weight is increased.

Fig. 5. Suboptimality level of the closed-loop solution obtained by DWempc and
ADMMempc when terminated after 0.01 s.

Initially, ADMMempc finds the best solution. The quality of this
solution is however far from optimal, making it economically very
inefficient. For DWempc, fast convergence is observed after 0.2 s, and
at 0.3 s a solution which is less than 1% suboptimal is found. More-
over, while DWempc keeps improving until a highly accurate solution
is found, ADMMempc suffers from a much slower convergence rate.
Only after 10 s is a solution with a suboptimality level of 1% found
by this algorithm.

5.4. Large-scale simulations

We compare the performance of the algorithms presented in
this paper to the performance of Gurobi, CPLEX and MOSEK.  These
state-of-the-art linear programming solvers are invoked via a

Fig. 6. Level of suboptimality as a function of the CPU time, for a single instance of
the  OCP with 128 generating units.
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Table 3
Tolerance specifications for DWempc and ADMMempc.

Accuracy ε �P �D

High (h) 1e−6 1e−4 1e−4
Medium (m) 1e−5 1e−3 1e−3
Low  (l) 1e−4 1e−2 1e−2

MEX  interface in MATLAB. We  use their default tolerance settings.
The algorithms are run on an Intel(R) Core(TM) i7-4770K CPU @
3.50 GHz with 16 GB RAM running a 64-bit Windows 8.1 Pro oper-
ating system. For each solver, the computation time of solving the
OCP (3) is reported as a function of the number of generating units.
Table 3 lists the different accuracy settings used by DWempc and
ADMMempc in our benchmarks.

Fig. 7 and Table 4 report the CPU time of solving the OCP for
different number of generating units and optimization algorithms.
For large problems, ADMMempc does not converge to high accuracy
solutions within a reasonable amount of time. Therefore, Table 4 is
incomplete.

For large problems, DWempc is faster than all other solvers tested
in our case study. Observe also that Gurobi, CPLEX and MOSEK
perform almost as well as DWempc in terms of CPU time. For high
accuracy solutions, DWempc is 2 times faster than CPLEX and 5 times
faster than Gurobi. DWempc and ADMMempc can easily accommodate
very large problems in memory while Gurobi, CPLEX and MOSEK fail
due to insufficient memory. The threshold when memory becomes
an issue is around M = 3000 generating units. Consequently, when
considering both CPU time and memory requirements, DWempc is

Fig. 7. CPU time for the different solvers as a function of the number of power
generating units, M.

an attractive optimization algorithm for large scale dynamically
decoupled energy management problems.

Note from Fig. 6 that ADMMempc needs many more iterations to
converge than DWempc for the high accuracy tolerance specification,
(h). Table 5 further shows that the number of iterations increases
with the problem size for ADMMempc.  Therefore, ADMMempc is less
attractive from a scalability point of view. Apparently, the number
of iterations used by DWempc does not depend on the number of
generating units, M.

Table 6 lists the suboptimality level of the solution determined
by DWempc and ADMMempc for different values of M.  As observed from
Table 6, DWempc is not only faster than ADMMempc for the tolerance
specifications listed in Table 3, but the solution accuracy is also
significantly better.

Table 4
CPU time for solving (3) with an increasing number of generating units, M.

solver/M 16 32 64 128 256 512 1024 2048

Gurobi 1.16e−1 2.93e−1 8.22e−1 1.85 3.94 9.76 2.49e1 5.00e1
CPLEX 1.73e−1 3.49e−1 1.86 9.54e−1 1.83 4.02 8.28 1.83e1
MOSEK 1.60e−1 4.14e−1 8.66e−1 2.23 3.59 7.96 2.19e1 4.54e1
DWempc(l) 4.70e−2 6.25e−2 9.04e−2 1.83e−1 2.94e−1 6.78e−1 1.22 3.54
DWempc(m) 4.95e−2 7.20e−2 1.54e−1 2.61e−1 4.59e−1 1.28 2.78 5.20
DWempc(h) 6.48e−2 9.48e−2 2.03e−1 3.58e−1 6.74e−1 1.80 4.91 9.61
ADMMempc(l) 9.13e−1 1.65 3.38 4.50 6.44 1.16e1 2.32e1 5.70e1
ADMMempc(m) 1.76 3.06 4.28 1.03e1 2.45e1 7.76e1 2.58e2 –
ADMMempc(h) 8.49 7.88e1 5.59e2 – – – – –

Table 5
The number of iterations performed by DWempc and ADMMempc in solving (3) for an increasing number of generating units, M.

solver/M 16 32 64 128 256 512 1024 2048

DWempc(l) 9 8 7 7 6 6 5 5
DWempc(m) 10 9 10 9 8 9 8 6
DWempc(h) 12 12 11 12 11 10 11 11
ADMMempc(l) 93 157 303 352 395 436 530 615
ADMMempc(m) 178 286 370 705 1,284 2,520 4,994 –
ADMMempc(h) 865 7,468 50,000 – – – – –

Table 6
Suboptimality level of DWempc and ADMMempc in the solution of (3) for an increasing number of generating units, M.

solver/M 16 32 64 128 256 512 1024 2048

DWempc(l) 2.08e−2 1.67e−2 1.53e−1 1.86e−1 9.65e−1 9.44e−1 3.18 3.13
DWempc(m) 1.66e−5 3.87e−3 7.40e−3 1.94e−2 4.74e−2 5.29e−2 1.63e−1 9.37e−1
DWempc(h) −2.46e−10 −1.13e−9 6.46e−6 1.98e−4 7.55e−4 1.06e−3 2.32e−3 4.82e−2
ADMMempc(l) 4.58e−1 6.65e−1 7.92e1 2.09e2 2.84e2 5.50e2 8.13e2 1.33e3
ADMMempc(m) 8.16e−2 8.36e−2 9.97 1.38e−1 1.53e1 6.62e−1 6.96 –
ADMMempc(h) 1.87e−1 1.86e−2 3.36e−5 – – – – –
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6. Conclusions

In this paper, we developed and presented a warm-started pos-
sibly early terminated Dantzig–Wolfe decomposition algorithm
for �1-regularized linear EMPC of dynamically decoupled sub-
systems. Simulations show that a MATLAB implementation of
the proposed algorithm, denoted DWempc, is faster than CPLEX,
Gurobi and MOSEK,  as well as a special-purpose implementation
of ADMM denoted ADMMempc.  Both DWempc and ADMMempc have
similar parallelization capabilities. They are able to handle much
larger problems than the general purpose solvers. The simulations
also demonstrate that in combination with warm-start, early ter-
mination of DWempc yields a highly accurate solution after only a
few iterations. In contrast to ADMMempc,  the number of iterations
required by DWempc to achieve a certain tolerance level does not
grow with the problem size.

For cases when the number of DWempc iterations is large, DWempc
may  be slower than ADMMempc.  The reason is that the comput-
ing time per iteration of DWempc grows with the iteration number.
Conversely, the time spent per iteration by ADMMempc is constant.
Although this is a potential drawback of the Dantzig–Wolfe decom-
position algorithm that favors the ADMM algorithm, we have not
observed this being the case in any of our simulations. In all our sim-
ulations, DWempc outperforms ADMMempc;  in some cases by several
orders of magnitude.
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A Mean-Variance Criterion for Economic Model Predictive Control of
Stochastic Linear Systems

Leo Emil Sokoler, Bernd Dammann, Henrik Madsen and John Bagterp Jørgensen

Abstract— Stochastic linear systems arise in a large number
of control applications. This paper presents a mean-variance
criterion for economic model predictive control (EMPC) of
such systems. The system operating cost and its variance is
approximated based on a Monte-Carlo approach. Using convex
relaxation, the tractability of the resulting optimal control
problem is addressed. We use a power management case study
to compare different variations of the mean-variance strategy
with EMPC based on the certainty equivalence principle. The
certainty equivalence strategy is much more computationally
efficient than the mean-variance strategies, but it does not
account for the variance of the uncertain parameters. Open-
loop simulations suggest that a single-stage mean-variance
approach yields a significantly lower operating cost than the
certainty equivalence strategy. In closed-loop, the single-stage
formulation is overly conservative, which results in a high
operating cost. For this case, a two-stage extension of the
mean-variance approach provides the best trade-off between
the expected cost and its variance. It is demonstrated that
by using a constraint back-off technique in the specific case
study, certainty equivalence EMPC can be modified to perform
almost as well as the two-stage mean-variance formulation.
Nevertheless, we argue that the mean-variance approach can
be used both as a strategy for evaluating less computational
demanding methods such as the certainty equivalence method,
and as an individual control strategy when heuristics such as
constraint back-off do not perform well.

I. INTRODUCTION

Model predictive control (MPC) is a class of algorithms
for control of dynamic systems. Due to its ability to handle
multiple-input multiple-output (MIMO) systems and con-
straints in a straightforward and transparent way, MPC has
become the leading advanced control methodology in a
number of industries [1]–[3]. The basic idea of MPC is
to optimize the predicted behavior of a dynamic model
over a finite horizon. At each sampling instant, an optimal
control problem (OCP) is solved to obtain an open-loop input
trajectory. The first input in the trajectory is then applied to
the controlled system, and the procedure is repeated at the
following sampling instant. This way, the MPC control strat-
egy is synthesized in a closed-loop manner using feedback.

Conventionally, the OCP solved in MPC is formulated
as a convex program that penalizes deviations between the
controlled variable and a setpoint [1], [2], [4], [5]. While this
approach ensures that the setpoint is reached in a reasonable
amount of time, it does not guarantee that the transition
between setpoints is performed in an economically efficient
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2820 Gentofte, Denmark. Email: {leso, beda, hmad, jbjo}
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way. To overcome this problem, MPC has been modified to
solve OCPs with more general cost functions. In this way,
EMPC provides a systematic method for optimizing eco-
nomic performance [6]–[12]. Stability and other properties
of economic MPC (EMPC) schemes have been addressed in
[6]–[10], [13].

In EMPC, the OCP solved to obtain the open-loop input
trajectory aims to minimize the system operating cost over
a finite horizon. Due to uncertain system parameters such as
process noise, the operating cost will often be a random vari-
able. A common way of handling the uncertainty is simply
to replace the uncertain parameters with their mean values,
such that the OCP reduces to a standard deterministic form.
This approach is known as certainty equivalence EMPC (CE-
EMPC) [14], [15].

This paper shows that although CE-EMPC is attractive
from a computational point of view, disregarding the variance
of the uncertain parameters may lead to poor economic
performance. To overcome this issue, we introduce a mean-
variance based OCP that allows a specific trade-off between
the expected cost and the cost variance. The novelties of this
paper can be summarized as follows:

• A mean-variance based OCP is introduced and ex-
tended to a two-stage stochastic program. The two-stage
stochastic program accounts for the feedback structure
of MPC. We denote the resulting control strategy as
MV-EMPC(M).

• To increase computational speed, we approximate MV-
EMPC(M) using a convex relaxation of the two-stage
stochastic program. For the cost function considered in
this paper, the convex relaxation can be formulated as
a convex quadratic program. We refer to the EMPC
control strategy based on solving the convex quadratic
program as MVQP-EMPC(M).

• We provide open-loop and closed-loop simulations that
compare three special cases of MV-EMPC(M), includ-
ing a back-off based modification of CE-EMPC.

Simulations demonstrate that while MV-EMPC(M) outper-
forms CE-EMPC in open-loop, the back-off based modifi-
cation of CE-EMPC works almost as well in closed-loop.
Nevertheless, the performance of MV-EMPC(M) provides
important information that can be utilized to evaluate the per-
formance of less computational demanding control strategies.
We also emphasize that the preliminary results presented in
this paper are based on a single test system. Other examples
may show that the performance gap between MV-EMPC(M)
and CE-EMPC can be much larger.
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A. Related Work

Monte Carlo methods have previously been combined
with classical MPC in [16]–[21]. The OCPs considered by
these methods consist of standard state and input penalty
objective functions subject to probabilistic constraints. In
[21], a value-at-risk variation of the standard cost function is
suggested, and [22] introduces a single-stage mean-variance
criterion for EMPC of a non-linear system with uncertain
model parameters. The OCP defined in [22] is solved using
sequential quadratic programming. The method proposed in
this paper is specialized to linear systems and only requires
solving a single convex quadratic program. Also, the results
in [22] are limited to open-loop performance, while we
consider closed-loop performance as well.

B. Paper Organization

This paper is organized as follows. Section II defines the
OCPs solved in CE-EMPC and MV-EMPC(M). Section III
introduces a particular cost function and describes solution
methods to the resulting OCPs. This section also provides
a constraint back-off technique for CE-EMPC. Section IV
presents a simple power management case study that com-
pares three special cases of MV-EMPC(M), including CE-
EMPC. Concluding remarks are given in Section V.

II. PROBLEM DEFINITION

In this section, a formal definition of CE-EMPC and MV-
EMPC(M) is given. Although CE-EMPC is a special case of
MV-EMPC(M), this case is treated separately.

A. Stochastic Linear Systems

We consider stochastic linear state space systems in the
form

xk+1 = Axk +Buk +wk, (1a)
yk =Cyxk + vk, (1b)
zk =Czxk, (1c)

where (A,B,Cy,Cz) are the state space matrices, xk ∈ Rnx is
the state, uk ∈ Rnu is the input, yk ∈ Rny is the measured
output, and zk ∈ Rnz is the controlled variable. Moreover,
wk ∈ Rnx is the process noise, and vk ∈ Rny is the measure-
ment noise. We will assume that realizations of wk and vk
can be generated.

The system description (1) may be derived from realiza-
tion of input-output models such as finite impulse response
(FIR) models, autoregressive moving average exogenous
(ARMAX) models, Box-Jenkins models, and transfer func-
tion models. In addition, (1) arises from the discretization of
linear continuous differential equations.

Fig. 1 is a schematic diagram of the EMPC employed in
this paper. The EMPC controller consists of an estimator
and a regulator. The estimator estimates the current state, xk,
and the regulator determines the open-loop input trajectory,
{u∗j}k+N−1

j=k . We denote the estimate of xk by x̂k.
Remark 1: We do not discuss the problem of computing

the estimate x̂k in this paper. Note that when wk and vk are

Fig. 1. Schematic diagram of the EMPC framework.

normally distributed, the Kalman filter provides an estimate
with minimum state prediction error variance [23].

B. Cost Function

Without loss of generality, let x̄0 denote the current state.
Moreover, define Ni = {0 + i,1 + i, . . . ,N − 1 + i} with N
being the length of the prediction horizon, and introduce the
vectors

u =


u0
u1
...

uN−1

 , x =


x1
x2
...

xN

 , z =


z1
z2
...

zN

 , w =


w0
w1
...

wN−1

 ,
Also, define the cost function

ψeco(u; x̄0,w) = {φ(u,x,z)|x0 =x̄0,xk+1 = Axk +Buk +wk,

zk+1 =Czxk+1,k ∈N0},
(2)

in which φ(u,x,z) measures e.g. input costs, input rate costs,
output costs, terminal costs, tracking error costs, and costs
of violating soft output constraints. Terminal constraints may
also be included in (2) by further restricting the domain of
ψeco.

When x̄0 and w are deterministic variables, Ψeco =
ψeco(u; x̄0,w), is deterministic in u. Conversely, if w and x̄0,
are random variables, Ψeco is a random variable as well. In
this case, the distribution of Ψeco depends on u. We describe
different strategies to select u in the stochastic case. For
simplicity, the estimate, x̂0, of the initial state, x0 = x̄0, is
assumed to be perfect (the method presented in this paper
can be extended to handle the case in which x0 is uncertain
as well).

C. Certainty Equivalence Economic Model Predictive Con-
trol

In CE-EMPC, the uncertain parameters in the cost function
(2) are replaced by their mean values, i.e.

ψCE = ψeco(u; x̂0,Ew [w]). (3)

Consequently, the open-loop input trajectory in CE-EMPC
is defined as

u∗CE = argmin
u∈U

ψCE. (4)
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Note that u is restricted to the input constraint set U . A draw-
back of CE-EMPC is that in general Ew [ψeco(u; x̂0,w)] 6=
ψeco(u; x̂0,Ew [w]), i.e. the minimizer of (3), u∗CE, does not
necessarily minimize the expected cost.

Remark 2: Provided that φ(u,x,z) is a convex function
and that U is a convex set, u∗CE can often be obtained
efficiently by special-purpose optimization algorithms [24],
[25].

D. Mean-Variance Economic Model Predictive Control
As an alternative to the certainty equivalence criterion, (3),

this paper considers a mean-variance trade-off criterion. The
criterion is formulated as

ψMV = λEw [Ψeco]+ (1−λ )Varw [Ψeco] , (5)

where λ is a risk aversion parameter that controls the trade-
off between the expected system operating cost and its
variance. The formulation (5) can be interpreted as a classical
Markowitz mean-variance optimization approach [26], [27].

Closed form expressions for the mean, Ew [Ψeco], and the
variance, Varw [Ψeco], are generally not available. To evaluate
(5), we therefore introduce the sample estimates

Ew [Ψeco]≈ µ =
1
S ∑

i∈S
ψeco(u; x̂0,wi), (6a)

Varw [Ψeco]≈ s2 = 1
S−1 ∑

i∈S

(
ψeco(u; x̂0,wi)−µ

)2
, (6b)

where {wi}S
i=1 is a set of samples from the distribution of w

and S = {1,2, . . . ,S}. It follows that for a sufficiently large
number of scenarios, S

ψMV ≈ λ µ +(1−λ )s2, (7)

i.e. the right hand side of (7) is a sample estimate of the
mean-variance criterion (5). With some abuse of notation, the
remainder of this paper simply denotes the sample estimate
by ψMV. Moreover, we refer to MV-EMPC as the variation
of EMPC in which

u∗MV = argmin
u∈U

ψMV, (8)

is the open-loop input trajectory. Later in this section, we
introduce MV-EMPC(M) as a two-stage generalization of
MV-EMPC.

To develop efficient algorithms for evaluating (8), it is
convenient to state u∗MV as (part of) the solution, u∗, to the
OCP

minimize
u∈U ,{xi,zi,vi}Sj=1,µ

ψMV = λ µ + λ̃ ∑
j∈S

(v j−µ)2, (9a)

subject to (xi,u,zi) ∈X (x̂0,wi), (9b)

vi = φ(u,xi,zi), (9c)

µ =
1
S ∑

j∈S
v j, (9d)

where k ∈N0, i ∈S and λ̃ = (1−λ )/(S−1). For compact
notation, we have defined

X (x̂0,w) = {(x,u,z)|x0 = x̂0,xk+1 =Axk +Buk +wk,

zk+1 =Czxk+1,k ∈N0}.

One issue with the criterion (7) is that the estimates µ and
s2 are based on open-loop performance, i.e. the formulation
(9) assumes that no recourse exists in the future. Therefore,
MV-EMPC may be overly conservative when applied in a
receding horizon manner [21]. To account for the fact that
new information becomes available at each sampling instant,
we introduce scenario dependent input variables ui ∈U for
i∈S . In addition, the constraints (9c) and (9b) are replaced
with

(xi,ui,zi) ∈X (x̂0,wi), i ∈S , (10a)

vi = φ(ui,xi,zi), i ∈S , (10b)

ui
k = u j

k, i, j ∈S , k ∈M , (10c)

where M = {0,1, . . . ,M} and M ≤ N. The constraint (10c)
states that in the first k = 0,1, . . . ,M time steps, the input
should be equal for all the scenarios. In the view of stochastic
optimization, the modification (10) can be interpreted as
extending (9) to a two-stage stochastic optimization problem
[28], [29]. At the first stage (k = 0,1, . . . ,M), we fix ui

k
over the entire set of scenarios i ∈S , i.e. “a here-and-now
decision”. At the second stage, (k = M + 1,M + 2, . . . ,N),
the inputs adapt to the scenarios. We refer to EMPC based
on the extended formulation, (10), as MV-EMPC(M). Note
that (9) corresponds to the special case M = N. The other
extreme case is MV-EMPC(1). This case assumes that the
full realization of w becomes available in the following time
step.

Remark 3: The dimensions of the OCP solved in MV-
EMPC(M), (9)-(10), grow with the number of scenarios.
From a computational point of view, CE-EMPC is therefore
less demanding than MV-EMPC(M). In particular, the OCP
solved in CE-EMPC corresponds to MV-EMPC(M) with
M = N and a single scenario (S = 1).

III. OPTIMIZATION METHODS

This section presents optimization methods for solving the
OCP (9), under the two-stage modification (10). Moreover,
a simple back-off heuristic for CE-EMPC is introduced.

A. Cost Function Example

We study the non-linear cost function

φ(u,x,z) = ∑
k∈N0

cT
k uk

+ ∑
k∈N1

qT
k ((zk− zk)++(zk− zk)+), (11)

where v+ = max{0,vi} for i = 1,2, . . . ,nv, with v ∈ Rnv

(the non-negative part of a vector). The parameter ck is the
marginal input price and qk is the marginal price for not
maintaining the controlled variable, zk, within an acceptable
operating range (zk,zk). The latter can be interpreted as soft
output constraints [30]. We assume that the input constraint
set, U , limits the input and the input-rate such that

U = {u|uk ≤ uk ≤ uk, ∆uk ≤ ∆uk ≤ ∆uk, k ∈N0}, (12)
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where ∆uk = uk− uk−1. Based on the specifications above,
the OCP solved in MV-EMPC(M), (9)-(10), may be posed
as

minimize
{ui∈U ,xi,zi,vi,ρ i≥0}Si=1,µ

ψMV = λ µ + λ̃ ∑
j∈S

(v j−µ)2, (13a)

subject to the constraints

(xi,ui,zi) ∈X (x̂0,wi), i ∈S , (13b)

vi = ∑
k∈N0

cT
k ui

k +qT
k+1ρ

i
k+1, i ∈S , (13c)

µ = 1
S ∑

j∈S
v j, (13d)

ui
k = u j

k, k ∈M , i, j ∈S , (13e)

ρ
i
k = (zk− zi

k)++(zi
k− zk)+, k ∈N1, i ∈S . (13f)

Note that we have introduced the auxiliary optimization
vectors ρ i for i∈S . The input data to the OCP, (13), are the
state space matrices (A,B,Cz), the estimate of the initial state,
x̂0, the input cost, ck, the soft output constraint violation cost,
qk, the input limits, (uk,uk), the input rate limits, (∆uk,∆uk),
the output limits, (zk,zk), and the process noise scenarios,
wi.

B. Convex Relaxation of Mean-Variance Optimal Control
Problem

The problem (13) is non-convex due to the constraint
(13f). Consider the relaxation

ρ
i
k ≥ (zk− zi

k)++(zi
k− zk)+, k ∈N1, i ∈S , (14)

which replaces a set of equality constraints by a set of
inequality constraints. We can model (14) using the linear
inequalities

zk−ρ
i
k ≤ zi

k ≤ zk +ρ
i
k, k ∈N1, i ∈S , (15a)

ρ
i
k ≥ 0, k ∈N1, i ∈S . (15b)

Appendix I shows that by using the model (15), (13) may be
expressed as a highly structured convex quadratic program.
We refer to the EMPC strategy based on solving the two-
stage OCP (13), with the relaxed model (15) as MVQP-
EMPC(M).

For λ = 1 (λ̃ = 0), the objective function, (13a), is non-
decreasing in ρ . Consequently, a solution to the relaxed
problem will always satisfy (14) with equality. When λ < 1
(λ̃ > 0) the deviation terms λ̃ (v j−µ)2 in (13a) may possibly
be reduced by increasing ρ

j
k further than the bound, (14),

for some k ∈ N1 and j ∈ S . If this can be done without
increasing λ µ by a larger amount, the solution will satisfy
(14) with strict inequality for some k ∈ N1 and j ∈ S .
Clearly this situation is likely to occur for λ = 0. As λ is
increased towards one, we expect the solution to the relaxed
problem to become a better approximation of the solution to
the original problem (13).

Remark 4: Using the same line of arguments as above,
the solution to the general problem (9) can be approximated
by solving a convex optimization problem, provided that U
is a convex set and that φ(u,x,z) is a convex function. This is

done by replacing (9c) with the relaxed constraint vi ≥ ψ i
eco

for i ∈S .

C. Constraint Back-Off Heuristic for Certainty Equivalence
Economic Model Predictive Control

With the model specifications (11) and (12), the open-
loop input trajectory associated with CE-EMPC, (4), can be
determined by solving the OCP

minimize
u∈U ,x,z,ρ≥0

ψCE = ∑
k∈N0

cT
k uk +qT

k+1ρk+1, (16a)

subject to (x,u,z) ∈X (x̂0,Ew [w]) (16b)
zk−ρk ≤ zk ≤ zk +ρk, k ∈N1, (16c)

We can regard (16) as a special case of the OCP solved in
MV-EMPC(M), (13), with M = N, S = 1, and w1 = Ew [w].
Hence, the dimension of the problem (16) is substantially
smaller than the dimension of the OCP solved in MV-
EMPC(M). Also observe that (16) is a linear program.

A disadvantage of only accounting for the scenario in
which the uncertain parameters attain their mean values, is
that the controller can become too aggressive. To avoid this
situation, we introduce constraint back-off. Let γ be a back-
off parameter, and replace the output limits in (16c) by

zBO
k = zk− γ(zk− zk)/2, zBO

k = zk− γ(zk− zk)/2,

for k ∈ N1. We interpret γ in a similar way as λ , i.e. a
risk aversion parameter that controls the trade-off between
the expected cost and the cost variance. Note that γ = 0
corresponds to the case with no back-off, while γ = 1 yields
zBO

k = zBO
k = (zk + zk)/2.

IV. SIMULATION CASE STUDY

In this section, we present a simple power management
case study. The cost function and the input constraint set
are defined as in (11) and (12). We compare the following
EMPC strategies:
• CE-EMPC: Certainty equivalence EMPC with back-off

parameter γ , see (16).
• MV-EMPC(M): Two-stage mean-variance EMPC with

risk aversion parameter λ , we test the extreme cases
M = 1 and M = N, see (13).

• MVQP-EMPC(M): The same as MV-EMPC(M), but
with the convex relaxation (14), again we test M = 1
and M = N.

Note that these strategies are all special cases of (9) (under
the modification (10)).

A. Case Study System Definition

The following system is considered

Y (s) =
1

(τs+1)3 (U(s)+W (s))+V (s), (17a)

Z(s) =
1

(τs+1)3 (U(s)+W (s)) , (17b)

where U(s) is the input, Y (s) is the measurement, Z(s) is the
controlled variable, W (s) is the process noise, and V (s) is the
measurement noise. In [31], the third order transfer function
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TABLE I
CASE STUDY CONTROLLER AND SYSTEM PARAMETERS

pk qk uk uk ∆uk ∆uk zk zk N τ

1 10 0 2 -1 1 0 1 10 8

model (17) is identified to describe the power production of
a thermal power plant.

We convert the transfer function model, (17), into a
discrete state space model of the form (1) using a sampling
time of Ts = 5 seconds. In the resulting model structure, uk
is the power reference, zk is the controlled variable, and yk
is the measured power production. The distributions of the
process and measurement noise are

wk ∼ N(0,0.1I), vk+1 ∼ N(0,0.01), k ∈N0.

Table I lists the case study system and controller parameters.
The parameters are kept constant for all k. We define the
lower and upper output limit to be zero and one. This can
be interpreted as a situation in which deviations from the
steady-state power production is allowed to be no more than
1 MW, and no less than the current production level. The
input price, pk, can be interpreted as the fuel cost, and qk can
be interpreted as the cost of buying power in the electricity
market. Finally, the initial state, x0, is a vector of all zeros.

B. Open-Loop Simulations

We consider the effect of varying the number of scenarios,
S, the risk aversion parameter, λ , and the back-off param-
eter, γ , in an open-loop situation, i.e. a simulation without
feedback. Moreover, the effect of approximating (13) using
the convex relaxation (14) is investigated. The estimated
mean operating cost and its standard deviation are denoted
µ̄ , and s̄, respectively. These values are computed using (6).
Different realizations of the process noise, w, are generated
for optimization purpose, and for computing µ̄ and s̄.

As an example, let λ = 0.5, and γ = 0.3. Fig. 2 shows
the expected cost and its 95% normal confidence interval
(µ̄ ± 1.96s̄), as a function of the number of scenarios, S,
for MV-EMPC(N) and CE-EMPC. The performance of CE-
EMPC is independent of the number of scenarios. As the
number of scenarios, S, is increased, the cost, µ̄ , and the stan-
dard deviation, s̄, associated with MV-EMPC(N) converge.
For S ≥ 1000, MV-EMPC(N) operates the system with the
same expected cost as CE-EMPC but at a reduced risk level
(smaller standard deviation). In the following simulations,
we fix S = 1000.

To observe the effect of the risk aversion parameter, λ , and
the back-off parameter, γ , we consider the mean-variance
efficient frontier [26], [27]. Fig. 3 shows a plot of µ̄ as a
function of s̄, for 1000 different values of λ and γ in the
range [0,1]. The graphs associated with MV-EMPC(N) and
MVQP-EMPC(N) coincide for most values of λ . The case
λ = 1 corresponds to the right endpoint of the two graphs.
For values of λ close to zero (small values of s̄), the relaxed
OCP solved in MVQP-EMPC(N) produces a different solu-
tion than the OCP solved in MV-EMPC(N). For example, the
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Fig. 2. Open-loop simulation: The expected cost and its 95% normal
confidence interval for MV-EMPC(N) and CE-EMPC, as a function of the
number of scenarios, S.
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Fig. 3. Open-loop simulation: The expected cost, µ̄ , as a function of the
cost standard deviation, s̄, for 1000 values of λ and γ in the range [0,1].

left endpoint (λ = 0) of the graph associated with MVQP-
EMPC(N) lies within the plotted cost interval, while the left
endpoint associated with MV-EMPC(N) lies well above this
interval. In most practical applications, these high-cost/low-
variance solutions are disregarded, since accepting a small
increase in the variance leads to a large cost reduction.

Fig. 3 also shows that the mean-variance strategies operate
the system at a reduced cost compared to CE-EMPC. For
example, given the standard deviation s̄= 0.4, a 6% decrease
in the expected cost is obtained. The right endpoint of the
graph associated with CE-EMPC corresponds to the case
when γ = 0, meaning that no constraint back-off is used. As
discussed previously, disregarding the variance may cause
the controller to become too aggressive. We observe that
the case γ = 0 results in a high-cost/high-variance situation.
Evidently, a much better mean-variance cost trade-off can be
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Fig. 4. Open-loop simulation: Comparison of the solution obtained by
solving the OCP associated with MV-EMPC(N) and its relaxation, for 1000
different values of λ .

obtained with CE-EMPC when γ > 0.
Fig. 4(a) illustrates the relative difference between the

input obtained by solving the OCP associated with MV-
EMPC(N), (13), denoted u∗MV, and the input obtained when
using the relaxed model (15), denoted u∗MVQP, as a func-
tion of λ . The values of the mean-variance criterion, (7),
associated with these open-loop input trajectories are shown
in Fig. 4(b). The relaxed problem yields a nearly optimal
solution to the original problem for most choices of λ . As
λ approaches zero, the difference between the two solutions
grow. As illustrated in Fig. 3, the values of λ for which the
solutions differ, usually have no practical interest.

Fig. 5 depicts the solution time of the OCP solved in MV-
EMPC(N), MVQP-EMPC(N) and CE-EMPC, as a function
of the number of scenarios S. The OCP associated with
MV-EMPC(N), (13), is solved using MATLABs fmincon,
whereas its relaxation based on (14) is solved via Gurobi
using the formulation derived in Appendix I. The algorithms
are run on a cluster of dual-socket Intel(R) Xeon(R) E5-2665
@ 2.40GHz servers, each equipped with 64 GB of memory,
and running Scientific Linux 6.4. Eight cores are dedicated to
solve each optimization problem. Fig. 5 shows that already
for S = 64 scenarios, the computation time of solving the
OCP associated with MV-EMPC(N), (13), is several minutes.
In contrast to this, the relaxed problem can be solved in
under 5 seconds, even for S = 1024 scenarios. This is an
important result, as EMPC requires computing the open-loop
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Fig. 5. Open-loop simulation: CPU-time for solving (13) using MATLABs
fmincon, and CPU-time for solving its convex relaxation using Gurobi, as
a function of the number of scenarios S. The figure also shows the CPU-time
of solving the linear program (16), associated with CE-EMPC.

input trajectory in real-time. For CE-EMPC, the computation
time of solving the OCP, (16), does not change with the
number of scenarios.

Remark 5: Appendix I shows that the OCP associated
with MVQP-EMPC(M) is highly structured. We therefore
expect that the computation times reported in this paper can
be reduced significantly using special purpose algorithms.
Moreover, decomposition techniques may be applied to solve
the problem more efficiently [32].

C. Closed-Loop Simulations

In the remainder of this paper we consider a closed-
loop situation, meaning that the inputs are applied in a
receding horizon manner (the OCP is solved at every time
step). To study the effect of feedback, the mean-variance
strategy, MVQP-EMPC(M), is tested for both M = 1 and
M = N. When M = 1, the OCP (13) can be viewed as a
two-stage stochastic optimization problem that accounts for
future information in an approximate manner. The closed-
loop simulation is performed over 50 time steps, and for 20
different values of λ and γ in the range [0,1]. The Kalman
filter is used for closed-loop state estimation.

We label the estimated expected cost and its standard
deviation as µ̄CL and s̄CL. These quantities are computed
based on 5000 closed-loop simulations. This implies that 50 ·
20 ·5000 = 5 million convex quadratic programs are solved.
To reduce the computation time of solving the quadratic pro-
grams, we run the closed-loop simulations in parallel using
the above mentioned high performance computing cluster.
Only the approximation, MVQP-EMPC(M), is considered in
closed loop.

Fig. 6 depicts the closed-loop mean-variance efficient
frontier for MVQP-EMPC(N), MVQP-EMPC(1) and CE-
EMPC. The figure shows that the operating cost associated
with CE-EMPC is lower than the cost of MVQP-EMPC(N)
and only slightly higher than the cost of MVQP-EMPC(1).
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Fig. 6. Closed-loop simulation: The expected cost, µ̄CL, as a function of
the cost standard deviation, s̄CL, for 20 values of λ and γ in the range [0,1].

For a given standard deviation, s̄, MVQP-EMPC(N) operates
the system at an increased expected cost compared to the
other strategies. MVQP-EMPC(N) works poorly in closed-
loop because the controller is overly conservative. The less
conservative two-stage approach, MVQP-EMPC(1), is thus
better suited for closed-loop applications. It is also important
to note that CE-EMPC performs almost as well as MVQP-
EMPC(1). This indicates that in the presence of feedback,
conventional certainty equivalence strategies may be modi-
fied to work well for stochastic systems as well. Using such
an approach reduces the computational costs significantly.
We emphasize the importance of comparing the different
methods before deciding on a particular control strategy,
since the performance gap between MVQP-EMPC(1) and
CE-EMPC may be larger in other cases than in the example
provided in this paper. The mean-variance approach can
be used both as a control strategy, and as a performance
indicator.

V. CONCLUSION

We have formulated a two-stage mean-variance based
OCP for EMPC of stochastic linear systems. This strategy
is denoted MV-EMPC(M). A cost function consisting of
input cost and cost for violating soft output constraints
was considered. For computational efficiency, a solution
to the stochastic problem was approximated by solving a
convex relaxation of the OCP. Simulations based on a power
management case study show that MV-EMPC(M) has the
potential of reducing the system operating cost compared to
CE-EMPC. By using a simple back-off heuristic, however,
the mean-variance efficient frontier of CE-EMPC and MV-
EMPC(M) becomes almost identical in closed-loop. This
may not be the case in general. Hence, MV-EMPC(M) pro-
vides both a systematic method for validating the economic
performance of more simple methods, and an independent
control strategy.

APPENDIX I
COMPACT FORMULATION OF THE RELAXED

MEAN-VARIANCE OPTIMAL CONTROL PROBLEM

We consider the problem, (13), under the relaxation, (15).
For convenience, define

z =


z1
z2
...

zN

 , z =


z1
z2
...

zN

 , u =


u0
u1
...

uN−1

 , u =


u0
u1
...

uN−1

 ,
and similarly for p and q. We also introduce the stacked
vectors z̃, ũ, ∆ũ, z̃, ũ, and ∆ũ, consisting of S copies of the
above.

The objective function, (13a), is written in the form

ψMV = λ µ + λ̃vT v+Sλ̃ µ
2−2λ̃ µ111T v,

where 111T is a vector of all ones. In a compact form, the state
space constraints, (13b), can be formulated as

Ãx+ B̃u+ w̃ = 0, z = C̃x,

where Ã = blkdiag
(
Ā, Ā, . . . , Ā

)
, and B̃ and C̃ are defined in

the same way with

Ā =


−I
A −I

. . . . . .
A −I

 , w̄i =


wi

0
wi

1
...

wi
N−1

+


Ax0
0
...
0

 , i ∈S ,

and B̄ = blkdiag(B,B, . . . ,B), C̄ = blkdiag(C,C, . . . ,C). Fi-
nally, w̃ =

[
(w̄1)T (w̄2)T · · · (w̄S)T

]T , with w̄i defined
as above.

The input limits and the input rate limits, ui ∈U , i ∈S ,
can be put in the form ũ≤ u≤ ũ and ∆ũ≤ Λ̃u≤ ∆ũ, where
Λ̃ = blkdiag(Λ,Λ, . . . ,Λ) and

Λ =


I
−I I

. . . . . .
−I I


Let p̃ = diag(p, p, . . . , p), and q̃ = diag(q,q, . . . ,q), then
(13c) and (13d) can be written as

v = p̃T u+ q̃T
ρ, µ =

1
S

111T v,

In place of (13f), we have the relaxed constraints (15), z̃−
ρ ≤ z≤ z̃+ρ and ρ ≥ 0. Finally, (13e) stating that the input
should be equal over the different scenarios up to time step
M is formulated as L̃u = 0, where

L̃ =


L −L

L −L
. . . . . .

L −L

 ,
and the matrix L is defined as L =

[
I 0

]
such that

Lui =
[
(ui

1)
T (ui

2)
T · · · (ui

M)T ]T . By aggregating the
data structures defined above into H, g, A, b, C, d, x and x,
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the optimization problem can be posed as a convex quadratic
program in the standard form

minimize
1
2

xT Hx+gT x

subject to Ax = b, Cx≤ d, x≤ x≤ x,

where x =
[
uT xT zT ρT vT µ

]T is the optimization
vector, and

H = 2



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 λ̃ I −λ̃111
0 0 0 0 −λ̃111T Sλ̃

 , g =


0
0
0
0
0
λ

 .

In addition

C =


0 0 I −I 0 0
0 0 −I −I 0 0
Λ̃ 0 0 0 0 0
−Λ̃ 0 0 0 0 0

 , d =


z̃
−z̃
∆ũ
−∆ũ

 ,
and

A =


B̃ Ã 0 0 0 0
0 C̃ −I 0 0 0
p̃T 0 0 q̃T −I 0
0 0 0 0 1

S 111T −I
L̃ 0 0 0 0 0

 , b =


−w̃
0
0
0
0

 .
The lower and upper bounds are

x =
[
ũT −∞ −∞ 0 −∞ −∞

]T
,

x =
[
ũT

∞ ∞ ∞ ∞ ∞

]T
.
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A Decomposition Algorithm for Mean-Variance Economic Model
Predictive Control of Stochastic Linear Systems

Leo Emil Sokoler, Bernd Dammann, Henrik Madsen, and John Bagterp Jørgensen

Abstract— This paper presents a decomposition algorithm for
solving the optimal control problem (OCP) that arises in Mean-
Variance Economic Model Predictive Control of stochastic
linear systems. The algorithm applies the alternating direction
method of multipliers to a reformulation of the OCP that
decomposes into small independent subproblems. We test the
decomposition algorithm using a simple power management
case study, in which the OCP is formulated as a convex
quadratic program. Simulations show that the decomposition
algorithm scales linearly in the number of uncertainty scenar-
ios. Moreover, a parallel implementation of the algorithm is
several orders of magnitude faster than state-of-the-art convex
quadratic programming algorithms, provided that the number
of uncertainty scenarios is large.

I. INTRODUCTION

Economic Model Predictive Control (EMPC) is a variation
of MPC that aims at optimizing the economic performance
of the controlled dynamic system [1]–[6]. At each sampling
instant, the current state of the system is estimated, followed
by the solution of an optimal control problem (OCP). The
solution to the OCP yields an open-loop input trajectory that
minimizes the predicted operating cost (maximizes profit)
over a finite horizon. Only the first input in the open-loop
input trajectory is applied to the controlled system, and the
procedure is repeated in the next sampling instant. This way,
a closed-loop input trajectory is synthesized using feedback.

When the controlled system is stochastic, the operating
cost is generally uncertain. The most common way to over-
come this issue is to replace random variables in the OCP
with their mean value. This approach is known as Certainty
Equivalence EMPC (CE-EMPC) [7], [8]. An advantage of
CE-EMPC is that the OCP can be expressed in a standard
deterministic form that (often) can be solved efficiently.
However, disregarding the variance of the uncertain param-
eters may be economically inefficient [9], [10].

To include information about the probabilistic distribution
of the operating cost in the OCP, [9] and [10] employ an
objective function that trades off the expected operating
cost and its variance. The cost expectation and the cost
variance are estimated via sample scenarios of the uncertain
parameters. This approach is referred to as Mean-Variance
EMPC (MV-EMPC).

One of the main challenges in MV-EMPC is that the
dimensions of the OCP solved online grow with the number

The authors are with the Department of Applied Mathematics and
Computer Science, Technical University of Denmark, DK-2800 Kgs. Lyn-
gby, Denmark. L. E. Sokoler is also affiliated with DONG Energy, DK-
2820 Gentofte, Denmark. Email: {leso, beda, hmad, jbjo}
at dtu.dk

of uncertainty scenarios. Consequently, MV-EMPC may be
intractable in real time for applications that require a large
number of scenarios to achieve a well-behaved closed-loop
performance. The novelty of this paper is an algorithm based
on the Alternating Direction Method of Multipliers (ADMM)
that decomposes the OCP arising in MV-EMPC of stochastic
linear systems into small independent subproblems that can
be solved in parallel. Each subproblem is related to a single
uncertainty scenario and has the same dimensions as the OCP
solved in CE-EMPC. Solving the subproblems in parallel
reduces the time and memory requirements of MV-EMPC
significantly.

Previously, ADMM has been combined with conventional
deterministic MPC of dynamically coupled systems [11],
[12], dynamically decoupled systems [13], as well as state
and input-constrained MPC [14]–[17], and �1-regularized
MPC [18]. To the best of the authors’ knowledge, no prior
work has applied ADMM to solve the OCP that arises
in stochastic variations of MPC. In particular, this paper
presents the first decomposition algorithm for the OCP that
occurs in MV-EMPC of stochastic linear systems.

We have organized the paper as follows. Section II pro-
vides a formal definition of MV-EMPC and demonstrates
its application to stochastic linear systems. Section III in-
troduces a decomposition algorithm based on ADMM, for
solving the OCP associated with MV-EMPC. A MATLAB
implementation of the decomposition algorithm, denoted
MVadmm, is tested in Section IV using a simple power
management case study. Section V concludes the paper.

II. MEAN-VARIANCE BASED ECONOMIC MPC

This section formalizes MV-EMPC and describes its ap-
plication to stochastic linear systems.

A. Stochastic Linear Systems

We consider stochastic linear state space systems in the
form

xk+1 = Axk +Buk +wk, (1a)
yk =Cyxk + vk, (1b)
zk =Czxk, (1c)

where (A,B,Cy,Cz) are the state space matrices, xk ∈ Rnx

is the state vector, uk ∈ Rnu is the input vector, yk ∈ Rny

is the vector of measured outputs, zk ∈ Rnz is the vector
of controlled variables, wk ∈ Rnx is the process noise vector,
and vk ∈ Rny is the vector of measurement noise. To keep the
notation simple, the remainder of this paper assumes that the
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current time step is k = 0. The estimate of the current state,
x0 = x̄0, is denoted x̂0.

B. Cost Function

Let Ni = {0 + i,1 + i, . . . ,N − 1 + i}, with N being the
length of the prediction and control horizon. Also introduce
the vectors

u =
[
uT

0 uT
1 · · · uT

N−1
]T

, x =
[
xT

1 xT
2 · · · xT

N
]T

,

and similarly define z and w. Moreover, define the cost
function

ψeco(u; x̄0,w) = {φ(u,x,z)|x0 = x̄0,

xk+1 =Axk +Buk +wk,zk+1 =Cxk+1,k ∈ N0}, (2)

which measures the cost (or negative profit) of operating the
system (1) in the following N time steps. The function φ
can, for example, include an input cost, an input rate cost,
an output cost, a tracking error cost, and a cost of violating
soft output constraints.

Generally, the initial state, x̄0, and the process noise, w,
are random variables. The system operating cost, Ψeco =
ψeco(u; x̄0,w), is therefore a random variable as well. MV-
EMPC provides a way to select u that trades off the expected
value of Ψeco and its variance.

For simplicity, it is assumed throughout this paper that
the initial state, x̄0, is known, i.e. that the current state
estimate, x̂0, is perfect. This simplifies notation considerably.
The results extend to the case with uncertain initial state in
a straightforward way.

C. Optimal Control Problem

In MV-EMPC, the OCP objective function approximates
the criterion

ψMV = λEw [Ψeco]+ (1−λ )Varw [Ψeco] , (3)

where λ ∈ [0,1] is a risk aversion parameter that determines
the trade-off between the expected cost and the cost variance
[9], [10].

Explicit expressions of the expected value, Ew [Ψeco], and
the variance, Varw [Ψeco], are usually not available. For this
reason, their sample estimates are introduced

Ew [Ψeco] ≈ μ =
1
S ∑

i∈S

ψeco(u; x̂0,wi), (4a)

Varw [Ψeco] ≈ s2 = 1
S−1 ∑

i∈S

(
ψeco(u; x̂0,wi)− μ

)2
, (4b)

where wi is sampled from the distribution of w and S =
{1,2, . . . ,S}.

Provided that the number of scenarios, S, is large, then

ψMV ≈ ψ̃MV = λ μ +(1−λ )s2. (5)

The open-loop input trajectory in MV-EMPC is defined as
the trajectory, u∗

MV ∈ U , that minimizes (5). Here U is some
input constraint set representing e.g. input limits and input-
rate limits.

For the stochastic linear system (1), u∗ = u∗
MV can be

expressed as (a part of) the solution to the OCP

minimize
u∈U ,{x j ,z j ,ψ j}S

j=1,μ
λ μ + λ̃ ∑

j∈S

(ψ j − μ)2, (6a)

subject to (xi,u,zi) ∈ X (x̂0,wi), i ∈ S , (6b)

ψ i = φ(u,xi,zi), i ∈ S , (6c)

μ =
1
S ∑

j∈S

ψ j, (6d)

where λ̃ = (1−λ )/(S −1), and

X (x̂0,w) = {(x,u,z)|x0 = x̂0,

xk+1 = Axk +Buk +wk,zk+1 =Czxk+1,k ∈ N0}. (7)

In [9], a two-stage extension of the problem (6) is introduced.
The extended problem is

minimize
{u j∈U ,x j ,z j ,ψ j}S

j=1,μ
λ μ + λ̃ ∑

j∈S

(ψ j − μ)2, (8a)

subject to

(xi,ui,zi) ∈ X (x̂0,wi), i ∈ S , (8b)

ψ i = φ(ui,xi,zi), i ∈ S , (8c)

μ =
1
S ∑

j∈S

ψ j, (8d)

ui
k = u j

k, i, j ∈ S ,k ∈ M . (8e)

where M = {0,1, . . . ,M} and M ≤ N. The formulation (8)
uses scenario-dependent input variables, ui ∈ U , to account
for the fact that recourse exists in the future, i.e. that
MV-EMPC applies the open-loop input trajectory to the
controlled system in a receding horizon manner. This results
in a less conservative controller and may reduce both cost
variance and cost expectation in closed-loop operation [9].

The OCP (8) is a convex optimization problem when U
is a convex set, and φ is an affine function. If the equality
constraint (8c) is replaced by the inequality constraint

ψ i ≥ φ(ui,xi,zi), i ∈ S , (9)

the requirement on φ can be loosened to convexity. Using
the relaxed condition (9) is attractive since it can handle a
large variety of cost functions, while preserving convexity of
the overall problem.

The solution to (8), and the solution obtained under the
relaxed condition (9), often differ only for very small values
of λ [9]. In most practical applications, these high-cost/low-
variance solutions are disregarded, since accepting a small
increase in the variance (increasing λ by a small amount)
leads to a large cost reduction [19], [20].

The remainder of this paper describes an efficient algo-
rithm for solving the problem (8) under the relaxed condition
(9). It is assumed that U is a convex set, and that φ is a
convex function.

Remark 1: We can regard the extended problem (8) as a
two-stage stochastic optimization problem. In the first stage
(k = 0,1, . . . ,M), (8e) requires that the inputs, ui

k, are equal
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in all the scenarios, i ∈ S . In the second stage (k > M),
the inputs adapt to the uncertainty scenarios, wi, assuming
that wi

k are known for k > M. Note that (6) is a special case
of (8) with M = N (no second stage). The OCP solved in
CE-EMPC is the special case of (6), in which S = 1 and
w1 = Ew [w].

III. DECOMPOSITION ALGORITHM

In this section, we present an ADMM-based decomposi-
tion algorithm for solving the OCP (8) under the relaxed
condition (9). The algorithm is first presented in a general
ADMM form, which is thereafter specialized to the specific
problem structure. It is outside the scope of this paper to give
a detailed description of ADMM. For details and proofs, we
therefore refer to [21]–[23].

A. Variable Splitting

In a compact form (8), under the condition (9), may be
written as

minimize
u∈Ũ ,x,z,ψ,μ

λ μ + λ̃ψT ψ +Sλ̃ μ2 −2λ̃ μ111T ψ, (10a)

subject to Ãx+ B̃u+ w̃ = 0, (10b)

z = C̃x (10c)

ψ ≥ φ̃(u,x,z), (10d)

μ = 111T ψ/S (10e)
L̃u = 0, (10f)

where we have used the data structures defined in Appendix
I.

We transform the optimization problem (10), into the
following ADMM form

minimize
y1,y2

f1(y1)+ f2(y2), (11a)

subject to M1y1 +M2y2 = 0, (11b)

where the optimization variables are

y1 =
[
ǔT xT zT ψ̌T μ̌

]T
, (12a)

y2 =
[
uT ψT μT ]T

. (12b)

Problem (10) is thus split into two different parts. The
auxiliary variables μ̌ , ǔ and ψ̌ , are introduced to formulate
each part of the optimization problem in a way that allows
exploitation of the problem structure in an efficient way.

The problem data in (11) are

g =
[
0 0 0 0 λ

]T
,H =

⎡
⎣

0 0 0
0 λ̃ I −λ̃111T

0 −λ̃111 Sλ̃

⎤
⎦ , (13)

and

M1 =

⎡
⎢⎢⎣

0 0 0 0 1
0 0 0 0 1
I 0 0 0 0
0 0 0 I 0

⎤
⎥⎥⎦ ,M2 =

⎡
⎢⎢⎣

0 − 1T

S 0
0 0 −1
−I 0 0
0 −I 0

⎤
⎥⎥⎦ . (14)

In (13)-(14), 111 is a vector of all ones. The functions f1 and
f2 are convex, with

f1(y1) = gT y1 + IY1(y1), (15a)

f2(y2) = yT
2 Hy2 + IY2(y2), (15b)

where IA is the indicator function of a set A, and

Y1 = {y1|Ãx+ B̃ǔ+ w̃ = 0, z = C̃x, ψ̌ ≥ φ̃(ǔ,x,z)}, (16a)
Y2 = {y2|L̃u = 0}. (16b)

B. Recursion Formulas

The Lagrangian of (11) is

L (y1,y2,ζ ) = f1(y1)+ f2(y2)+ζ T (M1y1 +M2y2), (17)

where ζ is a vector of Lagrange multipliers (dual variables)
associated with the constraint (11b).

A stationary point of the Lagrangian, (y∗
1,y

∗
2,ζ

∗), satisfies

0 ∈ ∂y1L (y∗
1,y

∗
2,ζ

∗) = ∂ f1(y∗
1)+MT

1 ζ ∗, (18a)

0 ∈ ∂y2L (y∗
1,y

∗
2,ζ

∗) = ∂ f2(y∗
2)+MT

2 ζ ∗, (18b)

where ∂ is the subdifferential operator. Hence, the necessary
and sufficient optimality conditions of (11) may be stated as
the primal feasibility condition, M1y1 +M2y2 = 0, and the
stationarity condition (18).

In ADMM, a point satisfying the optimality conditions for
(11), is obtained via the recursions

y1( j+1) = argmin
y1

Lρ(y1,y2( j),ζ ( j))

= argmin
y1

f1(y1)+
ρ
2 ‖M1y1 +M2y2( j)+η( j)‖2

2, (19a)

y2( j+1) = argmin
y2

Lρ(y1( j+1),y2,ζ ( j))

= argmin
y2

f2(y2)+
ρ
2 ‖M1y1( j+1)+M2y2 +η( j)‖2

2, (19b)

η( j+1) = η( j)+(M1y1( j+1)+M2y2( j+1)), (19c)

in which Lρ(y1,y2,ζ ) = L (y1,y2,ζ ) + ρ
2 ‖M1y1 +M2y2‖2

2
is the augmented Lagrangian, with penalty parameter ρ >
0. Note that j indicates the iteration number. The final
expressions in (19) are written in terms of the scaled dual
variable η = 1

ρ ζ . This is done to achieve a more compact
notation.

A stopping criterion for an algorithm based on (19) is

‖M1y1( j)+M2y2( j)‖2 ≤ εP, (20a)

ρ
∥∥MT

1 M2(y2( j+1)− y2( j))
∥∥

2 ≤ εD. (20b)

where εP and εD are small user defined tolerance levels. The
conditions (20) test for primal and dual feasibility (in an ab-
solute sense) of the updated values in (19). Accordingly, the
algorithm can be stopped when the necessary and sufficient
optimality conditions for (11) are satisfied with a certain level
of accuracy.

Remark 2: To speed up convergence of the ADMM re-
cursions (19), M1y1( j + 1) can be replaced by αM1y1( j +
1)− (1−α)M2y2( j), in the recursions for y2, (19b), and η ,
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(19c), where α ∈ [0,2] is a relaxation parameter [22], [24].
Adaptive updating strategies for the penalty parameter, ρ ,
are proposed in [25], [26]. We also remark that it is often
convenient to extend the stopping criterions (20), to include
a relative optimality measure [22].

C. Problem Structure

The following results provide an efficient way to exploit
the problem structure (13)-(14), in an implementation of the
ADMM recursions (19).

We write the scaled dual variable η , as

η =
[
ηT

1 ηT
2 ηT

3 ηT
4
]T

,

such that each of its components are associated with a
particular set of constraints in (11b); η1 is associated with the
constraint μ̌ = 111T ψ/S, η2 is associated with the constraint
μ̌ = μ , η3 is associated with the constraint ǔ = u, and η4 is
associated with the constraint ψ̌ = ψ . The dual variables η3
and η4, are further split into the components

η3 =
[
(η1

3 )
T (η2

3 )
T . . . (ηS

3 )
T
]T

,

η4 =
[
(η1

4 )
T (η2

4 )
T . . . (ηS

4 )
T
]T

,

where η i
3 and η i

4 are associated with the constraints ǔi = ui

and ψ̌ i = ψ i, respectively.
Proposition 1 shows that the update of y1 = (ǔ,x,z, ψ̌, μ̌),

(19a), can be performed by solving S small independent
optimization problems. The number of constraints and the
number of variables in each subproblem is reduced by a
factor of S, compared to a naive approach that handles the
y1-update in a centralized manner. Proposition 2 states that
the update of y2 = (u,ψ,μ), (19b), can be split into an
optimization problem in u, and an optimization problem in
(ψ,μ). Proposition 3 and Proposition 4 demonstrate that both
problems have simple closed form solutions.

Proposition 1: The ADMM update of y1 = (ǔ,x,z, ψ̌, μ̌),
(19a), can be performed by, for each i ∈ S , solving the
subproblem

minimize
ǔi∈U ,xi,zi,ψ̌ i

1
2 ((ǔ

i)T ǔi +(ψ̌ i)T ψ̌ i)+(mi
3)

T ǔi +mi
4ψ̌ i (21a)

subject to

Āxi + B̄ǔi + w̄i = 0,zi = C̃xi, (21b)

ψ̌ i ≥ φ(ǔi,xi,zi), (21c)

and computation of

μ̌∗ = − 1
2ρ ((m1 +m2)ρ +λ ), (22)

where

m =

⎡
⎢⎢⎣

m1
m2
m3
m4

⎤
⎥⎥⎦= M2y2( j)+η( j) =

⎡
⎢⎢⎣

111T ψ( j)
−μ( j)
−u( j)
−ψ( j)

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

η1( j)
η2( j)
η3( j)
η4( j)

⎤
⎥⎥⎦ ,

with mi
3 = −ui( j)+η i

3( j) and mi
4 = −ψ i( j)+η i

4( j).

Proof: The update of y1, (19a), may be expressed as
the solution to the optimization problem

minimize
y1∈Y1

gT y1 +
ρ
2 ‖M1y1 +m‖2

2, (23)

which follows directly from the definition of f1, (15a). Using
the fact that Ã, B̃ and C̃, are block diagonal (see Appendix
I), and the definition of φ̃ , (42), y1 ∈ Y1 can be stated as
(21b)-(21c), for each i ∈ S . Inserting the expressions of g,
M1, (13)-(14), and y1, (12a), in the objective function of (23),
gives

gT y1 +
ρ
2 ‖M1y1 +m‖2

2 =λ μ̌ + ρ
2 ((y

T
1 MT

1 +2mT )M1y1)+d

= Θ+ρμ̌2 +((m1 +m2)ρ +λ )μ̌ +d, (24)

where d represents a constant term, and Θ is the sum

Θ = ρ
2 ∑

i∈S

[
(ǔi)T ǔi +(ψ̌ i)T ψ̌ i +2((mi

3)
T ǔi +(mi

4)
T ψ̌ i)

]
.

The constant term d can be left out of (23), as it does not
change the optimal solution to the optimization problem. The
variable μ̌ is unconstrained, and independent of all other
variables in (24). Setting the derivative of (24) with respect
to μ̌ equal to zero, and solving for μ̌ , gives the optimal
value (22). For fixed, μ̌ = μ̌∗, (24) is separable in i ∈ S .
As both the constraints and the objective function of (23)
are separable in the uncertainty scenarios, the problem can
be decomposed into S independent subproblems in the form
(21).

Proposition 2: The ADMM update of y2 = (u,ψ,μ),
(19b), may be split into the constrained minimization prob-
lem in u

minimize
u∈{u|L̃u=0}

1
2

ρuT u−ρnT
3 u, (25)

and the unconstrained minimization problem in (ψ,μ)

minimize
ψ,μ

ψT ϒψ +ωμ2 −2λ̃111T μψ −ρn2μ, (26)

where ϒ = λ̃ I + 1
2 ρ((1/S2)111111T + I), ω = Sλ̃ + 1

2 ρ , δ =
1
2 ρ(−2/Sn1111−2n4), and

n =

⎡
⎢⎢⎣

n1
n2
n3
n4

⎤
⎥⎥⎦= M1y1( j+1)+η( j) =

⎡
⎢⎢⎣

μ̌( j+1)
μ̌( j+1)
ǔ( j+1)
ψ̌( j+1)

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

η1( j)
η2( j)
η3( j)
η4( j)

⎤
⎥⎥⎦ ,

with ni
3 = ǔi( j+1)+η i

3( j) and ni
4 = ψ̌ i( j+1)+η i

4( j).
Proof: The update of y2, (19b), can be expressed as

the solution to the optimization problem

minimize
y2∈Y2

yT
2 Hy2 +

ρ
2 ‖M2y2 +n‖2

2, (27)

which follows directly from the definition of f2, (15b).
Moreover, (16b) shows that constraint, y2 ∈ Y2, is equivalent
to u ∈ {u|L̃u = 0}. Inserting the definitions of H, M2, (13)-
(14), and y2, (12b), in the objective function of (27), gives

yT
2 Hy2 +

ρ
2 ‖M2y2 +n‖2

2 =
1
2

ρuT u+ψT ϒψ +ωμ2

−2λ̃111T μψ −ρn2μ −ρnT
3 u+d.
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where d is a constant term. As this expression involves no
cross terms in u and (ψ,μ), and since (ψ,μ) are uncon-
strained, (27) can be split into the constrained minimization
problem in u (25), and the unconstrained minimization
problem in (ψ ,μ) (26).

Proposition 3: The analytical solution of (25) is

(ū1)∗ = (ū2)∗ = · · · = (ūS)∗ = 1
S ∑i∈S n̄i

3, (28a)

(ûi)∗ = n̂i
3, i ∈ S , (28b)

where ui =
[
(ūi)T (ûi)T ]T , for i ∈ S , such that

ūi =
[
(ui

1)
T (ui

2)
T . . . (ui

M)T ]T
,

ûi =
[
(ui

M+1)
T (ui

M+2)
T . . . (ui

N)
T ]T

,

i.e. ūi consists of the first M inputs in the open-loop input
trajectory, ui, and ûi consists of the remaining N −M inputs
(we use a similar notation for n3).

Proof: Inserting the definitions of ūi and ûi, in the
objective function of (25) gives

1
2

ρuT u−ρnT
3 u =ρ

2 ∑
i∈S

∥∥ui −ni
3
∥∥2

2 +d

= ρ
2 ∑

i∈S

[∥∥ūi − n̄i
3
∥∥2

2 +
∥∥ûi − n̂i

3
∥∥2

2

]
+d. (29)

Definition (43) implies that the constraint L̃u = 0 can be
stated as Lu1 = Lu2 = · · · = LuS. Since Lui = ūi, this is
equivalent to ū = ū1 = ū2 = · · · = ūS. By inserting ū = ūi for
each i ∈ S , in (25), the constraint L̃u = 0 can therefore be
eliminated. After eliminating the constraint, the optimization
problem is stated as

minimize
ū,{ûi}S

i=1
∑

i∈S

∥∥ū− n̄i
3
∥∥2

2 +
∥∥ûi − n̂i

3
∥∥2

2. (30)

where we have scaled the objective function by 2ρ and
removed the constant term, d. Equation (30) is an uncon-
strained convex quadratic program. Setting the gradient of
the objective function equal to zero, and solving for ū and
{ûi}S

i=1 yields (ûi)∗ = n̂i
3 for i ∈ S and ū∗ = 1

S ∑i∈S n̄i
3. Since

ū∗ = (ū1)∗ = (ū2)∗ = · · · = (ūS)∗, the result (28) follows.
Proposition 4: The solution of (26) can be obtained by

first computing

ψ∗ =
(γ1 +Sγ2)I − γ2111111T

γ1(Sγ2 + γ1)

(
ρλ̃111n2 −ωδ

)

= θ2

[
111
(

γ2ω111T δ +(θ1ρ − γ2ρS)λ̃n2

)
−θ1ωδ

]
, (31)

and subsequent computation of

μ∗ =
2λ̃111T ψ∗ +n2ρ

2ω
, (32)

in which γ1 =ω(2λ̃ +ρ), γ2 = (ωρ/S2 −2λ̃ 2), θ1 = Sγ2+γ1,
and θ2 = 1/(γ1θ1).

Proof: Equation (26) is an unconstrained convex
quadratic program. The result (32) is obtained by setting the
derivative of the objective function with respect to μ equal
to zero and solving for μ . Inserting the expression for μ

Algorithm 1 ADMM-based decomposition algorithm for the
two-stage OCP, (8)-(9), that arises in MV-EMPC

while not converged do
// ADMM update of y1 = (ǔ,x,z, ψ̌, μ̌)
for i ∈ S do

(ǔi,xi,zi, ψ̌ i) ← compute via (21)
end for
μ̌∗ ← compute via (22) [O(1)]
// ADMM update of y2 = (u,ψ,μ)
u ← compute via (28) [O(SMnu)]
ψ ← compute via (31) [O(S)]
μ ← compute via (32) [O(S)]
// ADMM update of η
η ← compute via (19c) [O(2+SNnu +2S)]

end while

back into the objective function of (26), yields the reduced
optimization problem

minimize
ψ

ψT (ωϒ− λ̃ 2111111T )ψ +(ωδ −ρλ̃111n2)
T ψ.

Setting the derivative of the objective function equal to zero,
results in the linear system of equations

2(ωϒ− λ̃ 2111111T )ψ∗ = ρλ̃111n2 −ωδ . (33)

The matrix to be inverted in solving this system can be
written as

2(ωϒ− λ̃ 2111111T ) = ω(2λ̃ +ρ)I +(ωρ/S2 −2λ̃ 2)111111T

= γ1I + γ2111111T , (34)

where we have used the definitions of ϒ, γ1, and γ2. Using
the Sherman-Morrison formula [27] to invert a matrix in the
form (34), i.e. the sum of a diagonal matrix plus a rank one
matrix, gives

(γ1I + γ2111111T )−1 = 1
γ1

I −
1
γ1

γ2111111T 1
γ1

1+ γ2
γ1

111T 111
=

(γ1 +Sγ2)I − γ2111111T

γ1(Sγ2 + γ1)
.

This shows that ψ∗ can be determined via (31).

D. Summary

Algorithm 1 summarizes an implementation of the ADMM
recursions (19) based on Proposition 1-4. As indicated, the
algorithm scales linearly in the number of scenarios, S. The
main computational bottleneck in Algorithm 1 is solving
S subproblems in the form (21). The dimensions of each
subproblem do not depend on S. In comparison, the number
of constraints and the number of variables in the full OCP
(10) grow linearly with S.

Remark 3: Algorithm 1 solves S subproblems in the
form (21) in every iteration. A significant speed-up can
be achieved by solving the subproblems in parallel, and
by warm-starting the optimization method that solves the
subproblems. Utilizing the high degree of structure in the
subproblems may also reduce the computational effort [13],
[16], [28]–[33].
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IV. CASE STUDY

This section compares a MATLAB implementation of Al-
gorithm 1, MVadmm, against MOSEK, Gurobi and CPLEX.
These state-of-the-art convex optimization algorithms solve
the OCP (10) directly using standard tolerance specifications.
We let MVadmm run 500 iterations. It has been verified that
the solution obtained after 500 iterations satisfies the primal
and dual residual criteria (20) with at least εP = εD = 0.01
in all our simulations. Remark 2 provides suggestions for
reducing the number of iterations. The subproblems (21) are
solved by CVXGEN. The simulations are performed on an
Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz with 4 GB
RAM running a 64-bit Ubuntu 12.04.1 LTS operating system.

A. System Definition

We consider a third order transfer function model intro-
duced in [34] to describe the power production of a thermal
power plant. The model is

Y (s) =
1

(τs+1)3 (U(s)+W (s))+V (s), (35a)

Z(s) =
1

(τs+1)3 (U(s)+W (s)) , (35b)

where U(s) is the power reference (input), Y (s) is the
measured power production (measured output), Z(s) is the
actual power production (controlled variable), W (s) is the
process noise, and V (s) is the measurement noise. The
transfer function model (35) is converted to a discrete state
space model of the form (1) using a sampling time of Ts = 5
seconds. We assume that the input constraint set, U , limits
the power reference, uk, and changes in the power reference,
Δuk = uk −uk−1, such that

U = {u|uk ≤ uk ≤ uk, Δuk ≤ Δuk ≤ Δuk, k ∈ N0}, (36)

B. Cost Function

The case study cost function is defined as in (2) with

φ(u,z) = ∑
k∈N0

cT
k uk + ∑

k∈N1

qT
k ((zk − zk)+ +(zk − zk)+), (37)

where subscript + refers to the non-negative part of a vector,
i.e. v+ = max{0,vi} for i = 1,2, . . . ,nv, with v ∈ Rnv . The
input price, ck, can be interpreted as the fuel cost, and qk can
be interpreted as the cost of buying power in the electricity
market.

Using (37) leads to ADMM subproblems (21) with the
following cost constraint

ψ̌ i ≥ ∑
k∈N0

cT
k ǔi

k + ∑
k∈N1

qT
k ((z

i
k − zk)+ +(zi

k − zk)+), (38)

for each i ∈ S . As in [9], we replace this set of non-linear
constraints by

ψ̌ i ≥ ∑
k∈N0

cT
k ǔi

k +qT
k+1β i

k+1, i ∈ S , (39a)

zk −β i
k ≤ zi

k ≤ zk +β i
k, k ∈ N1, i ∈ S , (39b)

β i
k ≥ 0, k ∈ N1, i ∈ S , (39c)

TABLE I
CASE STUDY CONTROLLER AND SYSTEM PARAMETERS

pk qk uk uk Δuk Δuk zk zk τ N

1 20 0 10 -3 3 5 6 10 40

0 5 10 15 20 25 30 35
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o
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)
CE−EMPC
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Fig. 1. Open-loop efficient frontier for λ = [0,1]. The efficient frontier is
obtained by solving (10) with S = 2048 uncertainty scenarios.

where β i
k are auxiliary optimization variables. Similarly, a

vector representation of (39) is introduced to replace the
cost function constraint (10d) in the full formulation of the
OCP (10). The resulting optimization problem is a convex
quadratic program. Replacing the non-linear constraint (38)
by the convex constraints (39) yields a good approximation
for non-zero values of λ . For details, we refer to [9].

C. Case Study Parameters

Table I lists the case study system and controller pa-
rameters. The parameters are kept constant for all k. The
process noise and the measurement noise are uncorrelated,
and normally distributed with wk ∼ Niid(0,0.25I) and vk+1 ∼
Niid(0,0.01), for k ∈ N0.

D. Simulations

First consider a situation without feedback. We use M =N
in (8e) to represent that no recourse exists in the future.
Let μ̄ and s̄ denote the open-loop cost expectation and its
standard deviation. These values are computed via the sample
estimates (4). We use different scenarios of w to compute
μ̄ and s̄, and in solving (10). Fig. 1 shows a plot of the
expected cost, μ̄ , as a function of the standard deviation, s̄,
i.e. the efficient frontier [19]. To compute the frontier, we
have solved (10) with S = 2048 uncertainty scenarios, and
λ values in the range [0,1]. Fig. 1 shows that MV-EMPC
reduces both cost variance and cost expectation in open-loop,
compared to CE-EMPC. Each point on the graph associated
with MV-EMPC provides a different mean-variance trade-
off option. The rightmost point corresponds to λ = 1 and
the leftmost point corresponds to λ = 0.
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Fig. 2. Sample expectation of ui
1 and its 95% normal confidence interval.

In closed-loop, we set M = 1 in (8e) to account for the
fact that a new state estimate becomes available at the next
sampling instant. This allows ui

k to vary over the scenarios,
i ∈ S , for k ≥ 2. Fig. 2 illustrates the mean value of ui

1
and its 95% normal confidence interval as a function of S,
over 100 different realizations of the uncertainty scenarios
{wi}S

i=1. Large variations in ui
1 = u1

1 = u2
1 = · · ·= uS

1 occur if
the number of uncertainty scenarios is too small, i.e. the
input becomes very sensitive to the particular realization
of uncertainty scenarios. This is likely to cause undesirable
oscillations in the resulting closed-loop input-trajectory. The
number of scenarios required to avoid this problem depends
on the application. For the specific case study, S = 1000 −
2048 scenarios are sufficient to obtain ui

1 with a reasonable
small variance.

Fig. 3 illustrates the CPU time of solving the OCP (10)
for CPLEX, MOSEK, Gurobi and MVadmm, as a function S.
We report the solution time for a sequential implementation
of MVadmm (seq.) and for a pseudo parallel implementation
of MVadmm (par.). The timings for the pseudo parallel
implementation are obtained from the sequential CPU-time
results, assuming that the independent subproblems (21)
are solved in parallel. Fig. 3 shows that MVadmm scales
linearly in the number of uncertainty scenarios, which yields
an improvement over the general purpose solvers. Solving
the subproblems in parallel reduces the computation time
of MVadmm significantly. For large S, the pseudo parallel
implementation of MVadmm is several orders of magnitude
faster than CPLEX, MOSEK and Gurobi. Remark 3 provides
suggestions to improve the computational performance of
MVadmm even further. When S ≥ 8192, MVadmm is the only
algorithm that does not fail to come up with a solution due
to memory issues.

V. CONCLUSION

We have presented an ADMM-based decomposition al-
gorithm for MV-EMPC of stochastic linear systems that

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

10
3

S (#Scenarios)

C
P
U
-t
im

e
[s
ec
]

CPLEX
Gurobi
MOSEK
MVadmm (seq.)
MVadmm (par.)
O(S)

Fig. 3. CPU time for solving (10) as a function of the number of scenarios,
S.

scales linearly in the number of uncertainty scenarios. At
every iteration, the algorithm solves a number of small
independent subproblems. Simulations based on a simple
power management case study show that when the number
of uncertainty scenarios is large, a parallel implementation of
the decomposition algorithm is several orders of magnitude
faster than state-of-the-art convex quadratic programming al-
gorithms. Furthermore, the decomposition algorithm reduces
memory requirements of MV-EMPC significantly.

APPENDIX I
MV-EMPC OPTIMAL CONTROL PROBLEM

This appendix introduces data structures to express the
two-stage OCP (8) under the relaxed condition (9) in a more
compact form. Define the stacked vectors

u =

⎡
⎢⎢⎢⎣

u1

u2

...
uS

⎤
⎥⎥⎥⎦ , x =

⎡
⎢⎢⎢⎣

x1

x2

...
xS

⎤
⎥⎥⎥⎦ , z =

⎡
⎢⎢⎢⎣

z1

z2

...
zS

⎤
⎥⎥⎥⎦ , ψ =

⎡
⎢⎢⎢⎣

ψ1

ψ2

...
ψS

⎤
⎥⎥⎥⎦ . (40)

and let Ũ =U S =U ×U ×·· ·×U be the Cartesian power
of the set U such that ui ∈ U with i ∈ S can be expressed
as u ∈ Ũ . The objective function, (8a), is written in the form
λ μ+ λ̃vT v+Sλ̃ μ2 −2λ̃ μ111T v where 111 is a vector of all ones.
As a compact notation for the state space constraints, (8b),
we use

Ãx+ B̃u+ w̃ = 0, z = C̃x, (41)

where Ã, B̃, and C̃, are block diagonal matrices, such that Ã=
blkdiag

(
Ā, Ā, . . . , Ā

)
and similarly for B̃ and C̃. Moreover

B̄ = blkdiag(B,B, . . . ,B), C̄ = blkdiag(C,C, . . . ,C) and

Ā =

⎡
⎢⎢⎢⎣

−I
A −I

. . . . . .
A −I

⎤
⎥⎥⎥⎦ , w̄i =

⎡
⎢⎢⎢⎣

wi
0

wi
1
...

wi
N−1

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

Ax0
0
...
0

⎤
⎥⎥⎥⎦ , i ∈ S .
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Finally, w̃ =
[
(w̄1)T (w̄2)T . . . (w̄S)T

]T .
The relaxed cost constraint (9) is written as ψ ≥ φ̃(u,x,z),

where φ̃ is the vector function

φ̃(u,x,z) =
[
φ(u1,x1,z2) · · · φ(uS,xS,zS)

]T
. (42)

We formulate the constraint (8d) as μ = (1/S)111T ψ . Finally,
(8e) stating that the input should be equal over the different
scenarios up to time step M is expressed in the compact form
L̃u = 0, where

L̃ =

⎡
⎢⎢⎢⎣

L −L
L −L

. . . . . .
L −L

⎤
⎥⎥⎥⎦ . (43)

The matrix L is defined as L =
[
I 0

]
such that Lui =[

(ui
1)

T (ui
2)

T . . . (ui
M)T ]T .
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[2] L. Grüne, “Economic receding horizon control without terminal con-
straints,” Automatica, vol. 49, no. 3, pp. 725–734, 2013.

[3] J. B. Rawlings, D. Angeli, and C. N. Bates, “Fundamentals of
economic model predictive control,” in 2012 IEEE 51st Annual
Conference on Decision and Control (CDC), 2012, pp. 3851–3861.

[4] D. Angeli, R. Amrit, and J. B. Rawlings, “On Average Performance
and Stability of Economic Model Predictive Control,” IEEE Transac-
tions on Automatic Control, vol. 57, no. 7, pp. 1615–1626, 2012.

[5] J. B. Rawlings, D. Bonne, J. B. Jørgensen, A. N. Venkat, and S. B.
Jørgensen, “Unreachable Setpoints in Model Predictive Control,” IEEE
Transactions on Automatic Control, vol. 53, no. 9, pp. 2209–2215,
2008.

[6] L. E. Sokoler, G. Frison, K. Edlund, A. Skajaa, and J. B. Jørgensen,
“A Riccati Based Homogeneous and Self-Dual Interior-Point Method
for Linear Economic Model Predictive Control,” in 2013 IEEE Multi-
conference on Systems and Control, 2013, pp. 592–598.

[7] D. P. Bertsekas, “Dynamic Programming and Suboptimal Control: A
Survey from ADP to MPC,” European Journal of Control, vol. 11,
no. 45, pp. 310–334, 2005.

[8] ——, Dynamic Programming and Optimal Control, 2nd ed. Athena
Scientific, 2000.

[9] L. E. Sokoler, B. Dammann, H. Madsen, and J. B. Jørgensen, “A
Mean-Variance Criterion for Economic Model Predictive Control of
Stochastic Linear Systems,” in 2014 IEEE 53rd Annual Conference
on Decision and Control (CDC), 2014, p. Accepted.

[10] A. Capolei, E. Suwartadi, B. Foss, and J. B. Jørgensen, “A Mean-
Variance Objective for Robust Production Optimization in Uncertain
Geological Scenarios,” Journal of Petroleum Science and Engineering,
p. Submitted, 2013.

[11] C. Conte, T. Summers, M. N. Zeilinger, M. Morari, and C. N. Jones,
“Computational aspects of distributed optimization in model predictive
control,” in 2012 IEEE 51st Annual Conference on Decision and
Control (CDC), 2012, pp. 6819–6824.

[12] T. H. Summers and J. Lygeros, “Distributed model predictive con-
sensus via the Alternating Direction Method of Multipliers,” in 2012
50th Annual Allerton Conference on Communication, Control and
Computing (Allerton), 2012, pp. 79–84.

[13] L. E. Sokoler, L. Standardi, K. Edlund, N. K. Poulsen, H. Madsen,
and J. B. Jørgensen, “A Dantzig-Wolfe decomposition algorithm for
linear economic model predictive control of dynamically decoupled
subsystems,” Journal of Process Control, vol. 24, no. 8, pp. 1225–
1236, 2014.
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Contingency-Constrained Unit Commitment
in Meshed Isolated Power Systems

Leo Emil Sokoler, Peter Vinter, Runi Bærentsen, Kristian Edlund, and John Bagterp Jørgensen

Abstract—This paper presents a mixed-integer linear optimiza-
tion problem for unit commitment and economic dispatch of power
generators in a meshed isolated power system. The optimization
problem is referred to as the optimal reserve planning problem
(ORPP). The ORPP guarantees that the system frequency is kept
above a predefined limit in the event of a contingency. The min-
imum frequency constraints are formulated using novel sufficient
conditions that take into account the system inertia and the dy-
namics of the power generators. The proposed sufficient conditions
are attractive from both a computational and a modelling point
of view. We compare the ORPP to a unit commitment problem
that only considers the stationary behavior of the frequency. Sim-
ulations based on a Faroe Islands case study show that, without
being overly conservative, potential blackouts and power outages
can be avoided using the ORPP. In the particular case study, the
cost increase associated with the additional security provided by
the ORPP is less than 3%.
Index Terms—Energymanagement, power generation planning,

optimal scheduling, integer linear programming, islanding.

I. INTRODUCTION

P OWER production planning is an important task in power
system operations. This task involves solving a mixed-in-

teger linear program (MILP) for unit commitment and economic
dispatch of the system power generators. The solution of the
MILP provides an hours-ahead production plan for each gen-
erator, including the amount of operating reserves they should
provide. Operating reserves are important to balance production
and consumption in real-time. Imbalances occur due to e.g., loss
of power generators, fluctuations in non controllable production
or consumption, and errors in the prediction of renewable en-
ergy production. We refer to these events as contingencies.
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Small isolated power systems are characterized by low
inertia provided by a relatively small number of generators.
The frequency in such systems is much more sensitive to power
imbalances than large interconnected power systems. More-
over, the system inertia varies significantly with the committed
units [1]. For these reasons, it is necessary to include minimum
frequency constraints in the production planning problem for
small isolated power systems. Frequency constraints are very
challenging to handle in the unit commitment (UC) problem,
since there is generally no linear expression for the minimum
frequency. References [2]–[5] introduce constraints in the
UC problem that keep the steady state frequency above a
predefined limit. The underlying assumption is that the power
system remains in stable operation during the transient part of
the system dynamics that follow a contingency. This is often
not the case in isolated power systems. For such systems, it is
necessary to consider constraints for the minimum frequency
that occurs during the transient part of the system dynamics as
well. The minimum frequency depends on the system inertia
and the dynamics of the power generators. Several heuristics
have been proposed to account for the minimum frequency
in the UC problem. References [6] and [7] use a multi-level
approach that alternates between solving the UC problem
and a grid simulation. References [8]–[11] couple the system
dynamics and the reserve requirements using a load-frequency
sensitivity index (LFSI). The LFSI is estimated from frequency
data recorded during forced generator outages. A significant
limitation is that the LFSI is regarded as a fixed parameter
in the UC problem. In [12] the system inertia and the size of
the contingency are mapped into reserve requirements in the
UC problem using a piecewise linear function. The piecewise
linear function is fitted to data generated by a comprehensive
simulation model. Reference [13] derives a non-linear expres-
sion of the minimum frequency using a simplified model of
the system dynamics. The model assumes that all the power
generators have the same underlying simple model structure.
Market designs that consider the minimum frequency in large
synchronous interconnected systems are discussed in [14].
This paper presents novel sufficient conditions that guarantee

that the minimum frequency is kept above a predefined limit.
The conditions are based on a model of the system inertia and
a generic power generator model. The power generator model
describes the activation of primary reserves for each power
generator. Secondary reserves are not considered in the power
generator model, as they have no significant effect on the
minimum frequency. We use the proposed sufficient conditions
to develop a UC problem with minimum frequency constraints.
The problem is referred to as the optimal reserve planning

0885-8950 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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problem (ORPP). The advantages of the ORPP are that it can
be formulated as a single MILP, it does not impose any strict
assumptions on the generators, and that the parameters in
the power generator model are simple to obtain. Finally, the
proposed approach does not require any simulation model of
the system.
We have organized this paper as follows. Section II de-

rives sufficient conditions for the minimum frequency.
Section III formulates the ORPP as a MILP. Simulations based
on a Faroe Islands case study are provided in Section IV.
Section V concludes the paper.

A. Faroe Islands Case Study

The Faroe Islands make up a 1,400 km group of islands
situated in the North Atlantic Ocean and inhabited by almost
50,000 people. The Faroe Islands have some of the world's best
wind resources due to their position in the Atlantic Ocean. How-
ever, the power system is small, isolated, and vulnerable, with a
high number of blackouts. Historically, the Faroe Islands have
around 30 power outages each year [15]. Some of these outages
are total blackouts (1–3). In 2014, a load-shedding strategy was
implemented to avoid critical frequency drops. This strategy
has already prevented several blackouts [16]. The Faroe Islands
have a target to increase the amount of renewable energy pro-
duction from 38% in 2011 to 75% in 2020. A significant part of
the increased renewable energy production is expected to come
from wind turbines. In 2014 the installed wind power was 18%
of the total capacity, corresponding to 122% of the minimum
load and 41% of the maximum load. Operating reserves in the
Faroe Islands are planned on the basis of the criterion
combined with other ad-hoc rules. The criterion is only
concerned with the amount of reserve that is available in the
system, and does not account for the system frequency [17].
As more renewable energy is integrated into the Faroe Islands'
power system, the need for a more intelligent reserve planning
strategy increases. The strategy proposed in this paper will be
tested in the Faroe Islands during 2015 as part of the GRANI
project [15].

II. PROBLEM FORMULATION

This section derives sufficient conditions, which guarantee
that the minimum frequency resulting from a contingency is
kept above a predefined limit, denoted .
We consider two types of operating reserves in this paper; fre-

quency containment reserve (FCR) and frequency restoration
reserve (FRR). The FCR is a reserve for containment of fre-
quency deviations (primary reserve), and the FRR is a reserve
for restoring the frequency to the nominal frequency (secondary
reserve). Activation time for FRR is up to several minutes. In
low-inertia systems, such as small isolated power systems, the
FCR activation time must in the order of a few seconds. E.g.,
[15] shows that the frequency in the Faroese power system may
drop at a rate of 1 Hz/s after a contingency. In the Faroe Islands,
frequency drops of more than 2 Hz are critical. This means that
sufficient FCR has to be available within 2 seconds in order to
keep the system stable.

Fig. 1. Frequency dynamics. The minimum frequency occurs during the tran-
sient phase of the post-contingent state.

We refer to the state of the system prior to a contingency as the
pre-contingent state, and the state of the system after a contin-
gency as a post-contingent state. The type of contingency con-
sidered in this paper is limited to loss of power generators. The
proposed ORPP can, however, easily be generalized to other
types of contingencies as well. Fig. 1 illustrates the frequency
dynamics in the event that one or more power generators fail.
The system is operated at its nominal frequency in the
pre-contingent state. The post-contingent state is divided into a
transient phase and a stationary phase. In the transient phase, the
frequency drops to its minimum value , and it then returns to
a steady state value . The minimum frequency, , may be
significantly smaller than the steady state frequency, . The
offset is eliminated by activating FRR. The FRR
does not have any effect on and , since reserves in this
category are activated at a much slower time scale than the FCR.
Define the set , with being the number

of power generators. The generators respond to frequency
deviations from the nominal frequency by activating FCR.
The FCR is activated locally at each power generator via
frequency-based proportional controllers [18], [19]. We denote
the FCR activation signal (set-point) provided to each generator
as . The FCR activated (output) at each generator is
denoted . The energy released during FCR activation
is . The FCR set-point provided to
each of the generators is

(1)

is the local droop of generator , and is
the frequency deviation from the nominal frequency. Let de-
note the time instant at which the frequency settles at its steady
state value . For , the FCR set-point is

, where is the steady
state FCR set-point for generator . The FCR activated at gen-
erator in steady state is equal to the minimum of 1) the steady
state FCR set-point, and 2) the maximum amount of FCR that
the generator can deliver. Hence

(2)

. The parameter is the maximum amount of FCR
that can be activated at generator . This limit depends on the
generator capabilities and the pre-contingent state of the system,
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e.g., a generator that operates at its maximum level cannot in-
crease its production further.
For convenience, we define the sums

(3)

References [2]–[5] model (2) using mixed-integer constraints.
This allows constraints for the stationary frequency, , to be
included in the UC problem. We derive constraints for the min-
imum frequency, , which is critical in island operations. The
minimum frequency, , depends on for
(transient part of the post-contingent state). Equation (2) de-
scribes the generator dynamics for (stationary part of
the post-contingent state).
We model the frequency dynamics resulting from a contin-

gency using the swing equation for a synchronous machine [18],
[19]. The equation is written as an implicit ordinary differential
equation (ODE) in the form

(4)

where

(5)

(6a)

(6b)

Power generator has constant of inertia [s], and rated
power [MVA]. The FCR activated at generator is
[MW], and the lost power resulting from the contingency is
denoted [MW]. Time denotes the time instant at
which the contingency occurs. The subset refers to the
tripped generators. These generators do not provide any inertia
to the system. Note also that for , and

for .
It holds that , in which

(7)

maps the angular velocity [rad/s] to the rotational energy
[J]. is the moment of inertia. The relation

between angular velocity and frequency is

(8)

where is the number of poles in the generator. The minimum
desired angular velocity for generator , is derived from the
predefined frequency limit using (8).
The generator dynamics during FCR actiavation, , is

modeled as the implicit ODE

(9)

is the 'th derivative of . The formula-
tion (9) is general enough to represent the models in e.g. [13],

[20]–[22]. We provide an example of (9) in Section IV. Equa-
tions (4) and (9) define a system of ODEs that describes the
coupled frequency and power generator dynamics that follow a
contingency. The system is

...
...

(10)

The solution of (10) is the system frequency, , and the FCR
response of the power generators , resulting from
the contingency.
Remark 1: Model (5) assumes that for all ,

i.e., that the power system is a single-bus system with no line ca-
pacity constraints or transmission losses. This assumption can
be justified for highly meshed systemswhere the relative imped-
ances between nodes in the system are small [18], [23], [24].
Single-bus models for transient frequency analysis in highly
meshed isolated power systems are described in [25]–[27]. The
Faroese power grid is a fairly meshed system, where line ca-
pacity constraints and transmission losses are negligible for the
application considered in this paper. Model (5) also assumes
that all loads are frequency-independent, i.e., load-damping is
neglected. This is a conservative assumption for the application
considered in this paper, since frequency-dependent loads have
a stabilizing effect on the frequency [18].

A. Minimum Frequency Conditions
We use model (10) to derive sufficient conditions for
. Assumption 1 is that the frequency extreme values are non-

increasing over time. This stability condition is a standard power
system design criterion.
Assumption 1: For any and , with and

(11)

Define to be the first time instant at which the power bal-
ance is restored

(12)

It follows from (4) that , and due to Assumption
1, . This shows that a sufficient condition for the
minimum frequency condition, , is

(13)

Evaluating (13) requires the solution of the generally non-linear
system (10), and subsequent computation of via (12). Since
the UC problem is a MILP, which is restricted to linear con-
straints, Condition (13) can not be included in the UC problem.
To overcome this issue, we replace (13) by a set of more
conservative conditions that can be modelled using mixed-in-
teger linear programming. For this purpose, it is convenient to
define the function to be the solution of (9) with
the system frequency, , replaced by the function . Accord-
ingly, introduce . Note that
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and . Similar
to (3), we also introduce the sums and
such that and .
The functions are coupled only in . Provided that
is a known function, can be determined indepen-

dently for each by solving the ODEs

Appendix B introduces a number of reasonable assumptions
about that we exploit in the following.
Introduce the affine function

(14)

such that and . We refer to [s]
as the critical time. Propositions 1 and 2 provide sufficient con-
ditions for the minimum frequency constraint (13). These con-
ditions are conservative conditions that exploit the properties
of to decouple the generator and frequency dynamics. A
similar idea is introduced in [28] for computing the maximum
frequency deviation in small isolated power systems. Condition
(15) ensures that for , and (19) ensures that

, i.e., that the minimum frequency occurs before time
. The critical time is a user-defined parameter that specifies

an upper bound for the time at which the minimum frequency
can occur. Note that . This shows that
the slope of is inversely proportional to . As the power
generators activate FCR in proportion to the frequency devia-
tion, the function is expected to increase as de-
creases. Consequently, condition (15) becomes less strict when
is small. This observation agrees with Assumption 3. When
is small, condition (19) becomes more strict, since the activa-

tion time for the required amount of FCR is limited to . This
observation agrees with Assumption 4. The choice of should
take the above-mentioned considerations into account. As a rule
of thumb, should be chosen such that 1) is
large, and 2) increases at a relatively high rate for

. The conditions (15) and (19) only need to hold for a
single value of , in order to be sufficient for the minimum fre-
quency constraint (13). Usually, the conditions can be satisfied
for a wide range of values. Several values of may be used
in practice, as the system inertia and the response of the gener-
ators vary with the committed units.
Proposition 1: The condition

(15)

is a sufficient condition for

(16)

Proof: Appendix A shows that condition (16) can be stated
as , for . is the energy
contribution from the system inertia, is the energy con-
tribution from the activated FCR, and is the energy lost
as a result of the contingency. Suppose (15) is satisfied and (16)
is violated. If (16) is violated there exists a such that

and with . Assumption 5

states that is convex in the time interval . Therefore
it holds that

(17)

As we have

(18)

It follows from Assumption 3 that for
. Since (15) is satisfied by assumption

which contradicts the assumption that (16) is violated.
Proposition 2: Provided that (15) is satisfied, a sufficient con-

dition for (13) is

(19)

Proof: Since (15) is satisfied, (16) holds. This shows that
two cases can occur: case 1) and case 2)
. Define the functions and that satisfy Assumption 1 to

represent these cases. Let , and . It
follows from Assumption 4 that

(20)

By definition, . Assumption 3 therefore gives
. If (19) is satisfied, then using

the inequalities above

This means that the power balance is restored by no later than
the time at which . It follows that .
Conditions (15) and (19) include terms that can be derived

from . The function is the ac-
tivated FCR at generator in response to the affine frequency
drop (14). This function depends on the dynamics of the power
generator , and the pre-contingent state of the system. It is
useful to separate the effect of these two components. We there-
fore introduce the notation

(21)

where is the amount of FCR that is activated at gener-
ator in response to (14), and accounts for the implicit limits
on due to the pre-contingent state of the system. The
function is determined by recording the response of
the power generator to the affine frequency drop . This can
be done by simulation or in simple experiments. Such experi-
ments are currently being conducted on the Faroe Islands.

III. OPTIMAL RESERVE PLANNING PROBLEM
In this section, we formulate the ORPP as a MILP. The re-

sults derived in Section II are used to formulate the minimum
frequency constraints. Table I lists the ORPP parameters and
Table II lists the ORPP decision variables. The production plan
is optimized over the horizon , where
[min] is the sampling time and is the number of time steps.
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TABLE I
ORPP PARAMETERS

TABLE II
ORPP DECISION VARIABLES

The ORPP may be solved using a rolling-horizon approach, in
order to take into account the most recent forecasts of e.g., the
wind power production.
The ORPP objective function is to minimize the cost of op-

eration over the horizon . We define the cost function as

(22)

where .When the reserve costs are non-zero,
the model in [4] is used to account for the fact that the FCR is
activated automatically.
The total power production is required to equal the consump-

tion at every time interval

(23)

We impose capacity constraints on the generators

(24a)

(24b)
(24c)

Constraint (24a) states that the power production of a running
generator has to be within its technical limits, and that the power
production of a generator not running is zero. Constraint (24b)
states that the power production of every generator is within
some forecast limits. If the lower forecast limit is positive, the
generator is forced to be running. An application of (24b) is to
model the production of wind turbines that are required to utilize
(part of) their potential production. Constraint (24c) limits the
energy reservoirs of the generators. Examples of limited reser-
voirs are batteries in electric vehicles, water storage for genera-
tion of hydroelectricity, and district heating accumulation tanks
that are connected to combined heat and power plants. The en-
ergy balance equation is

(25)

which is used in e.g., [29] as a generic energy model for power
generators in a Smart Grid system.We have included the param-
eter in (25) to model the impact of non-controllable inputs
on the energy levels, e.g., the rainfall on the reservoir level in a
hydro power plant. The binary decision variables in the ORPP
are coupled by the constraints

(26a)
(26b)

The total reserve of each power generator is

(27)

The generators should respect their capacity constraints, even
when the reserves are activated. This means that

(28a)
(28b)

(28c)

The FRR and the FCR are further limited by

(29a)
(29b)

where and . References [4], [30] provide
more details on the UC problem.

A. Minimum Frequency Constraints
We use the sufficient conditions (15) and (19) to formulate

minimum frequency constraints in the ORPP. For this purpose,
we discretize the FCR activation functions, ,
defined by (21). Introduce discretization points
with that satisfy

. Also define

(30)

such that is a discretization of the function
. The FCR reservation, , is restricted by the
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Fig. 2. Example of the relationship between and
, for a fixed time step , and a fixed generator .

amount of FCR that can be activated within time .
Therefore

(31)

The FCR that can be activated at time after a contingency
has occurred is modeled as the identified FCR activation param-
eters scaled by , i.e.,

(32)

The energy released during FCR activation is approximated
by the area under the line segments that connect the points

. This is expressed as

(33)

and . The parameter
converts the unit of to . Fig. 2 illus-

trates the relationship between and
.

Let denote the number of contingencies and
be a set of indices associated with the contingen-

cies. Define the contingency matrix as

(34)

We require condition (15) to be satisfied in the points defined
by , for each contingency and for each time step

. The constraint for this is

(35)

The variable is the energy provided by the activated
FCR in time step , during contingency , in discretization point
. This is expressed as

(36a)

. Note that including the contingency
matrix, , in (36a) ensures that only generators that do no trip

during a contingency may provide reserve during that partic-
ular contingency. Moreover, it follows from (29b) and (32) that

if a generator is not running. The variable
is the energy lost in time step , during contingency , in dis-
cretization point . This is expressed as

(36b)

In the expression (36b), the contingency matrix ensures that
only power from the generators that fail during a contingency
is assigned to . The variable is the rotational en-
ergy available due to the system inertia in time step , during
contingency . This is expressed as

(36c)

is the parameter defined by

(37)

is the function introduced in (7). Equation (36c) takes into
account that the system inertia changes with the committed
units. This is achieved using the indicator variable . In-
cluding the contingency matrix in (36c) ensures that generators
that drip do not contribute with inertia during a contingency.
The condition (19) is modeled as

(38)

In addition to (38), we require that sufficient reserve in the FRR
category is available, such that the frequency can be restored to
its nominal value after a contingency has occurred. This is ex-
pressed similarly to (38) expect that we replace by .
Strategies for dispatching FRR are discussed in e.g., [31], [32].
TheORPPminimizes (22) subject to (23)–(29) and (31)–(38).

Constraints (35) and (38) represent the minimum frequency
conditions (15) and (19), respectively. Condition (15) needs
to hold for all . Constraint (35) however, only ensures
that (15) is satisfied for . The number and
distribution of the discretization points are therefore important.
In practice, 2–5 evenly spaced points are usually sufficient.
Provided that there are sufficient discretization points, (35)
and (38) ensure that in every post-contingent state.
Constraint (35) may be verified after solving the ORPP for a
fine grid of -values. If it is violated for some , the ORPP is
re-solved with this point included as an extra discretization
point. Constraint (38) does not depend on the discretization
points.

IV. CASE STUDY
In this section, we test the ORPP using a simulation case study

based on the Faroe Islands' power system. A reduced system
consisting of units is considered.
Contingencies are simulated using a non-linear simulation

model [18]. Fig. 3 is a block diagram of this model, and (10)
is the model in differential equation form. We use the model
to simulate the frequency and generator dynamics for a fixed
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Fig. 3. Simulation model block diagram of the system (10). The model simu-
lates the frequency and FCR response to a contingency.

Fig. 4. Generator dynamics representing (9) for the particular case study.

contingency , and a fixed time step . The system
inertia block represents (5), and the unit blocks represent (9).
The post-contingent state of the system depends on the pre-con-
tingent state of the system, e.g., the system inertia depends on
the committed units, and the FCR that can be activated on a
specific generator depends on its current production. Therefore,
the solution of the ORPP is an input to the non-linear simulation
model. Fig. 4 is a model of the generator dynamics in the spe-
cific case study. This model replaces the unit blocks in Fig. 3.
The saturation block in Fig. 4 represents limits on the FCR that
can be activated due to the unit capabilities as defined by the
constraints (24), (28) and (29). We denote this limit by .
For this study, the generators are assumed to have first order dy-
namics. The time constant associated with each generator is de-
noted [s]. In the form (9), the case study generator dynamics
are

(39)

where and for
all .
Note that the models described by Figs. 3 and 4 are used for

simulation only, and that they are not required to formulate and
solve the ORPP.
Table III lists the case study system parameters. The data has

been partly modified due to confidentiality reasons. The sam-
pling time is min, and s. The parameter
was determined using a trial-and-error approach, considering
the dynamics of the generators. We found that s, pro-
vides a good balance for satisfying the minimum frequency suf-
ficient conditions (15) and (19). We optimize over 6 hours, cor-
responding to time steps. Fig. 5 shows the demand
forecast, and the (maximum) wind power forecast. These quan-
tities correspond to and in the ORPP, re-
spectively. The maximum amount of wind power that is al-
lowed to be curtailed is 5 MW. This lower limit is modeled

Fig. 5. Case study demand and wind power forecasts.

TABLE III
CASE STUDY SYSTEM PARAMETERS

using . The production cost and the
start-up cost are and

.
The costs , and are zero in this case study.
Wind turbines provide the cheapest source of energy. Hydro
generators are cheaper to use than diesel generators, when avail-
able, but they have limited reservoirs. For simplicity, we con-
sider an example with unlimited reservoirs, and we define the
disturbance, , to be zero. Except for Neshagi, the power
generators can deliver 100% of their technical maximum pro-
duction in FCR and FRR. Neshagi does not provide FCR. The
droop is 5% for all units. The minimum frequency is
Hz, and the nominal frequency is Hz. The rotational
energy, , is computed as in (37).
The functions are identified by simulation

using the model illustrated in Fig. 4. As described in Section II,
this is done by recording the FCR activation response of each
power generator to the affine frequency drop defined by (14).
Note that this can be done in experiments without any model
of the generators. We set and use the discretization
points . The parameters
are defined as in (30). Table IV lists the identified parameters
for the units that can deliver FCR. The number of contingencies
considered in this case study is , and the contingency
matrix is , where is the identity matrix of size
7. As defined by (34), this means that any (single) of the
7 first generators listed in Table III may trip within one of
the 15-minute sampling intervals, during the entire 6 hours
planning horizon. The production plan obtained by solving the
ORPP is robust against any of these 7 contingencies. Neshagi
is not part of a contingency in this case study. Fluctuating
wind power production can be handled simply by including the
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Fig. 6. Solution of the ORPP and the BLUC.

TABLE IV
CASE STUDY IDENTIFIED PARAMETERS

uncertain fraction of the wind power production as a separate
generator in the ORPP.
The ORPP is solved using CPLEX. In this particular case

study, the ORPP is a MILP with 6692 variables (657 binary
variables) and 7531 constraints. The solution time of the ORPP
is approximately 5 seconds. We only solve the ORPP one single
time, as no violations of the minimum frequency constraints
occur for the specified discretization points.
We compare the ORPP against the optimization problem pre-

sented in [2]–[5], which we refer to as the baseline unit com-
mitment problem (BLUC). The difference between the ORPP
and the BLUC is that, while the ORPP limits the minimum fre-
quency, , the BLUC only limits the steady state frequency,

. Fig. 6 compares the solutions determined by the ORPP
and the BLUC. The main differences between the two solutions
occur between hours 1–2 and hours 3.5–4.5. Between hours 1–2
the ORPP provides a solution with more generators running,
at the expense of curtailing the wind power production. Eidis-
verkid G2 increases the system inertia, and at the same time it
provides additional FCR that can be activated. Between hours
3.5–4.5 the BLUC provides a solution where Eidisverkid G1
and Heygaverkid G1 produce at their maximum capacity for
a significant amount of time. In the solution provided by the
ORPP, these generators back-off from their constraints such that
more FCR can be activated in the event of a contingency. This
increases cost of operation, since the more expensive power
generator, Eidisverkid G2, increases its production to compen-
sate for the back-off. The cost associated with the BLUC solu-

Fig. 7. Simulated worst-case frequency drops (both stationary and minimum)
over all contingencies for each time step .

tion is EUR 89039 and the cost associated with the ORPP solu-
tion is EUR 91680. This corresponds to a cost increase of less
than 3%.
The robustness of the solutions provided by the ORPP and

the BLUC is tested using the non-linear simulation model illus-
trated in Fig. 3 (and represented by the system of differential
equations (10)). The generator dynamics are defined as in (39),
and the frequency dynamics are defined as in (5). The upper and
lower limits for the saturation block in Fig. 4 are computed from
the solution of the ORPP and the BLUC. A simulation is run for
every contingency , and for each time step . Each
simulation produces an output similar to Fig. 1. In each simu-
lation, we record the minimum frequency, , and stationary
frequency, , for both the ORPP and the BLUC.
Fig. 7 depicts the most critical frequency drops over all the

contingencies, for each . The figure shows that both the
ORPP and the BLUC ensure that the stationary frequency is
maintained above 48 Hz. Only the ORPP keeps the minimum
frequency above 48 Hz as well. Thus, potential blackouts and
power outages are avoided using the ORPP.
Between hours 1–2 and hours 3.5–4.5, the frequency asso-

ciated with the BLUC drops significantly below 48 Hz. The
worst-case for the BLUC occurs if Eidisverkid G1 fails between
hours 1–2, which results in a minimum frequency just below 47
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(a) Frequency

(b) FCR Response

Fig. 8. System response after Eidisverkid G1 trips (contingency ) at hour
1–1.25 (time step ).

Hz. This situation is illustrated in Fig. 8. Fig. 8(a) shows the
simulated system frequency, and Fig. 8(b) shows the simulated
FCR response, , and the FCR response predicted by the
ORPP via (32). The predicted FCR response underestimates the
actual FCR response, without being significantly smaller than
the actual FCR response. This indicates that the ORPP is not
overly conservative. This observation is supported by Fig. 7:
The solutions provided by the BLUC and the ORPP are very
similar in situations where the minimum frequency does not
drop below 48 Hz for the BLUC. Moreover, in hours 3.5–5 the
frequency drops almost to the minimum frequency of 48 Hz for
the ORPP, which shows that the ORPP does not introduce a sig-
nificant amount of slack in the minimum frequency constraint.
Remark 2: In addition to the BLUC, we have compared the

ORPP to a conventional UC problem using the criterion
for reserve planning. In this model, we simply require that there
are sufficient FCR and FRR reserves to compensate for the lost
production from any of the first 7 generators listed in Table III.
In the particular case study, the production plan obtained with
the conventional UC problem, coincides with the solution ob-
tained by solving the BLUC.

V. CONCLUSION

In this paper, we have presented a mixed-integer linear
program for unit commitment (UC) and economic dispatch
of power generators in a meshed isolated power system. The
optimization problem provides a production plan which ensures
that the minimum frequency is maintained above a predefined
limit in the event of a contingency. The transient dynamics
of the frequency response are accounted for using a novel
way to include information on the system dynamics in the UC
problem. Simulations based on a Faroe Islands case study show
that potential blackouts and power outages can be avoided
using the proposed approach, at a cost increase of less than 3%.

APPENDIX A
SOLUTION OF THE SWING EQUATION

The non-negative solution of (4) with initial value
is

The constraint may therefore be expressed in the form
. Simplifying using

the relations (6), (7), and (8) yields

in which is defined in terms
of the function (7).

APPENDIX B
ASSUMPTIONS

Assumption 2 is that the FCR activated is non-decreasing in
the interval .
Assumption 2:

Assumption 3 is that the FCR activated is non-increasing with
respect to in the interval .
Assumption 3: For a non-negative function

and consequently

Assumptions 2 and 3 are justified as is decreasing for
due to Assumption 1, and that the FCR activation set-point

(1) is proportional to the frequency deviation from the nominal
frequency. As demonstrated in [33], some generators may be in-
verse response systems. For such units during the
first few seconds that follow a contingency. Due to the vulnera-
bility of small isolated power systems, it is reasonable to assume
that the effect of these inverse response systems is negligible in
the total FCR response, such that . In practice, this
is achieved by limiting the FCR response from the inverse re-
sponse systems. Fig. 9 is an illustration of Assumption 3.
Assumption 4 is that, for a fixed frequency drop, ,

more (or an equal amount) of FCR is activated if the time at
which occurs is increased.
Assumption 4: For and that satisfy Assumption 1 and

with , then

Assumption 4 is reasonable, since the FCR provided by a gener-
ator is limited by its response time. When a generator has more
time to respond, we expect FCR for that generator to increase.
Assumption 5 is that the frequency is convex for .
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Fig. 9. Illustration of Assumption 3. We consider a situation with two gener-
ators. Generator 1 trips at time , with MW. This
means that . The parameters in (6) are specified to be

s and MVA. The generator dynamics are given by (39),
with s, and Hz/MW. The nominal frequency
is Hz. For this illustration, we assume that the generators have un-
limited generation capacity, such that . Consequently,

. We define as in (14), with s and
Hz. The functions and are determined by solving the system

of differential equations (10). The function does not depend on
the frequency. Note that Assumption 2 is satisfied.

Assumption 5: For and
, where .

A sufficient condition for convexity is .
For , it follows from (4) that

and consequently
, which is non-negative for

due to Assumption 2. Assumption 5 is justified since we con-
strain the frequency to be close to its nominal value. Actual
measurement data supports the convexity assumption [15].
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Application of Economic MPC to Frequency Control in a Single-Area
Power System

Leo Emil Sokoler, Kristian Edlund and John Bagterp Jørgensen

Abstract— This paper presents a novel model predictive
control scheme for frequency control in a single-area power
system. The proposed controller provides set-point corrections
to the system power generators, based on the solution to an
optimal control problem. The optimal control problem directly
incorporates the cost of operation into its objective function.
A trade-off parameter is used to balance set-point tracking
and cost minimization. Simulations based on a Faroe Islands
case study show that the proposed approach reduces cost of
operation by almost an order of magnitude, compared to both
set-point based model predictive control as well as conventional
frequency-based PI-control.

I. INTRODUCTION

Power production planning is an important task in power
system operations. The task involves solving a mixed-integer
optimization problem for unit commitment and economic
dispatch of the system power generators [1], [2]. This opti-
mization problem is a computationally challenging problem
that may take up to several minutes, or even hours, to
solve. To compensate for real-time fluctuations in the power
production and the power consumption, a second control
layer is used. This layer is responsible for the activation of
operational reserves. Planning the operational reserves is an
integral part of the unit commitment problem. In this paper,
we refer to the solution of the unit commitment problem as
the nominal production plan.

In small isolated power systems, a single operator is
often responsible for both power transmission and power
production. An example of such an isolated power system
is the Faroe Islands. Here the municipality-owned company
SEV acts both as the transmission system operator (TSO) and
as the sole power generating company. This means that SEV
is responsible for balancing production and consumption,
including the activation of operational reserves.

In the Faroe Islands, the operational reserves can be
categorized into two main categories: automatic reserves
and manual reserves. The automatic reserves are frequency
controlled reserves that are activated in direct proportion to
frequency deviations from the nominal frequency (primary
control). Primary control stabilizes the frequency at a steady-
state that deviates from the nominal frequency. The manual
reserves are activated to eliminate the steady-state error, such
that the frequency is returned to its nominal value (secondary
control). Secondary control is also known as load frequency
control (LFC). Following the activation of manual reserves,

L. E. Sokoler and J. B. Jørgensen are affiliated with the Department
of Applied Mathematics and Computer Science, Technical University of
Denmark, DK-2800 Kgs. Lyngby, Denmark {leso,jbjo}@dtu.dk
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a re-dispatch of the generating units may be performed to
free up the required operational reserves.

Activating reserves is associated with a cost. Some genera-
tors have a low marginal production cost (e.g. wind turbines
and hydro turbines), and others have a high marginal pro-
duction cost (e.g. diesel generators and gas turbines). While
this information is accounted for in the unit commitment
problem, it is often neglected by the controllers that activate
the operational reserves. An approximate method to use
information on the reserve activation cost, is to combine
a PI-control structure for LFC with so-called participation
factors [3]–[7]. The participation factor of a generator is
a gain that determines its degree of participation in the
LFC. The participation factors do not distinguish between
up and down regulation, which is a significant drawback
from an economical point of view. Moreover, the approach
does not consider the frequency dynamics. As an example,
it is desirable to activate fast but expensive power generators
in situations where the frequency drops significantly below
the nominal frequency. Conversely, it is attractive to activate
cheaper generators when the frequency drop is less signifi-
cant.

In this paper, we present an economic model predictive
(EMPC) based strategy for activation of operational reserves.
The reserves are activated based on the solution to an opti-
mal control problem (OCP), which takes into account real-
time measurements, and updated forecasts of e.g. renewable
energy production. Reference [8] provides an example of
short-term forecasts that can be used for improved frequency
control. The OCP objective function is formulated as a bi-
objective criterion that trades off the cost of operation and
set-point tracking.

Set-point based MPC have been considered for LFC in
[9]–[11], and for tertiary control in [12]. References [13]–
[15] develop distributed algorithms for such conventional
MPC schemes. In the previous work [9]–[15], quadratic
penalty functions are used to ensure 1) that the load flows
on the tie-lines to other areas are restored to their sched-
uled values, and 2) that the frequency is returned to its
nominal value. References [9] and [11] include an input-
rate regularization term in the OCP objective function, to
reduce wear and tear on the power generators. The main
novelty of this paper, is to introduce a generalized OCP
that directly incorporates the cost of operation into the MPC
layer. Moreover, while existing work focus on multi-area and
interconnected power systems, the proposed EMPC scheme
is tailored to isolated power systems. In such systems,
no power is exchanged with neighboring regions and no
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Unit 1

G L

Fig. 1. Schematic diagram of the single-area power system. The system
consists of a bus, which is connected to a number of generators (G), and
an aggregation of loads (L).

markets are available for trading energy. The emphasis on
isolated power systems is motivated by the GRANI project
[16]. The GRANI project is a collaboration between DONG
Energy and the Faroe Islands. The Faroe Islands acts as a
live demonstration laboratory for testing new power system
control technologies.

To test the proposed EMPC scheme, a non-linear simula-
tion model of an isolated power system is developed. We
linearize the non-linear model for prediction and control.
To estimate non-predictable disturbances, the linear model
is augmented by a disturbance model. Simulations are per-
formed using a case study based on the Faroe Islands’ power
system. We compare EMPC to set-point based MPC and
frequency-based PI-control. Set-point based MPC occurs as
a special case of the proposed EMPC scheme. Simulations
show that significant cost reductions can be achieved by
trading off cost of operations and set-point tracking, even
without compromising the high quality frequency control
associated with set-point based MPC.

We have organized this paper as follows. Section II derives
a non-linear simulation model of an isolated power system.
Section III introduces an EMPC scheme for frequency con-
trol in this system, and Section IV presents a Faroe Islands
case study. Section V concludes the paper.

II. MODEL

This section presents a stochastic non-linear simulation
model of a small isolated power system. The system is
represented by a single-area power system, in which the
frequency is equal for all the power generators. The Faroe
Islands is a fairly meshed system, where line capacity
constraints and transmission losses are negligible for the
application considered in this paper. A linearized model of
the single-area power system is derived for control purpose.
We provide the Kalman filter equations for state estimation
in the stochastic linear system.

A. Simulation Model

Figure 1 is a diagram of the single-area power system. The
system consists of three main components: a collection of
power generators, a load, and a bus. By convention, negative
sign is used for power consumption and positive sign is used
for power production.

Power generators are modeled with different levels of de-
tail, depending on the application of interest. Linear models

are often well suited to describe the relation between gen-
erator power set-point, and generator power production [4]–
[6], [17]–[19]. Reference [20] validates such linear models
against actual measurement data. Similar models have been
used for MPC in [9]–[11], [14], [15], [17].

In this paper, a collection of M power generators is
modeled by the linear state space model

ẋgi(t) = Agixgi(t) +Bgiugi(t), i ∈M, (1a)
zgi(t) = Cgixgi(t), i ∈M, (1b)

with M = {1, 2, . . . ,M}. In Equation (1), ugi(t) is the
power set-point of generator i, xgi(t) is the state of generator
i, and zgi(t) is the power production of generator i.

The power set-point, ugi(t), is separated into the following
two components

ugi(t) = ũgi(t)︸ ︷︷ ︸
System Level

−Ki (zf (t)− f0)︸ ︷︷ ︸
Local Level

, i ∈M. (2)

The system level control component is determined at a
centralized level, in which interactions between the power
generators are accounted for. This component includes the
nominal set-point, as well as set-point adjustments resulting
from secondary control. The local level control component
models the primary control of each power generator. Pri-
mary control is activated in direct proportion to frequency
deviations from the nominal frequency [6], [18], [19]. The
nominal frequency is denoted f0, the current frequency is
denoted zf (t), and the proportional gain associated with the
primary control of generator i is denoted Ki. The model (1)
is valid for set-points in the the interval ugi(t) ≤ ugi(t) ≤
ugi(t). The parameter ugi(t) is the minimum production
of generator i, and ugi(t) is the maximum production of
generator i.

The load in Fig. 1 represents an aggregate of all the
loads in the system. The aggregate may include the power
production of non-controllable power generators, such as
non-controllable wind-turbines and solar cells. We model the
load using a linear state space model in the form

ẋl(t) = Alxl(t) +Bldl(t), (3a)
zl(t) = Clxl(t), (3b)

The input dl(t) is the load set-point, xl(t) is the load state,
and zl(t) is the actual load. Later in this paper, the load
set-point is replaced by a piecewise constant load forecast.
Modeling the load using the filtered value zl(t), instead of
the load forecast, better represents the physical behavior of
the system, since the load does not change instantaneously.

The power balance at the bus is

zb(t) =
∑
i∈M

zgi(t) + zl(t)

=
∑
i∈M

Cgixgi(t) + Clxl(t),
(4)

Using the swing equation for a synchronous machine [6],
[18], [19], the following model for the system frequency is
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derived

ẋf (t) = Af (xf (t))zb(t), (5a)
zf (t) = xf (t), (5b)

where zf (t) is the system frequency, and

Af (xf (t)) = f2
0 /(2HSxf (t)). (6)

Note that (5) is a non-linear system, since Af (xf (t)) is a
function of the system frequency. In Equation (6)

H =
∑
i∈M

HiSi/S, S =
∑
i∈M

Si.

Generator i has constant of inertia Hi and rating Si. Refer-
ence [21] lists these values for different types of generators.

Collect the generator subsystems (1) into a single linear
state space model with block-angular matrices (Ag, Bg, Cg),
such that xg = [xg1 , xg2 , . . . , xgM ], and similarly introduce
ug and zg . Also define the frequency deviation variables

z∆f (t) = x∆f (t) = zf (t)− f0,

Equations (1), (2), (3), (4) and (5) are combined to form the
system model

ẋ(t) = f(x(t), u(t), d(t)), (7a)
z(t) = g(x(t)), (7b)

u(t) = ũg(t), x(t) =
[
xg(t)

T , xl(t)
T , x∆f (t)

]T
, z(t) =[

zg(t)
T , zl(t), zb(t), z∆f (t)

]T
, and d(t) = dl(t). Define the

vector function

L(x(t)) =

 Ag 0 −BgK
0 Ad 0

A∆f (x(t))eTCg A∆f (x(t))Cl 0

x(t),

where e is a vector of all ones, K = [K1,K2, . . . ,KM ]
T ,

and A∆f (x(t)) = Af (f0 + x∆f (t)). Moreover, define the
matrices

B =

Bg0
0

 , E =

 0
Bd
0

 , Cz =


Cg 0 0
0 Cl 0

eTCg Cl 0
0 0 1

 . (8)

Using these definitions, the system model may be written in
the form (7) with

f(x(t), u(t), d(t)) = L(x(t)) +Bu(t) + Ed(t),

g(x(t)) = Czx(t).

The deterministic model is augmented by stochastic terms.
The stochastic model is

x(tk + Ts) = F (x(tk), u(tk) +wu(tk),

d(tk) + b(tk) +wd(tk)), (9a)
y(tk) = h(x(tk)) + v(tk), (9b)
z(tk) = g(x(tk)). (9c)

y(tk) is a vector of measurements, wu(tk) is the generator
process noise, wd(tk) is the load process noise, and v(tk) is
the measurement noise. The available measurements are the

Generator 1

zg1u1

wu,1

Generator M

zgMuM

wu,M

+
d

wd

Gl(s)

zl

+

zb

Gf (s)

z∆f

Fig. 2. System dynamics in the linear stochastic model (10). The transfer
functions Gl(s) and Gf (s) represent the load and linearized frequency
dynamics, respectively.

−Ki +

ui

+

wu,i

Ggi (s)
z∆f zgi

Unit i

Fig. 3. Generator dynamics in the linear stochastic model (10). The transfer
function Ggi (s) represents the dynamics of generator i.

power production of each generator, the power balance at the
bus, and the system frequency. This means that h(x(t)) =
Cyx(t), where Cy is a sub-matrix of Cz . The sampling time
is denoted Ts. We use Ts = 0.1 s. Bold letters indicate
random variables. The system noise is assumed to consist
of independent and identically distributed random variables
with wu(tk) ∼ N(0, Rwu

), wd(tk) ∼ N(0, Rwd
), and

v(tk) ∼ N(0, Rv).
In the stochastic model (9), d(tk) is interpreted as a piece-

wise constant load forecast. The parameters b(tk) andwd(tk)
account for the forecast errors. The term b(tk) models
unpredictable disturbances due to e.g. generator trips and
non-zero mean forecast errors, and the term wd(tk) accounts
for random fluctuations from the mean. We simulate the
system using ode45 in MATLAB.

B. Control Model

The controller proposed in this paper keeps the system
frequency, zf (t), close to its nominal value, f0. Equation (6)
shows that when xf (t) ≈ f0, then Af (xf (t)) ≈ f0/(2HS).
It follows that L(x(t)) ≈ Ax(t), with A defined accordingly.
For the application presented in this paper, it is therefore
adequate to use a linearization of (9) in the controller. Fig. 2
and Fig. 3 provide a block-diagram of the linearized system.
The saturation block in Fig. 3 illustrates that the generator
model is valid only for set-points within the generator
production limits.

With some abuse of notation, the linearized system is
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written as

xk+1 = Axk +B(uk +wu,k) + E(dk +wd,k), (10a)
yk = Cyxk + vk, (10b)
zk = Czxk, (10c)

where (A,B,E) have been redefined to denote discrete-
time state space matrices. These matrices are computed from
the continuous-time state space matrices using the matrix
exponential. The matrices Cz and Cy are not redefined.
The disturbance b(tk) is not included in (10a), as this
parameter is unknown to the controller. Assuming that the
sampling time is Ts = 0.1 as in the continuous-time case,
then wu,k ∼ N(0, Rwu

), wd,k ∼ N(0, Rwd
), and vk ∼

N(0, Rv). We derive a representation of (10), with sampling
time T̄s = nTs = n0.1, for some integer n ≥ 1. Increasing
the sampling time may be necessary to accommodate the
proposed controller to an existing control system, or to
reduce the computation time of solving the OCP.

When T̄s = nTs, the control input, uk, is constant for
knTs ≤ t ≤ (k + 1)nTs. The controller assumes that the
demand forecast, dk, is constant in this interval as well.
Average values can be fed into the controller if this is not
the case.

Using Equation (10a), the state evolution from time t =
knTs to time t = (k + 1)nTs, is

x(k+1)n = Ãxkn + B̃ukn + Ẽdkn + w̃kn, (11)

where

Ã = An, B̃ =
n∑
i=1

Ai−1B, Ẽ =
n∑
i=1

Ai−1E. (12)

In addition, w̃kn ∼ N(0, R̃w), with covariance matrix

R̃w =
n∑
i=1

Ak−1
(
BRwu

BT + ERwd
ET
)

(Ak−1)T .

By letting k := nk, Equations (10b), (10c), and (11) provide
a discrete-time linear state space model for the linearization
of (9), with sampling time T̄s = nTs.

C. State Estimation

The system (9) is a stochastic system. We estimate the
system state using the Kalman filter [22]. The Kalman filter
is implemented based on the linearized model defined by
(Ã, B̃, Ẽ, Cz, Cy, R̃w, Rv). To estimate the unknown distur-
bance, b(tk), we augment the model by a disturbance model
[23], [24], such that

xk := xk + Ẽηk. (13)

The disturbance model is ηk+1 = ηk +wη,k, with wη,k ∼
N(0, Rη). We denote the augmented state space system by

xk+1 = Axk +Buk + Edk +wk, (14a)
yk = Cyxk + vk, (14b)
zk = Czxk. (14c)

Algorithm 1 Economic Model Predictive Control Algorithm
Filter
ek = yk − Cyx̂k|k−1

Re,k = CyPk|k−1C
T
y +Rv

κk = Pk|k−1C
TR−1

e,k

Pk|k = Pk|k−1 − κk
(
Rv + CyPk|k−1C

T
y

)
κTk

x̂k|k = x̂k|k−1 + κkek
Regulator
uk = µ (P)
Predictor
x̂k+1|k = Ax̂k|k +Buk + Edk
Pk+1|k = APk|kA

T +Rw

In this system

xk :=

[
xk
ηk

]
, A :=

[
Ã Ẽ
0 1

]
, B :=

[
B̃
0

]
, E :=

[
Ẽ
0

]
,

Cz :=
[
Cz 0

]
, and Cy :=

[
Cy 0

]
. Finally, wk ∼

N(0, Rw) with Rw := blkdiag(R̃w, Rη), using MATLAB
notation.

Define Ik = {Ik−1, uk−1, dk−1, yk}, with I0 = y0. More-
over, introduce the conditional means x̂k+j|k = E [xk+j |Ik],
ŷk+j|k = E [yk+j |Ik], ẑk+j|k = E [zk+j |Ik], and the
conditional covariance matrix Pk+j|k = V [xk+j |Ik]. The
filtered estimate, x̂k|k, and the covariance matrix, Pk|k, is
computed as

ek = yk − ŷk|k−1 = yk − Cyx̂k|k−1, (15a)

Re,k = CyPk|k−1C
T
y +Rv, (15b)

κk = Pk|k−1C
TR−1

e,k, (15c)

Pk|k = Pk|k−1 − κkRe,kκTk , (15d)
x̂k|k = x̂k|k−1 + κkek, (15e)

κ is the Kalman filter gain, ek is the innovation, and
Re,k is the innovation covariance matrix. The j-step ahead
prediction for j ≥ 0 is

x̂k+1+j|k = Ax̂k+j|k +Buk+j + Edk+j , (16a)

Pk+1+j|k = APk+j|kA
T +Rw. (16b)

Finally, ẑk+j = Czx̂k+j|k, for j ≥ 0.

III. ECONOMIC MODEL PREDICTIVE CONTROL

This section presents an EMPC scheme for controlling the
single-area power system (9). Algorithm 1 list the EMPC
scheme. The function µ solves the OCP, and returns the first
element in the optimal input sequence {u∗k+j}Nj=0. The input
argument P denotes a set of input parameters to the OCP.
The OCP solved in this paper is formulated as a convex
quadratic program.

A. Nominal Solution

The nominal production plan is computed by solving a
unit-commitment and economic dispatch problem. To ac-
count for the nominal production plan in the EMPC scheme,
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we separate the inputs, states, disturbances, and outputs, in
(14), into two components

uk = unom
k + umpc

k , dk = dnom
k + dmpc

k ,

xk = xnom
k + xmpc

k , zk = znom
k + zmpc

k .

The input unom
k is the pre-computed nominal set-point, and

umpc
k is the set-point correction computed in real-time. Ac-

cordingly, the disturbance dk is partitioned into dnom
k , which

is known at the time the nominal set-point is computed,
and dmpc

k , which is known only by the real-time controller.
Using the state space model (14), with wk = vk = 0,
uk = unom

k , and dk = dnom
k , we compute the nominal state

and output values, xnom
k and znom

k , respectively. Similarly,
the generator set-points that include the effect of primary
control, as defined by (2), is written as

ug,k = unom
g,k + umpc

g,k , (17)

where the individual components are

unom
g,k = ũnom

g,k +Kznom
∆f,k, (18a)

umpc
g,k = ũmpc

g,k +Kzmpc
∆f,k. (18b)

B. Optimal Control Problem

The OCP solved at every sampling time is defined as

min.
X

φ =

N−1∑
j=0

lj

(
umpc
g,k+j , ẑ

mpc
k+j+1|k

)
, (19a)

subject to

x̂mpc
k+j+1|k = Ax̂mpc

k+j|k +Bumpc
k+j + Edmpc

k+j , j ∈ N , (19b)

ẑmpc
k+j+1|k = Czx̂

mpc
k+j+1|k, j ∈ N , (19c)

ug,k+j = unom
g,k+j + umpc

g,k+j , j ∈ N , (19d)

umpc
g,k+j = umpc

k+j +Kẑmpc
∆f,k+j|k, j ∈ N , (19e)

uk+j ≤ ug,k+j ≤ uk+j , j ∈ N . (19f)

The prediction horizon is N = {0, 1, 2, . . . , N}, with N
being the length of the horizon. The optimization variables
in (19) are

X = {ug,k+j , u
mpc
g,k+j , x̂

mpc
k+j+1|k, ẑ

mpc
k+j+1|k}k∈N .

As defined by (7), the frequency deviation, ẑmpc
∆f,k+j|k, is

available as part of the output vector ẑmpc
k+j|k, and ũmpc

g,k+j =

umpc
k+j . The input parameters to (19) are the state space

matrices (A,B,E,Cz), the nominal set-point unom
g,k+j , the

load forecast correction dmpc
k+j , the gain vector K, the gen-

eration limits (uk+j , uk+j), the filtered estimate x̂mpc
k|k , and

the output ẑmpc
k|k . The stage cost lj(ug,k+j , ẑk+j|k) is defined

subsequently.
Equations (19b) and (19c) are the state and output predic-

tions. These constraints are governed by the Kalman filter
equations (16). Equations (19d) and (19e) follow from (17)
and (18). Equations (19e) limits the generator set-points. The
limits are time-varying to account for both generator-specific
technical limits, as well as limits that are determined by
external factors, e.g. the wind speed for wind turbines.

C. Objective Function

The stage cost in the OCP objective function (19a) is
defined as

lk(umpc
g,k , z

mpc
k+1) = αφeco(umpc

g,k ,z
mpc
k+1)

+(1− α)φsp(umpc
g,k , z

mpc
k+1), k ∈ N .

(20)

The function φeco is an economic cost function, which is
related directly to the cost of operation. The function φsp is a
conventional set-point based penalty function. The parameter
α is a tuning-parameter to trade-off cost of operation and set-
point tracking. In this paper, the economic cost function is
defined as

φeco(umpc
g,k , z

mpc
k+1) = rT

∣∣∣umpc
g,k − u

mpc
g,k−1

∣∣∣ (21a)

+ cT max
(
zmpc
g,k+1, 0

)
+ c̄T max

(
−zmpc

g,k+1, 0
)

(21b)

+ qmax(zmpc
∆f,k+1 − f, 0) + qmax(f − zmpc

∆f,k+1, 0). (21c)

The max function and the absolute value function are evalu-
ated element-wise. The frequency deviation, zmpc

∆f,k+1|k, and
the generator outputs, zmpc

g,k+1|k, are available as part of the
output vector zmpc

k+1 .
The cost function (21) consists of three terms. The first

term, (21a), is an `1-regularization term on the input-rate.
The parameter r = [rg1 , rg2 , . . . , rgM ] is a cost vector
associated with wear and tear on the generators. The sec-
ond term, (21a), is related to the cost of generation, c =
[cg1 , cg2 , . . . , cgM ] for each generator. We define c̄, such
that c̄i = 1/cgi , for i ∈ M. For upward activation of
operational reserves the penalty is c, and for downward
activation of operational reserves the penalty is c̄. We do not
use c for downward activation, as the operational reserves
should be activated only to compensate for the load not
accounted for in the nominal production plan. The final
term, (21c), is related to the cost of frequency deviations.
The cost q is imposed for frequency deviations smaller
than f , and the cost q is imposed for frequency deviations
larger than f . The limits f and f are the cut-off frequency
deviations, at which critical actions such as load shedding are
initiated to avoid a blackout. In case the nominal production
plan contains frequency deviations, these limits should be
modified accordingly.

The set-point based penalty function, φeco, is defined as

φsp(umpc
g,k , z

mpc
k+1) =(umpc

g,k )TRspumpc
g,k

+ (zmpc
k+1)TQspzmpc

k+1 .
(22)

Note that umpc
g,k = ug,k−unom

g,k , and zmpc
k = zk− znom

g,k , such
that (22) penalizes deviations from the nominal production
plan.

The problem (19) is formulated as a convex quadratic
program. For α = 1, the quadratic terms (22) drop out of the
stage cost (20). In this special case, the optimization problem
is a linear program. We solve the OCP using Gurobi.

IV. CASE STUDY

In this section, we test the proposed EMPC scheme using
a simulation case study based on the Faroe Islands’ power
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Fig. 4. Case study simulation scenario. The unit-commitment problem
is solved based on the nominal load forecast dnom. Updated forecasts and
measurements are used in the EMPC scheme to control the system frequency
in real-time.

system. The system is a reduced system that consists of M =
4 power generators. The EMPC based controller is compared
to set-point based MPC and conventional frequency-based
PI-control. The simulations are performed using an Intel(R)
Xeon(R) CPU @ 2.67GHz with 12 GB RAM running a 64-
bit Windows 7 Enterprise operating system.

We consider a time-varying load over 300 seconds. The
load is assumed to include a portfolio of non-controllable
wind-turbines. In the Faroe Islands, there are several locally
owned wind-turbines that are not controlled by SEV. Fig. 4
shows the scenario set-up.

The nominal load forecast is dnom
k = −21 MW over the

entire simulation scenario. The deviations, bk and dmpc
k =

dk − dnom
k , from the nominal forecast occur due to fluctua-

tions in the power production and the power consumption.
A significant part of the deviations is due to the non-
controllable wind-turbines. The component dmpc

k is pre-
dictable during real time control, and the component, bk,
is estimated based on measurements. In addition to these
piece-wise constant deviations, the load and the generators
are affected by process noise, as defined in (9). In our
simulations the process noise covariance matrix is Rw = I4,
where I4 is the identity matrix of size 4×4. The measurement
noise covariance matrix is Rv = blkdiag(0.1I6, 0). Thus,
only the frequency measurement is noise-free. We have
provided the noise covariance matrices for (9), such that the
values can be related directly to the physical system. The
nominal frequency in the Faroe Islands’ power system is
f0 = 50 Hz.

A. System Parameters

The case study power generators are modeled as first order
systems in the form

Zgi(s) =
1

τgis+ 1
Ugi(s), i = 1, 2, . . . , 4, (23)

where Zgi [MW] is the power production of generator i, and
Ugi [MW] is the power set-point of generator i. The load has
the similar form

Zl(s) =
1

τls+ 1
Ul(s), (24)

TABLE I
CASE STUDY SYSTEM PARAMETERS.

Name Type Hi [s] ui,k [MW] ui,k [MW] τi [s]

Gen. 1 Hydro 3.1 3 20 8
Gen. 2 Hydro 2.5 2 6 6
Gen. 3 Diesel 1.8 1 5 1
Gen. 4 Diesel 8.2 5 15 3

τl < τgi , for i ∈M. We use τl = 0.5 s. In (24), Ul(s) [MW]
is the load set-point, and Zl(s) [MW] is the actual load. The
transfer functions (23) and (24) are realized in state space
form, to form the system (9).

Table I lists the case study system parameters. The data
represents actual generators in the Faroe Islands. Due to
confidentiality reasons, the data has been partly modified.
Moreover, the inertia provided by each generator is scaled up
to better represent the full scale system. The parameters listed
in Table I are constant over the entire simulation scenario.
The unit rating, Si [MVA], is defined to have the same
magnitude as ui,k. The primary control gain vector is K =
[20/3, 2, 5/3, 5]T [MW/Hz]. These gains are computed based
on a 6 % speed droop for each of the generators [4]. The
power generator production costs in Euro/MWh are 4, 8, 80,
and 60, respectively. Therefore, c = T̄s/3600 · [4, 8, 80, 60]T ,
where T̄s = nTs is the sampling time of the controller. The
prices defined here are similar to the estimates provided in
[25]. The input-rate cost is defined to be 0.05 Euro/MW,
such that r = 0.05 · [1, 1, 1, 1]T . The hydro generators have
a lower production cost than the diesel generators, but they
have limited reservoirs. For this case study, the reservoirs are
assumed not to have any limits. Within each generator group,
the smaller and faster generator has the highest operating
cost.

The nominal set-point is unom
g,k = [8, 6, 1, 6]. These set-

points are computed by solving an economic dispatch prob-
lem, considering operational reserve requirements [1], [2].
The simulation is started from steady-state, such that znom

g,k =
unom
g,k . For the disturbance model defined in (13), we use the

noise covariance matrix Rη = 0.1.

B. Controller

The controller sampling time is T̄s = 0.5 seconds, and we
define the prediction horizon to be N = 80 time steps. The
cut-off frequency deviations are f = −f = 1 Hz. Frequency
deviations larger than ±1 Hz has a very high cost, as it
involves potential load-shedding, cascading generator trips,
and ultimately a total blackout. We define the price to be
1000 Euro/(Hz · s). Accordingly, q = q = 1000T̄s. We note
that the economic criterion, (21), may be modified to include
several cut-off frequencies with different costs.

The weights in the set-point based criterion (22) are
partitioned as Qsp = blkdiag (Qsp

g , Q
sp
l , Q

sp
b , Q

sp
∆f ), and

Rsp = Rsp
g . We use Qsp

g = I4, Qsp
l = Qsp

b = 0, Qsp
∆f = 100,

and Rsp
g = I4. This means that deviations from the nominal

frequency have a much higher penalty, compared to generator
deviations from their nominal production plan. We scale the
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Fig. 5. System frequency associated with the closed loop simulations in
Fig. 6.

weights Qsp and Rsp by a factor T̄s/3600, such that the
economic criterion, (21), and the set-point based criterion,
(22), is in a comparable scale.

C. Simulations

Closed-loop simulations are performed using the trade-
off specifications α = 0, α = 0.5 and α = 1. The
case α = 0 corresponds to set-point based MPC, and
α = 1 only considers cost minimization. The case α = 0.5
balances the two extreme cases. For compact notation, we
use EMPC(α) to denote EMPC with trade-off parameter α.
We also include a conventional frequency-based PI-controller
in our comparison. We have tuned the PI-controller by trial
and error.

Fig. 5 and Fig. 6 illustrate closed-loop simulations for the
four different strategies described above. Fig. 5 shows the
system frequency, and Fig. 6 shows the power production of
the generators

For α = 0, the EMPC scheme coincides with set-point
based MPC. In this case, all the generators with free gener-
ation capacity participate in keeping the frequency close to
its nominal value. Similar behavior is observed for the PI-
controller. For α = 0.5, slightly larger frequency deviations
are allowed than for set-point based MPC, such that slower
and less expensive units can be prioritized over the fast and

TABLE II
KEY SIMULATION RESULTS: COST OF OPERATION AND FREQUENCY

DEVIATIONS FOR DIFFERENT EMPC TRADE-OFF SPECIFICATIONS, AND

FOR PI-CONTROL.

Cost of operation min{z∆f,k} max{z∆f,k}

EMPC(0) 15.8 -0.39 0.43
EMPC(0.1) 10.9 -0.45 0.48
EMPC(0.2) 7.20 -0.48 0.61
EMPC(0.3) 4.67 -0.52 0.76
EMPC(0.5) 2.68 -0.76 0.87
EMPC(1) 2.10 -1.01 0.91
PI-control 14.2 -1.19 1.10

expensive generators. Note that the frequency deviation never
exceeds the cut-off frequency deviations ±1 Hz. For α = 1,
the generators act similar to the case α = 0.5. The frequency
is however, operated close to a cut-off frequency a significant
part of the time. Since the controlled system is a stochastic
system, EMPC with α = 1 is high risk strategy. By reducing
α, the risk is reduced at the expense of the operating cost.

Table II provides key data from the illustrated simulations,
and for additional values of the trade-off parameter α. The
costs reported in this table are computed as

π =
∑
k

cT zmpc
g,k+1 + rT

∣∣∣umpc
g,k − u

mpc
g,k−1

∣∣∣ , (25)

The cost (25) is the actual cost of operation. Compared to the
criterion (21b), generator costs can be negative in (25) when
operational reserves are activated in the downward direction.

The cost associated with set-point based MPC is approx-
imately 16 Euro. Over the course of one year, the price
difference between this strategy and EMPC with α = 0.5,
sums to over 1.3 million Euro, which is approximately 3 %
of the revenues generated by SEV in 2012. Although the case
α = 1 results in even lower generation costs, it is disregarded
due to its high risk. A systematic method for trading-off cost
variance and cost expectation may be achieved for α = 1, by
combining the proposed strategy with mean-variance EMPC
[26], [27].

V. CONCLUSIONS

We develop a novel economic model predictive control
scheme for frequency control in a single-area power system.
The scheme is a generalization of set-point based MPC,
that trades off cost minimization and set-point tracking.
Simulations based on a Faroe Islands case study show that
the proposed controller reduces cost of operation by almost
an order of magnitude, while maintaining a high quality
frequency control.
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Fig. 6. Closed-loop simulation for EMPC and frequency-based PI-control. The EMPC scheme is tested using the trade-off specifications α = 0, α = 0.5,
and α = 1.
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A Hierarchical Algorithm for Integrated Scheduling
and Control With Applications to Power Systems

Leo Emil Sokoler, Peter Juhler Dinesen, and John Bagterp Jørgensen

Abstract— The contribution of this paper is a hierarchical
algorithm for integrated scheduling and control via model pre-
dictive control of hybrid systems. The controlled system is a
linear system composed of continuous control, state, and output
variables. Binary variables occur as scheduling decisions in the
optimal control problem (OCP). The scheduling decisions are
made on a slow time scale compared with the system dynamics.
This gives rise to a temporal separation of the scheduling and con-
trol variables in the OCP. Accordingly, the proposed hierarchical
algorithm consists of two optimization levels. The upper level
(scheduling level) solves a mixed-integer linear program (MILP)
with a low frequency. The lower level (control level) solves an
LP with a high frequency. The main advantage of the proposed
approach is that it requires online solution of an LP rather than
an MILP. Simulations based on a power portfolio case study
show that the hierarchical algorithm reduces the computation to
solve the OCP by several orders of magnitude. The improvement
in computation time is achieved without a significant increase in
the overall cost of operation.

Index Terms— Hybrid power systems, mixed-integer linear
programming (MILP), model predictive control (MPC), produc-
tion scheduling.

I. INTRODUCTION

MODEL PREDICTIVE CONTROL (MPC) has become
one of the most popular industrial control strategies

[1]–[5]. The basic idea of MPC is to optimize the predicted
behavior of a process model over a finite horizon. At each
sampling instant, the current state is estimated based on mea-
surements, and an optimal control problem (OCP) is formed
and solved. The solution of the OCP provides a sequence
of inputs. Only the first input in this sequence is applied to
the controlled system, and the procedure is repeated at the
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following sampling instant. In this way, a closed-loop input
trajectory is synthesized using feedback by solving a sequence
of open-loop OCPs.

The control of hybrid systems is an emerging application
area for MPC. Examples are traction control [6], control of
refrigeration systems [7]–[9], control of cogenerating power
plants [10], water treatment control [11], and supply chain
management [12]. The main limitation of MPC for hybrid
systems is that it requires the solution of a computationally
challenging OCP in real time [13]–[17]. References [18]–[20]
establish important properties for MPC of hybrid systems, such
as closed-loop stability. Fault detection and state estimation in
hybrid systems are described in [21].

Hybrid systems are often represented as mixed logical
dynamical (MLD) systems [13], [22]–[26]. MLD systems are
composed of continuous and binary inputs, states, outputs,
and auxiliary variables. The OCP that arises in MPC of MLD
systems is a mixed-integer linear program (MILP) or a mixed-
integer quadratic program (MIQP). Computationally tractable
MPC schemes require algorithms that can solve the OCP in
real time. Efficient algorithms for MPC of MLD systems
have been proposed in [13]–[17]. Reference [16] develops
a structure-exploiting gradient projection algorithm for the
subproblems that occur in a branch-and-bound algorithm for
the OCP. References [13]–[15] and [27] express the OCP as
a multiparametric MILP, which is solved offline. The main
issue with this explicit approach is that the computation time
can grow exponentially with the problem size (horizon length,
number of states, and number of inputs). Explicit methods
are, therefore, usually limited to small-dimensional problems.
Larger problems have been solved efficiently using convex
relaxation techniques [28], [29] and Lagrangian decomposi-
tion [30], [31]. The performance of these methods is very
problem-dependent.

In this paper, we address a special case of MPC of MLD sys-
tems where decisions are made on two time scales. Binary
scheduling decisions are made on a slow time scale, while
continuous control decisions are made on a fast time scale. The
novelty of this paper is a hierarchical algorithm for solution
of the OCP that occurs for this special case. The algorithm
consists of an upper optimization level, which we refer to as
the scheduling optimization level, and a lower optimization
level, which we refer to as the control optimization level.
The scheduling optimization level solves an MILP with a
low frequency. The control optimization level solves an LP
with a high frequency. Binary decisions, made by the upper
optimization level, are fixed in the lower optimization level.
In the hierarchical algorithm, the time-critical computation is
the solution of an LP. Without the hierarchical decomposition

1063-6536 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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of the MPC scheme, the time-critical computation is the
solution of an MILP.

The main assumption of the proposed approach is that the
binary decisions are made on a slow time scale compared with
the system dynamics. The application of the decomposition
algorithm is, therefore, limited to solve the OCPs that satisfy
this assumption. However, such systems are ubiquitous in
integrated scheduling and control [32]–[36]. Reference [37]
shows that a range of production management problems related
to the control of chemical processes, e.g., batch operations,
blending operations, and supply chain optimization, fits well
into the proposed framework. Motion planning problems in
robotics are another application area that involves decisions
on two time scales (geometric path planning and real-time
feedback control) [38], [39]. The hierarchical separation of
the scheduling layer and the control layer is similar to the
separation of the real-time optimization (RTO) layer and the
control layer (MPC) commonly used in the chemical process
industries [40]–[43]. The main difference is that the scheduling
problem is a dynamic optimization problem involving both
the continuous and discrete variables, while the RTO is a
steady-state optimization problem involving continuous vari-
ables only.

This paper is motivated by the application of economic
MPC (EMPC) to integrated scheduling and control in power
system operations [35], [44]. In EMPC, the OCP objective
function is directly related to the cost of operation [45]. For
this reason, we focus on the OCPs with a linear cost function
rather than a conventional setpoint-based quadratic cost func-
tion. The proposed approach generalizes to the OCPs with a
quadratic cost function as well. As an illustrative example, we
consider a power portfolio case study. The case study involves
unit commitment (UC) and economic dispatch of a collection
of power generators. An MPC scheme is employed for cost-
efficient control of the power generators. The MPC scheme
integrates production scheduling and balance control [46]. The
ON/OFF decisions occur as binary variables in the OCP. Direct
solution of the OCP is, therefore, intractable in real time. Sim-
ulations show that the proposed hierarchical algorithm reduces
the computation time to solve the OCP by several orders of
magnitude. The improvement in computation time is achieved
without a significant increase in the overall cost of operation.
The algorithm also establishes a formal relationship between
the OCP and the well-known UC problem [34], [47], [48],
which has not previously been described in the literature.
Related problems where a similar approach can be applied are,
e.g., control of cogeneration power plants [10], [23], control
of wind farms for power optimization [49], and utility systems
in the chemical process industries [34], [35], [50].

A. Paper Organization

This paper is organized as follows. Section II defines the
OCP for integrated scheduling and control. Section III presents
the hierarchical algorithm for efficient solution of the OCP.
Section IV introduces the power portfolio problem. Section V
provides the simulations and results, and Section VI concludes
this paper.

II. PROBLEM DEFINITION

We consider continuous-time linear state-space models in
the form

ẋ(t) = Acx(t)+ Bcu(t)+ Ecd(t) (1a)

z(t) = Cz x(t)+ Fzd(t). (1b)

The state-space matrices are denoted by (Ac, Bc, Ec,Cz , Fz),
the control variable is denoted by u(t) : R �→ Rnu , the system
state is denoted by x(t) : R �→ Rnx , the disturbance is denoted
by d(t) : R �→ Rnd , and the output is denoted by z(t) :
R �→ Rnz . MPC is applied to control the system (1). The
prediction horizon is T = [t0, t f ].

A. Optimal Control Problem

This section defines the OCP for integrated scheduling
and control. The OCP includes binary scheduling variables
and continuous control variables. We partition the prediction
horizon, T , into L equidistant subintervals Tl = [τl , τl+1],
l = 0, 1, . . . , L − 1, such that T = T0 ∪ T1 ∪ · · · ∪ TL−1.
The length of each subinterval is �τ = (t f − t0)/L. τ0 = t0
and τL = t f . Let L = {0, 1, . . . , L} denote the set of indices
associated with time instants τ0, τ1, . . . , τL . A vector of binary
scheduling variables, bl ∈ {0, 1}q , is associated with each time
step, τl .

The OCP is defined as

min
X (·),v(·),b

fR(X, v)+ fZ(b) (2a)

s.t. ẋ(t) = Acx(t)+ Bcu(t)+ Ecd(t), t ∈ T (2b)

z(t) = Cz x(t)+ Fzd(t), t ∈ T (2c)

cR(X (t), v(t), t) ≤ 0, t ∈ T (2d)

cZ(b) ≤ 0 (2e)

γ (v(t), b) = 0, t ∈ T . (2f)

The decision variables in (2) are the continuous-time functions
X (t) = [u(t)T x(t)T z(t)T ]T : R �→ Rnu+nx +nz and v(t) :
R �→ Rq , and the vector of binary variables

b = [
bT

0 bT
1 · · · bT

L

]T
. (3)

In general, X (t) may also contain auxiliary continuous-time
functions. Constraints (2b) and (2c) are the state-space con-
straints. The initial state, x(0) = x0, is a fixed parameter.
Equation (2d) represents the continuous-time constraints.
These constraints are related to the continuous control deci-
sions for the system (1). Equation (2e) represents the discrete-
time constraints. These constraints are related to the binary
scheduling decisions for the system (1). We assume that cR
and cZ are the affine functions.

In the objective function (2a), fR(X, v) is the cost asso-
ciated with the continuous control decisions, and fZ(b) is
the cost associated with the binary scheduling decisions.
We assume that fR and fZ are the linear functions. Moreover

fR(X, v) =
∫ t f

t0
gR(X (t), v(t), t)dt . (4)
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Fig. 1. Two time scales associated with the OCP (7). The sampling time of the
continuous-time system, (1), is �t . The time between the binary decisions, (3),
is �τ . This paper addresses the case where �t is small compared with �τ .

Constraint (2f) couples the vector of binary variables, b, and
the continuous-time function v(t). The coupling function, γ,
is defined as

γ (v(t), b) =

⎧
⎪⎪⎨

⎪⎪⎩

v(t)− b0 if τ0 ≤ t ≤ τ1
...

v(t)− bL−1 if τL−1 ≤ t ≤ τL .

(5)

This means that any feasible solution of (2) satisfies

v(t) = bl, τl ≤ t ≤ τl+1

for l ∈ L \ {L}. The main purpose of the coupling func-
tion, γ , is to decouple the binary and continuous variables
in cR and cZ, as well as in fR and fZ. Note that the system
dynamics, (2b), does not depend on the binary variables.

B. Discretization

To solve (2), we discretize the optimization problem. The
sampling time is �t = �τ/K , for some positive integer K .
The discretization points are denoted by t0, t1, . . . , tN . We let
N = {0, 1, . . . , N} denote the set of indices associated with
the discretization points. Note that

τl = tK l , l ∈ L. (6)

Fig. 1 shows the relation (6) for K = 2.
We consider the case where binary decisions are made on

a slow time scale, compared with the system dynamics. This
means that �t is small compared with �τ , i.e., N � L. The
discrete-time formulation of (2) is

min
X,v,b

f̃R(X, v)+ fZ(b) (7a)

s.t. xk+1 = Axk + Buk + Edk, k ∈ N \ {N} (7b)

zk = Cz xk + Fzdk, k ∈ N \ {0} (7c)

cR(Xk, vk , tk) ≤ 0, k ∈ N (7d)

cZ(b) ≤ 0 (7e)

γ (vk , b) = 0, k ∈ N . (7f)

Constraints (7b) and (7c) are the discrete-time equivalents
of (2b) and (2c), respectively. The discrete-time state-space
matrices are denoted by A, B , and E . uk ∈ Rnu is the control
variable, xk ∈ Rnx is the system state, dk ∈ Rnd is the
disturbance, and zk ∈ Rnz is the output. The initial state, x0,
is a fixed parameter. As in the continuous-time case, we use
Xk = [uT

k x T
k zT

k ]T for compact notation. This vector may

also contain additional auxiliary variables. In the objective
function (7a), we have defined

f̃R(X, v) =
∑

k∈N \{N}
gR(Xk, vk, tk)�t

which is an Euler approximation of the integral (4).

III. HIERARCHICAL ALGORITHM

Problem (7) is an MILP. Solving (7) in real time is,
therefore, challenging, especially since N is large. To reduce
the computation time to solve (7), we consider a hierarchical
approach. The idea is to decompose the solution of (7) into
two separate optimization levels. The upper optimization level
(scheduling level) is associated with the binary decisions that
are made on a slow time scale, and the lower optimization
level (control level) is associated with the control decisions
that are made on a fast time scale. Binary variables are fixed
at the lower optimization level. For this reason, the lower level
optimization problem can be expressed as an LP. We refer to
the upper level MILP as the UL-OCP, and to the lower level LP
as the LL-OCP. The UL-OCP is solved with a low frequency,
and the LL-OCP is solved with a high frequency.

A. Upper Level Optimal Control Problem

The UL-OCP is simply (7), where we replace the sampling
time, �t , with some �t̄ that satisfies

�t ≤ �t̄ ≤ �τ

with �τ/�t̄ integer. We use bar notation to denote the
variables and the parameters associated with the UL-OCP.
In the case �t̄ = �t , the UL-OCP coincides with (7). When
�t̄ = �τ , the sampling time is the time between binary
decisions. By assumption, the system dynamics occurs at a
much faster time scale than �τ . Therefore, the state transition
matrix, Ā, resulting from a discretization with �t̄ = �τ ,
satisfies Ā ≈ 0. In addition

z̄k ≈ Cz(B̄ūk−1 + Ē d̄k−1)+ Fzd̄k, k ∈ N . (8)

Consequently, the state variables x̄1, x̄2, . . . , x̄ N̄ can be elim-
inated from the UL-OCP, for a sufficiently large �t̄ .

B. Lower Level Optimal Control Problem

The LL-OCP is (7) with fixed binary variables, b = b̃.
As the binary variables are fixed, we do not include fZ(b̃) in
the LL-OCP objective function. Similarly, constraint (7e) is
excluded from the LL-OCP. The LL-OCP is

min
X

∑

k∈Ñ \{Ñ }
gR(Xk, ṽk , tk)�t (9a)

s.t. xk+1 = Axk + Buk + Edk,∈ Ñ \ {Ñ} (9b)

zk = Cz xk + Fzdk, k ∈ Ñ \ {0} (9c)

cR(Xk, ṽk, tk) ≤ 0, k ∈ Ñ (9d)

where Ñ = {0, 1, . . . , Ñ }. The variables v1 = ṽ1,
v2 = ṽ2, . . . , vN = ṽN are fixed parameters in (9). These
parameters are determined by the coupling function (5), for
fixed b = b̃. Since the system dynamics occurs on a relatively
fast time scale, Ñ may be chosen significantly smaller than N .
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Algorithm 1 MPC of (10) via Hierarchical Solution of the
OCP

C. Algorithm

Consider the stochastic system

xk+1 = Axk + Buk + Edk + Gwk (10a)
zk = Cz xk + Fz dk (10b)
yk = Cy xk + Fy dk + vk (10c)

where wk∼N(0, Rw) is the process noise, vk ∼ N(0, Rv ) is
the measurement noise, and dk ∼ N(ďk , Rd ) is an unknown
disturbance. We use bold letters to denote random variables.

Define Ik = {Ik−1, uk−1, dk−1, yk}, with I0 = y0. More-
over, introduce the conditional means x̂k+ j |k = E[xk+ j |Ik],
ŷk+ j |k = E[ yk+ j |Ik], and ẑk+ j |k = E[zk+ j |Ik], and the
conditional covariance matrix Pk+ j |k = V [xk+ j |Ik]. These
values are computed using the Kalman filter. The disturbance
forecast is denoted by d̂k+ j |k . We assume that a disturbance
forecast is generated by some external procedure.

In MPC, based on the separation and certainty equiva-
lence principle, uncertain parameters are replaced by their
conditional expectations. We use this approach to control the
stochastic system (10). The OCP solved at every sampling
instant, k = 0, 1, . . . ,∞, is (7), with x0 = x̂k|k , and d j =
d̂k+ j |k for j ∈ N . Algorithm 1 is an MPC scheme for
the control of the stochastic system (10), using the hierar-
chical algorithm for the solution of the OCP. The indicator
variables I b

1 , I b
2 , . . . , I b∞ trigger the solution of the UL-OCP.

The indicator variables can be predefined or updated online,
e.g., it is reasonable to update the scheduling decisions if
a significant change in the disturbance forecast arises. The
lower optimization level requires that the values for the binary
variables are available within its control horizon. Therefore,
I b
0 = 1.

There are several parameters in Algorithm 1 that can be
tuned to tradeoff optimality and computation time. Increasing
the sampling time, �t̄ , reduces the size of the UL-OCP.

Reducing the length of the prediction horizon, Ñ , reduces the
size of the LL-OCP. As an example, Ñ may be chosen just
large enough to ensure that the controller is stable [51]–[53].
We suggest to use a fairly long prediction horizon to achieve
stable and cost-efficient operation of the system.

IV. POWER PORTFOLIO PROBLEM

Electricity is bought and sold in electricity markets.
A majority of the energy is usually traded in a day-ahead
energy market. When the market is cleared, the power pro-
ducers receive a 24 h-ahead reference profile specifying the
amount of electricity they have sold. Scheduling the generation
of available power generators is a challenging task for the
power producers, as it involves decisions across different
time scales and scheduling horizons. Hours-ahead to days-
ahead scheduling (scheduling level) is handled by solving an
MILP for UC and economic dispatch of the power generators.
To account for imbalances between the power production and
the reference profile, a balance control layer (control level)
can be employed. The control level is important to account
for the inherent uncertainties associated with the generation
of renewable energy sources [44], [46]. We show that the
proposed approach facilitates the integration of the scheduling
and the control level. This makes it possible to tradeoff
computation time and optimality in a systematic way.

A collection of M power generators is controlled using the
proposed MPC scheme. The M power generators represent
a portfolio of generators that is operated by a single power
producer. The generators are modeled as transfer functions in
the form

Zi (s) = Gu,i (s)Ui (s), i ∈ M (11)

where M = {1, 2, . . . ,M}. Ui (s) is the power production
setpoint, and Zi (s) is the power production. We define D(s)
to be the aggregated power production from noncontrollable
generators, such as photovoltaic generators and noncontrol-
lable wind turbines. The net power production is the sum

ZT (s) =
∑

i∈M
Zi (s)+ D(s). (12)

We collect (11) and (12) into a single model in the form

Z(s) = Gu(s)U(s)+ Gd (s)D(s) (13)

where U(s) = [U1(s)T , . . . ,UM (s)T ]T is the control variable,
and Z(s) = [Z1(s)T , . . . , Z M (s)T , ZT (s)]T is the output

Gu(s) = [blkdiag (Gu,1, . . . ,Gu,M ); [Gu,1, . . . ,Gu,M ]]
and Gd(s) = [0, . . . , 0, 1]T are the transfer functions. The
model (13) is realized in the continuous-time state-space
form (1). In the resulting model structure

Ac = blkdiag (Ac,1, Ac,2, . . . , Ac,M )

Bc = blkdiag (Bc,1, Bc,2, . . . , Bc,M )

Cz = [blkdiag (Cz,1, . . . ,Cz,M ); [Cz,1, . . . ,Cz,M ]]
Ec = 0, and Fz = [0, . . . , 0, 1]T . Moreover, x(t) is the system
state, u(t) = [u1(t)T , . . . , uM (t)T ]T is the vector of power
production setpoints, and z(t) = [z1(t)T , . . . , zM+1(t)T ]T is
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the vector of power production outputs. This vector contains
the power production of each generator, as well as the total
power production, zM+1(t) = zT (t). Finally, d(t) is the power
production from noncontrollable generators.

The power generators can be turned ON and OFF in the time
instants t ∈ {τ0, τ1, . . . , τL}. Define the binary variables

bs
i,l =

{
1, if generator i is running at time τl

0, otherwise

i ∈ M and l ∈ L. Similarly, define bu
i,l to indicate if a

generator is turned ON, and bd
i,l to indicate if a generator is

turned OFF. In addition

vs
i (t) = bs

i,l , τl ≤ t ≤ τl+1 (14)

for i ∈ M and l ∈ L\{L}, i.e., vs
i (t) is a piecewise constant

representation of bs
i,l . We define vu

i (t) and vd
i (t) in the same

manner.
The cost of operation is defined as

ψ =
∫ t f

t0

(
∑

i∈M

(
pz

i zi (t)+ ps
i v

s
i (t)

) + pρρ(t)

)

dt

+
∑

i∈M

∑

l∈L

(
pu

i bu
i,l + pd

i bd
i,l

)
(15)

where pz
i is the marginal production price for power gener-

ator i , ps
i is the fixed running cost for power generator i ,

pu
i is the start-up cost for power generator i , and pd

i is the
shutdown cost for power generator i . pρ is the marginal price
for power imbalances. Imbalance costs are imposed when
the power production deviates from a predefined reference
(e.g., the power demand or the power sold in the day-ahead
electricity market), denoted by r(t). This is expressed as

r(t)− ρ(t) ≤ zM+1(t) ≤ r(t)+ ρ(t), t ∈ T . (16)

To keep the notation simple, we use one single price, pρ , for
both the positive and negative imbalances. Asymmetric prices
can represent a market situation where power is traded on an
electricity exchange.

The power production setpoint for a generator is limited by
its capacity limits. This is modeled by the constraint

ziv
s
i (t) ≤ ui (t) ≤ ziv

s
i (t), i ∈ M, t ∈ T . (17)

The lower and upper capacity limits for power generator i
are zi and zi , respectively. The setpoint for a generator not
running is zero. This is enforced by multiplying each of the
capacity limits in (17) by vs

i (t). A constraint on the input-rate
is defined to avoid drastic setpoint changes

∂ui − Qvd
i (t) ≤ dui (t)

dt
≤ ∂ui + Qvu

i (t) (18)

i ∈ M, t ∈ T . The upper and lower input-rate limits for
generator i are ∂ui and ∂ui , respectively. The terms involving
Q relax the constraint (18) when a generator is turned ON

or OFF. This is necessary to avoid infeasibility of the OCP,
e.g., when ui ≥ �ui for some i ∈ M. The binary decision
variables are coupled by the constraints

bs
i,l = bs

i,l−1 + (bu
i,l − bd

i,l ), i ∈ M, l ∈ L (19a)

bu
i,l + bd

i,l ≤ 1, i ∈ M, l ∈ L. (19b)

These constraints model the start-up and shutdown logic.
We refer to [47] for a detailed description of the logical
constraints in UC and economic dispatch problems. The
OCP associated with the power portfolio problem is to mini-
mize (15) subject to the constraints (16)–(19).

A. Standard Form

The OCP associated with the power portfolio problem is
written in the standard form (7). The components of the binary
vector, (3), are

bl = [
bs

1,l bu
1,l bd

1,l . . . bs
M,l bu

M,l bd
M,l

]

for l ∈ L. We define the components of v accordingly. In the
objective function (2a)

fR(X, v) =
∫ t f

t0

(
∑

i∈M

(
pz

i zi (t)+ ps
i v

s
i (t)

) + pρρ(t)

)

dt

fZ(b) =
∑

i∈M

∑

l∈L
pu

i bu
i,l + pd

i bd
i,l

such that

gR(X (t), v(t), t) =
∑

i∈M

(
pz

i zi (t)+ ps
i v

s
i (t)

) + pρρ(t)

and X (t) = [u(t)T x(t)T z(t)T ρ(t)T ]T . The function associ-
ated with the constraint (2d) is

cR(X (t), v(t), t) =

⎡

⎢
⎢
⎢
⎣

c̄R(X (t), v(t), t)
c0
R(X (t), v(t), t)

...

cN
R (X (t), v(t), t)

⎤

⎥
⎥
⎥
⎦

(20)

where

c̄R(X (t), v(t), t) =
[

zM+1(t)− r(t)− ρ(t)
r(t)− zM+1(t)− ρ(t)

]

ci
R(X (t), v(t), t) =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

ui (t)− ziv
s
i (t)

ziv
s
i (t)− ui (t)

dui (t)

dt
−�ui − Qvu

i (t)

�ui − Qvd
i (t)− dui (t)

dt

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

, i ∈ M.

cZ(b) is constructed by stacking the constraints (19). The
coupling constraint (2f) follows from the definition (5).

In the discretized OCP, (7), we use the backward-difference
approximation

dui (t)

dt
≈ ui,k − ui,k−1

�t
, i ∈ M, k ∈ N .

The constraints for the discretized OCP are expressed as
in (20) with

c̄R(Xk, vk , tk) =
[

zM+1,k − rk − ρk

rk − zM+1,k − ρk

]

ci
R(Xk, vk , tk) =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

ui,k − zi,kv
s
i,k

ziv
s
i,k − ui,k

ui,k − ui,k−1

�t
− ∂ui − Qvu

i,k

∂ui − Qvd
i,k − ui,k − ui,k−1

�t

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

, i ∈ M.
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The discretized OCP is an MILP. To get well-behaved closed-
loop solutions, the OCP objective function can be augmented
by �1- and �2-penalty terms on the input-rate [54]. For
�2-regularization, the OCP becomes an MIQP. It is straight-
forward to generalize the hierarchical algorithm to this case.

B. Relationship to the Unit Commitment Problem

The transfer function (11) maps the power production
setpoint for a generator to its actual power production. It is
reasonable to assume that the gain in this system is 1. This
means that

zi (t) → ui (t), i ∈ M (21a)

zM+1(t) →
∑

i∈M
ui (t)+ d(t) (21b)

for t → ∞. Consider the approximation (8) for the UL-OCP.
Based on (21), we can further assume that

Cz B̄ ≈ [blkdiag (I, . . . , I ); [1, 1, 1]]
where we use that E = 0 and Fz = [0, . . . , 0, 1]T .
Consequently

⎡

⎢⎢
⎢
⎣

z̄1,k
...

z̄M,k

z̄T ,k

⎤

⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎢
⎣

ū1,k−1
...

ūM,k∑
i∈M ūi,k

⎤

⎥⎥
⎥
⎦

+

⎡

⎢⎢
⎢
⎣

0
...
0
d̄k

⎤

⎥⎥
⎥
⎦
, k ∈ N . (22)

Equation (22) is used to eliminate the power production
variables, z̄1, z̄2, . . . , z̄ N̄ from the UL-OCP. In this way, the
UL-OCP can be expressed without the state and output
variables, as well as without the state-space constraint
(7b) and (7c). The resulting optimization problem is a
UC problem [34], [47], [48], i.e., for a sufficiently coarse tem-
poral discretizaton, the UL-OCP coincides with the UC prob-
lem. Hierarchical decomposition of UC and balance control
is widely adopted in power system operations [34], [48]. This
paper shows that the hierarchical approach can be interpreted
as an approximate way to solve the OCP (7). The approxi-
mation provides a computationally efficient scheme to obtain
suboptimal solutions of (7). This makes it possible to employ
MPC, based on (7), for integrated scheduling and control.

V. CASE STUDY

We consider an example of the power portfolio problem,
with M = 3 generators in the form

Gu,i (s) = 1

(1 + κi s)3
, i ∈ M. (23)

Reference [55] validates the model (23) against actual mea-
surement data. Note that the gain in the system (23) is 1. The
controlled system is a stochastic system in the form (10). The
disturbance, dk , is the noncontrollable wind power production.
For this case study, we do not consider process noise nor
measurement noise.

Table I lists the case study parameters for each of the
three generators in convenient display units. Generator 1 has
a small time constant, i.e., the generator is fast. It has a
high marginal production price and a high fixed running cost.

TABLE I

CASE STUDY GENERATOR PARAMETERS

Fig. 2. Case study power demand (reference, rk ), wind power produc-
tion (disturbance, dk ), and wind power forecasts (disturbance forecasts,
d̂k|0 and d̂k|900).

Moreover, Generator 1 has a very limited capacity. In contrast
to this, Generator 3 is a slow low-cost generator with a
large capacity. Generator 2 is a medium-sized generator. The
contrast between the generator agility and the production price
is a common situation in power systems, where large thermal
power plants often produce a majority of the electricity, while
the use of smaller gas turbines is limited to critical peak
periods.

The imbalance price, pρ , is 400 EUR/MWh. The time
between binary decisions is �τ = 900 s. This means that
the generators can be turned ON or OFF every 15 min. The
length of the prediction horizon is t f = 3 h. The sampling
time for the system dynamics is �t = 5 s, which is adequate
for dynamics in the time scale listed in Table I. As a result
of these parameter specifications, N = 2160 and L = 12.
UC is often performed with a prediction horizon of more than
24 h. We use a 3 h-ahead horizon to be able to solve the full
size OCP (7) using a general-purpose solver in a reasonable
amount of time. Fig. 2 shows the case study reference, rk , the
wind power production, dk , the initial wind power production
forecast, d̂k|0, and an updated wind power production forecast,
d̂k|900. The wind power forecasts should be interpreted as

{d̂k|0}2160
k=0 and {d̂k|900}2160

k=0 , respectively. Note that d̂k|900 = dk

for k ≤ 900. For t > 75 min (k > 900), the initial wind
power forecast, d̂k|0, is not very accurate. This suggests that
the UL-OCP should be resolved when the updated forecast,
d̂k|900, becomes available at t = 75 min (k = 900).
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Fig. 3. Open-loop simulation: generator power production levels and total power production.

A. Known Disturbance

Assume that the disturbance, dk , is known over the entire
24-h prediction horizon. Fig. 3 shows the open-loop produc-
tion plan obtained by the direct solution of the OCP (7).
Fig. 3(d) shows that the total power production follows the
reference well. Large imbalance costs are, therefore, avoided
when dk is known. The total cost of operation is EUR 2426.

The computation time to solve the OCP (7) is approximately
15 min using Gurobi. Direct solution of (7) is, thus, intractable
in real time. To overcome this issue, (7) is solved using
Algorithm 1. We consider a situation with a fixed horizon
length, Ñ = 2160, in the LL-OCP, and varying sampling
time, �t̄ , in the UL-OCP. Average values are used for
r̄k and d̄k in the UL-OCP. For each value of �t̄ , we record the
cost of operation over the entire simulation scenario, as well
as the time to solve the UL-OCP. Fig. 4 shows the simulation
results.

For �t̄ = 5 s and �t̄ = 10 s, the hierarchical algorithm
obtains the same solution as Gurobi. This means that the cost
increase is 0%. As the sampling time increases, the computa-
tion time decreases and the cost of operation increases. In the
extreme case, �t̄ = 900 s, the relative cost increase compared
with the direct solution of the OCP is 33%. For �t̄ = 60 s,

Fig. 4. Relative cost increase and computation time to solve the UL-OCP
with t f = 3 h, as a function of the sampling time �t̄ .

the cost increase is <1%, while the computation time is
reduced by two orders of magnitude. We conclude that the
binary decision variables, (3), can be determined efficiently by
solving the UL-OCP on a coarse temporal time-scale, without
a significant increase in the cost of operation.
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Fig. 5. Relative cost increase and average computation time to solve the
LL-OCP with �t = 5 s, as a function of the prediction horizon Ñ .

Fig. 6. Closed-loop simulation: total power production. In Case 1, the
binary scheduling variables are only updated at the beginning of the sim-
ulation. In Case 2, the binary scheduling variables are also updated at time
step k = 900 using the updated forecast d̂k|900 .

The average computation time to solve the LL-OCP with
Ñ = N = 2160 is 3 s. This is critical, as the LL-OCP
is solved as part of the (high frequency) lower optimization
level in Algorithm 1. We, therefore, fix the sampling time to
�t̄ = 30 s in the UL-OCP, and vary the horizon length Ñ
in the LL-OCP. Fig. 5 shows the average computation time
to solve the LL-OCP and the cost of operation, as a function
of Ñ . For small Ñ , the cost is significantly larger than for
Ñ = 2160. When Ñ = 64, the cost increase is <5%, and
for Ñ = 128, the cost increase is <1%. Compared with the
case where Ñ = N = 2160, the computation time to solve the
LL-OCP is reduced by one order of magnitude for Ñ = 64.

For �t̄ = 60 s and Ñ = 128, the UL-OCP is solved in 2 s
and the LL-OCP is solved in 0.1 s. In comparison, the time
to solve the OCP (7) directly is ∼15 min.

B. Unknown Disturbance

Consider the more realistic case where only forecasts of
the disturbance, dk, are available. Two closed-loop simulations

are performed. In the first simulation (Case 1), the UL-OCP
is solved one single time using the initial forecast, d̂k|0. In the
second simulation (Case 2), the UL-OCP is resolved at time
step k = 900 using the updated forecast, d̂k|900. The parameter
specifications for Algorithm 1 are �t̄ = 60 s and Ñ = 128.

We assume that a perfect disturbance forecast is available
in the LL-OCP. This means that dk is known 10 min ahead of
time for the LL-OCP. Fig. 6 shows the total power production
for Case 1 and for Case 2. In Case 1, significant deficits in the
total power production occur for t ≥ 75 min. This is because
two of the three generators are turned OFF for t ≥ 75 min,
as a result of the binary scheduling decisions made at time
t = 0 min. As the binary variables are fixed in the LL-OCP,
the generators cannot be turned ON. For Case 2, the power
deficits are avoided. Based on the updated forecast, d̂k|900, the
UL-OCP modifies the initial plan to have more generators
turned ON for t ≥ 75 min. This reduces costs by 75%
compared with Case 1. In practice, the UL-OCP may be
solved, e.g., every 5 min using the most recent forecasts.
It is important to note that this is only possible using the
hierarchical algorithm.

VI. CONCLUSION

In this paper, we have developed a hierarchical algorithm
for MPC of a subclass of hybrid systems. The algorithm
decomposes the OCP into an upper level MILP and a lower
level LP. Binary scheduling variables are determined by solv-
ing the upper level MILP, and continuous control variables are
determined by solving the lower level LP. The binary variables
occur as fixed parameters in the lower level LP. The proposed
approach reduces the most time-critical numerical operations
in solving the OCP to the solution of the lower level LP and
allows frequent solution of the upper level MILP. The perfor-
mance of the hierarchical algorithm was tested using a power
portfolio case study. For this case study, the computation time
to solve the open-loop OCP using the hierarchical algorithm
is in the order of seconds. In comparison, the time to solve the
OCP directly using the state-of-the-art MILP solver is more
than 15 min. The performance improvement in computation
time is achieved at the expense of less than a 1% increase in
the MILP objective function.
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A Homogeneous and Self-Dual Interior-Point
Linear Programming Algorithm for Economic

Model Predictive Control
Leo Emil Sokoler, Gianluca Frison, Anders Skajaa, Rasmus Halvgaard, John Bagterp Jørgensen

Abstract—We develop an efficient homogeneous and self-dual
interior-point method (IPM) for the linear programs arising in
economic model predictive control of constrained linear systems
with linear objective functions. The algorithm is based on a
Riccati iteration procedure, which is adapted to the linear system
of equations solved in homogeneous and self-dual IPMs. Fast
convergence is further achieved using a warm-start strategy. We
implement the algorithm in MATLAB and C. Its performance
is tested using a conceptual power management case study.
Closed loop simulations show that 1) the proposed algorithm
is significantly faster than several state-of-the-art IPMs based
on sparse linear algebra, and 2) warm-start reduces the average
number of iterations by 35-40%.

Index Terms—Optimization algorithms, Linear programming
algorithms, Predictive control for linear systems, Riccati itera-
tions, Energy systems

I. INTRODUCTION

In economic model predictive control (EMPC) of linear
systems with a linear objective function and linear constraints,
the optimal control problem (OCP) can be posed as a linear
program (LP). As the optimization problem is solved online,
the performance and reliability of the optimization algorithm
solving the LP is important. The homogeneous and self-dual
model has become widely adopted by state-of-the-art IPMs to
solve LPs. This paper presents a homogeneous and self-dual
variant of Mehrotra’s predictor-corrector method [1], [2] for
EMPC. The algorithm combines the following methods for
computational efficiency:
• Riccati Iteration Procedure: The most time consuming

numerical operations in the IPM are handled by a Riccati
iteration procedure tailored to EMPC. Riccati iteration
procedures have not previously been combined with the
homogeneous and self-dual model.

• Warm-Start: The warm-start strategy of [3] is applied to
reduce the number of IPM iterations. This strategy, which
is designed for homogeneous and self-dual IPMs, has not
been applied to MPC problems in the existing literature.
In [3] warm-start reduces the number of iterations by 30-
75% based on the NETLIB collection of test problems.

Riccati-based IPMs have been developed for set-point based
MPC with an `2-penalty [4], [5] and with an `1-penalty [6].
The main contributions of this paper are 1) to combine the

The authors are with the Department of Applied Mathematics and Computer
Science, DTU, DK-2800 Kgs. Lyngby, Denmark. L. E. Sokoler and A. Skajaa
are also affiliated with DONG Energy, DK-2830 Virum, Denmark (e-mail:
{leso, giaf, andsk, rhal, jbjo}@dtu.dk)

homogeneous and self dual model with a Riccati iteration
procedure, 2) to test the warm-start procedure of [3] in an
MPC framework, and 3) to report performance results for an
efficient implementation of the proposed algorithm.

This paper is organized as follows. Section II formulates the
OCP solved in EMPC as a highly structured LP. Section III
develops a special purpose homogeneous and self-dual IPM
for EMPC. Warm-start is introduced in Section IV. Section V
compares a MATLAB and C implementation of the proposed
algorithm denoted LPempc to several state-of-the-art IPMs
using a simple power management case study1. Concluding
remarks are given in Section VI.

II. OPTIMAL CONTROL PROBLEM

We consider linear state space systems in the form

xk+1 = Axk +Buk + Edk, dk ∼ N(0, Rd), (1a)
yk = Cyxk + ek, ek ∼ N(0, Re), (1b)
zk = Czxk, (1c)

where x0 ∼ N(x̂0, P0). (A,B,Cy, Cz, E) are the state space
matrices, xk ∈ Rnx is the state vector, uk ∈ Rnu is the input
vector, yk ∈ Rny is the measurement vector, zk ∈ Rnz is
the output vector, dk is the process noise vector. and ek is
the measurement noise vector. We use bold letters to denote
stochastic variables. In this paper, the OCP solved at every
sampling instant is defined as

min.
u,x̂,ẑ,ρ

∑
j∈N0

pTk+juk+j + qTk+j+1ρk+j+1, (2a)

s.t.
x̂k+j+1|k = Ax̂k+j|k +Buk+j , j ∈ N0, (2b)
ẑk+j|k = Czx̂k+j|k, j ∈ N1, (2c)
uk+j ≤ uk+j ≤ uk+j , j ∈ N0, (2d)

∆uk+j ≤ uk+j − uk+j−1 ≤ ∆uk+j , j ∈ N0, (2e)

zk+j − ρk+j ≤ ẑk+j|k ≤ zk+j + ρk+j , j ∈ N1, (2f)

ρk+j ≥ 0, j ∈ N1, (2g)

where Ni := {0 + i, 1 + i, . . . , N − 1 + i}, with N being
the length of the prediction horizon. The problem data are
the state-space matrices, (A,B,Cz), the filtered estimate,
x̂k|k, the input limits, (uk+j , uk+j), the input-rate limits,
(∆uk+j ,∆uk+j), the output limits, (zk+j , zk+j), the input

1Software is available via http://www2.imm.dtu.dk/∼jbjo/publications
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prices, pk+j , and the price for violating the output constraints,
qk+j . We use soft output constraints, defined by (2f) and
(2g), to ensure feasibility of the OCP. For compact notation,
the optimization variables in (2) are written as u, x̂, ẑ and
ρ, where u =

[
uTk uTk+1 · · · uTk+N−1

]T
, and similarly

for x̂, ẑ, and ρ. The filtered estimate, x̂k|k := E[xk|Yk],
is the conditional expectation of xk given the observations
Yk :=

[
yT0 yT1 yT2 . . . yTk

]T
. We obtain this value using

the Kalman filter. By augmenting the state-space system such
that

A :=

[
A 0
0 0

]
, x̂k :=

[
x̂k
uk−1

]
, B :=

[
B
I

]
, E :=

[
E
0

]
,

Cz :=
[
Cz 0

]
, Cy :=

[
Cy 0

]
, we can express (2e) as

∆uk+j ≤uk+j −Dx̂k+j|k ≤ ∆uk+j , j ∈ N0,

in which D :=
[
0 I

]
. This formulation simplifies later

computations considerably. To keep the notation simple we
assume that the current time step is k = 0, and write
x̂j := x̂0+j|0 for conditional expressions. The problem data
is collected in the structures g, F , b, H and c, and (2) is put
into the form

min.
t,s
{gT t|Ft = b,Ht+ s = c, s ≥ 0}. (3)

As an example, consider the case for N = 2

t :=
[
uT0 x̂T1 ρT1 uT1 x̂T2 ρT2

]T
,

g :=
[
pT0 0 qT1 pT1 0 qT2

]T
,

and[
F b

]
:=

[
B −I 0 0 0 0 −Ax̂0
0 A 0 B −I 0 0

]
,

[
H c

]
:=



I 0 0 0 0 0 u0
0 0 0 I 0 0 u1
−I 0 0 0 0 0 −u0
0 0 0 −I 0 0 −u1
I 0 0 0 0 0 ∆ũ0
0 −D 0 I 0 0 ∆u1
−I 0 0 0 0 0 −∆

˜
u0

0 D 0 −I 0 0 −∆u1
0 Cz −I 0 0 0 z1
0 0 0 0 Cz −I z2
0 −Cz −I 0 0 0 −z1
0 0 0 0 −Cz −I −z2
0 0 −I 0 0 0 0
0 0 0 0 0 −I 0



,

where ∆ũ0 := ∆u0 + Dx̂0 and ∆
˜
u0 := ∆u0 + Dx̂0. The

problem (2) can thus be posed as a highly structured LP with
n := N(nu + nx + nz) variables, mE := Nnx equality
constraints, and mI := N(4nu + 3nz) inequality constraints.
We have eliminated ẑj from the optimization problem using
the linear relation (2c).

Remark 1: We restrict the OCP (2) to a fairly narrow class of
problems. This is done to show the full potential of a special
purpose Riccati-based homogenous and self-dual IPM. It is
straightforward to accommodate the proposed algorithm to

handle more general OCPs with linear objective functions and
linear constraints, e.g. OCPs with combined input and state
constraints, as well as state and output costs in the objective
function.

III. HOMOGENEOUS AND SELF-DUAL INTERIOR-POINT
METHOD

The dual of the LP (3) is

max
v,w

{−bT v − cTw| − FT v −HTw = g, w ≥ 0}, (4)

where v ∈ RmE and w ∈ RmI are dual variables correspond-
ing to the Lagrange multipliers for the equality constraints and
the inequality constraint of (3), respectively. We assume that
F has full row rank. This is always the case for the problem
(3).

Homogeneous and self-dual IPMs solve (3) and (4) indi-
rectly. The idea is to replace (3) and (4) by a closely related
LP with a number of special properties, which are utilized
by homogeneous and self-dual IPMs. Aside from an inherent
ability to detect infeasibility, [3] shows that IPMs based on
the homogeneous and self-dual model can be warm-started
efficiently. We refer to [7]–[9] for proofs and details.

Introduce a new set of optimization variables (t̃, ṽ, w̃, s̃),
and the additional scalar variables (τ̃, κ̃). Then the LP solved
in homogenous and self-dual IPMs may be stated as the linear
feasibility problem

find t̃, ṽ, w̃, s̃, τ̃, κ̃, (5a)

s.t. FT ṽ +HT w̃ + gτ̃ = 0, (5b)

bτ̃ − F t̃ = 0, (5c)

cτ̃ −Ht̃− s̃ = 0, (5d)

− gT t̃− bT ṽ − cT w̃ + κ̃ = 0, (5e)
(w̃, s̃, τ̃, κ̃) ≥ 0, (5f)

Proposition 1 shows that the solution to (3) and (4) can be
obtained by solving (5).

Proposition 1: The linear feasibility problem (5) always
has a strict complimentary solution (t̃∗, ṽ∗, w̃∗, s̃∗, τ̃∗, κ̃∗)
satisfying s̃∗j w̃

∗
j = 0 for j = 1, 2, . . . ,mI and τ̃∗κ̃∗ = 0.

For such a solution, one of the following conditions hold
1) τ̃∗ > 0, κ̃∗ = 0: The scaled solution (t∗, v∗, w∗, s∗) =

(t̃∗, ṽ∗, w̃∗, s̃∗)/τ̃∗ is a primal-dual optimal solution to
(3) and (4).

2) τ̃∗ = 0, κ̃∗ > 0: The problem (3) is infeasible or un-
bounded; either −bT ṽ∗− cT w̃∗ > 0 (primal infeasible),
or gT t̃∗ < 0 (dual infeasible).

Proof: See [9], [10].

A. Riccati Iteration Procedure for EMPC
The necessary and sufficient optimality conditions for (5)

are (w̃, s̃, κ̃, τ̃) ≥ 0 and
FT ṽ +HT w̃ + gτ̃

bτ̃ − F t̃
cτ̃ −Ht̃− s̃

−gT t̃− bT ṽ − cT w̃ + κ̃

W̃ S̃1mI

τ̃ κ̃

 =


0
0
0
0
0
0

 , (6)
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W̃ is a diagonal matrix with the elements of w̃ in its diagonal,
and S̃ is defined similarly. Moreover, 1mI

is a column vector
of all ones of size mI .

The main computational bottleneck in homogeneous and
self-dual IPMs is solving a linear system of equations. The
equations are solved to determine a feasible search direction
for the solution of (6) with (w̃, s̃, κ̃, τ̃) ≥ 0. In every IPM
iteration a new system is formed and solved. For an arbitrary
right hand side, we can write the linear system of equations
solved as

FT∆ṽ +HT∆w̃ + g∆τ̃ = r1, (7a)

b∆τ̃ − F∆t̃ = r2, (7b)

c∆τ̃ −H∆t̃−∆s̃ = r3, (7c)

gT∆t̃+ bT∆ṽ + cT∆w̃ −∆κ̃ = r4, (7d)

W̃∆s̃+ S̃∆w̃ = r5, (7e)
κ̃∆τ̃ + τ̃∆κ̃ = r6. (7f)

The search direction is denoted (∆t̃,∆ṽ,∆w̃,∆s̃,∆τ̃,∆κ̃). In
Equation (7e) and Equation (7f), W̃ = W̃j , S̃ = S̃j , κ̃ = κ̃j ,
and τ̃ = τ̃j , are fixed. Subscript j denotes the IPM iteration
number.

The equations (7) are different from the equations solved in
standard IPMs [1], [2]. Conventional Riccati iteration proce-
dures can therefore not be applied directly to solve the system
(7).

Proposition 2 shows that the solution of (7) can be computed
by solving the reduced linear system of equations (8), and a
number of computationally inexpensive operations. Proposi-
tion 3 shows that the reduced linear system can be solved
using a Riccati iteration procedure that scales as O(N(nu +
nx + nz)

3). This is achieved by eliminating variables from
the reduced system (8), such that it can be expressed in the
standard form (11). The proof of Proposition 3 provides details
for efficiently eliminating variables from the system.

Remark 2: The complexity of solving the system (7) directly
using sparse linear algebra routines is linear to quadratic in the
length of the prediction horizon, N , while a general purpose
solver using dense linear algebra scales cubically in N [11]. It
is convenient to have an algorithm that scales linearly in N , as
stability of MPC schemes often may be achieved by selecting a
sufficiently large value of N [12], [13]. For systems where the
state dimension, nx, is relatively large compared to the number
of inputs, nu, condensing methods may be more efficient to
solve (8) than Riccati-based solvers [5], [14]. These methods
eliminate the state variables from the system to form and solve
a smaller but less structured system. Condensing methods scale
quadratically to cubically in N . Condensing-based solvers are
therefore not well suited to handle problems with a large
prediction horizon. As a rule of thumb, condensing-based
solvers are more efficient than Riccati-based solvers roughly
when nx ≥ Nnu [14]. Reference [14] provides a highly
efficient condensing method, which may replace the proposed
Riccati iteration procedure to solve (7), when nx ≥ Nnu.

Remark 3: The reduced linear system (8) is a special case
of the system solved in the primal-dual Riccati-based IPMs

[4], [5]. The results in these papers may be utilized to derive
special-purpose homogenous and self-dual IPMs algorithms,
when the matrices F and H have a more general structure,
than for the particular problem (2).

Proposition 2: The solution to (7) can be obtained by
solving 0 FT HT

−F 0 0

−H 0 W̃−1S̃

f1 h1
f2 h2
f3 h3

 =

r1 −gr2 −b
r3 −c

 , (8)

and subsequent computation of

∆τ̃ =
r6 − τ̃(gT f1 + bT f2 + cT f3)

κ̃+ τ̃(gTh1 + bTh2 + cTh3)
,

∆t̃ = f1 + h1∆τ̃,

∆ṽ = f2 + h2∆τ̃,

∆w̃ = f3 + h3∆τ̃,

∆κ̃ = gT∆t̃+ bT∆ṽ + cT∆w̃ − r4,
∆s̃ = W̃−1(rC − S̃∆w̃),

where r3 := r3 + W̃−1r5 and r6 := r6 + τ̃ r4.
Proof: See [10].

Proposition 3: The system (8) can be solved in O(N(nu +
nx + nz)

3) operations using a Riccati iteration procedure.
Proof: For a single arbitrary right hand side, we may

write the system (8) as 0 FT HT

−F 0 0

−H 0 W̃−1S̃

∆t̃
∆ṽ
∆w̃

 =

rDrE
rI

 . (9)

Denote the Lagrange multipliers associated with the inequality
constraints (2d) and (2g) as η, δ, υ, ω, γ, ζ and ξ where
η :=

[
ηT0 ηT1 . . . ηTN−1

]T
, and similarly for δ, υ, γ, ζ and

ξ. The multipliers (η, δ) are associated with the input limits
(2d), (υ, ω) are associated with the input-rate limits (2e), (γ, ζ)
are associated with the output limits (2f), and ξ is associated
with the non-negative constraints (2g). The system variables
are written in the form

∆t̃ =
[
∆uT0 ∆x̂T1 ∆ρT1 . . . ∆uTN−1 ∆x̂TN ∆ρTN

]T
,

∆ṽ =
[
∆ṽT0 ∆ṽT1 . . . ∆ṽTN−1

]T
,

∆w̃ =
[
∆ηT ∆δT ∆υT ∆ωT ∆γT ∆ζT ∆ξT

]T
.

Accordingly, we partition the right hand side such that

rD =
[
rTu,0 rTx,1 rTw,1 . . . rTu,N−1 rTx,N rTw,N

]T
,

rE =
[
RTv,0 RTv,1 . . . RTv,N−1

]T
,

rI =
[
rTη rTδ rTυ rTω rTγ rTζ rTξ

]T
,

and write the diagonal matrix W̃−1S̃ in terms of diagonal
submatrices

W̃−1S̃ = diag
(
ΣTη ,Σ

T
δ ,Σ

T
υ ,Σ

T
ω ,Σ

T
γ ,Σ

T
ζ ,Σ

T
ξ

)
.

The Lagrange multipliers ∆η, ∆δ, ∆υ, ∆ω, ∆γ, ∆ζ and ∆ξ,
are eliminated from the system (9). This is computationally
inexpensive as the matrices to be inverted in the process are
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all diagonal. After eliminating the Lagrange multipliers, the
linear system of equations (9) can be stated in the form

BT∆ṽ0 + U0∆u0 = Ru,0, (10a)

BT∆ṽi + Ui∆ui +Gi∆x̂i = Ru,i, i ∈ Ñ0, (10b)
−∆x̂1 +B∆u0 = Rv,0, (10c)

−∆x̂i+1 +A∆x̂i +B∆ui = Rv,i, i ∈ Ñ0, (10d)

Wi∆ρi +MT
i ∆x̂i = Rw,i, i ∈ N1, (10e)

−∆ṽi−1 +Mi∆ρi + X̄i∆x̂i

+GTi ∆ui +AT∆ṽi = R̄x,i, i ∈ Ñ0, (10f)
−∆ṽN−1 +MN∆ρN + X̄N∆x̂N = R̄x,N , (10g)

with Ñ0 := N0 \ {0} and

Ui := Σ−1η,i + Σ−1δ,i + Σ−1ω,i + Σ−1υ,i , i ∈ N0,

Gi := −(Σ−1ω,i + Σ−1υ,i)D, i ∈ Ñ0,

Wi := Σ−1ζ,i + Σ−1ξ,i + Σ−1γ,i , i ∈ N1,

Mi := CTz (Σ−1ζ,i − Σ−1γ,i), i ∈ N1,

X̄i := CTz (Σ−1ζ,i + Σ−1υ,i)Cz +DT (Σ−1γ,i + Σ−1ω,i)D, i ∈ Ñ0,

X̄N := CTz (Σ−1ζ,N + Σ−1υ,N )Cz,

and

Ru,i := ru,i + r̄δ,i + r̄ω,i − r̄η,i − r̄υ,i, i ∈ N0,

Rv,i := −Rv,i, i ∈ N0,

Rw,i := rw,i−1 + r̄ζ,i−1 + r̄ξ,i + r̄γ,i, i ∈ N1,

R̄x,i := rx,i + CTz (r̄ζ,i − r̄γ,i) +DT (r̄υ,i − r̄ω,i), i ∈ Ñ0,

R̄x,N := rx,N + CTz (r̄ζ,N − r̄γ,N ).

Finally, r̄δ,i := Σ−1δ,i rδ,i. In a similar way, we define r̄ω,i, r̄η,i,
r̄υ,i, r̄ζ,i, r̄ξ,i and r̄γ,i. Solving (10e) for ∆ρi and substituting
into the remaining equations of (10) yields

BT∆ṽ0 + U0∆u0 = Ru,0

BT∆ṽi + Ui∆ui +Gi∆x̂i = Ru,i, i ∈ Ñ0

−∆x̂1 +B∆u0 = Rv,0

−∆x̂i+1 +A∆x̂i +B∆ui = Rv,i, i ∈ Ñ0

−∆ṽi−1 +Xi∆x̂i +GTi ∆ui +AT∆ṽi = Rx,i, i ∈ Ñ0

−∆ṽN−1 +XN∆x̂N = Rx,N

where Xi := X̄i − MiW
−1
i MT

i and Rx,i := R̄x,i −
MiW

−1
i Rw,i. As an example let N = 3. In this case, the

equations above may be arranged as

U0B
T

B −I
−I X1G

T
1 A

T

G1 U1 B
T

A B −I
−I X2G

T
2 A

T

G2 U2 B
T

A B −I
−I X3





∆u0
∆ṽ0
∆x̂1
∆u1
∆ṽ1
∆x̂2
∆u2
∆ṽ2
∆x̂3


=



Ru,0
Rv,0
Rx,1
Ru,1
Rv,1
Rx,2
Ru,2
Rv,2
Rx,3


(11)

This system can be solved by a Riccati iteration procedure
in O(N(nu + nx)3) operations [4], [6].

Reference [15] provides details on a C-based implementation
of the predictor-corrector IPM described by [1], [2]. The
implementation is modified to exploit the numerical proce-
dure outlined in Proposition 2 and Proposition 3. We refer
to the implementation as LPempc. To speed-up numerical
computations and reduce the storage requirements, operations
involving the structured matrices F and H are implemented
as specialized linear algebra routines.

IV. WARM-START

We apply the strategy of [3] to warm-start the proposed
homogeneous and self-dual IPM. Let (t̄, v̄, w̄, s̄) denote a
candidate for the solution of (3) and (4). The initial point
in [3] is defined as

w̃0 = λw̄ + (1− λ)1mI
, s̃0 =λs̄+ (1− λ)1mI

,

t̃0 = λt̄, ṽ0 =λv̄,

τ̃0 = 1, κ̃0 =(w̃0)T s̃0/mI .

The initial point is defined to combine the candidate point,
(t̄, v̄, w̄, s̄), with the standard cold start (t, v, w, s, τ, κ) =
(0, 0,1mI

,1mI
, 1, 1). The parameter λ ∈ [0, 1] is a tuning

parameter. When λ = 0, the initial point becomes the standard
cold start, and for λ = 1 the initial point becomes the candidate
point. A key feature that makes warm-start work well for
homogenous and self-dual IPMs is that the standard cold start
is perfectly centralized with respect to the central path [3].
This means that as λ is decreased from 1 towards 0, the initial
point becomes better centralized, while the distance from the
candidate point (and possibly the solution) is increased. We
refer to [3] for proofs and details.

The performance of the warm-start strategy [3] depends
on the quality of the candidate point. We use a heuristic to
construct such a candidate point for our problem. In MPC
applications, the OCP is solved in a receding horizon manner.
A solution of (3) and (4) from the previous time instant is
therefore available in such a setting. A good choice of the
candidate point at time k can therefore be constructed using the
solution from the previous time step. As an example consider
the solution of (3) and (4) at time step k = 0, for N = 3

t∗ :=
[
u∗T0 x̂∗T1 ρ∗T1 u∗T1 x̂∗T2 ρ∗T2 u∗T2 x̂∗T3 ρ∗T3

]T
.

The following candidate point is then used at time step k = 1

t̄ :=
[
u∗T1 x̂∗T2 ρ∗T2 u∗T2 x̂∗T3 ρ∗T3 u∗T2 x̂∗T3 ρ∗T3

]T
.

Similarly, we left-shift the slack variables, s, and the dual
variables, v and w, to construct s̄, v̄ and w̄. This is known as
the “shift-initialization” for MPC, see e.g. [16].

V. POWER MANAGEMENT CASE STUDY

In this section, we compare LPempc against IPMs from
the following software packages: Gurobi, SeDuMi, MOSEK,
LIPSOL, and GLPK. These state-of-the-art IPMs are mainly
written in low-level language such as FORTRAN and C, and
rely on sparse linear algebra that are specifically tailored to
the solution of large-scale sparse linear and conic programs.
We also include the simplex method provided by CPLEX in
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TABLE I
CASE STUDY PARAMETERS

τi pk uk uk ∆uk ∆uk

Power Plant 1 90 100 0 200 -20 20
Power Plant 2 30 200 0 150 -40 40

our comparisons, as well as FORCES that is an IPM based on
automatic code generation [17]. All solvers are called from
MATLAB using MEX interfaces. We have performed our
simulations using an Intel(R) Core(TM) i5-2520M CPU @
2.50GHz with 4 GB RAM running a 64-bit Ubuntu 12.04.1
LTS operating system.

The test system is a system of m generic power generating
units in the form identified by [18]. For i = 1, 2, . . . ,m

Yi(s) =
1

(τis+ 1)3
(Ui(s) +Di(s)) + Ei(s). (12)

Di(s) is the process noise, Ei(s) is the measurement noise,
Ui(s) is the power set-point and Yi(s) is the power production.
The total production from the m power generating units is the
sum Z(s) =

∑m
i=1

1
(τis+1)3 (Ui(s) +Di(s)) . We convert the

transfer function model into the state space form (1) using
a sampling time of Ts = 5 seconds. In the resulting model
structure, uk ∈ Rnu is the nu power set-points, yk ∈ Rny

is the measured power production, and zk ∈ Rnz is the total
power production. Note that nu = ny = m and nz = 1. It is
assumed that dk ∼ N(0, σI) and ek ∼ N(0, σI).

A. Simulations

An example with two power generating units is considered;
a cheap/slow unit, and an expensive/fast unit. This conflict
between response time and operating costs represents a com-
mon situation in the power industry where large thermal power
plants often produce a majority of the electricity, while the
use of units with faster dynamics such as diesel generators
and gas turbines are limited to critical peak periods. The
controller objective is to coordinate the most cost-efficient
power production, respecting capacity constraints and a time-
varying electricity demand. It is assumed that full information
about the initial state is given x0 ∼ (0, 0), and that the penalty
of violating the output constraints is qk = 104 for all time
steps. Table I lists the system and controller parameters. We
set the prediction horizon to N = 80 time steps. It has been
verified by simulation that the controller is stable for this value
of N .

Fig. 1 is a closed-loop simulation with noise parameter
σ = 1. The figure illustrates the power production of each
power generating unit. The cheap unit produces 97% of the
energy, while the expensive unit is activated only to avoid
power imbalances. Fig. 1 also shows that warm-start yields a
significant reduction in the number of iterations. On average
the number of iterations is reduced by approximately 37%.

Fig. 2 shows a number of box-plots for tuning the warm-
start parameter λ. The case λ = 0 corresponds to a cold start.
For all values of λ, warm-start reduces the average number
of iterations. We have chosen λ = 0.99 for our controller.
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Fig. 1. Closed-loop simulation of a power system controlled by EMPC.
Warm-start (λ = 0.99) yields a significant reduction in the number of
iterations.
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Fig. 2. Number of iterations as a function of the tuning parameter λ and the
noise parameter σ. Each box-plot has been generated based on a full closed-
loop simulation. In the top plot we have fixed σ = 1, and in the bottom plot
λ = 0.99.

This value of λ yields an initial point which is both close
to the candidate point and lies well inside the interior of the
non-negative orthant, (w̃, s̃, κ̃, τ̃) ≥ 0. Fig. 2 shows that for
λ = 0.99, the number of iterations is reduced even when the
noise parameter is increased significantly.

Fig. 3 is a plot of the computation time to solve LP (2) as
a function of the number of power generating units, m, and
the length of the horizon, N . The figure shows that LPmpc
is faster than all other solvers with a significant margin. In
addition to the algorithms compared in Fig. 3, the problem (2)
is solved using the code generation based IPM CVXGEN [19].
For problems larger than m = 4 and N = 12, code generation
in CVXGEN fails due to the problem size. Therefore, we have
not included results for CVXGEN in our benchmark. In general,
code generation based solvers such as CVXGEN and FORCES
are most competitive for small-dimensional problems [17].
Fig. 4 compares the computation time for different algorithms
in a closed-loop simulation with 15 power generating units
and a prediction horizon of N = 200 time steps. Only the
most competitive solvers for this problem are included. In this
simulation LPempc is up to an order of magnitude faster than
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Fig. 3. Computation time to solve (2), as a function of the horizon length,
N , and the number of power generators, m.
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Fig. 4. Computation time to solve (2) with 15 power generating units and a
prediction horizon of 200 time steps. Warm-start reduces the average number
of iterations by approximately 40%. Only the most competitive solvers are
included in this figure.

CPLEX, Gurobi, SeDuMi and MOSEK, depending on the
problem data. On average, LPempc is approximately 5 times
faster than Gurobi, 6 times faster than MOSEK, 19 times
faster than SeDuMi, and 22 times faster than CPLEX.

VI. CONCLUSIONS

In this paper, we develop a computationally efficient ho-
mogeneous and self-dual IPM for EMPC of linear systems
with a linear objective function and linear constraints. The
computation time per IPM iteration is reduced using a Riccati
iteration procedure specifically tailored to EMPC. The combi-
nation of a Riccati iteration procedure and the homogeneous
and self-dual model has not been studied in the existing
literature. We reduce the number of IPM iterations using a
warm-start strategy that has not previously been applied to
MPC problems. Simulations show that warm-start reduces the
average number of iterations by 35-40%, and that a MATLAB
and C implementation of the proposed algorithm, LPempc, is
significantly faster than several state-of-the-art IPMs, as well
as automatic code generation based IPMs for MPC. In the
particular case study, LPempc is up to an order of magnitude
faster than CPLEX, Gurobi, SeDuMi and MOSEK.
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