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Preface

This thesis was prepared at the Department of Applied Mathematics and Computer
Science (DTU Compute, formerly known as DTU Informatics) at the Technical Uni-
versity of Denmark in partial fulfillment of the requirements for acquiring the PhD
degree in engineering. The project was funded by the DTU Informatics Graduate
School ITMAN that started up in 2005 with a grant from the Danish Agency for
Science Technology and Innovation. ITMAN is a co-operation between DTU Infor-
matics and public as well as private companies: Danish Research Centre for Magnetic
Resonance, Dong Energy, Danish Technological Institute, National Environmental
Research Institute, DHI - Water and Environment, and Danish Meat Association.

The thesis deals with modeling and control of the future power system often referred
to as the Smart Grid. In particular Model Predictive Control (MPC) is applied as a
control and optimization method for intelligently enabling flexible energy resources.
In Denmark, some of these resources are expected to be residential heat pumps,
solar power, and batteries in electric vehicles. All these consumers use electricity
potentially produced by green suppliers, e.g. wind turbines or solar power.

The thesis consists of a summary report and a collection of six research papers written
during the period November 2010 to February 2014. Two were published in inter-
national peer-reviewed scientific journals and four were published at peer-reviewed
scientific conferences.

Kgs. Lyngby, February 2014
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Summary (in English)

In this thesis, we consider control strategies for flexible distributed energy resources
in the future intelligent energy system — the Smart Grid. The energy system is a
large-scale complex network with many actors and objectives in different hierarchi-
cal layers. Specifically the power system must supply electricity reliably to both
residential and industrial consumers around the clock. More and more fluctuating
renewable energy sources, like wind and solar, are integrated in the power system.
Consequently, uncertainty in production starts to affect an otherwise controllable
power production significantly. A Smart Grid calls for flexible consumers that can
adjust their consumption based on the amount of green energy in the grid. This
requires coordination through new large-scale control and optimization algorithms.
Trading of flexibility is key to drive power consumption in a sustainable direction.
In Denmark, we expect that distributed energy resources such as heat pumps, and
batteries in electric vehicles will mobilize part of the needed flexibility.

Our primary objectives in the thesis were threefold:

1. Simulate the components in the power system based on simple models from liter-
ature (e.g. heat pumps, heat tanks, electrical vehicle battery charging/discharging,
wind farms, power plants).

2. Embed forecasting methodologies for the weather (e.g. temperature, solar ra-
diation), the electricity consumption, and the electricity price in a predictive
control system.

3. Develop optimization algorithms for large-scale dynamic systems. This includes
decentralized optimization and simulation on realistic large-scale dynamic sys-
tems.



vi Summary (in English)

Chapter 1 introduces the power system, the markets, and the main actors. The
objectives and control hierarchy is outlined while Aggregators are introduced as new
actors.

Chapter 2 provides linear dynamical models of Smart Grid units: Electric Vehicles,
buildings with heat pumps, refrigeration systems, solar collectors, heat storage tanks,
power plants, and wind farms. The models can be realized as discrete time state space
models that fit into a predictive control system.

Chapter 3 introduces Model Predictive Control (MPC) including state estimation,
filtering and prediction for linear models.

Chapter 4 simulates the models from Chapter 2 with the certainty equivalent MPC
from Chapter 3. An economic MPC minimizes the costs of consumption based on
real electricity prices that determined the flexibility of the units. A predictive con-
trol system easily handles constraints, e.g. limitations in power consumption, and
predicts the future behavior of a unit by integrating predictions of electricity prices,
consumption, and weather variables. The simulations demonstrate the expected load
shifting capabilities of the units that adapts to the given price predictions. We fur-
thermore evaluated control performance in terms of economic savings for different
control strategies and forecasts.

Chapter 5 describes and compares the proposed large-scale Aggregator control strate-
gies. Aggregators are assumed to play an important role in the future Smart Grid
and coordinate a large portfolio of units. The developed economic MPC controllers
interfaces each unit directly to an Aggregator. We developed several MPC-based
aggregation strategies that coordinates the global behavior of a portfolio of units by
solving a large-scale optimization and control problem. We applied decomposition
methods based on convex optimization, such as dual decomposition and operator
splitting, and developed price-based aggregator strategies.

Chapter 6 provides conclusions, contributions and future work.

The main scientific contributions can be summarized to:

¢ Linear dynamical models of flexible Smart Grid units: heat pumps in buildings,
heat storage tanks, and electric vehicle batteries.

e Economic MPC that integrates forecasts in the control of these flexible units.

o Large-scale distributed control strategies based on economic MPC, convex op-
timization, and decomposition methods.

o A Matlab toolbox including the modeled units for simulating a Smart Energy
System with MPC.



Resumé (in Danish)

I denne afhandling beskriver vi styringsstrategier til fleksible distribuerede energi
ressourcer i fremtidens intelligente energisystem — Smart Grid. Energisystemet er
et stort komplekst netveerk med mange aktgrer og modstridende mal pa forskellige
hierarkiske niveauer. En effektiv made at transportere energi over lange afstande er
med elektricitet. El-nettet skal pélideligt forsyne bade private og industrielle for-
brugere med strgm dggnet rundt. Men i takt med udrulningen af flere vedvarende
energikilder, som vind og sol, mindskes forsyningssikkerheden betydeligt pa en ellers
kontrollerbar el-produktion. Et Smart Grid har derfor brug for fleksible forbrugere,
der kan eendre deres forbrug i en baeredygtig retning, hvor der anvendes stgrre an-
dele af grgn energi. Det kraever koordination pa stor skala med nye styrings- og
optimerings-algoritmer. FEt Smart Grid skal derfor sgrge for, at der er nok fleksi-
bilitet til radighed. Seerligt i Danmark forventer vi, at en del af den ngdvendige
fleksibilitet skal komme fra varmepumper og el-biler.

Vores tre primaere forskningsmal med denne athandling var at:
1. Simulere enhedernes dynamiske forbrug og produktion i el-systemet baseret pa
simple dynamiske modeller (fx varmepumper, varmeakkumuleringstanke, el-

billers batterier, vindmgller, kraftvaerker).

2. Integrere forudsigelser af vejret (fx udetemperatur og solindstriling), elfor-
bruget, og elpriser i et modelpraediktivt kontrolsystem.

3. Udvikle optimeringsalgoritmer til dynamiske storskala systemer. Herunder de-
central optimering og simulering af realistiske systemer.



viii Resumé (in Danish)

Kapitel 1 introducerer energi systemet, markederne og hovedaktgrerne. Deres mal og
rolle i kontrolhierarkiet opsummeres, mens Aggregatorer introduceres som ny aktgr.

Kapitel 2 formulerer linesere dynamiske modeller af fglgende Smart Grid enheder: el-
biler, varmepumper i bygninger, kglesystemer, solvarme, varmeakkumuleringstanke,
kraftveerker og vindmelleparker. Modellerne realiseres som tilstandsmodeller i diskret
tid, der passer ind i et preediktivt reguleringssystem.

Kapitel 3 introducerer modelpraediktiv regulering (MPC). Herudover estimering af
tilstande, og praediktion af linezere modeller.

Kapitel 4 simulerer modellerne fra Kapitel 2 med certainty-equivalent MPC’en fra
Kapitel 3. En gkonomisk MPC minimerer omkostningerne til forbrug baseret pa
rigtige elpriser. Praediktionerne af prisen bestemmer derved styresignalerne og flek-
sibiliteten af enheden. Samtidig overholder den praediktive regulering systemets be-
grzensninger, fx den gvre graense for effekt-forbruget i en varmepumpe, ved at udnytte
viden fra modellerede forudsigelser af fx elpriser, forbrug og vejret. Simuleringer viser
tydeligt, at den gkonomiske MPC minimerer omkostningerne ved at tidsforskyde for-
bruget atheengigt af priserne. Endvidere undersggte vi de gkonomiske besparelser for
forskellige styringsstrategier og forudsigelser.

Kapitel 5 beskriver og sammenligner de foresldede Aggregator styringsstrategier for
storskala systemer. Aggregatorer forventes at spille en stor rolle i fremtidens Smart
Grid ved at koordinere store portefgljer af enheder. Den udviklede gkonomiske MPC
kan interface til en Aggregator enten gennem priser eller direkte styresignaler. Vi
har udviklet MPC-baserede styrestrategier, der kan koordinere globale mal for hele
portefgljen af enheder ved at lgse stor-skala optimerings- og kontrol-problemer. Vi
brugte konvekse dekomponeringsmetoder, sasom dual dekomponering og operator
splitting.

Kapitel 6 opsummerer athandlingens konklusioner, bidrag og beskriver fremtidigt
arbejde.

De videnskabelige hovedbidrag kan opsummeres til:

e Linesre dynamiske modeller af fleksible Smart Grid enheder: varmepumper i
bygninger, varmeakkumuleringstanke, el-biler, kglesystemer, kraftveerker, vind-
mgller.

e (Okonomisk MPC til styring af enhedernes forbrug og integrere relevante forudsigelser,
der pavirker styringsstrategien.

o Stor-skala distribuerede styringsstrategier baseret pa MPC, konveks optimering,
og dekomponeringsmetoder.



e En Matlab toolbox til simuleringer af de modellerede enheder med MPC.
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CHAPTER 1

Introduction

In this chapter we motivate the need for Model Predictive Control (MPC) in Smart
Energy Systems starting from the huge climate change challenge that the world is
currently facing. This green challenge currently drives the current power system into
unexplored territory that calls for flexible control strategies.

1.1 Transition to a Fossil-Free Energy System

The Danish energy policy stipulates that by 2020 more than 35% of the energy
consumed in Denmark should come from renewable energy sources | ]. 50%
of electricity consumption should be supplied by wind power. By 2050 Denmark
should be independent of fossil fuels. From a Danish political point of view the
interest in this transformation of the energy system is to

e Reduce the emission of greenhouse gases and global warming
e Increase energy efficiency
e Maintain a high security of energy supply

« Ensure macroeconomic cost-effectiveness by using market-based solutions



4 Introduction

Heat pumps,
solar heating etc.

Natural gas

2008

2050

Figure 1.1: Distribution of energy sources in 2008 and in 2050 as foreseen by the
Danish Climate Commission [Danl(].

¢ Continue a high level of economic growth

e Ensure positive business development and promote international competitive-
ness of business in Denmark

o Ensure an environmentally sustainable development

All of these seven criteria are included in the fossil fuel independent future scenario
developed by the Danish Climate Commission [Danl0].

Not only Denmark but the entire world is facing this grand challenge. Reducing
the fossil fuel consumption from 80% of the energy consumption to a clean 0% in
40 years, requires significant amount of production from renewable energy sources
and an efficient utilization of energy in buildings, in the process industries, and the
transportation sector. In Denmark, the major part of this energy will be produced by
offshore wind turbines as depicted in Fig. 1.1. On the consumption side, residential
and commercial buildings will use heat pumps for heating and electrical vehicles will
replace vehicles based on combustion engines. Accordingly, electricity will be the
main energy carrier in such an energy system independent of fossil fuels. Depending
on the rate of adoption of electrified vehicles, 40-70% of the energy consumption will
originate from electricity in 2050. Today, 20% of the energy consumption is electricity.
In Denmark, the production of wind energy must increase from 3.15 GW in 2008 to
10-18.5 GW in 2050. As it is much more difficult to store electricity than fossil fuels,
such a large share of stochastic electricity production requires an intelligent power
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Figure 1.2: Danish Climate Commission future scenario.

system — a so-called Smart Grid — that continuously balances the power consumption
and the power production [BKP11].

A Smart Grid calls for flexible energy producers and consumers that can actively help
the grid. There will also be an economic incentive to exploit decentralized resources
in Denmark [ED10]. Heat tanks in residential homes as well as in district heating
plants must be established such that heat pumps can store electricity as heat in pe-
riods of cheap electricity. This requires that the power consumption by heat pumps,
and similarly the charging and discharging of the batteries in electrical vehicles, can
be adjusted to some extent such that surplus of cheap wind energy is utilized efhi-
ciently. The power consumption by the process and retail industries (refrigeration in
supermarkets and large cooling houses) must also be made flexible. Future grids are
expected to increasingly deploy Smart Grid technologies, such as digital communica-
tion and control technologies, to co-ordinate the needs and capabilities of electricity
generators, end-users and grid operators. Additional benefits include greater system
reliability, a lower cost of electricity supply (through fuel savings and delayed invest-
ment in additional generation capacity) and reduced environmental impact [OFEC13].

1.2 The Energy System

Industrial, commercial, and residential consumers require various forms of energy
services provided by different infrastructures. In Denmark we typically use, coal,
petroleum products, biomass, and grid-bound energy carriers such as electricity, nat-
ural gas, and district heating. Fig. 1.3 illustrates an example of this infrastructure.
So far, the different infrastructures are considered and operated almost independently.
In a Smart Energy System these systems should be combined to achieve synergies
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between transformation, conversion, and storage of various forms of energy [GA07].
Electricity can be transmitted over long distances with comparably low losses. Chem-
ical energy carriers such as natural gas can be stored employing relatively simple and
cheap technologies. Coupling the infrastructures enables power exchange between
them. Couplings are established by converter devices that transform power into
other forms. When energy sources with intermittent primary energy like wind, solar
are considered, energy storage is important. Storage provides redundancy in supply,
stronger reliability, and a larger degree of freedom for optimization.

1.3 The Power System

This section briefly summarizes the markets and actors of todays power system.
[Sve06] provide a detailed description of power system infrastructure.  Electricity
is regarded as an absolute necessity in modern society and is consumed at the same
moment as it is generated. It cannot be stored in significant quantities in an economic
manner. [HM11] describes characteristics and storage costs of large-scale electricity
storage technologies, e.g. batteries, liquid flow batteries, electrolysis, fuel cells, Com-
pressed Air Energy Storage (CAES), pumped hydro, hydrogen storage. These tech-
nologies are able to store energy at different time scales. Without storage, electricity
must be delivered instantaneously [Wan07]. Therefore, the power system consists of
an electrical grid that transports electricity between producers and consumers. The
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grid is split in several layers as shown in Fig. 1.4. The upper most layer is a high
voltage transmission system where conventional producers like power plants and wind
turbines are connected. Their generated power is transported to the end consumers
through low voltage distribution grids. Consumers ensure their supply of electricity
through a contract with a retailer. The retailer also has a contract with a wholesaler
that buys electricity either at a power exchange market, from a producer, or from
a third party trader. In principle the wholesaler and the retailer could be the same
entity, and they are combined in the figure. The consumer can freely change from one
electricity supplier to another through the retail market. Most electricity markets in
Europe are liberalized like this and share common features.

The electricity market is usually split in several parts: transmission, distribution,
retail activities, and generation. Markets promote competition in generation and
retail, while transmission remains a monopoly managed by noncommercial organiza-
tions called System Operators (SO).
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The Distribution System Operator (DSO) operates the distribution network
and logs the production and consumption by metering individual producers or con-
sumers. The metered data is a basis for the following imbalance financial settlements.
There are multiple DSOs in Denmark, acting as monopolies in each region. Besides a
stable local voltage control, the main challenge for the DSO is to prevent bottlenecks
in the distribution grid. Such bottlenecks may be caused by the changing demand
from end consumers. Traditionally, congestion problems are overcome by physically
expanding the grid capacity.

The Transmission System Operator (TSO) is responsible for the daily opera-
tion of the transmission grid, its maintenance and expansion. In Denmark the TSO is
represented by the state-owned monopoly Energinet.dk. They own the high voltage
transmission lines that connect the power producers to the distribution network and
to neighboring countries. It is their responsibility to secure and stabilize the trans-
mission system, where production and consumption must balance at all time scales,
and where the power quality must also be maintained by a stable voltage control.
Finally, the TSO develops market rules and regulations that in the long run provide a
reliable framework for the energy market. In general, a TSO does not own production
units and relies on ancillary services from suppliers to balance the production and
consumption in the transmission grid. Imbalances could destabilize the grid and lead
to outages for a large number of end-consumers with subsequent financial losses.

Balance Responsible Parties (BRP) enter agreements with the TSO to pro-
duce or consume energy. The BRPs sells or submit bids for purchase of energy into
the energy markets ahead of time. The bids are based on the anticipated demand
within each hour from the group of electricity wholesalers they represent. A BRP
is financially responsible for any consumer-caused imbalances, i.e. any deviations
between the amount of energy purchased on the market, and imbalances are settled
on the balancing market.

1.3.1 Markets

Electricity is transported in a continuous flow at the speed of light. A unit of elec-
tricity (a KkWh) delivered to a consumer cannot be traced back to the producer that
actually generated it. This feature puts special requirements on the metering and
billing system for electricity and motivates the need for markets. Production and
consumption must balance at any given moment, minute-by-minute, day and night
throughout the whole year. Traditional price mechanisms cannot handle the fast
dynamics in real time. Electricity pricing always has to be either ahead of real time
or after real time.
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Today, trading of electricity is organized in pools or exchanges, where producers and
consumers submit bids for energy delivery — both from and to the grid. The Nordic
power exchange is called NordPool. NordPool is completely owned by the Nordic
TSOs, that together with the DSOs are regulated monopolies, and are subject to
strict regulation. One company can take on multiple roles, e.g. the Danish power
company DONG Energy who represents both a BRP, retailer, and producer. The
electricity consumption is variable with a well predictable characteristic pattern dur-
ing day/night, the week, and on seasonal and annual time scales as well. Several
markets are available depending on the time scale of operation. Daily transactions
are made on a day-ahead market often referred to as a forward market in the US and
spot market in Europe. Adjustments in energy needs are made in intra-day markets
and in a real-time or regulation market | ]. Fig. 1.5 shows a broad time scale
of these energy markets. Precise timings can be found in | ]

1.3.1.1 Energy Markets

NordPool includes a day-ahead market named Elspot. Producers, retailers and large
consumers submit bids for delivery and withdrawal of electricity throughout the fol-
lowing day. Market participants must submit 24 bids in total, one for each hour of
the following day. The deadline for submitting bids is at noon the day before delivery.
In the coming hour the market is cleared and the prices are published and commu-
nicated to each participant along with their production and consumption schedules.
NordPool establishes system prices by matching supply and demand curves. Fig.
1.6 illustrates this matching. If grid bottlenecks (congestion) arise as a result of the
accepted production and consumption plan, then the prices are adjusted based on
the geographical area of the grid [Nor]. The intra-day market Elbas, allows trading
up to one hour before delivery and allows participants to adjust plan according to
any changes. Today, this market is rather illiquid as it accounts for only 1% of the
total electricity consumption in Scandinavia. Balance responsible parties (BRP) can
submit bids on a balancing market until 45 min before delivery. On TSO request bids
must be activated within 15 minutes, to restore the balance between production and
consumption whenever other participants deviate from the schedule resulting from
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their trade in the day-ahead and intra-day markets. These unwanted deviations con-
stitute balancing power and are settled ex-post according to the metered production
and consumption of the market participant.

All power imbalances are settled at the balancing market price, i.e. at the marginal
price of regulating power for the hour. This implies that any unwanted deviation is
actually rewarded by a price that is more attractive than the day-ahead price as long
as the deviation is in the opposite direction compared to the system imbalance. If the
system is in deficit power (up regulation), then producers with negative deviations
(underproduction) must pay a balancing price (higher than the day-ahead price),
while it receives day-head price for positive unwanted deviation (overproduction).
In case of power surplus (down regulation) a producer pays the day-ahead price for
unwanted deviation (underproduction). This settlement is referred to as a one-price
model. On the contrary, in a two-price system the balancing market price applies
only to deviations in the same direction as the system’s [Zugl3].

1.3.1.2 Capacity Market

Day-ahead, intra-day, and balancing markets are energy markets. Capacity markets
ensure availability of sufficient regulating power in the market. When deviations
from the scheduled production and consumption result in system imbalances that
no market can cover, the TSOs have emergency reserves that can be used to restore
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balance, for instance in the case of a major breakdown. Fig. 1.7 illustrates the timing
of the reserves.

Primary Frequency Reserve The primary frequency reserve is an automatic
frequency control that stabilize the frequency usually around 50 or 60 Hz. Primary
frequency reserves must be activated within 10-30 seconds and must be based on
a local control loop at the unit including local grid frequency measurements. The
primary control reserve must be active until secondary control takes over.

Secondary Frequency Reserve The secondary frequency reserve is activated by
a TSO reference signal. Its main objective is to restore power balance in a control
area and to take part in stabilizing the frequency. The secondary reserve restores
the primary reserve. The time scale for activation of secondary reserve is around 15
minutes.

Tertiary Frequency Reserve Tertiary control is a reserve that can be activated
manually by a TSO. Activation of tertiary reserves will make the suppliers of the ter-
tiary reserves change their planned operation such that the necessary up- or down-
regulation is achieved. The purpose of the tertiary reserve is to resolve persistent
balance or congestion problems and in this way restore the secondary and primary
frequency reserve. The time scale of activating tertiary reserve is also in the magni-
tude of 15 minutes. In the Nordic market the bids accepted in this market will get a
reservation payment. Once the operational day is entered, the accepted bids will be
transferred to the Nordic Operation Information System (NOIS) list. The TSO then
starts activating bids from the NOIS list according to needs.
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Figure 1.8: Control hierarchy.

Manual Power Regulation Manual power regulation is essentially the same as
tertiary frequency reserve. However, bids can be placed during the operational day
and these bids are transferred directly to the NOIS list, where all bids are put in a
merit order. The TSOs can then choose to activate the best offers according to their
demand.

From a control point of view all these ancillary services require a tight power regu-
lation in real-time. Consumers and producers are expected to participate in similar
markets in the future and must be able to control their power in a flexible way.

1.3.2 Control Hierarchy

Due to economic, political and social constraints of the power system, some hier-
archical decomposition to achieve reliable decentralized control is almost manda-
tory [SM72]. Most complex systems consist of many interacting subsystems with
conflicting objectives. The power system is no exception [Ara78]. The power system
hierarchy is split in several levels. Basically, it is decomposed geographically in trans-
mission and distribution networks. Also the market dynamics are decomposed in a
sequential structure as shown in Fig. 1.5. There is a wide range of response times
in electric power systems that depends on the natural response characteristics of the
system. Fig. 1.8 shows the control hierarchy of the current power system.

Control functions at a higher level often apply to slower time scale than at the lower
level. At the very left we find power system planning and expansion of equipment
with the longest time horizon. Also maintenance scheduling can included at this
level. In Denmark the long term planning involves closing down coal-fired power
plants and putting up wind farms. A flexible demand is a way of delaying expensive
grid capacity expansions.

At the next level energy management ensures that power is available on a daily and
hourly basis. This level integrates predictions of the future power demand day-ahead
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or hour-ahead. The predictions identifies commitments from the generating units.
As more renewables emerge, the prediction uncertainty at this level rises significantly
and calls for more regulating power reserves | ]. If all units are operated by a
single entity, then the Unit Commitment Problem (UCP) is rather straightforward to
construct. The Unit Commitment is focused on economics and includes unit start-up
and shut-down decisions (integer variables) as well as ramp rate constraints. The
computational complexity is high for these Mixed Integer Linear Programs (MILP)
and therefore runs at slower time scales | ].

In contrast to energy management we have power management at the bottom with the
objective of regulating instantaneous power. In general, power management occurs
at two timescales | ]. At fast time-scales (on the order of seconds) the voltage
and frequency must be stabilized | , , ]. Specifically, there is a strong
coupling between real power and voltage angle as well as between reactive power and
voltage magnitude. Power generators sense this change by a small decrease in voltage
angle, and compensate by slightly increasing mechanical power to the generator.
Similarly, a drop in voltage magnitude can be compensated by increasing reactive
power. At larger time-scales (on the order of minutes) the load flow relations are
used to define an Optimal Power Flow (OPF) problem. The OPF seeks to optimize
the operation of electric power generation, transmission, and distribution networks
subject to system constraints and control limits. This nonlinear optimization problem
is widely studied in literature | , , ]

In this thesis, we assume sufficient capacity and disregard both frequency and voltage
control. Also the investigated control strategies work on a hour-minute scale and
applies to active power and energy scheduling.

1.4 The Future Power System

In the wake of introducing fluctuating power generation from renewables such as wind
and solar power, the future grid needs flexible consumers and producers. In today’s
power system, the electricity load is rather predictable and primarily large power
production units provide the needed regulating power to absorb fast imbalances. A
Smart Grid introduces a major paradigm shift in the power system from producing
according to demand to letting demand follow production | , ]. Hence,
it is obvious and even economically efficient [ ] to include the rising electrifica-
tion of the demand side as a flexible and controllable actuator. The future Smart
Grid calls for new control strategies that integrates flexible demand and efficiently
balances production and consumption of energy. Research advances within predic-
tive control and forecasting opens up for a control-based demand response as a vital
option to increase the power system flexibility | ]. The control challenges for
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implementing demand response successfully are to identify reliable control strategies,
interface these strategies to the markets, and manipulate the power balance of all
flexible units. In the remaining part of the thesis, we focus on methods for control of
the future electricity loads.

1.4.1 Distributed Energy Resources

The future Smart Grid units are often referred to as Distributed Energy Resources
(DERs) [ , ] and constitute: consumers, distributed power generation units,
and energy storage systems. A DER is defined as smaller production units such
as heat pumps, heat storage tanks, electric vehicles, refrigeration systems, district
heating units, etc.. We formulate dynamic models of these units in Chapter 2. DERs
are distributed in the power system and have local controllers that should be able to
communicate with the rest of the system. Communication enables flexibility support
to the grid, e.g. an Electric Vehicle is able to charge its battery autonomously, but
could offer a flexible active power consumption.

1.4.2 Different Objectives for Multiple Actors

The introduction of flexible DERs in the system rises two major challenges for the
current power system. First, new market actors will most likely be introduced to
represent the flexible part of the load towards the system operators, either as a BRP
itself or through an existing BRP. Secondly, as more demand is put on the distribution
grid, a future balancing market operated by the DSO in each distribution network
could potentially emerge. The principle behind the DSO balancing market will be
almost identical to the current TSO-operated market, but the motivation is quite
different. The TSO currently operates a balancing problem whereas the DSO operates
a capacity problem. The different objectives of the different actors are briefly listed
here

e The TSO is responsible for the security of supply and to balance produc-
tion and consumption, with minimum reserves available. Currently the TSO
has no direct control over production or consumption, only indirectly through
the regulating power market, where electricity prices stabilize the exchange of
power. Therefore, the TSO has interest in extending the power markets to
end-consumers and potential DERs.

e The DSO is responsible for the distribution of electricity. Distribution networks
were formerly designed for a predominantly passive operation because their
task was mainly to distribute electricity with unidirectional power flow from
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the transmission level down to the consumer. The future distribution system
should be more actively controlled to utilize both the network and the DERs
more efficiently, e.g. to avoid congestion.

o The BRP, the electricity supplier, or a retailer all buy or sell electricity. Their
objective is to maximize profits. Accurate control and timing is thus crucial to
their operation. Furthermore, a BRP must pay penalties for causing imbalances,
i.e. deviating from its planned consumption or production. Controlling the
consumption minimizes the penalties and adjusts consumption to follow a plan
on shorter time scales.

e The generating companies represent a broad range of actors, from a single
wind turbine to large companies with a portfolio of power producing units.
Their main objective is to maximize profit with little interest in controlling the
consumption.

o Industrial consumers mainly wish to maximize profits without sacrificing prod-
uct quality.

e Consumers have very different control objectives. Some might be very interested
in reducing costs, others in reducing environmental impact or even improving
comfort [ ].

Naturally conflicting objectives arise in interconnected systems. However, for power
systems the common single goal of all subsystems is to satisfy customer demands
at the lowest cost subject to the system being sufficiently reliable. Smart Grid re-
search points in the direction of a comprehensive hierarchical and distributed control
framework to push the power grid development towards a unified large-scale con-
trol framework that simultaneously optimizes operation across markets, balancing,
operational and transactive customer levels [ ]. Modern optimization methods
should be incorporated such as layered optimization and decomposition methods to
solve the large-scale control problems. This will allow for multiple competing objec-
tives, multiple constraints, and breaks down the hierarchy so that each utility and
energy service has the ability to solve its local grid management problems, but within
an overall framework that ensures grid stability. New market players, aggregators,
are expected play an important role in the future hierarchy and connect the rising
number of flexible consumers in the future Smart Grid.

1.4.3 Aggregators

The total power consumption of each DER is typically too small to reach the current
markets and affect the power balance. Currently, it requires a large volume to place
actual bids in the markets. But if a large number of controllable DERs are pooled



16 Introduction

Aggregator

and control

 ~—
DER1||DER2 |eee

Figure 1.9: Aggregator role.

together their aggregated power could be valuable in the markets. Therefore new
BRP market players, referred to as aggregators are expected to control the future
portfolio of flexible DERs | , ]. There can be many aggregators that each
control a specific group of DERs, e.g. split geographically in the grid | ] or
by unit type | , ]. Figure 1.9 illustrates the role of an aggregator. A
local controller at each DER controls the unit according to its local objectives and
constraints, while the aggregator coordinates the system-wide flexibility of a large
number of DERs in the portfolio | ]. The DERs are expected to cooperate
and respond to control signals communicated by the aggregator. The control signals
should coordinate the response according to the aggregator objective. This concept
is often referred to as demand response | ]. The choice of control strategy
changes how the DERs respond and the communication requirements | ]. Some
type of agreement or contract with the aggregator must be in place to ensure an actual
response and settlement. The aggregator can exploit the flexibility of its portfolio to
operate it in the most profitable way. Depending on the characteristics of the DERs,
the aggregator can provide different services for the day-ahead markets or the ancil-
lary service markets. Examples of services could be to keep the consumption below
a certain threshold to avoid congestion or to increase consumption during non-peak
hours. Different time scales are important to take into account when considering the
whole system | , , ]. How the market connection should be es-
tablished by the aggregator is still an open research question | , , ]
Based on the market today it is realistic to assume that the aggregator bids into the
day-ahead market depended on the available portfolio flexibility [ , ]
If accepted, the resulting bid must be followed while markets at shorter time scales
can be used to maximize profit | ]. Model predictions and communication
with the DERs is crucial to estimate the total flexibility and apply them intelligently.
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The requirements to communication will vary depending on the control strategy. It
is easier to predict the aggregated behavior of a large number of DERs than predict-
ing their individual behavior | , , ]. Forecast of the consumption
relies on historical data and actual forecasts of outdoor temperature, wind, etc.

The aggregator’s key ability is to control the power consumption or production of its
portfolio. And the best control strategy for doing so is not trivial at all. Optimal
decisions on individual energy consumption and production requires knowledge of
future production and consumption by all other units in the system. In this thesis we
investigate different aggregator control strategies | | ranging from centralized
[ ) ] to decentralized | ) ] Model Predictive Control [ ,

] using various hierarchical levels and levels of information exchange between
the individual controllers. We also investigate decomposition techniques based on
price signals | ].
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CHAPTER 2

Models

In this chapter, we formulate linear dynamic models of some of the common energy
units in the future Danish energy system:

o Electric Vehicles

e Buildings with heat pumps

o Refrigeration systems

o Solar collectors and heat storage tanks

e Power plants

o« Wind farms

The models originate from Paper A, Paper B, and Paper C, and the rest from

[ ’ ? ? }

2.1 Dynamical Systems

We characterize the state of a dynamical system by its state variables. The state
variables are stacked in a time-varying state vector z(t) referred to as the system
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state. The state variables are changed from its initial state z(tg) = 2o by underlying
dynamical processes. The development of the states depend on several inputs: control
signals u(t), disturbances d(t), and unmeasured stochastic process disturbances w(t).
For many dynamical systems it is possible to describe the state development with a
process on the form

%x(t) =i = f(z,u,d,w,t) x(tg) = x9 (2.1)

i.e. n, coupled nonlinear differential equations. n, is also the number of variables in
2. The process noise is distributed as wy ~ N;;q(0, Ry (t)), and we assume that w,
d, and w are piecewise linear. The output variables z(t) and measurements y(t) from
the system are related to the states and inputs

y(t) = gz, u,v,1) (2.2a)
2(t) = h(x,u,d, t) (2.2b)

with measurement noise v(t) ~ N;;4(0, Ry, (t)). In this thesis, we only consider linear
systems of finite dimension, i.e. linear f, g, and h, and we start our energy systems
modeling with one of three different model formulations. A state space model based
on differential equations of the modeled physical system, a Stochastic Differential
Equation (SDE) with parameters estimated from data, or a transfer function model
defining the input and output relations with simple parameters. As illustrated in
Fig. 2.1 all these model formulations can be converted in to discrete time state
space models that readily fit the control framework presented later in Chapter 3.
In Chapter 5 we model a portfolio of units using ARX and ARMAX models. The
impulse response model is explained in detail in Section 2.2.2.

2.1.1 Continuous Time State Space Model

A continuous time stochastic state space representation is

#(t) = Ac(t)x(t) + Be(t)u(t) + Ec(t)d(t) + Ge(t)w(t) (2.3a)
y(t) = C(t)x(t) + v(t) (2.3b)
2(t) = C,(t)z(t) + D, (t)u(t) + FL(t)d(t) (2.3¢)

The state space matrices (A, B, E., G, C,C,, D., F.) can be time-varying.

2.1.2 Stochastic State Space Model

A stochastic differential equation is formulated as

da(t) = (Ac(®)z(t) + Be(t)u(t) + Eo(t)d(t)) dt + Go(t)dw(t) (2.4)
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Figure 2.1: State space model realization.

The model includes a diffusion term to account for random effects, but otherwise it
is structurally similar to ordinary differential equations.

2.1.3 Transfer functions

A transfer function g(s) describes the relation between input and output via the
coefficients of two polynomials a(s) and b(s)

b(S) bos™ + blsnil + -+ by_15+ by,
g9(s) = =— p (2.5)
a(s)  s™+ays + -t am_15+ am

We can describe multiple input and multiple output (MIMO) systems with sets of
transfer functions in a matrix G(s). Examples of transfer functions described with
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simple parameters are

K

Gils) = —— (2.6)
_ K(Bs+1)
Ga(s) = Trs+ 12 (2.7)

A transfer function G(s) for Y (s) = G(s)U(s) is related to a state space model
through
G(s)=C(sI—A)'B+D

where [ is the identity matrix.

2.2 Discrete Time State Space Model

Once the model is described as either a transfer function or a state space model
we can discretize the system into a discrete-time state space model. We assume a
zero-order-hold discrete sampling describes the system well. The matrix exponential
discretizes the state space system with sampling period T as

A B E A, B. E.
0 I Ol=exp||O0 0 0T,
0 0 I 0 0 0

Hence, with discrete time step subscripted k we obtain

T = Tp+1 = Az + Buy + Edy, + Gwy, (2.8a)
yr = Cay + vg (2.8b)
zr = Coxp + Doug + Fodg (2.8C)

Assume that the model and the true system are identical. Then uncertainties in the
state prediction originate from the stochastic nature of the initial state, the process
noise, and the measurement noise. In this case, the optimal filter and predictor is
the Kalman filter and predictor. Under the same assumptions the optimal controller
for the system can be split into an estimator and a certainty equivalence regulator.

2.2.1 Filtering and Prediction

We can use a state estimator to estimate the current state and predict its future
evolution. The filtered state estimate, &), = E {zy}, of a system governed by (2.8)
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is computed using the Kalman filter | , ]. The innovation is computed
as

ek =Yk — Unjk—1 = Yk — CTpp—1 (2.9)

The innovation covariance, R. i, the filter gain, Ky, 1, and the filtered state covari-
ance, Py, are computed as

Re,k = Rm; + C’Pk‘k_lCT (210&)
Kok = Pyp—1CT R, (2.10b)
Py = Prjp—1 — fo,kRe,kKﬁ,,k (2.10c)

such that the filtered state can be computed by

Trik = Trjp—1 + Ko ke (2.11)
Equations (2.9)-(2.11) are standard Kalman filter operations for the measurement
update. Given the conditional predictions of the external disturbances, djx, and

the manipulated variables, @, the conditional predictions of the states and the
outputs are

Trsrsile = Abjpip + Blyepie + Bdgy, (2.12a)

Geritie = CZrgrtik (2.12b)

for i =0,1,...,N — 1 and all K > 0. The expected value of the stochastic normal
distributed process noise is E(wy;%) = 0, and the term disappears from (2.12a).
The corresponding covariances of the predicted states are

Pevivar = APy AT + GRuyw i+iGT + ERqgprin BT (2.13)

This Kalman filter minimizes the errors from measurement noise, process noise, and
model mismatch [ ].

2.2.2 FIR

When the current state estimate is calculated we can predict the expected future state
evolution with a Finite Impulse Response (FIR) model [ ]. We can construct
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a FIR predictor of an output by eliminating the states using (2.12) such that

k—1
Tp = AkiL'o + Z AkilijBUj + EdJ (214&)
7=0
k—1
yr = Cay = CAFmo + > CAF ' Bu; + CAM ' Ed, (2.14b)
J=0
k—1
2 = Coxp + Doug + Fodp = Co A2+ CLAY ' D,u; + F.d, (2.14c)
J=0

The dynamic relation (2.14) can be written in matrix terms as | ]

Y =Ty, U 4 TyyD + ®ag Z =T,,U +T,qD + ®, 10
where
[0 0 e 0] ro 0 0 7
H™ 0 - 0 HY 0 0
yu yu d d
Tu= |HS H" - 0 o= |H HY 0
_H;{]u H]:‘G’;l . Hly“_ _ng,\lfd ‘Z;I]y\/vd71 o Higd_
B D, 0 - 0 7 B F, 0 L. 0 ]
Hi 0 0 Hi 0 v 0
D= |HE*OHP 0 r= |HY Hf e 0
(Hy HRL, - HP [ HRL, e HEY
[ C [ C,
CA C.,A
2
b — CA? D, = C.A
_CAN _OZAN
and
2k Yk uy, d
Zp41 Y1 Uk 41 diy1
_ | y=|" v=| " D= .
2L N Ykt N Ukt N—1 drynN-1

N is the number of approximate time steps needed to represent the impulse response.
The impulse response coefficients (Markov parameters) are used to build the matrices
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Mitsubishi iMIEV EV 2010 IEHERS

short range medium range long range

Battery 16 kWh Battery 25 kWh Battery 90 kWh
Efficiency 130 Wh/km Efficiency 100 Wh/km Efficiency 186 Wh/km
Range 123 km Range 250 km Range 483 km

Figure 2.2: Three types of EVs [[TF].

I'" and Fd

H = CA™'B H! = CAT'E i=1,2,...,N

H" =C,A"'B H=C.,A7'E i=1,2,....,N

In the case when D, = 0 and F, = 0 the output at k = 0, zq, is removed. The process
disturbance dj, can be predicted by a prognosis system and is predicted independently
of the measurements y. In many situations in smart energy systems, d involves
variables such as temperature and solar radiation. Accordingly, the forecast D is the
result of a weather prognosis.

2.3 Smart Grid Units

To control flexible units in a Smart Grid, we need dynamic models of the units in the
form just described in Section 2.1.

2.3.1 Batteries in Electrical Vehicles

Electrical Vehicles (EVs) are expected to replace traditional combustion engine cars in
the future transport sector. Electric Vehicles contain batteries that must be charged
to drive the vehicle. The state-of-charge, ¢ € [0;1], of a battery indicates the charge
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level and is limited by the constraints

Cmin S C(t) S Cmax (215)

When fully discharging or charging the battery, the efficiency decreases. So to stay
within a linear operating range typically: (nin = 0.2 and (pax = 0.9. The state-of-
charge may then be modeled as

Qul=n"P" -y P~ (2.16)

Q. € [16;90] kWh is the nominal capacity of the battery. P* = u™ is the power
transferred from the grid to the battery, and P~ is the power used for driving or
the power transferred back to the grid. P~ (¢) = d(t) + u~ (¢t) where d(¢) > 0 is the
power used for driving and ™ (¢) is the power transferred from the battery to the
grid. The ability to transfer power back to the grid is called Vehicle-to-Grid (V2G)
and was first proposed in [ ]. This is not yet a standard technology for EVs.
1 is the efficiency of the charger when charging the battery and 1~ is the efficiency
when discharging the battery. Note that n™ < n~. Power can only be transferred to
or from the battery when the vehicle is plugged in, i.e. when it is not driving. We
therefore add the indicator function

i) = {1 for d(t) =0

0 otherwise
to the charging constraints

0 <ut(t) <d(t) Pt (2.17a)

0 <u(t) <d(t) P (2.17b)

max

Typical commuter driving patterns suggest that the vehicles will be plugged in most
of the time. The range of charging powers for current Li-ion EV batteries are
Pl <{3.3,9.6,16.8} kW (residential charging, three-phase charging, fast-charging).
A typical battery with capacity @,, = 24 kWh can thus be fully charged at home in
approximately 7 hours at P} = 3.3 kW.

The manipulated variables for the battery is the charging and discharging, u; =
[ut; u~]. Consequently, the contribution of the battery operation to the power bal-
ance is: z;(t) = [-1 1u;(t) = —u™(¢) + u™ (¢).

2.3.2 Residential Heating based on Heat Tanks and Solar Col-
lectors

A method for residential heating illustrates the use of solar heated roof-top collectors
and electrical heating in combination with a storage tank for heating residential



2.3 Smart Grid Units 27

Figure 2.3: Heat storage tank connected to solar thermal collector on building roof.

buildings. An energy balance for the storage tank

CwTw = Qs + Qe - Qc - Qloss (2'18)

provides the water temperature, T,,, of the tank. @, is the heat from the solar
collectors. Qoss = UA(T —1T,) is the heat loss to the ambient air in the room where
the heat tank is placed. ). is the consumption used for space heating or hot water
e.g. showering or dishwashers. Q. = 7n.W,, is the heat provided to the tank by
conversion of electrical power, W, to heat with efficiency 7.. The electrical heating
is limited by the hard constraint

0 < We < We max (2.19)
The temperature in the heat tank is limited by the constraints
Tmin S T S Tmax (220)

The manipulated variable for the heat tank system is, u;(¢) = W,(t), such that the
contribution of this system to the overall power balance is z;(t) = —u;(t) = —W,(?).

2.3.3 Heat Pumps for Residential Heating

Buildings account for up to 40% of the total energy use in Europe [PLOP08]. There-
fore, intelligent control of the energy use in buildings is essential. One of the main



28 Models

AR bs
Cpr T,
W, To I\
VO | wa,
Heat Pump | Cp, o Toy ;____(J_AZU;___! Cp.s Ty

Condenser tank
Tl
a

(a) Building and heat pump floor heating system and its (b) Ground source heat pump.
thermal properties. The dashed line represents the floor
heating pipes.

sources for heating of buildings in Denmark will be heat pumps combined with water
based floor heating systems. Heat pumps are very energy efficient as their coefficient
of performance (COP) is typically 3 or larger, i.e. for each kWh electricity supplied,
they deliver more than 3 kWh heat. As heat pumps are driven by electricity and
supply heat to buildings with large thermal capacities, they are able to shift the
electricity consumption and provide a flexible consumption.

Residential heating using a heat pump and a water based floor heating system may
be modeled by the energy balances

CTr = Qfr — Qra + s (2.21a)
CiTy = Quys — Qyr (2.21b)
CowTw =Qc — Quy (2.21c¢)

where T;. is the room temperature, T is the floor temperature, T, is the temperature
of the water in the floor pipes, and ¢ is the solar radiation on the building. The
heat transfer rates are

Qra = (UA)ra(T, — Ta) (2.22a)

Qpr = UA)p(Ty - T) (2.22b)

Quf = (UA)ws(Tw —Tf) (2.22¢)

and the effective heat added by the compressor to the water in the pipes is given by
Qe =nWe (2.23)

where W, is the compressor work. The compressor work is constrained by the hard

constraints
0< We < Wemas (2.24)



2.3 Smart Grid Units 29

Table 2.1: Description of variables

Variable  Unit  Description

T, °C Room air temperature

Te °C Building envelope temperature

Ty °C Floor temperature

Ty °C Water temperature in floor heating pipes
T, °C Ambient temperature

T, °C Ground temperature

We W Heat pump compressor input power

bs W Effective solar radiation power

P W/m?  Solar radiation power

and the temperatures must obey the following soft constraints

T’r,min < T’r < Tr,max (225&)
Tw,min S Tw § Tw,max (225b)

The room temperature limits are time varying set-points specified by the residential
inhabitants. Table 2.2 reports parameters for a low energy building represented
by this residential heating model using a heat pump. Table 2.3 provides parameters
estimated from a modern 198 m? residential house | ]. In that case the model
was

CoT, =2(UA)o(Te — Tp) + (UA) (T — T;,) + AP
CeTe = 2(UA)o(Ta — Te) + (UA)pa(Ty — Te)
Cfo = (UA)wf(Tw - Tf) + (UA)fT(Tr - Tf)
CoTw = nWe = (UA) s (T — T)
The compressor power is the manipulated variable, u;(t) = W,(t), such that the heat
pumps contribution to the overall power balance is z;(t) = —u;(t) = —W.(?).

2.3.4 Supermarket Refrigeration System

The cooling capacity of goods in super market systems may be used in balancing
supply and demand of power in electrical systems [ ]. Energy balances for the
cold rooms in supermarket refrigeration systems yield

Cp,foodeood = Qfood—air (226&)

Cp,airTair = Qload - Qfood—air - Qe (226b)
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Table 2.2: Estimated model parameters for low energy building

Value  Unit Description
Cr 810 kJ/°C Heat capacity of room air
Cy 3315 kJ/°C Heat capacity of floor
Cuw 836 kJ/°C Heat capacity of water in floor heating pipes
(UA)ra 28 kJ/(°Ch)  Heat transfer coefficient between room air and ambient
(UA)¢r 624 kJ/(°Ch)  Heat transfer coefficient between floor and room air
(UA)ws 28 kJ/(°Ch)  Heat transfer coefficient between water and floor
Cw 4181 kJ/(°Ckg) Specific heat capacity of water
Mo 200 kg Mass of water in floor heating system
n 3 Compressor coefficient of performance (COP)
Table 2.3: Estimated model parameters for modern residential house
Value Unit Description
Cr 3631 kJ/°C Heat capacity of room air
Cy 10030 kJ/°C Heat capacity of floor
C 1171 kJ/°C Heat capacity of building envelope
(UA)ra  243.7 kJ/(°Ch) Heat transfer coefficient between room air and ambient
(UA)sr 1840 kJ/(°Ch) Heat transfer coefficient between floor and room air
(UA)wy 2437 kJ/(°Ch) Heat transfer coefficient between water and floor
As 4.641 m?> Building area

where T4 is the temperature of the stored food and T, is the temperature of the
air in the cold room. The heat conduction from food to air in the cold room and
from the cold room to the supermarket are

Qfoodfair = (UA)foodfair (Tair - Tfood)
Qload = (UA)a—cr(Ta - Taz’r) + Qdist

T, is the temperature in the supermarket and @Q4;s; represents injection of heat into
the bold room (e.g. in connection with opening the cold room). The heat transferred
from the cold room to the evaporator of the refrigeration system is in this paper
approximated by

(2.27a)
(2.27D)

Qe =nWe (2.28)

where 7 is the efficiency. In more rigorous models, n = n(Te, Tpy:) is a function of
the evaporator temperature, T,, as well as the outdoor temperature, Tp,;.

The evaporator duty is constrained by the hard constraint

0 S Qe S Qe,max,k (229)
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in which
Qe,max - (UA)evap,ma:c (Tair - Te,min) (230)

where T¢ min is the minimum allowable evaporator temperature. The food tempera-
ture in the cold room is constrained by the soft constraints

Tfood,min < Tfood < Tfood,max (231)

The compressor power, u; = W, is the manipulated variable. Its contribution to the
overall power balance is given by z;(t) = —u;(t) = —W.(¢).

2.3.5 Power Plant

The production of power by a thermal power plant consisting of a boiler and turbine
circuit may be modeled as [ ]

1

Zj(s) = G;(s)Uj(s)  Gj(s) = s+ 19

(2.32)

z;(t) is the produced power, while u;(t) is the corresponding reference signal. Con-
sequently, Z;(t) = z;(t). The cost of producing one unit of power at time k is ¢;. For
most thermal power plants, 7; is approximately 60 seconds | |

The discrete-time input signal is constrained by limits and rate-of-movement con-
straints

Umin,j S Uj (t) S Umax,j (233&)
Aumin,j < Auj (t) < Aumax,j (233]:))

2.3.6 Wind Turbine

The production of power by individual wind turbines or wind farms may be described
by the model | , ]

Zuw,j(8) = H;j(s)(Uw,j(s) + Duw,j(s))
Ky

Hils) =i
w,J

Zw,j(t) is the produced power by the wind turbine(s), d,, ;() is the available power in
the wind, and w,, ;(t) is a reference signal to the wind turbine specifying how much
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power to extract from the wind. In discrete-time, this command signal is constrained
by the hard constraints

= du (1) < uw,;(t) <0 (2.34a)
Auw,min,j < Auw,j (t) < Auw,max,j (234b)

Similarly, wind turbine design and grid-code specifications constrains the produced
power by the following soft constraints

0 < Zw,j (t) < Zw,max,i (235&)
AZw,min,j S Azw,j(t) S AZw,rnax,j (23512))

The produced power to the net by wind turbine is 2, ; (t) = 2u,;(t). The time constant
Tw,j 18 approximately 5 seconds (or smaller).

2.4 Energy balance

For the considered consumption units the control variable u is always the consumed
power and equal to the output z. The controlled output y could be a measured tem-
perature state z of a thermal storage unit. For production units the control variable
could for instance be a fuel or simply a reference signal changing the production, while
the output z is the production. We can formulate a balance constraint connecting
the produced and consumed power from all n units indexed j as

2k = ng’j = Z CZJ':I?k’j + DZJ’U,]C,]‘ (236)

j=1 j=1

Later in Chapter 5 we deal with consumption units exclusively such that
z=C.z+D.u (2.37)

where D, € RNV*Nnnu simply sums all contributions to the total power consumption

D.=[1 1 - I (2.38)

Here I € RV*N

unit.

is the identity matrix and n, is the number of control inputs per

We describe all models as state space models so they fit in the Model Predictive
Control framework described in the following chapter.



CHAPTER 3

Model Predictive Control

This chapter introduces Model Predictive Control (MPC) and how it is applied to
the systems described in Chapter 2. In particular, we formulate an economic MPC
that leads to a linear optimization problem.

3.1 Introduction

Model Predictive Control (MPC) is a control methodology that computes an optimal
control action based on a model of a dynamical system and its predicted future evo-
lution | , , , , , , ]. The control objective
and the mathematical model is formulated as a real-time optimization problem that
repeatedly computes the control inputs. The objective may be related to maximizing
profit, minimizing operational costs, or forcing the system to follow a pre-computed
set point trajectory. Only the computed inputs associated with the current time step
is actuated on the physical system. A new current model state is estimated regularly
when new measurements are available and the real-time optimization procedure is
repeated. This principle is illustrated in Figure 3.1 and is also often referred to as
Receding Horizon Control (RHC). As illustrated in Figure 3.1, the estimation part
uses historical data to estimate the current state. A Kalman filter does exactly this
for linear models subject to process noise and measurement noise. The regulation
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Figure 3.1: Moving horizon estimation and control principle.

part, computes a trajectory of the manipulated variables (u) such that the predicted
output (z) follows the target as well as possible. The first part of u is implemented
and the procedure is repeated at the next sampling time by moving the estimation
and regulation window as illustrated in Figure 3.1. The procedure is computational
intensive as large-scale optimal control problems must be solved numerically in real-
time. It is important to realize that this repeated optimization procedure provides
closed-loop feedback and enables the MPC to counteract model uncertainties and
external disturbances. The idea of moving horizon control is not new as illustrated
by:

One technique for obtaining a feedback controller synthesis from knowl-
edge of open-loop controllers is to measure the current control process
state and then compute very rapidly for the open-loop control function.
The first portion of this function is then used during a short time interval,
after which a new measurement of the process state is made and a new
open-loop control function is computed for this new measurement. The
procedure is then repeated. | ]

Advances in computer science radically changed the notion of very rapidly from 1960
to 1985. Both the increasing computational speed of the hardware and important
research advances in optimization algorithms allowed MPC to be implemented in
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industrial practice [ ]. For more than 30 years, MPC has been used routinely
in the oil refining industry as well as in the process industries. The reason for the
early adoption of MPC by these industries is the slow time constant of the processes
involved and the availability of ample computer power. These two characteristics
enabled real-time solution of the optimization problem representing the MPC within
one sample period. The early implementations of MPC was based on linear convo-
lution models such as impulse and step response models. Even today, the majority
of MPC applications are based on linear models | , , ]. Discrete-
time convolution models (impulse- and step-response models), input-output models
(ARX, ARMAX), and state space models are used for the filtering and predictions
in MPC. However, the computations in these implementations are based on a state
space representation of the system even if the system is parameterized using a convo-
lution model or an input-output model | , ]. For MPC based on linear
prediction models the resulting optimization problem is either a linear program (LP)
or a convex quadratic program (QP). Fast optimization algorithms for solving these
problems have been developed in the past decades | ]. Specifically, the LPs and
QPs stemming from an MPC have a special structure that may be utilized by tailor
made algorithms for the efficient solution of such problems | ]. The advances in
optimization algorithms for linear MPC have enabled this control strategy for new
classes of systems, e.g. very large scale systems and systems with fast dynamics.
One advantage of MPC is its ability to approximate and solve most optimal control
problems numerically with much lower computational effort than classical approaches
like dynamic programming [ ]. Dynamic programming finds the optimal control
solution but suffers from the curse of dimensionality. MPC can handle much bigger
problems. Furthermore, MPC also has a unique ability to handle system limitations
simply by adding them as constraints in the optimization problem. Examples of these
limitations could be the battery capacity or the maximum charge power available in
an Electric Vehicle. MPC also handles multivariate (MIMO) systems very well and
in general allows operation closer to the system constraints. This ability and greater
coordination frequently lead to greater profits or better performance.

3.2 Economic MPC

Large-scale feedback control systems are typically dominated by economic perfor-
mance goals like profitability, efficiency of operation, cost cutting, lean operation,

ete | ]. The current paradigm for achieving overall economic objectives for
a given plant is to split the decision making and control system into several lay-
ers | , ]. Fig. 3.2 shows how MPC fits in this traditional control hierarchy.

The uppermost layer operates on the slowest time scale and constitutes maintenance
and expansion planning of the plant or system to be controlled. The second layer,
Real Time Optimization (RTO), optimizes the static steady-state plant variables
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Figure 3.2: Control hierarchy.

hourly or daily without considering plant dynamics. The resulting setpoints from the
RTO are passed to the third layer controlling the dynamics. MPC is often chosen as
control strategy at this level because of its flexibility, performance, robustness, and
the ability to directly handle hard constraints on both inputs and states. The MPC
tracks the steady-state setpoints and rejects any dynamic disturbances. The distur-
bances enter at all layers but vary in signal form and frequency depending on the
time scale. This control hierarchy can be compared to the power system hierarchy
in Fig. 1.8. The hierarchical partitioning of layers has significant effects whenever
the process deviates from its setpoint. The objective function used by the controller
is usually shaped to achieve fast asymptotic tracking to setpoint changes and low
output variance in the face of disturbances, and is usually unrelated to the economic
costs of operating the system. There are several proposals to improve the effective
use of dynamic and economic information throughout the hierarchy. One is to move
dynamic information into the RTO layer. Another approach is to move economic
information into the control layer. When the control problem is posed as an opti-
mization problem, such as in MPC, this approach involves modifying the traditional
tracking objective function.

In traditional tracking control, the objective is to minimize the unconstrained error
between a given reference r and the measured output. In that case we can use a
quadratic least squares objective

N-1
Greg(usy) = 5 Y My — Galldy + llur — @l (3.1)
k=0

w\'—'

The weights @ and R are tunable and (y, u) are the steady-state set points (outputs,
inputs). Control action is penalized through R as a regularization term. The regu-
larization term must be included to obtain well behaved control action. We apply
this objective in some of the control strategies presented in Chapter 5.
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In economic MPC, the objective function contains an additional term ¢ec,

N-1

Geco(, ) = Z cruy + ptsp (3.2)
k=0

This economic term represents both the cost of operating the subsystems, ¢, and
the cost of violating soft output constraints, p. We can combine (3.1) and (3.2) to
approximate a Mean-Variance-based objective function | ]

¢ = QPeco + (1 - a)¢rega (OAS [0; 1] (33)

The economic term is a certainty-equivalent approximation to the mean of the cost
function, and the regularization term approximates the variance. The parameter,
«, adjusts the trade-off between the two terms, i.e. between expected cost and risk
aversion. Solutions in between constitute the efficient frontier | ]. In Section
3.6, we show an example of this trade-off in an example with the objective (3.3)
applied to an economic MPC controlling a simple first order model. Other measures
of risk than the mean-variance formulation that can be used to regularize the solution
are Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) | ]. These
methods also take skewed probability distributions into account as the variance alone
only provides a good risk measure when considering a symmetric distribution.

The key advantage of using a deterministic formulation (with only expected val-
ues of the uncertainty in the objective function) is that the computational load is
significantly reduced compared to a mean-variance approach based on Monte Carlo
simulations. In this thesis we use the certainty equivalent and insert the mean values
of the costs and predictions of states, disturbances etc. An alternative approach to
handling uncertainty is via probabilistic constraints [ l.

3.3 Time Scales

The dynamics involved in power production in power plants and in wind power gen-
erators have very fast dynamics compared to the slower thermal storage systems
exemplified by residential heating with heat pumps in buildings. When combining
multi rate systems in one model the fast sampling rates might result in frequent turn-
ing on and off of a heat pump that in practice results in low energy efficiencies. In that
case, the control action must be regularized properly, but the MPC problem size is
still large. When considering dynamical systems at different time scales in one model,
the fastest system dictates the sampling period and thereby the MPC problem size.
To reduce the computational burden for controlling linear multi-timescale systems
we could augment the models by applying short sampling periods at the first steps
and longer sampling periods further into the future. In MPC the predicted control
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actions are not implemented anyway, only the first part. When using a time-varying
sample period, e.g. exponentially increasing with prediction horizon, Ts(k) € RY we
obtain the following state response analogue to (2.14a)

0 k—1 1
T = (H Az) To + Z H AZ'Bj’U,j + Ejdj
i=k J=0 \i=j

Here we set Ag = I. The measurement matrix C' stays fixed regardless of the sampling
period and can be multiplied to get the output.

[ , , , ] deal with this time scale problem by separating
the control into a fast and a slow part. As explained in Chapter 1 these different
time scales are treated in the current power market structure where markets exist
for different time scales. Components that operate at different time scales should
therefore operate in different markets and solve different problems.

3.4 Certainty Equivalent Economic MPC

In Section 2.2.1 we defined a stochastic state space system that nicely represents the
models in Section 2.2. We also established the optimal filtering and prediction for
this system. Next we show how to apply MPC to this problem, i.e. computing the
manipulated variables, ug. We use a certainty equivalence assumption such that the
regulator uses mean value predictions for all variables. Consequently, at time k, the
predicted operating cost looking N time steps ahead is

N-1 N-1
_ T T
Deco = E Chogi| kWil T E Pl4i+1|kSk+it+1]k (3.4)
i=0 i=0

This cost function is linear in % and s. For some scenarios or disturbances, it may
be very expensive or even impossible to keep the outputs z; within their constraints.
This leads to infeasible optimization problems with no solution. Robust MPC meth-
ods exist that specifically deals with uncertainties have been studied widely in liter-
ature [ , ]. For our certainty equivalent MPC we simply soften the hard
output constraints

Thticilk < Zhritile < TRLi1k (3.5)
with the additional slack variable, s [ ]. This variable is minimized and penal-

ized heavily to always force solutions towards the feasible set of constraints. So s will
only be non-zero if the output is outside the reference interval. In energy systems,
the reference interval Ry € [rg‘in, @] can be related to the power consumption,
indoor temperature in a building, temperatures in a refrigeration system or some

desired state-of-charge of a battery.
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To optimize over future events we need forecasts of the costs and disturbances, Cy
and Dy, respectively. We denote the mean of the forecasts as

. N—1 5 N-1
Cro = {Chetjlies Pretjt1in =g Dy = {dk+j\k} » (3.6)

Jj=

In many situations related to energy systems, d involves variables such as wind speed,
temperature and solar radiation. Accordingly, the forecast dj, j; is the result of a
weather prognosis.

The optimal trajectory of the predicted manipulated variables and slack variables,
{ﬁk+i|k, sk+i+1|k}£\;1 may be computed by solution of the linear program

minﬂirsnize o (1, s) (3.7a)
subject t0 @g114ijk = ABpyijk + Bligrip + Edy i (3.7b)
Urtitik = O%pi1yik (3.7¢)
Zryitik = Corprqin + Dalpprpan + Felpripi (3.7d)
“kmf;ﬂlk < lpgipe < Rk (3.7e)
A“?Eﬂ\k < Ay < Augfi (3.7f)
Yiitiae < Drvidie < Uhtre (3.78)
Eptitilke T Shpit1)h = r,‘giﬁﬂ‘k (3.7h)
Bhvit1lk = Sktit1lk < Thposilk (3.71)
Sktit1)k = 0 (3.79)

At every time step k the goal is to compute {uy, k}kN:_Ol such that the predicted output
trajectory {yk}fcv;ol lies within the specified output trajectory {r}ﬂ‘i}cn,rgl‘zx}fcvgol. N
is the prediction horizon, which is normally chosen quite large in order to avoid
discrepancies between open loop and closed loop profiles. N must also be large enough
to capture the dominating dynamics of the system. We then apply the first control
input to the system, i.e. only the first input, i, of this sequence is implemented. As
new information becomes available at the next sampling time, we redo the process of
solving the linear program using a moving horizon and keep applying the first control
input of the solution to the system. The input and output constraints are inherently
taken into consideration and handled by this optimal controller.

The function involving solution of (3.7) and selecting iy, is denoted as
up, = U, = 1(Lx|k> k-1, Di, R, Cr) (3.8)

and requires a number of inputs: the mean value of the forecasts, i.e. D, R, and Cy,
the filtered state, &y, from (2.11), the previous input, uz_1, the predictions (2.12)
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and the objective function (3.4). If the process noise and measurement is correlated
an additional term must be added to the state estimate (3.10a) [ -

In the economic MPC (3.7) the external cost, ¢, is the only driver of the control
variables. The problem does not track the outputs as long as they stay within certain
ranges. The certainty equivalent economic MPC (3.7) is listed in Algorithm 1. It
computes the manipulated variable, ug, based on the current measurement, y, the
previous input, ug_1, the forecasts (Dg, Ry, Ck), and the smoothed mean-covariance
estimate (cfk_” ks Radk—1)k). The main computational load in Algorithm 1 is solution
of the linear program (3.7).

3.4.1 Stability

Stability and performance of MPC control schemes has lately been studied exten-
sively. MPC of constrained systems is nonlinear and requires the use of Lyaponov
stability theory. This has lead to the addition of a terminal constraint in the cost
function to provide stability [ ) , , I | ] finds update
rules for the terminal weight penalty that results in good robust performance. Re-
cently, stability has been investigated without terminal constraints | , ,

, ]. Hence, it is possible to guarantee asymptotic stability or a de-
sired performance for nonlinear systems without terminal constraints by choosing a
minimum prediction horizon length. With some assumptions on controllability the
system can be asymptotically stabilized for sufficiently large horizon. From this anal-
ysis, the computational burden of MPC can then be reduced as the prediction horizon
is decreased. In this thesis, we apply MPC to linear stable energy systems and use
long horizons compared to the system dynamics to ensure stability. This is a practical
approach but under these assumption we achieve stability properties associated with
an infinite horizon | ]

3.5 Solving the MPC problem

Predictive control problems with a quadratic objective function and linear constraints
are efficiently solved with algorithms such as Active Set methods | , ,

], interior-point methods [ , , , ] and first-order
methods | ) ) ].

Interior point methods (IPMs) solve a linear system of equations in each iteration of
the TPM algorithm. A structured interior-point method efficiently solves the optimal
control problem arising in traditional MPC via the discrete-time Riccati recursion
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[ , ]. The computational cost of this approach is linear in the horizon
length, compared with cubic growth for a naive approach. A nonlinear version of the
problem can also be solved using an IPM | ]. In Chapter 4, we provide MPC
simulation results using a warm started IPM.

An Active Set method for QPs updates the working set of the active constraints. The
QP solver can exploit application-specific structure in a computationally efficient and
fairly robust manner | ]. Later in this chapter we show computational speeds
from an Active Set method solving an MPC problem.

Gradient methods are reliable, easy to implement, and guarantees convergence for
well behaved functions. Unfortunately, they have slow convergence rates compared
to higher order methods. | , ] investigate fast gradient methods for the
solution of linear quadratic MPC problems with input constraints. In particular,
the first order methods scale very well for large-scale systems and has been applied
widely in Distributed MPC strategies | ], that is considered essential within
Smart Grid control | ]. In Chapter 5 we implement two first order methods on
the same MPC problem. The methods are dual decomposition and Douglas-Rachford
splitting.

Two ways of speeding up MPC is warm starting, i.e. re-using the solution from
previous problems, or early termination, i.e. stopping the optimization algorithm
at the required solution tolerance and letting closed loop feedback eliminate errors

[ ; I

3.5.1 Economic MPC

One way of solving the linear economic MPC (3.7) is to eliminate the states by
condensing the state space model to a finite impulse response (FIR) model | ,
see Section 2.2. The output variable is Z = I',)U + ®x¢ + I'yD. The individual
economic MPC open loop problems are expressed as Linear Programs (LPs) in the
form

minimize ¢’U 4 p?'S

)

subject t0 Upin < U < Upax
AUpin < AU < AUpax
Yiin LY < Yinax
Rpin<Z+ S
Ryax > 2 -8
S>0
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We re-used the state space models and vector notation from Section 2.2 and addi-
tionally define the MPC-related vectors

S ,,,;nin T;nax
sl+1 ?,.;nln 7,.7r;nax
S = . Rmin = j‘»l anax - 4.»1 (314)
| SitN _rﬁnN K
[ Ay [ Aymin [ Ayiax
Aui+1 Augnin Au;nax
AU = AU = o AUpas = i (3.15)
| Auir N1 [ Auiy [AwFR
Note that AUZ = U; — Uj—1 such that AU = AU — Iou_1
I
I 0 .
A= [AJ o= .| As—asag(lla T L)) L= [~ 1
0
In short standard matrix notation required by most numerical solvers the LP is simply
e . T
minimize x
e g (3.16)
subject to Ax >b
with
i I 0 i [ Umin T
—I 0 _Qmax
A 0 A(]_min
U c -A 0 —AUnax
x[s] g{} A= Tya O b= Ymin
P _Fyu 0 _}/max
qu 1 Rmin
7FZU I _Rmax
0 I | L 0 i
and

AUmax = AUmauc + IOu—l
A(jvmin = A[]min + IOU—I

Rmax = Rmax - (I)xO - FdD
Rmin = Rmin - ‘I)xO - I—‘dl)

In the case when ¢ = 1||Z — R| |é is a quadratic tracking objective we can formulate
the problem as a Quadratic Program (QP)
o 17 T
minimize —z" Hx+g'x
2 g (3.17)
subject to Ax >b
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Figure 3.3: Computation time distribution for all open loop profiles calculated in
the five days closed loop simulation with prediction horizon 48 hours.

T =T, I'y="T.4 and R = R —T'yD — &z, then
LIPU — RII3 = 20U - RYTQ(TU - R)
2 QT 9
1 ~ - 1~
= 5UTFTQFU —(TTQR)TU + 5RTQR
1
= §UTHU +¢TU+h
and

Q=diag([Q,Q,...,Q]) To=T"Q H=Tgl' g=-IgR h:%RTQb

3.5.2 Solvers

There are many methods and tools for solving the QPs and LPs arising from the
MPC problem. The choice of solver depends highly on the application. In Smart
Grids each unit might need embedded real-time solvers, e.g. CVXGEN | 1,

FORCES | ], apOASES | ], that execute fast, reliable and with small
code size. The computational demands of MPC also lead research towards offline
control law solutions, known as explicit MPC | , ]. Fast FPGA and

GPU implementations are found in | , ]

In this thesis, we mainly used solvers that interface intuitively with Matlab, i.e.
MOSEK | ] and CVX | ]. But we also used a custom made Active Set
solver written in FORTRAN. Figure 3.3 shows the computation times of this Active
Set solver when solving the open loop optimization problems from Paper A using an
Intel Core i7 2.67 GHz laptop. The average computation time is seen to be around
8 ms. Using hard constraints the average computation time reduces to 1 ms. Note
that this is for small LPs.
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3.6 Mean-Variance Economic MPC

In this section we provide an example of applying the Mean-Variance-objective (3.3)
to an economic MPC controlling a simple first order model. We assume known prices,
¢, but uncertain disturbances, d, given as n,, different forecasted disturbance scenarios
with increasing variance a long the prediction horizon. The economic MPC problem
is

minimize ¢y = aB(cTu) + (1 — a)Var(c'u) (3.18a)
u

subject to @}y = ATp e + Bug e + E‘Z(l‘f}-s-ilk (3.18b)

Yirit1k = CTii1 ik (3.18c¢)

Uptitafk < Uik < URtialk (3.18d)

Yirit1)k < Yirit1)k < Yotor1lk (3.18e)

The expected value and the variance can re reduced to matrix notation such that

E(c"u) = ¢ = Z c (3.19)

N N

Var(cTu) = ﬁi Z(gb“’ —§)? = ﬁi Z(CTS“’U —Qu)? =ulAu (3.20)

The economic MPC problem is clearly a QP with objective
dmv = aQu+ (1 — a)u® Au

Figure 3.5 shows an open-loop simulation of a first order system with 7 = 12 h. The
expected value of the control input keeps the expected value of the output above the
dashed constraint. Just below we plotted the n,, = 30 disturbance forecast scenarios
used in the simulation. Figure 3.4 shows the efficient frontier, i.e. the expected cost
(negative profit) as a function of the trade-off parameters a. The value o ~ 0.4
maximizes the ratio of expected cost to risk.

3.7 Summary

In this chapter, we presented linear Model Predictive Control, its principle and place
in the control hierarchy. We formulated an economic MPC and defined its objectives,
including a stochastic formulation based on a Mean-Variance objective. We briefly
reviewed the literature on stability for MPC. We described the algorithm for a cer-
tainty equivalent economic MPC mainly used in this thesis, and showed how to solve
the underlying optimization problem including state estimation.
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Figure 3.5: Mean-Variance economic MPC simulation of a first order system with
unity gain and T = 12 h. n, = 30 disturbance scenarios. o = 0.4.
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Algorithm 1 Certainty equivalent economic MPC with external forecasts

Require:
Input: yg, ug—1
Memory: Tx_1jk—1, Pe—1k—1-

Forecasts:
~ N-1 ~
Dy = {dk+i|k}i_o s (de—1jk> Rad,k—1|x) (3.9a)
min max N-1
Ry = {Tk+i+1|ka7“k+i+1\k}i=0 (3.9b)
R N—1
Cr = {Ck+i|kapk+i+1|k}i:0 (3.9¢)
One-step predictor and filter:
Compute the one-step prediction
Jﬁk|k_1 = Aik—l\k—l + Bug—1 + Edk—l\k (3.10a)
Okjk—1 = CBpjp—1 (3.10Db)
Compute the innovation
ek = Yk — Ykk—1 (3.11)
Compute
Pyt = APy_qjp—1 A"
T T (3.12a)
+ GRywk-1G" + ERyqp—1xF
Rep = Ryy + CPyj1 CT (3.12b)
Kpz i = Pk\chTR;;i (3.12¢)
Py = Prjo—1 — KpopRe KT, . (3.12d)
Compute the filtered state
Ty = Trph—1 + Ko ke (3.13)

Regulator:

Compute ug = (&g, ur—1, Dk, Rk, Cr) by solution of the linear program (3.7).
Return:

Manipulated variable: wuy

Update the memory with: &z, Pk




CHAPTER 4

Economic MPC Simulations

In this chapter, we provide simulations of the units modeled in Chapter 2 with the
certainty equivalence linear economic MPC (3.7) presented in Chapter 3. These sim-
ulation results are the main contributions from Paper A, B and C, that investigated
three different and important Smart Grid consumer units: a building with a heat
pump, an Electric Vehicle (EV), and a heat storage tank connected to solar thermal
collector.

4.1 Introduction

Each unit uses an economic MPC to minimize its consumption costs given the pre-
dicted price vector. Meanwhile, the controller tries to keep the outputs within their
flexible operating ranges. So instead of tracking a set point, e.g. a desired indoor
temperature, the economic MPC respects a set of user defined constraints (comfort
bounds) and let the price drive the output. This economic MPC has been extensively
investigated for refrigeration systems in [ ] that includes detailed non-linear
models, predictors, and some handling of uncertainty. We deal with uncertainty in
a practical way by simply assuming a constraint back-off strategy and by using soft
output constraints.

The economic MPC repeatedly requires price predictions from external forecasts. In
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our simulations we used the actual day-ahead prices from the Nordic electricity mar-
ket, Elspot, as described in Section 1.3.1. These prices are settled in the day-ahead
market and are based on pre-negotiated energy delivery schedules. So broadcasting
this day-ahead price to all consumers will cause energy imbalances. However, we still
use this price signal in our simulations for a number of reasons: 1) to illustrate the
economic MPC concept 2) these prices reflect the amount of wind power in the system
3) we expect a similar price signal in the future Smart Grid, and 4) later in Section
5.5 we replace the price signal with our own and reuse the controller. The resulting
cost savings of using economic MPC are also calculated as part of the results. These
savings are best case upper bounds as no uncertainty nor unknown disturbances were
taken into account.

4.2 Building with Heat Pump

In Paper A, we simulated an economic MPC controlling the indoor temperature of a
low-energy residential building with a floor heating system and a heat pump. Fig. 4.1
illustrates the optimal heat pump compressor schedule and the indoor temperature
for five days. Also the two disturbances are shown: the outdoor temperature, T,,
and the solar radiation, ¢s. The outdoor temperature reflects a cold climate, i.e. the
outdoor temperature is lower than the indoor temperature. The solar radiation also
contributes to heating the building. The constraints indicate that during night time
the temperature is allowed to be lower than at day time. Clearly, the heat pump power
consumption is moved to periods with cheap electricity and the thermal capacity of
the building floor is able to store enough energy such that the heat pump can be
left off during day time while maintaining an acceptable indoor temperature. In the
beginning the comfort level is compromised very little due to the initial conditions.
However, the economic MPC problem stays feasible. The simulations show cost
savings up to 35 %.

4.3 Electric Vehicle battery

As in the previous Section 4.2 Paper B reports the same approach applied as a charg-
ing strategy for an EV battery. Fig. 4.2 shows the simulation results. Real com-
muter driving patterns defined the disturbance scenarios while the day-ahead electric-
ity prices influenced the charging pattern. Comparing different charging strategies
clearly showed the potential of using economic MPC to shift the load in a cost efficient
way. The simulations showed annual savings up to 50%.
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Figure 4.1: The simulation shows the indoor temperature in a building for five days
starting midnight 20 JAN 2011. The middle figure shows the electricity
price and the optimal schedule for the heat pump. The lower figure
contains the outdoor temperature and solar radiation. The heat pump
is on when the electricity price is low.

4.4 Solar thermal collector and heat storage tank

Paper C investigated the potential of applying economic MPC to a heat storage
tank connected to a solar thermal collector. But this time the controller integrated
state-of-the-art forecasts of the solar radiation and consumption. The forecasts were
based on measurements and models of actual residential buildings based. The solar
thermal power was forecast with the method described in | ]. This forecast was
based on a conditional parametric model and applied for forecasting the hourly solar
thermal power up to 36 hours ahead. Several important modeling factors were taken
into account: numerical weather predictions of the global radiation, the collector
thermal performance, the orientation of the collector, and shading from objects in
the surroundings. Again an economic MPC controlled the power consumption of the
auxiliary heating elements in the heat storage tank. The electrical heating elements
were turned on in periods when the incoming solar energy alone could not meet the
heat demand, e.g. hot water usage and space heating in a residential household.
Figure 4.3 shows the simulation results of an entire year. The controller performance
showed electricity cost savings of 25-30% compared to current thermostat control
strategy for six different households.
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Figure 4.2: Optimal charging of EV for five days using economic MPC with predic-
tion horizon N = 48 h. The upper plot shows the state-of-charge ¢ and
the driving pattern (demand) dy. The lower plot shows the electricity
price and the controlled charge power.

4.4.1 Estimating Model Parameters

The heat dynamics of the storage tank in Section 2.3.2 was modeled as a grey-box
model based on real data sets and maximum likelihood methods. A modeling tool,
CTSM [IKMJ04], estimated the unknown parameters of an Extended Kalman Filter
(EKF) bases on the SDE from (2.4). CTSM assumes the model to be a set of
stochastic differential equations describing the dynamics of a system in continuous
time and a set of algebraic equations describing how measurements are obtained
at discrete time instants. Given a grey-box model structure, any unknown model
parameters can be estimated from data suing this tool, including the parameters of the
diffusion term. The parameter estimation method in CTSM is based on a maximum
likelihood (ML) method and a maximum a posteriori (MAP) method from [[XMJ04].
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Figure 4.3: A one-year simulation starting May 17 2010 with 24 h prediction hori-
zon using uncertain forecasts. The upper plot shows the tank tempera-
ture, the middle plot contains the electricity price and the optimal power
consumption for the heating element, and the lower plot contains the so-
lar heat input and the consumption demand from space heating or hot

water. The heating element is turned on when the electricity price is
low.

4.5 Economic MPC Savings

We also conducted simulations with constant electricity prices. In that case the
economic MPC objective is equivalent to minimizing the power consumption without
considering prices, i.e. the objective function is ¢(u) = 17u. Consequently no load
shifting is performed. Compared to an economic MPC that took the day-ahead prices
into account we observed annual economic savings up to 50% for the EV case study
and around 25% for both the solar collector heat tank and the building with a heat
pump. In Denmark these savings are only on the day-ahead price that constitutes
approximately 20% of the total end-user bill after adding taxes.

4.5.1 Prediction Horizon

In the solar tank case study we also compared the economic MPC to thermostat
control and evaluated the performance. For a one year simulation we calculated the
annual power consumption and electricity costs from closed loop simulations for four
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Figure 4.4: Economic MPC performance for the solar collector heat storage tank.

different control strategies. The results as a function of prediction horizon are shown
in Fig. 4.4.

As the prediction horizon grows larger than 24 hours, the cost savings do not increase
much. This is shown in Fig. 4.4(b) and is due to the dynamics of the tank and its
constraints. Predictions about the solar energy and the consumption next week do
not change the optimal consumption pattern because both the maximum input power
and the storage capacity of the tank is limited. Furthermore, using perfect forecasts,
i.e. knowing the future inputs and disturbances exactly, does not increase the savings
significantly compared to forecast based on historical data.

Fig. 4.4(a) shows that the power consumption for the economic MPC grows larger
than for the ordinary thermostat control as the prediction horizon increases. However
the costs go down. Consequently, to save more money, more power must be used for
boosting control actuation in the cheap periods. The increased power consumption
can be justified by the electricity price that should reflect the amount of available
renewable energy and power system needs.
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Figure 4.5: Hourly temperature averages for 2011 in Eastern Denmark. On average

a simple sinusoid models the trend quite well.

4.5.2 Outdoor Temperature Prediction

On average the outdoor temperature trend matches a simple sinusoid quite well as
seen in Fig. 4.5. A linear transfer function of a sinusoid with frequency w = 27 /T,
period T, amplitude a and offset b is

aw

t) = asin(wt) + b Y(s)=———— +b
y(t) = asin(wt) + (s) o o? +
The equivalent state space model is
0 —w? 0
= |1 0 Ol z+w
0 0 0

y:[O 1 1}9@—1—11

x3 = b is the estimated offset, i.e. the current mean temperature. We assume the
period to be diurnal and known 7" ~ 24 h. We apply a Kalman filter to estimate
the states and model parameters in order to provide outdoor temperature predictions
to an economic MPC. We validated this simple predictor analogue to | | by
evaluating the economic savings for the heat pump and building modeled in Section
2.3.3. We used two data sets from West Denmark 1) the 2011 day-ahead market
prices and 2) the 2011 average outdoor temperature from the Danish Meteorological
Institute. The annual savings improvement of using known inputs compared to this
simple predictor were below 3.6% even for prediction horizons up to 48 hours.
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Figure 4.6: Forecast of outdoor temperature from a sinusoidal model and state es-
timation.

4.6 Smart Energy System

In this section, we present a case study simulation with a portfolio of units: two power
plants, a wind farm, and a fleet of 10,000 EVs. Section 2.2 describes the dynamics
of the individual units. The fleet of EVs are aggregated and used as flexible storage
to help balance the load. The charging and discharging constraints should be quite
conservative since they depend on the availability of the EVs, i.e. it is assumed that
an EV is not connected to the grid and able to charge while driving. However, based
on driving pattern analysis the availability has been reported to be more than 90%
assuming that the EV is able to charge whenever it is parked | ]. The EV
batteries have a finite battery capacity Q. that limits the size of the EV storage such
that

0 <y < Qnney (4.1)

where ne, = 10* is the number of EVs in the fleet and v, is the EV fleet state of
charge. We use Q,, = 24 kWh as EV battery capacity. The power balance (2.36) must
be nonnegative, z; > 0, in order to meet the demand. Also a base load dj, is added
as a disturbance, i.e. the reference load from all other unmodeled power consumers
that must be supplied. We apply an economic MPC (3.7) with sampling period
Ts = 5 s to the problem that minimizes the electricity costs of operating a number of
power plants, a fleet of EVs, the wind farm and consumers based on predictions of the
demand, production and operating costs over the prediction horizon. Power demands
must be met at all times and any imbalances would be economically penalized in a
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Value Unit Description
K [1,1] Power plant gain
Ky 1 MW/(m/s) Wind farm gain
T [1,1] S Power plant time constant
Tw 0.7 S Wind farm time constant
nt 0.9 EV charge efficiency
n- 0.9 EV discharge efficiency
Umin [0,0,0,0] MW Minimum control input
Umaz [5,7,3,3] MW Maximum control input
AUmin  [-2,-0.2,-0.6,-0.6] MW/s Minimum control ramp input
AUmaz [2,0.2,0.6,0.6] MW /s Maximum control ramp input
Ymin [0,0,0,0] Minimum output
Ymaz [5,7,240,00] Maximum output
c [10,5,0,5] MW~! Production costs

Table 4.1: Case study parameters

real power market where external spinning reserves otherwise must be activated to
restore the balance. Consequently, in our case the slack variable penalty in (3.7h)-
(3.71) could also be an actual cost or penalty for not providing enough power.

The optimal power production within the prediction horizon is the solution to (3.7).
This control action is calculated at every time step k and represents a decision plan,
stating when to produce and with how much power. The EV storage charge and
discharge is also part of the decision plan. The control action is optimal in terms
of economy and is the cheapest based on the predictions and model assumptions
available at time k = 0.

Fig. 4.7 illustrates a closed loop simulation of this system. We used the parameters
from Table 4.1 and a prediction horizon of N = 6 min. The upper plots show the
power plant production and set points. The expensive but fast power plant is used to
balance the load while the slower but cheaper power plant ramps up production. The
second plot shows how the aggregated EV fleet is controlled and the resulting charge
and discharge power. In the beginning of the simulation the EV fleet discharges to the
grid to boost production. Consequently, the EV batteries are depleted and the state
of charge decreases. The charge demand d,, from the EVs was modeled as a sinusoid.
The third plot shows overall power balance including a base load disturbance and
the wind power production. Also the power balance zj is shown. It expresses the
imbalances from the positive production and negative consumption. Since we have
no uncertainty on the load forecasts this imbalance is mostly zero.
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4.7 Matlab MPC toolbox for Smart Energy Sys-
tems

We gathered the models in a MATLAB toolbox available for download!. The toolbox
also contains the economic MPC from (3.7) that balances production and consump-
tion of the units. Figure 4.8 shows a flowchart of the toolbox code. The main
script, empctoolbox.m, currently consists of a single script with all sub-functions in-
cluded. Per default, the script runs a sample scenario similar to the one in Section
4.6. This scenario can easily be modified. The number of units, their type, the pre-
diction horizon, the simulation time, and sampling periods can be chosen initially.
It is possible to simulate model mismatch by setting up different models used by
the controller. SetupSystem and SetupScenario generates the model parameters,
constraints and disturbance forecasts used in the simulation. Given these variables
computeModel builds all unit models from their discrete-time state space and impulse
response models.designMPC prepares all fixed constraint matrices for the solver. The
soft output constraints penalties are set here, and the controller model is built. Dur-
ing the closed loop simulation two functions update and compute the individual open
loop MPC problems at every simulation time step. updateMPC basically packs the
current open loop MPC problem into matrices ready to be fed to a standard LP
solver. It updates measured outputs, estimates states using a Kalman filter, updates
disturbance forecasts and other time-varying constraints. computeMPC concatenates
the fixed matrices with updated information. We also re-build the constraints from
all models again here. We assume that the models are allowed to be time-varying and
potentially need a re-discretization and update. In the default scenario the models are
not time-varying. The actual solver is called from computeMPC. We use MATLABs
linprog and quadprog interface, but recommend to install MOSEKSs faster solvers
that replaces these functions. Finally, the simulated system is actuated, the states
are updated, and the results are plotted.

4.8 Summary

In this chapter we:

e Simulated different Smart Grid units: A building heat pump, EV, a heat storage
tank connected to a solar collector simulations and scenarios

o Integrated forecasts based on real data in the predictive control system

e We used system identification tools to model the parameters

1 yww.compute.dtu.dk/~rhal/code


www.compute.dtu.dk/~rhal/code
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e Compared the control performance for different control strategies
o Investigated the effect of the prediction horizon
e Calculated electricity cost savings of taking prices into consideration

e Formulated a simple predictor for the outdoor temperature and evaluated the
performance to perfect forecasts, i.e. known inputs

o Integrated the forecasts using a Kalman filter

e Simple predictors of outdoor temperatures in combination with a Kalman filter
do not decrease economic savings significantly

e Simulated a smart energy systems with a portfolio of units

e Presented the developed MATLAB toolbox for simulating economic MPC and
linear models including a library of Smart Grid units
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Figure 4.7: Case study simulation with two power plants, a wind farm, a large EV
fleet and a base load consumption. {y;,y2} are the power plant output
powers, x,, the wind farm production Shows the resulting closed loop
economic MPC decisions of production and consumption over 6 min-
utes. Performance when warm-starting our algorithm (W) is compared
to standard cold-starting (C) at the bottom.
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CHAPTER 5

Aggregator Control Strategies

The simulations in this chapter show the different ways of aggregating the units with
the economic MPC presented in Section 3.4. We summarize different MPC-based
aggregator control strategies described in Paper D, E and F. In the first Section 5.2
we formulate the common aggregator problem to be solved. To solve this large-scale
control problem and make it computational tractable we apply two decomposition
methods in Section 5.3, Douglas-Rachford splitting and dual decomposition. In Sec-
tion 5.5 we investigate dual decomposition using a low-order aggregated model in-
spired by Paper F. A decentralized control strategy is presented in Section 5.4 based
on Paper D. Section 5.6 shows results from warm-starting an interior point method
using the methods described in | , ]. Finally, Section 5.7 compares the
different aggregator methods and provides a good overview.

5.1 Introduction

In the future Smart Grid a hierarchical structure of controllers, including aggregators,
will most likely exist to reduce the complexity [ ]. The aggregator strategies
for controlling DERs in a Smart Grid broadly categorizes into: direct control and
indirect control | , , -

A direct control strategy assumes direct access to the control inputs of each DER,
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and feedback through two-way communication. The direct controller must calcu-
late and communicate a consumption plan to each DER. This leads to large-scale
control problems with high complexity and fast communication requirements. An
agreement between the DERs and the aggregator about the available flexibility and
control maneuverability is also mandatory. An indirect control strategy relies on a
unidirectional signal, such as prices, to incentivize DER control action | ]
The aggregator either measures the response through aggregated grid measurements
or through markets.

Different MPC strategies can be applied in these strategies and are often referred
to as Decentralized MPC (DMPC) | , ]. The architecture of DMPC and
the coordination between local controllers is defined by the following categories: de-
centralized, distributed, and hierarchical. A control system is centralized if there is
a single controller that solves the plant-wide problem. The control is decentralized
when there are local controllers in charge of the local subsystems of the plant that
require no communication among them. When the local controllers communicate
in order to find a cooperative solution for the overall control problem, the control
system is distributed. Finally, the control system is hierarchical if there are different
control layers that coordinate the process. In this case, upper layers manage the
global objectives of the process and provide references for the lower layers that di-
rectly control the plant. An exchange of candidate control decisions may also happen
during the decision making process, and iterated until an agreement is reached among
the different local controllers.

Our strategies do not include the distribution grid, implicitly assuming that the un-
derlying network has enough capacity to distribute the power demanded by the users
without causing congestion. Furthermore, we only consider power balance in steady-
state and ignore fast timescale dynamics such as frequency and voltage fluctuations
due to random supply and demand. The aggregator strategies are also targeted
consumption units.

The current work has several limitations based on assumptions often made in lit-
erature | , ]. First, our model does not include the distribution system,
implicitly assuming that the underlying network has enough capacity to distribute
the power demanded by the users without causing congestion. We do however limit
the total aggregated active power when coordinating more units. Our results are
mainly obtained for the case without uncertainty.
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Figure 5.1: Aggregator role and portfolio of units. The aggregator negotiates a con-
sumption plan q to follow from the market.

5.2 The Aggregator Balancing Problem

We wish to control the power consumption of a large number of flexible and control-
lable units. The motivation for controlling the units is to continuously adapt their
consumption to the changing stochastic power production from wind and solar. In
the future this power balancing might be done by solving large-scale control prob-
lems. We assume that an aggregator controls a large number of flexible consumption
units as shown in Fig. 5.1. Based on predictions of the aggregated unit behavior,
the aggregator bids into the day-ahead power market and buys a certain amount of
energy for the coming day. The plan could be a result of solving a unit commitment
problem [ ], where stochastics and integer variables are taken into account. The
resulting consumption plan must be followed to avoid imbalances and in turn eco-
nomic penalties. So a real-time controller must regulate the power to minimize any
imbalances caused by prediction errors. The MPC framework presented in Chapter 3
fits this problem very well. MPC and aggregators is the scope of the remaining part
of this thesis.

5.2.1 Mathematical Formulation

The power consumption profile is a vector denoted ¢ € R and denotes the amount
of power to be consumed at each time step k for the entire prediction horizon k& =
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1,...,N. This profile must be followed by the aggregator, such that the combined
power consumption from all units sum to this at every time instant. The centralized
large-scale problem that includes all units and their variables (p, x;, y;, u;) and
constraints is

N—-1 n

minimize g(pr) + Z oi(ujr) (5.1a)

Pk,Uj,k N

k=0 j=1

subject to pp = Zuj,k (5.1b)

j=1

Tjkt+1 = Ajl'j’k + Bj’LLj_’k + Ejdjyk (51(3)
Yik = Cixj 1 (5.1d)
Uik <Yik <Yjk (5.1e)
Au?",i“ < Aujp < Aujp® (5.1f)
upy' < wjk < upR (5.1g)

We model the 5 = 1,2,...,n units with linear discrete-time state-space systems and
define U; as a closed convex set containing the model and constraints of the jth unit
(5.1¢)-(5.1g). z; € R is the time varying state vector in the discrete-time state-
space system defined by the matrices (4;, Bj, E;,C;). y; is the output, of a linear
system with controllable input ;. d; is the modeled and predictable disturbances
(e.g. outdoor temperature). The time-varying input and output constraints are
superscripted with max and min, and account for the available flexibility for each unit.
For thermal storage units this is the power available and the accepted temperature
interval, respectively. Auw;p = u; i — ujr—1 is the rate of movement, where k is the
time step in the time varying input vector u; € RY. The total consumption p € RY
is a sum of the predicted consumption profiles u;. p can also be constrained to
reflect capacity constraints in the power grid. g is the aggregator objective function.
Examples of local objective functions are

05 (uy) = cju; (5.2a)
¢ (1)) = pis; (5.2b)
05 (ug) = || A (5.2¢)

The functions ¢; and g may be indicator functions that represent constraints on the
variables u; or their sum. We exploit this later when decomposing the problem. The
main aggregator objective, g is to track the given power consumption profile ¢ by
minimizing e = p — q.



5.3 Decomposition 65

5.3 Decomposition

Decomposition methods for convex MPC formulations includes dual decomposition
[ ], Dantzig-Wolfe decomposition | , ], and Benders Decompo-
sition [ , ]. Splitting methods such as Douglas-Rachford splitting [ ]
handles more general convex functions, even non-linear, and converges under very
mild conditions. A special case of Douglas-Rachford splitting leads to the ADMM for-
mulation | ]. In the following section we briefly show how Douglas-Rachford
splitting can be applied to the aggregator problem exemplified by simulations with
thermal storage units e.g. heat pumps in buildings.

5.3.1 Problem Formulation

For the decomposition methods we mainly considered consumption units and we for-
mulate a special case of the centralized problem (3.7). The power consumption profile
is a vector denoted r,,,;, = q € R” and denotes the amount of power to be consumed
at each time step k for the entire prediction horizon k = 1, ..., N. This profile must be
followed by the aggregator, such that the combined power consumption from all units
sum to this at every time instant. We add an aggregator objective and formulate the
centralized MPC problem (5.1) in shorthand notation as

minimize i:l fi(uj)+g <§: Uj) (5.3)

j=1

The indicator functions f; : RY - R and g: RY — R are closed and convex, and
contain the constraints and objectives of the problem

fi(ug) = { @ilug) it v € M, (5.4)

+o0o0  otherwise

where M is defined as a closed convex set containing the model and constraints of
the jth unit, i.e. (3.7b)-(3.7g). On the standard matrix form we get

minimize  ¢(p) + f(u) (5.5)

subject to p = Su '
where u = [uf,ul,... uI]T is a stacked vector of individual unit consumption pro-
files and f(u) is a sum of the unit indicator functions from (5.4)

f(u) = ij(uj)
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The optimization problem (5.5) must be solved at every time instant by an MPC and
for large-scale systems decomposition methods make it computational tractable. In
Paper E and Paper F we limited the units to consumption units and defined the total
consumption p € RY as a sum of the predicted consumption profiles u;. Note that
S = D, from (2.37). p can be constrained to reflect capacity constraints in the power
grid. We mainly considered power balancing objective where the residual e = p — ¢
is minimized as

el

o(e) = 3lell> = 1l —alp (56)

Applying MPC to the aggregator balancing problem requires the solution of a large-
scale convex optimization problem in real-time. This motivates computational effi-
cient optimization algorithms for the MPC that balances the power. The centralized
problem can often be decomposed into smaller sub-problems that can be handled
independently due to the inherent decoupled dynamics of the units. This is why de-
composition methods are computationally attractive. The computation time grows
polynomially in standard solvers as the number of units increase. By decomposing
the problem and solving smaller subproblems in parallel, we can handle a much larger
number of units. Compared to conventional centralized algorithms, decomposition
methods requires less memory, and are much faster.

In the following sections we summarize the results from Paper E and Paper F that
deal with first order decomposition methods based on convex optimization | ].

5.3.2 Douglas-Rachford Splitting

We apply the Douglas-Rachford splitting algorithm to (5.5) with the least squares
objective (5.6) and get

. 1
ut = prox,;(v) = ar‘gemm (¢j(uj) + EHUJ - vj|%> (5.7a)
2t = prox,,.(s) = Ls . (5.7b)
I A Ly '
wt I ST 7' 2ut —o
{ mT } a [ —tS I ] { 22T —s ] (5.7¢)
vt = v+ pwt —ut) (5.7d)
st = s+pmt —27) (5.7e)

The details and definitions can be found in Paper E. In our case the algorithm has
the following interpretation:

1. The aggregator sends suggested consumption profiles v; to the units
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2. The units evaluate their subproblems, i.e. the prox-operator in (5.7a), by solv-
ing a QP with their local unit model, costs, constraints, and variables

3. The units respond in parallel with their updated consumption profiles u;r
4. The remaining steps (5.7b)-(5.7e) simply updates the other variables and are
computed by the aggregator alone

It is important to note that the prox-operators don’t have to be evaluated by the units.
If the units upload their objective and constraints to the aggregator a large parallel
computer could solve all the subproblems. This significantly reduces convergence
speed and communication requirements in a practical system.

Note that ¢; contains slack variables and regularization. wv; can be interpreted as
an individual linear coefficient for each unit. In our case, all of these quadratic
subproblems reduce to finite horizon constrained LQR problems that can be solved
efficiently by methods based on the Riccati recursion | , .

The (w, m)-update in (5.7¢) gathers the unit consumption profiles and involves only
multiplications with S and ST. Due to the simple nature of S, defined in (2.38), we
can simplify this update to simple sums

+ _ 1, T T T
w _[w17w2’ 7wn]
1. oL
mt=— S—|—t§ Uj
n -
Jj=1

where i = 1 + nt?, 9; = 2uj' —vj,and § =221 —s.

The dual update of z must be evaluated through the prox-operator in (5.7b) and
depends on the choice of aggregator objective g(e).

The primal and dual optimality conditions provide a measure of convergence, i.e.

_at _ -t
Y t“ + 8T F ra= " tz ~ Sut. (5.8)

Ty =

The algorithm converges as the norm of these residuals decrease with a stopping
criteria equal to a user-defined tolerance. | ] provides more general convergence
results. From theory, it is known that the step size ¢ in the algorithm must remain
constant. However, various heuristics provide adaptive strategies, see for instance the
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Figure 5.2: Convergence for open-loop problem with tuned step sizes ¢.

references in | |. In practice ¢ must be found experimentally. Also the scaling
gain p €]0; 2] must be selected and usually p = 1.5 is a good choice.

As the number of units increase the computation time also increases. This is shown in
Fig. 5.2. We measured the computation of all the subproblems and took the average
(labeled DR parallel) to illustrate the unit scaling behavior. The total computation
time for the serial implementation is labeled DR. For a large number of units the
Douglas-Rachford splitting algorithm is faster than just solving the original problem,
even the serial implementation.

5.3.2.1 Simulation Example

We model a portfolio of different thermal storage systems as second order systems
on the form

(=Y K
Gj(s) Uj (TJO‘S + 1)(7';?8 +1)

u; is the consumption and y; is the output temperature. One time constant is usually
much bigger than the other. Realistic values for the dominating time constant in
buildings with heat pumps or refrigeration systems is 7¢ € {10;120} h | ,

]. In our simulations we also set 7° = 7%/5 and pick 7 randomly. The same
model works for disturbances d;, e.g. ambient temperature, and is easily converted
to the state space form (2.8). The constraints were selected equal for both units:
(ymin ymax) = (15,25) °C, (u™® ™) = (0,50) W, (Au™® Aymax) = (=50, 50)
W, and output slack variable penalty v = 10%.
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Figure 5.3: Closed loop simulation of power balancing with n = 2 thermal storage
units. Prediction horizon was N = 24 and we used a quadratic ob-
jective function. The first plot shows the output temperatures of the
two units in blue and green respectively. The two sinusoids below are
the disturbances. The second plot shows the input power consumption.
Right below is the resulting total power p and tracking profile q. All
powers are scaled, such that the total mazimum power of p is equal to
1. Consequently for n = 2 units their mazimum power is 1/n = 0.5.

We scale the gain K with 1/n such that the maximum possible power consumption
automatically adds to pmax = 1. The reference ¢ is also scaled to always lie between
0 and 1. Better numerical performance and sensitivity to the step size ¢ is obtained
in this way.

5.3.2.2 Case Study (n =2)

Fig. 5.3 shows the results for t = 0.5 after 25 iterations. Both the temperatures and
the consumption are kept within their operating intervals. Their combined consump-
tion p is seen to match the reference q very well. The plot illustrates two cases where
it is not always possible to follow the plan g. Obviously in periods where g is larger
than the maximum total power. And in periods where ¢ is close to zero and the
outputs are near the constraints, e.g. around 20 h. It is simply not possible to follow
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the plan in that situation without violating the output constraints. However, around
45 h there is enough capacity to turn the units completely off for a short period of
time. ¢ could be any profile but was selected here as a scaled version of the difference
between the wind power and the load from Paper E.

5.3.2.3 Case Study (n = 100)

To demonstrate that the algorithm works for a larger number of units, we chose
n = 100 units with uniform randomly generated parameters as before. In Fig. 5.4
the same consumption profile ¢ is tracked but we only plotted the first open-loop
profile.

We solved the power balancing problem using a constrained model predictive con-
troller with a least squares tracking error criterion. This is an example of a large-scale
optimization problem that must be solved reliably and in real-time. We demonstrated
how Douglas-Rachford splitting can be applied in solving this problem. By decom-
posing the original optimization problem thousands of units can be controlled in
real-time by computing the problem in a distributed (parallel) manner. We con-
sidered a large-scale power balancing problem with flexible thermal storage units.
A given power consumption profile can be followed by controlling the total power
consumption of all flexible units through a negotiation procedure with the dual vari-
ables introduced in the method. An economic aggregator objective that takes the
regulating power prices into account was derived. The solution obtained converges
towards the original problem solution and requires two-way communication between
units and the coordinating level. The resulting power balancing performance runs in
closed loop while the local constraints and objectives for each unit are satisfied and
aggregator operation costs are reduced.

5.3.3 Dual Decomposition

Another way to decompose and solve the same problem (5.5) iteratively is via the
dual problem and the subgradient projection method. This method was explained and
applied in Paper F. In this section we formulate the dual and show some simulation
results form the paper.

The unconstrained dual problem of (5.3) is obtained from the Lagrangian L

1
L= §||€||2+ij(u]’)+zT e—Zuj-i-q
J
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where z is the dual variable associated with the power balance constraint.

The dual problem is

- 1
maximize — §||z|\2 +q7 2 — Z S;i(z) (5.9)
j

where S;(z) is the support function of M,

Si(z) = sup z"u; + A||Au;|[3
u; EM;

If M; is a bounded polyhedron, we can evaluate S; by solving the QP subproblem

uj = argmin (2" u; + A||Ay,[3) (5.10)

u; €M,

and the optimal u; gives us a subgradient of S; at z. Solving (5.9) with the subgra-
dient projection method gives us the updates

2t =24+ t" Zu}'—(z—l—q) . (5.11)
J

The step size tT must be decreasing at each iteration j, i.e. t¥ =% — 0, for j — occ.
If ¢ doesn’t decrease the subgradient method will not converge to the minimum.
The regularization term including Aw is required to make the problem converge and
strictly convex. So

u;r = argmin (zTuj + )\||AU||§) (5.12)

u; EM;

This problem formulation is equivalent to the ordinary optimal control problem with
an added linear term, that can be solved efficiently by methods based on the Riccati
recursion | , ]. Without the strictly convex regularization term the
primal solution is not easily recoverable from the dual. Another strictly convex
subproblem with a temperature set point reference is

u; = argmin (zTuj + Ay — 7"]||§) (5.13)

u; EM;

5.3.3.1 Simulation

We simulate an example with two different first order thermal storage systems and
the objective (5.13). The models have unity gain, time constants 5 and 10, and both
a temperature reference equal to r; = yj*". The results for step size ¢ = 0.3 after 100
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iterations is shown in Fig. 5.5. The power tracking profile is seen match most of the
time, but it is not possible to control the consumption amplitude of each unit very
accurate through the dual variables, since each unit has its own objective leaving the
tracking at some compromise. However, shifting the load in time is quite accurate,
since the sharp variations in the dual variables, that can be interpreted as prices,
causes the consumption to be placed in this cheap period.

5.4 Indirect global set point control

Instead of assuming that each unit has a local model used in an Economic MPC,
it is more realistic that units control their outputs with traditional set point based
controllers like a Proportional-Integral (PI) controller or on/off hystereses control.
With a set point controller that regulates the output, e.g. a thermostat trying to
keep the indoor temperature steady, a model of the heat dynamics is difficult to ob-
tain without any excitation of the output dynamics. So an aggregator can identify
an aggregated model of the units with set points and disturbances as inputs and the
actuated power consumption as output. This can be done online and the aggregator
problem (5.1) can be solved based on an aggregated model of all unit’s behavior. In
this section, we present the method from Paper D that deals with the aggregator bal-
ancing problem through such a model. The method uses an aggregated model that
describes the total power consumption response to a control signal from the aggre-
gator. This control signal communicates the need for balancing and is also referred
to as a control price. The control price is linearly linked to the unit set points and
therefore indirectly influences the total power consumption of an aggregated group
of units. The aggregator broadcasts the current control price, which is translated
by each unit individually into a local set point to be followed by the local integral
controllers. This control hierarchy is sketched in Fig. 5.7, while the local control
loops are shown in Fig. 5.6.

The method assumes that each unit is controlled by a local temperature integral
controller with a flexible set point within some comfort bounds. The aggregator
could model all the control loops and calculate all set points. But it turns out that a
SISO model of the aggregated behavior is sufficient. We used a linear tracking MPC
based on a low-order SISO auto-regressive (AR) model.

1
minimize  Z[[p = gl[5 + Al| Acll3

subject to ¢ € M., (5.14)

p=Su

The model input is the control price, and the total aggregated power consumption is
the output. Moreover, an integrator model is added to eliminate model and forecast
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errors and to achieve offset-free tracking. Tuning of the controller matters consider-
ably when subject to noise. The aggregator model M, captures the estimated control
price response and the model may be very small compared to a centralized model
that includes detailed information about all units M; Vj. Fig. 5.8 shows the control
price step response.

A Kalman filter estimates the state of the aggregated model from measurements of the
controlled total power consumption. Thus the individual unit power consumptions
do not need to be measured or communicated in real-time, but must of course be
registered for later billing.

The aggregator MPC controls the total power consumption of all units indirectly
through one-way communication, i.e. broadcasting of the real-time control price.
Based on a model of the aggregated consumption response to the control price,
closed-loop feedback is provided at the aggregator level by measuring the total power
consumption in the grid. In this way the aggregator is able to balance instantaneous
power and track an amount of power already bought from a market.

The MPC also handles the unit temperature constraints through constraints on the
control price. The control price is a scalar that is broadcast to all loads, reflecting
the need for balancing. Each unit must map the control price to an individual tem-
perature set point. This mapping is done by the affine function f;(p) defined for each
unit

fj (p) = —a;p + bj (515)

When the price is constrained to &1 the function f;(p) also constrains the individual
unit set point to a certain interval defined by a; and b;. Fig. 5.9 illustrates this
mapping and is key to understanding the role of the control price. Individual units
can set their own desired upper and lower bounds by choosing a; and b; independently
from the aggregator.

The MPC incorporates forecasts of disturbances and power production, e.g. time-
varying wind power forecasts, in order to react ahead of time. Added integral control
eliminates model and forecast errors, while feedback is provided by measuring to-
tal load power consumption. Through simulation of general thermal storage units
the method showed the load-following-ability where consumption follows a changing
production.
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5.4.1 Simulation example

Ten different thermal storage units with a first-order transfer function G(s) from
power consumption u to temperature y are modeled as

Gls) =

T7s+1

T is the time constant and K is the gain. Some process noise was added to simulate
unmodeled disturbances. A simulation of the MPC price control with the estimated
models is shown in Fig. 5.10. The upper plot of Fig. 5.10(a) shows the aggregated
response and how the aggregator MPC tracks the power reference nicely with no
offset errors despite of the aggregated model mismatch, forecast errors, and noisy
disturbances. The consumption reference r, is known to the MPC, and control prices
which indirectly change power consumption are broadcast ahead of time in order to
minimize the tracking error. Notice how the requested consumption plan forces the
control price to its limits over the whole flexibility range. Also the control price is
not constant when the total reference power consumption is constant, i.e. tracking
a constant power requires a ramping of the price due to the dynamics of the loads.
Fig. 5.10(b) shows the temperatures of the units. Some units are more flexible
than others and allow a wider temperature interval, i.e. a large a;, indicated by the
various dashed lines at different levels. Consequently, a more flexible load will have
a more varying temperature. However, the temperature is still ensured to lie within
the predefined interval, b4a, due to the constrained control price. As intended, each
unit’s power consumption mainly occurs when the price is low. This is evident when
comparing to the control price in Fig. 5.10(a).

(5.16)

5.5 Indirect Dual Decomposition

In this section we solve the aggregator balancing problem (5.5) with a decomposition
method based on price signals. Controlling power systems using prices first proposed
in | | and is often referred to as indirect control. A price concept is easy to
understand for consumers as they are charged a price that is often equal to the actual
cost of energy at the time of consumption. Another important advantage is the simple
control signal, i.e. a global price signal broadcast unidirectionally to the units. Using
one-way incentive signals from the aggregator to the units simplifies communication,
and closed loop feedback can be established by the measurements of the total con-
sumption through the grid. One price signal also creates an appealing opportunity to
manage a diverse portfolio of units in the same simple manner. Therefore, it is also
difficult to control the power accurately and good models of the system dynamics is
crucial. Luckily the reliability of the models and behavior predictions increase with
a large portfolio [ ]
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We again apply dual decomposition for all decoupled units in a distributed manner.
But this time the aggregator uses a low order model of the unit dynamics like in the
set point method in Section 5.4 and we broadcast the resulting dual variable as a
price signal to all units. We reformulate the centralized problem (5.5) to include a
balance constraint (5.17b)

minimize g(e) + > ¢;(u;, 5;) (5.17a)
j=1

subject to e = Su —gq (5.17b)

{Uj,Sj} GMj, 17=12,...n (5.17C)

The objective contains local control objectives and costs associated with operating
the unit. In our case we add a strictly convex regularization term and a slack variable
penalty

0;(ug, s5) = Nl|Aus[3 + o) s (5.18)

The soft constrained slack variable s; must be heavily penalized to prevent output
constraint violations, e.g. by setting p; > 1. Finally, we choose the aggregator objec-
tive (5.6) that minimizes the power imbalance e. Only the total power consumption
response p is measured for feedback control. The aggregator control signal is a price
of consuming power such that each unit minimizes its own cost of operation. With
this assumption the subproblems are exactly the same as in the normal dual decom-
position method from Section 5.3.3. We let each unit cooperate by minimizing their
cost of consumption by using an Economic MPC on the form

minimize ¢ uj + ¢;(uj, s;)

5.19
subject to  {u;,s;} € M, (5:.19)

The objective has to be strictly convex for the dual decomposition method to con-
verge. When each unit locally adopts this Economic MPC control strategy their total
power consumption can be controlled in a predictable manner. The aggregator is de-
coupled from the units in the original problem (5.17) but coordinates control action
through a global price signal ¢. From dual decomposition we know that this signal is
the dual variable z € RY associated with the equality constraint (5.17b). That con-
straint is the actual power balance. The aggregator still needs to solve (5.17) with all
model and state information and then broadcast the dual variable. But if we apply a
Kalman filter, integral control, and use an aggregated model of the power consump-
tion analogue to the method presented in Section 5.4 we only need measurements
of the total power consumption. Each unit determines its own control action based
on the globally broadcast dual variable and its local model. The aggregated model
must contain the dynamics of the units to be controlled, not their price response.
When the aggregator have solved the problem with a low-order model the optimal
dual variable is broadcast by setting ¢ = z in the subproblems (5.19). Each unit
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then solves an Economic MPC with this dual variable as the price. The dual variable
can be interpreted as a price, and can be negative with the interpretation that units
receive money to consume power.

The aggregated model of the unit dynamics and their constraints is denoted M,
while the estimated low-order model is denoted, M. This low-order model represents
the flexibility of the aggregated units. Low-order models have fewer parameters and
also reduce MPC computation time significantly compared to solving the centralized
problem with all local unit models. Model mismatch is always present in real control
problems and is justified by the use of feedback to eliminate offsets.

The estimated aggregator problem is

1 «
minimize §||6H% + A|Aal)3 +pT's
subject to e=1u—gq (5.20)
{a,5} e M
Let M be an average model of the units. The average model consumption @ is scaled
through its state space model to match the maximum total aggregated consumption.

We calculate the dual variable z by solving the dual problem subject to the estimated
model M. We set

c==z (5.21)

and broadcast the price ¢ to all units that individually solve the following Economic
MPC with their local models.

5.5.1 Simulation

A first order model of the units has the transfer function
1
TjS + ].

Mj : T](S) = (5.22)
where 7; is the time constant, e.g. normal distributed as 7; € N(10,2). A simple
estimated population model M would then be the average, i.e. 7 = 10. Furthermore,
scaled constraints should be estimated as well. However, for consumption units the

lower bound on power consumption is always zero. Fig. 5.13 shows a similar case
study with EVs.

The aggregator model of the dynamics does not have to be very accurate as we control
the unit inputs, i.e. the power consumption that can change instantaneously, and not
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the outputs. The output constraints that represents the amount of flexibility is more
important than the actual dynamics from input to output. Especially on short time
scales where the outputs do not change much. As in previous described methods that
use aggregated models a state estimator should be applied.

5.6 Warm starting

MPC requires solution of optimization problems in real-time. Consequently, until
recently MPC has been limited to slow systems with ample time for solution of the
optimization problem. For large-scale MPC we can increase the number of units by
lowering the real-time computation time. In MPC, an optimization problem - most
often either a Linear Program (LP) or Quadratic Program (QP) - must be solved in
each sampling instant. Since each problem usually does not differ much from the next,
the entire solution process involves solving a sequence of closely related optimization
problems. In case online solution of the optimization problem is needed, an obvious
idea to reduce computation time is to utilize the information contained in the previous
solution of the problem when solving the next problem in the sequence. | ]
implements this idea by using warmstarting of the homogeneous and self-dual interior-
point method (IPM) for linear optimization.

Recently, a new warmstarting strategy for the homogeneous and self-dual IPM for
mixed linear and conic quadratic optimization was introduced | ]. For further
information about previous work on warmstarting IPMs, see the thorough overview
in [ ]. The following results are based on the method described in | ]
but are independent from this work and based on the simulation from Section 4.6.

In this section we show an example of how the warmstarting strategy of | ] can
be applied to the sequences of problems that arise from Economic MPC. Also the
decomposition methods from Section 5.3 benefit from warmstarting since they require
fast evaluation of repeated closely related QPs. The bottom plot of Fig. 4.7 shows
the number of iterations used by the warmstart algorithm when coldstarting (C) and
warmstarting (W). The results are also shown in Table 5.1. We notice a relatively
large variety in the improvement of using warmstarting over the individual problems.
For some problems the iteration count is halved while it for other problems cuts away
about 25%. Overall, the total work reduction is about 37%. We remark further, that
the gain from warmstarting for these problems is quite sensitive to the parameters
involved. If, for example, the sampling time is reduced, the neighboring problems
are more alike, and warmstarting is even more useful. Another example is the initial
state of charge of the EVs which, if relatively high, results in few charging periods
and thus less varying predictions. This also improves warmstarting performance.
Generally, warmstarting is most useful when the simulation is “uneventful” in the
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P geold pwarm R

1 11 11 1.00
2 13 11 0.85
3 11 10 0.91
13 12 10 0.83
14 12 11 0.92
15 11 12 1.09
16 13 14 1.08
17 13 12 0.92
69 13 7 0.54
70 12 7 0.58
71 12 8 0.67
72 12 8 0.67
g 12.2 9.3 0.76

Table 5.1: LPs from the case study in Section 4.6. Columns two and three show
iteration counts and the fourth column their ratio. The last row shows
geometric means.

sense that few changes occur. These considerations suggest an adaptive strategy:
When model predictions are relatively uneventful, use warmstarting. In the opposite
case, use coldstart.

5.7 Comparison

In this chapter, we formulated a large-scale control problem that coordinates the ac-
tive power consumption of different flexible units. Table 5.2 compares the different
control strategies presented in this thesis. Their common goal is to minimize the
imbalance e. The first column of the table indicates in which paper the method was
applied. The * indicates that the aggregator does not know the local unit models, i.e.
the units calculate their own response in a completely distributed manner. Two of
these distributed methods require fast two-way communication since the problem is
solved iteratively through real-time negotiations between aggregator and units. The
methods with no * indicates that the aggregator holds all models. These methods
force the units to apply the provided consumption plan and communicate any state
measurements back to the aggregator. This requires fast and reliable two-way com-
munication, all model information for each unit, and fast solving times. The Indirect
dual method, listed in the last row, indirectly controls the units through the price
c. The centralized controller, listed in the first row, directly controls all units and
calculate individual consumption profiles u; for all units. These methods require the
unit to solve either a an LP or a QP subproblem.
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The different methods introduce different update steps for the aggregator as indicated
in the Aggregator-column of Table 5.2. In the centralized method the aggregator
solves the entire large-scale problem for all units. The decomposition method based
on Douglas-Rachford (DR) splitting evaluates the prox-operators associated with the
aggregator objective. The aggregator update in the dual decomposition method is
a simple subgradient step. The last two methods solve small-scale QP problems
as they both use a low-order aggregated model as indicated in the last column M.
They are also the only two methods that work with one-way communication to the
units, i.e. the aggregator controller broadcasts a price signal and retrieve aggregated
measurements for closed loop feedback. The required feedback signal is indicated in
the Feedback-column.

Three of the methods are based on prices. The dual decomposition methods obviously
use the dual variable (shadow price) as the price. In the set point method the price is
merely a global set point. If consumers are charged a price that is often equal to the
actual cost of consumption, then the benefits of making flexibility available to the
system is more transparent. So a control-by-price concept is easy to comprehend for
consumers, but these price strategies work best when fully automated without human
intervention. Methods based on price significantly reduces communication require-
ments and the computational burden for the aggregator. Note that warmstarting
as described in Section 5.6 can be applied to all the methods, but in particular to
the centralized controller where warmstarting will have the biggest impact on solving
times.
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Figure 5.4: Open loop simulation of power balancing with n = 100 thermal storage
units.
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Figure 5.5: Simulation of power balancing with two first order systems. The two
input/output pairs (blue/red) with constraints (dotted) are shown above
the resulting power tracking profile. The lower plot shows the converged

dual variable (black), its iterations (gray), and the optimal dual variable
of the original problem (dotted blue).
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Figure 5.6: Unit i with system l; : (A;, B;, Ci, E;) and LQ integral controller.
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Figure 5.7: System overview of aggregator and loads.
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(a) Simulation of the aggregator tracking a power consumption r, by
controlling an aggregation of thermal loads. Total power consumption z,
is plotted around zero as the deviation from the stationary consumption
29. The normalized residual is plotted below along with the control price
p. As intended, load consumption is highest when the price is low. The
disturbance is forecast dh and eliminated by the MPC. The disturbance
shown here is scaled and does not match the units of the y-axis.
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(b) Unit output temperatures y; (lower) and their temperature intervals
b; + a; (dashed lines). Also their power consumptions u; are plotted

(upper).

Figure 5.10: Closed loop simulation of aggregator balancing with thermal storage
units
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Figure 5.11: Indirect Dual Decomposition method block diagram
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Table 5.2: Comparison of aggregator control strategies.

Method Aggregator Unit Comm.  Feedback Price M
Centralized mij\r}l g(e) vy actuate u; two-way N N
ujeM;

F DR prox; ., (5.7b)-(5.7e)  actuate u; two-way N N

F DR* prox; ., (5.7b)-(5.7e) u;r = proxtf(v;r) two-way u;r N N

G Dual ¢t =c+1tVy(e) actuate u; two-way u;r N N

G Dual* ¢t =c+1tVyg(e) argmin cT‘Fuj+ two-way u;r Y N
u; eM;

E  Set point* min g(e) argmin || fj(c) — y;]|  one-way 37T, u; “Y7» o ¥
cEM, uj; € j

Indirect dual* min g(e) argmin ¢’ u; one-way Z;:l U Y Y
aueM u; EM;

uosuedwo) -G
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CHAPTER 6

Conclusions and Perspectives

The green transition to an intelligent energy system — a Smart Grid — is currently
fueled by ambitious energy policies, especially in Denmark. Distributed energy re-
sources such as heat pumps in buildings or electrical vehicle batteries are expected to
participate flexibly in the future Smart Grid. In this thesis, we briefly introduced the
power system actors and markets to identify how Model Predictive Control (MPC)
can enable the flexibility of these units. One objective of MPC is to coordinate a
large portfolio of units in the role of an Aggregator. If the power consumption and
production can be controlled, a large portfolio of units might help balance the power
without sacrificing much of their own objectives. We investigated different aggrega-
tor control strategies ranging from centralized to decentralized strategies based on
prices. All strategies were based on MPC including related control tasks such as state
estimation, filtering and prediction of the variables.

6.1 Models of Smart Grid units

In this thesis, we provide realistic linear dynamical models of the flexible units de-
scribed in Chapter 2: heat pumps in buildings, heat storage tanks, electrical vehicle
battery charging/discharging, refrigeration systems, wind turbine parks, and power
plants. Different formulations of linear dynamical models can all be realized as dis-
crete time state space models that fit into a predictive control framework. We showed
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how to enable control of the flexible units with an Economic Model Predictive Con-
trol (MPC) in Chapter 4. This chapter sums up the main contributions of Papers
A, B, and C. The simulation results showed the expected load shifting capabilities of
the units that adapts to realistic electricity market prices fed to the Economic MPC.
The performance showed large potential economic savings around 20-50% compared
to control strategies that do not consider prices. We integrated state-of-the-art fore-
casts of disturbances, e.g. temperatures and solar radiation, in the controller to
evaluate the performance and the prediction horizons needed. Even simple linear
predictors showed only very little performance decrease in terms of savings. Further-
more, simulations conclude that the units consume more energy when taking prices
into account. However, if the prices reflect the amount of wind power, the units might
use more energy, but they use it at the right time. In this way consumers save money
from flexibility while helping the grid.

6.2 Model Predictive Control

We expect the units and controllers to enter in to real-time large-scale control systems
where speed is of the essence. The choice of certainty equivalent MPC keeps the
computational burden and memory requirements very low. A time varying sampling
period can be applied to reduce computations in systems with different time scales.
Also warm starting of the optimization algorithms involved lowers the computation
time of the repetitive optimization problems that arise in MPC. Chapter 3 introduced
the principles of MPC, including stability, state estimation, filtering and prediction
that are important in practical predictive control systems subject to noise. We briefly
introduced three different objective functions related to MPC: The traditional linear
quadratic regulator, a linear economic objective, and a combined trade-off between
the two, namely a mean-variance objective. Finally, we showed how to solve the
underlying optimization problems that arise in certainty equivalent economic MPC.

6.3 Large-scale control algorithms

Enabling flexible consumers on a large scale require efficient control and coordination
strategies. These strategies are expected to be handled in the future by new mar-
ket players referred to as aggregators. In Chapter 1 we introduced aggregators and
sketched the current power system architecture, its main actors, their objectives, and
the markets they act on. Here we also reviewed current aggregator strategies and
their role in the future power system. Our different control strategies were compared
in Chapter 5 that also summarize the main contributions of Papers D, E, and F. The
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control strategies are based on MPC, state-estimation, classical control principles,
and decomposition methods such as dual decomposition and operator splitting. The
decomposition methods can handle more units than naive implementations by break-
ing down the large-scale control problem into smaller subproblems that can be solved
independently and in parallel. The suggested Douglas-Rachford splitting method is
very general and apply to a broad range of aggregator objectives. One common ob-
jective for the control strategies is to track a given power reference. This is crucial
to the demand response capabilities and will enable flexible units as reserves and on
the regulating power markets.

6.4 Price-based control

Two of the aggregator control strategies are based on prices and a simple aggre-
gated model of the portfolio of units. A price is a control signal. A predictable
price-response control policy for each unit is therefore crucial for the aggregator to
accurately control the aggregated consumption. It is therefore important that the
units let a controller respond autonomously to the prices. Our first approach, the
indirect set point method, manipulated the power consumption indirectly through
the temperature set points of a portfolio of thermal storage units. Our second ap-
proach, the indirect dual method, modeled the aggregated dynamics of the units and
broadcast the dual variables as prices. Intuitively consumers want to minimize costs
and the Economic MPC at each unit does exactly this. To make both methods work,
state estimation and off-set free control are an essential part of the MPC.

6.5 Contributions

The scientific contributions in this thesis are:

e Linear dynamic models of heat pumps in buildings, heat storage tanks, electric
vehicles, refrigeration systems, power plants, and wind farms.

e Two models of a heat pump heating a low-energy building and a modern resi-
dential house.

e Economic MPC that demonstrates load shifting capabilities of these flexible
units.

e Economic MPC as a control strategy to balance consumption and production
and minimize costs.
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o Distributed large-scale aggregation methods based on MPC, convex optimiza-
tion, and decomposition methods.

o Several novel strategies for controlling the power consumption of a large port-
folio of flexible consumers using a tracking MPC and prices.

e Demonstration of warm starting an Interior Point algorithm to reduce compu-
tation time in the large-scale control strategies.

« A Matlab toolbox including the presented models for simulating a Smart Energy
System with Economic MPC.

6.6 Future work

As of today, economic incentives and feasible business models slow down the employ-
ment of Smart Grid technologies. The sales of Electric Vehicles and heat pumps in
Denmark are not increasing as rapidly as hoped. Industrial consumers, e.g. district
heating and the process industries, have large load shifting capabilities and should
be engaged more. We showed that Economic MPC is indeed an appealing method to
enable this functionality. MPC was applied to process industries before gaining the
tremendous traction in academia as it has today. Models, tuning, and verification
of robustness and performance are challenges that now limit the implementation of
MPC. Stochastic MPC and fast numerical algorithms will also be a big part of future
research in this field.

Given the complexity of the energy system, i.e. its hierarchy, timescale and markets,
one centralized real-time controller is not likely to control the entire system dynamics
in the near future. Decentralized approaches based on modern control and optimiza-
tion methods must be integrated to take full advantage of the anticipated smaller
distributed energy resources. Critical infrastructure, such as the power system must
work reliably around the clock. Unfortunately, the gap between research and practice
in Smart Grid technology is huge. Both Smart Grids and distributed MPC are still
young research fields and we still haven’t seen a lot of advanced Smart Grid projects
demonstrating some of the more advanced control mechanisms.
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Abstract—Model Predictive Control (MPC) can be used to
control a system of energy producers and consumers in a Smart
Grid. In this paper, we use heat pumps for heating residential
buildings with a floor heating system. We use the thermal capacity
of the building to shift the energy consumption to periods with
low electricity prices. In this way the heating system of the
house becomes a flexible power consumer in the Smart Grid.
This scenario is relevant for systems with a significant share of
stochastic energy producers, e.g. wind turbines, where the ability
to shift power consumption according to production is crucial.
We present a model for a house with a ground source based
heat pump used for supplying thermal energy to a water based
floor heating system. The model is a linear state space model
and the resulting controller is an Economic MPC formulated as a
linear program. The model includes forecasts of both weather and
electricity price. Si ion studies d rate the capabilities
of the proposed model and algorithm. Compared to traditional
operation of heat pumps with constant electricity prices, the
optimized operating strategy saves 25-35% of the electricity cost.

I. INTRODUCTION

The energy policies in the Nordic countries stipulate that
50% of the energy consumed by 2025 should come from
renewable and COs-free energy sources. By 2050 the aim
is to be independent of fossil fuels. This transformation of
the energy system is needed to reduce CO; emissions and
global warming as well as to protect the Nordic economies
from the consequences of sharply rising prices of fossil fuels
due to an increasing world population and depletion of fossil
fuel resources. Not only the Nordic countries but the entire
world and industrialized world in particular are facing this
grand challenge. Reducing the fossil fuel consumption from
80% of the energy consumption to 0% in 40 years, requires
introduction of a significant amount of renewable energy
sources and an efficient utilization of energy in buildings, the
process industries, and transportation. In the Nordic countries,
a major part of the renewable energy will be produced by
hydro power and offshore wind turbines. On the consumption
side, residential and commercial buildings will use heat pumps
for heating and electrical vehicles will replace vehicles based
on combustion engines.

Accordingly, electricity will be the main energy carrier in
such an energy system independent of fossil fuels. Depending
on the rate of adoption of electrified vehicles, 40-70% of the
energy consumption will originate from electricity in 2050.
Currently, 20% of the energy consumption is electricity. As

R. Halvgaard, N. K. Poulsen, H. Madsen and J. B. Jgrgensen are with DTU
Informatics, Technical University of Denmark, Richard Petersens Plads, Build-

it is more difficult to store electricity than fossil fuels, such
a large share of stochastic electricity production requires an
intelligent power system - also referred to as a Smart Grid
- that continuously balances the power consumption and the
power production. This balancing requires control of the power
consumption from heat pumps and electrical vehicles such that
surplus of cheap wind energy is used as it is produced. Heat
tanks in residential homes as well as in district heating plants
must be established such that heat pumps can store electricity
as heat in periods with low electricity prices. The power
consumption by the process industries and retail industry, e.g.
refrigeration in supermarkets and large cooling houses, must
also be made flexible. Such a system is a large-scale complex
system that must be coordinated to balance consumption and
production of electricity.

Buildings account for approximately 40% of the total energy
use in Europe. Therefore, intelligent control of the energy
use in buildings is a necessity for the future smart energy
system. In the Nordic countries, the energy is mainly used
for heating, lighting, and electrical appliances. Heat pumps
combined with water based floor heating systems will be
one of the main sources for heating of buildings [1]-[4]. By
themselves, these heat pumps are very energy efficient as
their coefficient of performance is typically 3 or larger, i.e.
for each kWh electricity supplied, they deliver more than 3
kWh heat. As heat pumps are driven by electricity and can be
connected to floors with large thermal capacity, they have a
large potential to shift the electricity consumption and adapt
to the stochastic electricity production from wind turbines.
The adoption of heat pumps could very well accelerate in the
coming years. Especially for buildings situated outside district
heating areas. They can benefit from heating using electric
heat pumps instead of the current oil and natural gas. Heat
pumps connected to the district heating system can benefit
from a large store of heat and can be used to shift electricity
consumption on a 24-hour or weekly basis. Furthermore, large
electric heat pumps can be installed at a number of district
heating plants. The large heat pumps can better exploit heat
from the sea, lakes or waste heat, while small heat pumps can
exploit geothermal heat.

The use of Model Predictive Control to provide indoor
thermal comfort in heating systems of buildings has been
reported in [5]-[7]. In the future energy systems with a large
share of stochastic power producers such as wind turbines, the
ability to shift the load of electricity is just as important as
providing indoor thermal comfort in a heating system based on
heat pumps. Different control strategies have been suggested

ing 321, DK-2800 Kgs. Lyngby, Denmark {rhal,nwwlﬂ‘}%?f%gg ny /£§r1 188%5%??%%]@“ load shifting in electrical grids [8]. For
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heat pumps, these strategies can be summarized as

1) Frequency based control. The heat pump senses the
grid frequency, which in Europe has the nominal value
of 50 Hz. When demand exceeds supply, the frequency
falls. When supply exceeds demand, the frequency in-
creases. Depending on a measured difference from the
nominal value of the frequency, the heat pump can
decide to pre-heat by starting the compressor or to
delay the activation of the compressor for a short time.
The advantage of this type of control is the low price
of the controller, because no additional communication
between the utility and the heat pump is necessary.
However, there is no way to integrate the device into
an intended schedule as it responds completely au-
tonomously.

Price based control. The heat pump controller com-
putes a schedule for the compressor based on dynamic
price information given by the utility. This enables the
heat pump to shift its load to times with low elec-
tricity price. It requires a communication infrastructure
between utilities and households. The drawback of this
control strategy is that it is relatively complex and the
fact that effects of sent tariff information to affect the
load are not completely sure for the utility.

Direct control. Given the communication infrastructure
required for the price based control, utilities can send
control signals to the heat pump to raise or reduce the
demand. This allows the utility a more direct control
of the demand. Furthermore, it allows the controller
in the heat pump to be quite simple as it only sends
information and receives commands from the utility.
The drawback of course is that the utility must solve
large-scale optimization problems to coordinate a large
number of heat pumps.

[9] use Economic Model Predictive Control (MPC) in a
direct control case to shift the electricity load of refrigeration
systems. In this paper, we use Economic MPC based on price
signals to control a heat pump such that certain temperature
limits in a building with a floor heating system are respected.
By using price signals, both current and future prices, the
optimization of the energy consumption of each individual
residential building decouples from the energy consumption
of all other agents in the system. However, we do not specify
how to determine this price but assume that it is given based on
market principles of supply and demand. Consequently, each
individual house is a price taker.

Simple weather conditions such as outdoor temperature and
solar radiation are included in the model. By adding forecasts
of prices and weather conditions to the heat pump control
problem, the energy consumption is made flexible. It is thus
possible to predict where to place the heat pump energy
consumption and minimize the electricity cost of operating
the heat pump to meet a certain indoor thermal comfort, i.e. a
desired temperature interval. The temperature interval can be
time varying. We exploit that the dynamics of the temperatures
in the house floor heating system and indoor air are slow while
the power consumption can be changed rapidly. The thermal
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Fig. 1. House and heat pump floor heating system and its thermal properties.
The dashed line represents the floor heating pipes.

capacity of the residential building determines how much of
the electricity consumption that can be shifted to times with
cheap electricity.

MPC is increasingly being considered for building cli-
mate control [10]-[12]. Traditionally, MPC is designed using
objective functions penalizing deviations from a given set-
point. Recently Economic MPC has emerged as a general
methodology with efficient numerical implementations and
provable stability properties [13], [14].

This paper is organized as follows. In Section II, we develop
and discuss a model for a heat pump connected to a floor
heating system of a building. Section III states and discusses
the Economic MPC. Simulation results for the Economic MPC
applied to the model are described in Section IV. Section V
provides conclusions.

II. MODEL

In this section, we develop a model of the heat dynamics
of a house floor heating system connected to a ground source
based heat pump. The system is illustrated in Fig. 1. The model
is a linear third order model. Table I lists the variables and
parameters of the model.

TABLE I
DESCRIPTION OF VARIABLES

Variable Unit  Description
T, °C Room air temperature
Ty °C  Floor temperature
Tw °C  Water temperature in floor heating pipes
T, °C  Ambient temperature
T °C  Ground temperature
We W Heat pump compressor input power
bs w Solar radiation power

A. Energy Balances and Heat Conduction

In this subsection we develop energy balances for the air in
the room, the floor and the water in the floor heating pipes
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and condenser water tank. In the simple model developed
in this paper, the house is considered to be one big room.
Furthermore, we make the following simplifying assumptions:
1) One uniform air temperature, 2) no ventilation, 3) no
influence from humidity of the air, 4) no influence from the
heat released from people in the room, 5) no influence from
wind.

In [15] a model of the indoor temperature in buildings is
identified and suggests at least two dominating heat accu-
mulating media in order to capture the short-term and long-
term variations of the heat dynamics. In our model two heat
accumulating media are thus included, namely the room air
and the floor. The resulting energy balances are

CpiTr = Qpr — Qra+ (1 —p)os )
Cp T = Quy — Qpr +p s )]

The disturbances are the ambient temperature and the solar
radiation through a window. These disturbances are also
illustrated in Fig. 1.

The energy balance for the water circulating in the floor
heating pipes can be stated as

CpwT = Qe = Quys 3)

in which Q. is the heat transferred to the water from the
condenser in the heat pump. Q. is the heat transferred from
the water to the floor.

The conductive heat transfer rates are

Qra = (UA)ro(T, = Tu) (4a)
Qpr = (UA) 5 (Ty = Tp) (4b)
Quf = (UA)ws(Tw —Ty) (4¢)

Qrq is the heat transferred from the air in the room to the
surroundings, Qy, is the heat transferred from the floor to
the air in the room, and @, is the heat transferred from the
water in the floor heating pipes to the floor. The term U - A
is a product of the heat conductivity and the surface area of
the layer between two heat exchanging media. Its reciprocal
value R = 1/(UA) is often used since it can be interpreted
as a resistance against heat flow [16].

B. Heat Pump

A heat pump is a device that transfers heat from a low tem-
perature zone to a higher temperature zone using mechanical
work. A heat pump can provide both heating or cooling, but
in cooler climates heating is of course more common. Heat
pumps normally draw heat from the air or from the ground
and uses a vapor compression refrigeration cycle. This cycle
requires the four basic components as sketched in Fig. 2. The
components are a compressor, an expansion valve, a condenser
converting the working fluid from its gaseous state to its liquid
state, and an evaporator converting the working fluid from its
liquid state to its gaseous state [17], [18].

As the heat pump dynamics is much faster than the thermo-
dynamics of the building, we can assume a static model for the
heat pump. The amount of heat transferred from the condenser

Tca T(‘i
Condenser
Expansion valve W, Compressor
Evaporator

Fig. 2. Heat pump vapor compression refrigeration cycle. The temperatures
are denoted 7" with subscript ¢ or e for condenser or evaporator, respectively,
while 7 or o denotes input or output.

to the water, @), is related to the work of the compressor, W,
using the coefficient of performance

Qe =nWe (©)]

The coefficient of performance 7 for heat pumps varies with
type, outdoor ground temperature, and the condenser temper-
ature. As the outdoor ground temperature and the condenser
temperature are approximately constant, we can assume that
the coefficient of performance is constant. For ground source
based heat pumps 7 is typically around 3 in the specified
operating range.

The model consists of (1)-(5). Consequently, a third order
linear model can be stated as

CpiTr = (UA) ;o (Ty =T} . ..

VAT~ T + (= p)s,

CpTy = (UA) s (T = Tp) ... (6b)
= (UA) 5 (Ty = T;)) + pos

Cp.wTu- = 77V[/’<-,*(UA>wf(Tw - Tf) (6¢)

C. State space model
The model (6) can be expressed as a continuous-time state
space model
&= Ax+ Bu+ Ed
y=Cux

(72)
(7b)

z is the states, u is the manipulated variables, d is the
disturbances, and y is the controlled variable. In the case
studied, the states are z = [ T, Ty T, }T; the manipulate
variable is the power used by the compressor in the heat pump,
u = W,; the disturbances are the ambient temperature and the
sun radiation such that d = [ Ta ¢s }T; and the controlled
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Compressor input power 100 W

mbient temperature 1 'C
—— Sun radiation 200 W

Indoor temperature ('C)

3 8
Time (days)

Fig. 3. Step responses from inputs and disturbances to indoor temperature
T'-. Step size is noted in the plot legend.

variable is the indoor temperature y = 7;.. The matrices in the
state space model (7) are

an an 0 (UA)ra #

o o

A= | an ax ax E= 0 roh

p.f

0 az ass 0 0
c:[loo} B:[oo(,"

with the coefficients

ai1 = (=(UA) sy = (UA)ra)/Cp,r

aze = (=(UA)wy = (UA) 1)/ Cpyp azz = —(UA)ws/Cpuw
a1z = (UA)f7/Cp,r azs = (UA)ws/Cp.z
azy = (UA) 4 /Cp ¢ az2 = (UA)ws/Cpw

[19] provides values for building heat capacities and
thermal conductivities obtained from system identification
methods. The values of these parameters for a representative
building are listed in Table II. The water tank heat capacity
is estimated as Cj, ., = M€y for a 200 liter tank filled with
water having the specific heat capacity c,, and mass m,,. The
resulting time constants of the third order model are 1, 24,
and 186 hours for the room air, water condenser tank, and
the floor, respectively. This is also observed from the step
responses seen in Fig. 3.

III. EcoNnoMIiC MPC

The state space model (7) is converted to a discrete-time
state space model using zero-order-hold sampling of the input
signals

ZTp1 = Aqzr + Baug + Eqdy, (8a)

yr = Caxy, (8b)

Using this discrete-time linear state space formulation to
predict the future outputs, we may formulate a linear program
that minimizes the electricity cost for operating the heat pump

while keeping the indoor room temperature in prespecified
intervals

i h = s 1 v
s.t. Tpi1 = Agzp + Baug + Eqdy k€N (9b)
yr, = Caxy, keN (%)
Umin < Uk < Umax keN  (9d)
Atmin < Auge < Atimax keN (%)
Yk,min < Yk + Uk keN (9
Yk,max = Yk — Uk keN (9
v >0 keN (9

N € {0,1,...,N} and N is the prediction horizon. The
electricity prices enter the optimization problem as the cost
coefficients ¢, . It may not always be possible to meet the
temperature demand. Therefore, the MPC problem is relaxed
by introduction of slack variable v, and the associated penalty
cost p,. The penalties can be set sufficiently large, such
that the output constraints are met whenever possible. The
Economic MPC also contains bound constraints and rate-of-
movement constraints on the manipulated variables. The rate-
of-movement is defined in discrete time as Auy = ugy1 — uy,
and adds to robustness of the numerical optimization routine.

The prediction horizon, IV, is normally selected large to
avoid discrepancies between open-loop and closed-loop pro-
files. However, long horizons increases computation speed
rapidly and uncertainties in the forecasts grow larger and larger
with time. At each sampling time, we solve the linear program
(9) to obtain {uj}N"'. We implement uj on the process. As
new information becomes available at the next sampling time,
we redo the process of solving the linear program using a
moving horizon and implementing the first part, ug, of the
solution.

The electricity prices, {c,,‘yk}ﬁ:ol, as well as the ambient
temperature and sun radiation, {dk}kj_\:ol, must be forecasted.
In this paper we assume that we have perfect forecasts.

IV. RESULTS

The Economic MPC has been implemented in Matlab
calling a primal active set solver. To illustrate the potential of
the Economic MPC for controlling heat pumps, we simulate
scenarios using day-ahead electricity prices from Nordpool,
the Nordic power exchange market. These electricity prices
are available in one hour intervals. We also discretize the
system using a sample time of 30 minutes, i.e. T, = 0.5
hour. Both the outdoor temperature, 7}, and solar radiation ¢
are modeled as diurnal cycles with added noise [10]. We aim
to minimize the total electricity cost in a given period while
keeping the indoor temperature, 7;., in predefined intervals. In
the case studied, we assume that the forecasts are perfect, i.e.
that the forecasts are without uncertainty. We simulate a five
day period using a prediction horizon N = 96 (= 48 hours).
The optimal control signal is calculated at every time step over
the prediction horizon to obtain a closed loop profile.

Fig. 4 illustrates the optimal compressor schedule and the
predicted indoor temperature for a five day horizon. The lower
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TABLE 1T
ESTIMATED MODEL PARAMETERS

Value  Unit Description
Cp.r 810 kJ/°C Heat capacity of room air
Chp. 5 3315 kI/°C Heat capacity of floor
Cpw 836 kJ/°C Heat capacity of water in floor heating pipes
(UA)ra 28  kJ/(°Ch) Heat transfer coefficient between room air and ambient
(UA) ¢, 624 kJ/(°Ch)  Heat transfer coefficient between floor and room air
(UA)wy 28  kJ/(°Ch) Heat transfer coefficient between water and floor
Cuw 4.181 KJ/(°Ckg)  Specific heat capacity of water
M 200 kg Mass of water in floor heating system
P 0.1 Fraction of incident solar radiation on floor
n 3 Compressor coefficient of performance (COP)
P 10* Slack variable penalty

)
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Temperature in a house with time varying soft constraints, time varying electricity prices, and time varying outdoor temperatures. The simulation

time is five days starting 20 JAN 2011 00:00. The upper figure shows the indoor temperature, the middle figure contains the electricity spot price and the
optimal schedule for the heat pump, and the lower figure contains the ambient temperature and solar radiation. The compressor is on when the electricity spot

price is low.

plot shows the outdoor temperature, 7, and the solar radiation,
¢s. The outdoor temperature reflects a cold climate, i.e. the
outdoor temperature is lower than the indoor temperature. The
solar radiation has a peak around noon contributing to heating
the building. The middle plot shows the actual electricity
prices in Western Denmark. The middle plot also contains
the computed optimal heat pump power input, ... The upper
plot shows the predicted indoor temperature along with the
predefined time varying constraints. The constraints indicate
that during night time the temperature is allowed to be lower
than at day time. The figure reveals clearly that the power
consumption is moved to periods with cheap electricity and
that the thermal capacity of the house floor is able to store
enough energy such that the heat pump can be left off during
day time. This demonstrates that the slow heat dynamics of the

floor can be used to shift the energy consumption to periods
with low electricity prices and still maintain acceptable indoor
temperatures. Notice that the soft constraints are violated in
the beginning due to the initial conditions. We allow for such
violations by using reasonable moderate penalty costs for
violation of the soft constraints. Consequently, the controller
will find cheaper optimal solutions while the comfort level is
compromized very little.

We also conducted a simulation with constant electricity
prices. In this case, the heat pump now is turned on to just
keep the indoor temperature at its lower limit. This implies that
there is no load shifting from the heat pump in this case. By
comparing the case with varying electricity price, {u;},\\;’ol
to the case with constant electricity price, {u} .., }n . we
observe economic savings around 35%. We obtained this figure
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Fig. 5. Computation time distribution for all open loop profiles calculated

in the five days closed loop simulation with prediction horizon 48 hours.

by comparing the total electricity expenses using the true time
varying electricity prices {c,}n_, such that the savings S
are calculated as

(10)

*
cst

T
clu,

Using a simulation study with hard constraints on the indoor
temperature, the saving by load shifting was 25%.

Figure 5 shows the computation times of solving the open
loop optimization problems for the given simulation using a
PC with Intel Core i7 2.67 GHz. The average computation
time is seen to be around 8 ms. Using hard constraints the
average computation time reduces to 1 ms.

V. CONCLUSIONS

In this paper, we have presented a model for the temperature
in a residential building with a floor heating system and a
heat pump. We used an Economic Model Predictive Controller
(Economic MPC) to manipulate the compressor in the heat
pump such that the total electricity cost is minimized, while
keeping the indoor temperature in a predefined interval. Using
actual electricity prices and weather conditions, we demon-
strated that the Economic MPC is able to shift the power
consumption load to periods with low electricity prices. As the
Nordic Electricity spot prices reflect the amount of wind power
in the system, the large thermal capacity of the house floor can
essentially be used to store cheap electricity from renewable
energy sources such as wind turbines. We also observed that
the load shifting ability of the Economic MPC can exploit
weather forecasts to reduce the total cost of operating a heat
pump.

The Economic MPC concept was proofed using perfect
forecasts. In the future, we will use real forecast to investigate
cases with uncertainty.
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Abstract—Economic Model Predictive Control (MPC) is very
well suited for controlling smart energy systems since electricity
price and demand forecasts are easily integrated in the controller.
Electric vehicles (EVs) are expected to play a large role in the
future Smart Grid. They are expected to provide grid services,
both for peak reduction and for ancillary services, by absorbing
short term variations in the electricity production. In this paper
the Economic MPC minimizes the cost of electricity consumption
for a single EV. Simulations show savings of 50-60% of the
electricity costs compared to uncontrolled charging from load
shifting based on driving pattern predictions. The future energy
system in Denmark will most likely be based on renewable energy
sources e.g. wind and solar power. These green energy sources
introduce stochastic fluctuations in the electricity production.
Therefore, energy should be consumed as soon as it is produced
to avoid the need for energy storage as this is expensive, limited
and introduces efficiency losses. The Economic MPC for EVs
described in this paper may contribute to facilitating transition
to a fossil free energy system.

I. INTRODUCTION

Reducing CO, emissions and becoming independent of
fossil fuels are both major economic and political drivers for
switching from traditional combustion engines to electrifica-
tion of the transport sector through the introduction of Electric
Vehicles (EVs). To facilitate the fossil free electrification of
the transport sector, the amount of renewable energy sources
in the energy system must be increased significantly. By
nature, renewable energy sources like wind and solar power
are stochastic and introduce fluctuations in the otherwise
predictable and stable power system.

In Denmark the penetration of wind power is beyond 20%
and calls for either huge storage solutions or a highly flexible
demand that can be controlled in order to consume power as
it is produced. Electric storage is very expensive, introduces
efficiency losses and is not feasible everywhere. However, the
development and penetration of EVs seems inevitable, and
their batteries could potentially provide a storage opportunity.
The idea is that if the EVs are intelligently charged, they
could become a controllable asset to the grid rather than a
traditional load disturbance. They could help absorb variations
in the power system and help move consumption to off-peak

Francesco Marra
and Daniel Esteban Morales Bondy

Department of Electrical Engineering
Technical University of Denmark
Elektrovej, building 325
2800 Kgs. Lyngby, Denmark
Email: {fm,bondy}@elektro.dtu.dk

periods. When parked and plugged into the grid, EVs are
expected to either charge intelligently or discharge, i.e. feed
power back into the grid. However, handling the probabilistic
load behavior of EVs present is a challenge to the balance
responsible.

In the future, large fleets of EVs will be available, and
could potentially provide flexible services to the grid, e.g. load
shifting, balancing power, and frequency response. Another
of these services could be delivery of electricity to the grid
by discharging the EV battery, also known as Vehicle-to-Grid
(V2G). This was first proposed by [1] and is the main reason
why EVs are expected to play an important role in the future
power system. The charging impact of EVs on the power grid
has also been reported in the literature, e.g. [2]. Emphasis is
mainly on the services EVs can provide to the electric energy
system. Currently, it is not clearly understood if a centralized
or decentralized strategy should be applied, and what actual
services EV users require. However, it is clear that there must
be an incentive for EV users to help the balance the power
production and charge during off-peak periods.

Fig. 1 illustrates the Virtual Power Plant (VPP) approach
for handling a fleet of EVs. In a centralized strategy, the
aggregator performs the optimal charge scheduling calcula-
tions and sends out the individual charge plans to EVs. A
decentralized approach could be to broadcast a price signal
and let the individual EV optimize its own charging based on
this price. Less communication is required at the expense of a
larger computation task for the EV. In Denmark EV charging
is billed with the same tariffs as for the standard domestic
loads. So in this paper the price signal is the Elspot price, a
Time of Use (TOU) price for the customer, taken from the
Nordpool day ahead market. This price is settled every day at
noon for the coming day and is thus known 12 to 36 hours in
advance. The amount of wind power in the power grid is thus
also reflected in this signal. Furthermore, since feed-in tariffs
do not yet exist for LV grid producers vehicle-to-grid (V2G)
operation will not be addressed in this study.

[3] considers a decentralized strategy where the charging
costs are minimized for each EV user individually. In addition,
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Fig. 1. Virtual Power Plant framework with EVs. The dashed green line is
the price signal from the aggregator.

a penalty on the deviation from the average EV fleet charge
behavior is added to the objective function. By sending out the
average optimal charging plans to all EVs, the charge strategy
is negotiated by an iteration procedure that is guaranteed to
converge towards a Nash equilibrium.

In practice, when charging a large fleet of EVs in periods
where electricity prices are low, typically at night time, the
price will in the long run start to increase in these periods
reflecting new demand patterns. This price elasticity effect
has been modeled for an EV demand response and a price
flattening was observed [4].

An optimal charge strategy for EVs optimization of both
energy cost and battery health has also been investigated [5].
The proposed battery model is based on a first principles
chemical battery model and a battery degradation map was
determined by simulation. This map was used to determine at
what rates the battery suffers the most. Battery degradation in
detail will not be taken into account in this paper but general
guidelines for improving the life time will.

In [6], [7] methods for planning the individual charging
schedules of a large EV fleet while respecting the constraints
in the low-voltage distribution grid are proposed. Another
proposed ancillary service is to minimize the load variance of
the power system by queuing up charge requests [8]. In this
way, uncertainty in the load and price forecasts are avoided.
However, in this approach the comfort of the EV user is not
taken into consideration.

In this paper, we consider several decentralized EV charging
strategies based on Model Predictive Control (MPC) [9]-[11].
Minimizing the electricity costs of EV charging fits directly
into an Economic MPC framework where the battery model
is formulated as a linear discrete time dynamic state space
model. Forecasts of the load, i.e. the driving pattern, and
handling of the battery storage constraints are handled natively
by the MPC. Electricity prices are assumed to be known and
could be any price signal that is set by an aggregator. It could
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Fig. 2. Equivalent electrical circuit model of an EV battery.

also be a price that is the deviation from the day-ahead price
making sure that the load follows the plan. The MPC algorithm
incorporates feedback by its moving horizon implementation.
In this way, forecast errors are compensated for by the MPC
algorithm.

This paper is organized as follows. Section II models an
electric vehicle battery. The battery side behavior is described
as well. In section III, the EV driving pattern used for
simulation is defined based on real data. The Economic MPC
optimization problem is formulated in IV, while different
Economic MPC charge strategies are compared in Section V.
Finally, section VI provides conclusions.

II. ELECTRIC VEHICLE BATTERY MODEL

In this study, an EV is modeled as a flexible energy storage
resource that is capable of exchanging power with the grid
under a predefined charging schedule. EVs have been modeled
in many different manners, depending on the detail and scope
of the study in question. In this paper a model of the State of
Charge (SOC) is used based on [12].

A. Battery model

A simple battery model can be composed of an electric
equivalent circuit with a voltage source in series with the
ohmic impedance [13], see also Fig.2. The only state variable
of this model is the State of Charge (SOC) ¢ € [0;1], i.e. the
normalized battery capacity at time ¢, that can be modeled as
a simple integrator with loss

&) = Voacki(t) _ 1
Qn Qn
P, is the power flowing in or out of the battery during
charging or discharging; @, is the nominal capacity of the
battery, denoted with a + and — respectively; 7 is the charger
efficiency. The actual power is bounded by

(P =n~ P (1) (D)

Prin < Pe < Pras 2

The maximum power is limited by the maximum charge
current. Leaving a margin for other household appliances the
maximum charge power P, is set to

Priaz = Velmae = 230 V-10 A = 2.3 kW 3)
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TABLE I
DESCRIPTION OF VARIABLES AND MODEL PARAMETERS

Description Value  Unit
¢ State of Charge (SOC) [0:1]
Ve Grid voltage 230 V
Qe Charge current A
Pe Charge power (P = Veic) w
imaz Maximum charge current 10 A
Tmin Minimum charge current 0 A
Aimin Minimum ramp constraint —10 A/h
Aimaz  Maximum ramp constraint 10 A/
Qn Nominal battery capacity 40  Ah
n Charger efficiency 0.9
nNEV EV energy efficiency 150 Wh/km
P Electricity price EUR/MWh
P Slack variable penalty 10°
Ts Model sampling period 05 h
N No. of steps in prediction horizon

The charging power of 2.3 kW (230 V, 10 A) is chosen as
the charging rate for this study, as this is the most common
residential use case for EV charging in Denmark today. Con-
sidering standard household electric installations, most grid
connection points only allow charging rates up to 10 A, while
other appliances are running. Furthermore a small EV fleet
consisting of 12% households in a generic LV grid charging
at 6 pm with 2.4 kW can lead to overload of the distribution
transformer [14]. The lower bound, Py, could be negative
and equal to —P,,,, if Vehicle to Grid (V2G) is considered.
Otherwise P, = 0.

For the case study in this paper the battery chemistry is
assumed to be Lithium-ion with capacity @,, = 24 kWh. The
SOC of the EV battery is equal to its normed capacity such
that ¢ € [0;1]. The model (1) is suitable for a generic battery
modeling study. In the context of EV charging management,
the model has been tuned to common EV use conditions. The
choice of Lithium-ion is related to market trend reports for EV
batteries [15], where Li-ion batteries are expected to dominate
the whole EV battery market sector with a 70-80% share by
2015.

Based on the main life time recommendations for optimal
SOC management in [16] and common practice of EV man-
ufacturer’s [17] the SOC of the EV battery is limited to

¢ €10.2;0.9] 4)
Other external conditions such as temperature behavior during
operation are not taken into account.
B. Modeling the Charging/Discharging operation

The linear model in section II-A will be used for both
simulation purposes and as the controller model. The nonlinear
behavior outside the region (4) can be modeled by the open
circuit voltage as

MMAQQ):Vb—T§Z+a-wP<—§> 5)

« a is the exponential zone amplitude [V]

« 7 is the exponential zone time constant [Ah]

o V) is the battery voltage constant [V]

o I is the polarization voltage [V]

« Q is the instant battery capacity [Ah] obtained from @ =

i, where 7 is the DC current during charging

The real-time EV battery voltage is Ve = Voot Req i, Where
4 is the current used to charge or discharge the battery. The
voltage drop is considered positive during charging and nega-
tive during discharging. The resistive impedance of a lithium-
iron phosphate (LFP) battery cell, a common class of Li-ion
batteries, has been measured using impedance spectroscopy.
A resulting intrinsic resistance of about 10 m{2 per battery
cell was found from measurements [18]. The charger has
been modeled as a single-phase 230V power converter. The
charger operates in either Constant Current (CC) or Constant
Voltage (CV) mode. During charging/discharging, the battery
cell voltage is continuously monitored and maintained within
a safe operational zone for the battery according to [19]. The
safe voltage region of the LFP 3.3 V - 40 Ah battery cell is
[2.8;4.0] V, which entails the SOC window 20-90%. The EV
battery is only in discharging mode when driving.

C. State Space Model
The EV battery model in section II-A can be formulated
as a discrete time state space model that fits into the MPC
framework.
Ty1 = Az + Buy + Edy
Zk = Cl‘k

(6a)
(6b)

where k& € {0,1,..., N}. Defining the manipulable w, distur-
bance d and output z. The EV charge control signal is equal
to the charging power u = P, while the only state is the
SOC, also equal to the output © = z = (. The demand dy, i.e.
battery usage from driving, is modeled as a disturbance to the
battery SOC according to the description in section III. The

state space matrices for the SISO model (6) are
q; T, C=1
This result follows from discretization of the state space
matrices obtained from (1). Note that the efficiency and
capacity is not in E but will be included in the signal dj. u
is kept constant between samples.

A=1 B =

E=-T, ()

III. DRIVING PATTERNS

In order to estimate the driving pattern of the average EV
driver, survey data from [20] including a group of observed
commuters in Denmark was investigated. In Fig. 3 the total
number of parked cars with 5 minute resolution for different
weekdays, i.e. cars that could potentially charge if connected to
the grid, have been plotted. The amount of trips is also shown
as a function of time. The morning and afternoon peaks at
7:30 am and 4:00 pm are both clearly visible. Based on the
presented data, an EV commuter driving pattern scenario was
defined for simulation purposes such that
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Fig. 3. The lower plot shows the no. of trips for difference weekdays. The

upper plot shows the availability, i.e. the amount of parked cars at home
(upper) and at work (lower).

The average driving distance to work is d,, = 18.92 km
The average driving time to work is ¢,, = 22.6 min
Two trips of length d,, + 5 km and d,, + 10 km, and
duration ¢,, + 10 min and ¢,, + 20 min

The start time of the two daily trips is at 7:00 am and
4:00 pm

We assume that the EV is connected and able to charge
whenever it is not driving. Furthermore, the estimated energy
efficiency for typical EVs are ngy € [120;180] Wh/km [20].
As a compromise we use a fixed average value of ngy = 150
‘Wh/km in simulations.

In the simulations in section V, the actual demand d; when
driving is constant for each trip and is equal to the average
energy used for every trip. The actual demand depends on
the driving behavior, i.e. the acceleration of the EV. When
integrated the simulated demand will give exactly the amount
of energy used at the end of the trip.

The minimum charge time is dependent on the sampling
period and, since the price signal is available every hour, this
should be the largest sampling period. In this way a decision
whether to charge or not can be placed at all available price
levels. This paper is a feasibility study intended to demonstrate
Economic MPC. Therefore all simulations use 7 = 30 min.
In practice, we would recommend significantly shorter sample
times.

IV. ECONOMIC MODEL PREDICTIVE CONTROL

In this paper Economic MPC will be applied for EV charge
scheduling. Economic MPC for intelligent energy systems has
previously been proposed in [21], [22]. MPC will minimize the
electricity costs of charging a single EV based on predictions
of the electricity price and the expected driving pattern over
the prediction horizon of N samples. The objective function
to be minimized is ¢ and the linear MPC can be formulated

as
N-1

minimize ¢ = PrUL + pwWk (8a)
k=0

subject to w1y = Awy + Bup + Edy k€N (8b)

2z = Cury, keN (8

Umin < Uk < Unax k ke N  (8d)

Atpmin < Aug < Atpay keN  (8e)

2k 2> Zmink — Wk keN (8f)

2k < Zmax + Wk keN (B2

wg >0 keN  (8h)

where N € {0,1,...,N} and N is the prediction horizon.
The output z = ( is constrained by the battery capacity limits,
but the constraints in this problem are softened, i.e. the SOC
is allowed to lie outside the band of operation defined by (4).
This constraint violation is defined by the slack variable wy,
that is heavily penalized by the slack variable penalty p. Also
note that the lower bound on the output, 2,y k, is time varying
and represents a safety margin to absorb prediction errors.
It can thus be set according to what degree of flexibility is
needed for the individual EV user. When operation decreases
so does flexibility, and the possibility of shifting consumption
and saving money is reduced. However, in this paper we use
Zmin,k = 0.2 (see section II-A). p is the electricity price and u
is the input equal to the charge power P.. The EV is not able
to charge when disconnected from the grid, i.e. when driving,
resulting in a time varying input constraint

) Pnax fordp =0
Umaz kb = .
0 otherwise

Likewise, wmin,k, could be time varying and negative if V2G
is considered. Auy = wup — up_ is the discrete time rate
of movement input constraint. The input charge current can
change very quickly compared to the time horizons considered,
so these rate limits can be set very high, e.g. Aty > Umin
and Atz > Umaz, and can in theory be neglected. However,
when a stochastic model is used they help to smoothen out the
charging and adds robustness against forecast errors.

The optimal EV charging plan within the prediction horizon
is the solution to (8) and is denoted U* = {u:},ly:’nl This
charging plan is calculated at every time step k and represents
a decision plan, stating when to charge and how much power
should be used. It is optimal in terms of economy, and is
the cheapest solution based on the predictions and model
assumptions available at time & = 0. The first decision of
the plan, wg, is implemented, i.e. a certain amount of power
is delivered to the battery at the present time step k = 0.
This process is repeated at every time step and constitutes
the principle of a model predictive controller also known as
receding horizon control.

V. SIMULATION

Fig. 4 and 5 show the closed loop MPC charge plan
simulated over one week. Based on the perfect forecasts of
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the electricity el-spot price and the demand, i.e. the driving
pattern, the controller charges just the right amount of energy
prior to each trip. The first simulation uses a prediction horizon
of N = 24 h, while the latter uses N = 48 h. The advantage
of using a 48 h horizon is clearly seen; this controller is
able to pick the cheapest charging period seen over a larger
time window. For example, if energy is expensive on Friday
morning, it is cheaper to fill up the battery on Thursday
morning in order to cover the next two days’ consumption.
Knowing more about prices and demand in advance, allows
for a better charging plan and ultimately more money can be
saved. However, forecasts will always contain uncertainty, so
a balance must be found between long prediction horizons,
i.e. more computation time, and how much money can be
saved. Even if a perfect forecast is used, the increase in savings
is very small when the prediction horizon is increased. This
is due to the nature of the day ahead price and the limited
capacity of the battery, i.e. charging all energy needs during
the summer to cover the whole winter period is not possible.
The battery capacity thus limits the amount of energy that can
be shifted using a large number of EVs.

The Economic MPC strategy can be compared to other
strategies like uncontrolled charging, also referred to as dumb
charging, where the EV starts charging whenever it is plugged
in. This can easily be simulated with the MPC controller
by setting the soft lower output bound to {zmin}h_, =
{Zmax }1_o. It is observed from Fig. 6 that the EV charges to
full capacity after every trip and unfortunately charging takes
place in the most expensive periods.

Another optimal charge strategy could be a fixed cost strat-
egy where the electricity price remains the same throughout
the entire interval. The response using this strategy is seen on
Fig. 7. Obviously the controller does ensure charging takes
place in the cheap periods, since it is cheap during the entire
interval. It does, however, minimize the energy consumption
and charges just enough energy for each trip just before the
EV leaves. A third strategy could be to take advantage of the
deterministic part of electricity price and use a simple timer to
delay the dumb charging to periods where the electricity price
is usually low. However, a charging scenario that is reactive
to a price signal is desired in the decentralized approach.

Comparing the simulation results, it is found that using
MPC with fixed costs saves around 39% of the costs compared
to dumb charging. If Economic MPC with the varying prices is
considered, savings increase to almost 60%. Using the longer
prediction horizon another 0.5% is gained. The computation
time for solving the individual open loop problems are within
micro seconds.

The proposed Economic MPC was also simulated for a
period of one year with the real day ahead price from 2010,
and the results were compared to dumb charging. For the dumb
charging simulation the total energy consumption was found
to be 2.6 MWh. The annual energy consumption obtained
from simulation is very close to the estimates for an average
household in Denmark [23]. The Economic MPC saves an
annual 47% of the electricity costs associated with the Elspot
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Fig. 4. Optimal charging of EV for five days using Economic MPC with
prediction horizon N' = 24 h. The upper plot shows the SOC ¢ and the driving
pattern or demand dy,. The lower plot shows the electricity price variation and
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Fig. 5. Economic MPC charging with N = 48 h.

price.

VI. CONCLUSION

Economic MPC was introduced as a method for charging
EVs in Smart Grid using varying prices. A suitable EV battery
model was derived to be used in the optimization of EV
charge scheduling in a Smart Grid. Realistic commuter driving
patterns were analyzed from real data and used in simulations
along with electricity prices taken from the day-ahead market.
A comparison of different charging strategies were compared
clearly showing the potential of using Economic MPC to
shift the load in a cost efficient way. Perfect forecasts were
used in the simulations. Future work will address the inherent
stochastics of the driving pattern and electricity prices.
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Abstract

In this work the heat dynamics of a storage tank were modelled on the basis of data and maximum likelihood
methods. The resulting grey-box model was used for Economic Model Predictive Control (MPC) of the energy in the
tank. The control objective was to balance the energy from a solar collector and the heat consumption in a residential
house. The storage tank provides heat in periods where there is low solar radiation and stores heat when there is
surplus solar heat. The forecasts of consumption patterns were based on data obtained from meters in a group of
single-family houses in Denmark. The tank can also be heated by electric heating elements if necessary, but the
electricity costs of operating these heating elements should be minimized. Consequently, the heating elements should
be used in periods with cheap electricity. It is proposed to integrate a price-sensitive control to enable the storage tank
to serve a smart energy system in which flexible consumers are expected to help balance fluctuating renewable
energy sources like wind and solar. Through simulations, the impact of applying Economic MPC shows annual

electricity cost savings up to 25-30%.

© 2012 Published by Elsevier Ltd. Selection and peer-review under responsibility of the PSE AG
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1. Introduction

Economic Model Predictive Control (MPC) has previously been used to reduce the electricity costs of
heating and cooling in buildings [1,2,3]. For a smart solar tank [4] the same MPC framework can be

* Rasmus Halvgaard. Tel.: +45 45255281; fax: +45 45882673.
E-mail address: rhal@imm.dtu.dk

1876-6102 © 2012 The Authors. Published by Elsevier Ltd.
Selection and peer-review under responsibility of the PSE AG
doi:10.1016/j.egypro.2012.11.032



128

Paper C

Rasmus Halvgaard et al. / Energy Procedia 30 (2012) 270 — 278

applied in order to save energy and reduce electricity costs. For the system considered in this paper, the
electricity consumption of the auxiliary heating elements in a storage tank must be controlled. The
heating elements can be turned on in periods when the amount of solar energy alone cannot meet the heat
demand, e.g. hot water and space heating in a residential house.

The MPC exploits knowledge about the future inputs, so to minimize electricity costs a good tank
model is required, along with excellent forecasts of both solar radiation and consumption patterns. In this
paper we estimate the parameters in a storage tank model from measured data with a maximum likelihood
method. With this model we design an Economic MPC to control the power consumption of the heating
elements according to a price. By adding a price signal to the objective of the controller, the MPC will
minimize the electricity costs for the individual tank by shifting power consumption to periods with cheap
electricity. As the electricity costs are reduced the trade-off of considering prices and not power
consumption alone is to use more power, but at the right time.

The performance of the MPC in terms of power consumption and electricity costs is investigated for
different consumption patterns in a one-year simulation period. The influence of uncertainty in the
forecasts of both solar radiation and consumption is also examined. We assume that electricity prices are
known each hour at least 12 hours ahead, which is true for the day-ahead Elspot market in Denmark [5].
These prices reflect the power demand of the overall energy system and also indicate the amount of cheap
renewable energy sources available, such as wind power.

2. Solar thermal collector and storage tank

The smart solar tank consists of a solar collector with area of 9 m” and a storage tank with a total
volume of 788 1. The tank itself contains an inner tank for domestic hot water and a pressureless outer
tank for space heating. The tank can be heated by the solar collectors. To help cover the remaining heat
demand, three smaller electric heating elements of 3 kW each are installed in the tank, as shown in Figure
1b.

L1

s Tdhws
‘ i

T3 ¢ | 1

- Te
‘ i

Fig. 1. (a) Sketch of the tank with inlets, outlets and eight temperature measurement points. (b) Photo of storage tank in lab
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Solar energy is transferred to the tank by feeding water into the tank through a stratification device. In
this way, beneficial thermal stratification is built up during solar collector operation [4,6]. Space heating
is transferred from the upper part of the tank and the return inlet to the tank goes through another
stratification device.

2.1. Tank model

We model the storage tank separated from the solar collector such that the energy balance is

Ounte = Oheater + Qroter = an.mmpzim = Ohoss 1)

The contribution from the solar collector Qo and heat consumption Qqnsumption are forecasted inputs.
The heating element input power consumption Qjeq., is controllable. The loss is modelled as proportional
to the temperature difference between the internal tank temperature and the ambient room temperature.
The actual energy in the tank Q,,, cannot be physically measured, but is assumed to be dependent on the
measured tank temperatures. Eight temperature measurements from different layers of the tank are
combined to represent an overall tank temperature (T;) proportional to the stored energy. Using an
average from the eight sensors (n = 8) we get the tank temperature

T =lZn:Tj 2

J=1

Based on (1), the heat dynamics of the tank can be described as a simple first order differential equation
CT,=0,+0,-0.~UAT,~T) 3

Oy is the controllable power consumption for the electric heating elements with efficiency . C; is the
specific heat capacity of the tank, while the energy contribution from the solar collector O, and the house
consumption Q. are both forecasted inputs. We use the forecasts computed from measurements in
domestic households in southern Denmark based on [7,8]. The ambient temperature 7; should also be
forecast, but is assumed to be a constant 20°C in further simulations.

The model data to be used for model estimation was based on a storage tank that uses stratification
pipes for optimal injection of the return water. Therefore a layered model with more than one temperature
state should possibly be considered. However, for the given data set and a time scale of minutes, a first
order model with only one layer was found sufficient for describing the heat dynamics of the tank.

The solar thermal power is simulated from measured climate data recorded at the local district heating
plant in Senderborg. A standard flat-plate collector is used as the simulation model, as described in [9].
The solar thermal power is forecast with the method described in [7], where a conditional parametric
model is applied for forecasting the hourly solar thermal power up to 36 hours ahead. The forecasting
model takes numerical weather predictions of global radiation as input. Based on past data, the collector
thermal performance is modelled and takes local effects into account, such as the orientation of the
collector and shading from objects in the surroundings.

2.2. Model parameter estimation

CTSM was used to estimate the unknown parameters of a continuous discrete stochastic state space
model. The model consists of a set of stochastic differential equations describing the dynamics of a
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system in continuous time and a set of algebraic equations describing how measurements are obtained at
discrete time instants.

dx = (A(0)x + B(O)u + E(0)d)dt + odw
y=C(@)x+e
The model includes a diffusion term to account for random effects, but otherwise it is structurally
similar to ordinary differential equations. Therefore conventional modelling principles can be applied to
set up the model structure. Given the model structure, any unknown model parameters can be estimated
from data, including the parameters of the diffusion term. The parameter estimation method is a maximum
likelihood (ML) method and a maximum a posteriori (MAP) method [10,11,12,13].
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Fig. 2. Data measurements from real storage tank used for parameter estimation. The estimated tank temperature has been also been
plotted

The model parameters g = [Cz UA 77] were estimated in the continuous time stochastic state space
model (4) with x=y=7 and d=[Q, . 7] that contains the forecast disturbances from (3). It is

assumed that the measurement error is normal-distributed. with a variance of 1°C such that e e N(0,1).
The process noise was assumed to have standard deviation o =0.001.

The parameter estimation was based on the data shown in Fig. 2. The estimated parameters of (3) were
found to be:

UA = 8.29 (+ 0.0278) W/K. C,=3881.3 (+0.00167) kI/K )

It should be noted that the heating element efficiency was fixed at 7 = 1and the tank temperature

representing the stored energy was assumed to be an average of all eight temperature measurements. The
fit of the resulting estimated tank temperature z is also compared to the average tank temperature 7, in
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Fig. 2, and reveals a nice match. Note that the consumption pattern Q. in this data set is deterministic and
the same amount of energy is deliberately drawn from the tank at 7 am, 12 pm, and 7 pm.

3. Economic MPC

Traditionally the heating elements in a storage tank are controlled by a thermostat that is either on or off
and keeps the temperature close to a temperature set point in a hysteresis loop. Instead of specifying a
temperature set point for the tank, a set of constraints on the tank temperature and on power consumption
is specified. For the MPC strategy, as long as the temperature is within some bounds, there is no need to
force it to a certain temperature. In this way knowledge about the future weather and heat consumption
can help to minimize the power consumption of the heating elements. Adding a price signal to the
objective will then not only try to minimize the power consumption, but also the electricity costs. So the
finite static MPC optimization problem to be solved at every sampling time t is

t+N-1
minimize Pty
k=t
s.t. x.,, =Ax, +Bu, +Ed,
Vi =Cx,
OkW <u, <9kW
50°C <y, £95°C

©)

At each sampling time, t, we minimize the electricity costs over the prediction horizon N, given the
forecasts available at time t. The first control action u, of the solution is implemented on the process and
the procedure is repeated at the next sampling instant. This is usually referred to as receding horizon
control. The model (3) is discretized into a discrete time state space model defined by the matrices
(A,B,E,C) with the estimated parameters (5). The constraints on temperature and power consumption
must also be satisfied.

4. Simulation

Fig. 3 shows a simulation of the resulting MPC with the estimated tank model. The scenario is based
on real measured solar radiation and consumption patterns from residential houses in southern Denmark
during a whole year from May 17 2010. The simulation is a closed loop simulation with a 24-hour
prediction horizon based on forecasts subject to uncertainty and actual electricity prices from the Nordic
Elspot market [5].

In Fig. 4, one week in March 2011 of the simulation from Fig. 3 has been extracted. During the first
few days the heating elements mostly use power during night-time when the prices are low. In the
remaining period a lot of solar radiation heats up the tank and the heating elements are practically not
used. The temperature stays within the predefined interval that defines the storage capability.
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Fig. 3. A one-year simulation starting May 17 2010 with 24 h prediction horizon using uncertain forecasts. The upper plot shows the
tank temperature, the middle plot contains the electricity price and the optimal power consumption for the heating element, and the

lower plot contains the solar heat input and the house consumption demand. The heating element is turned on when the electricity
price is low.
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Fig. 5. (a) Annual savings in percent compared to conventional thermostat control for the six different houses. (b) Annual power
consumption (upper) and electricity costs (lower) for house #2 as a function of the prediction horizon N for four different control
strategies. Closed loop Economic MPC with perfect forecasts (EMPCp), with real forecasts subject to uncertainty (EMPC), a
constant electricity price of 1 (MPC) and a Thermostat control keeping the temperature at 60°C.

5. Results and discussion

For a whole year the annual power consumption and electricity costs were found from closed loop
MPC simulations for four different control strategies. The results can be found in Fig. 5a, while a
simulation for one of the houses is shown in Fig. 5b. For a prediction horizon N larger than 24 hours, the
cost savings do not increase by much as the prediction horizon increases further. This is mainly due to the
maximum input power and the storage capacity of the system. Information about the solar radiation or the
consumption next week will not change the optimal power consumption due to these system constraints.
Furthermore, using perfect forecasts, i.e. knowing the future inputs exactly, does not increase the savings
significantly. The annual savings of considering the price with an Economic MPC are 25-30% for the
given simulation scenarios for six different houses.

Note that the power consumption for the Economic MPC grows larger than for the ordinary thermostat
control as the prediction horizon increases. However the costs go down. Consequently, to save more
money, more electricity must be used for control. However, the increased power consumption can be
justified when the electricity price reflects the amount of renewable energy in the power system.

Another result of the investigations is that in the MPC strategy in which only power consumption is
minimized and where prices are not considered, the annual power consumption is constant regardless of
the prediction horizon. Since the sampling period is so high (1 h) compared to the dynamics (< 5 min),
the amount of power (9 kW) that can be delivered instantaneously in every one-hour sampling period is
higher than the instantaneous demand at any time. So the control signal matches the consumption at every
sampling time even for a one-hour prediction horizon. Also the control is only active at the lower
temperature bound, because it is not possible to actively cool the tank.

Similar results were obtained for the five other houses, with the same conclusions.

Any missing data in the forecasts was ignored by setting it to zero. This means that some periods in the
annual simulation have no solar input or no consumption at all. For the six different houses the total
missing number of samples in the consumption data sets was around 510 (~21 days) for all houses except



134

Paper C

Rasmus Halvgaard et al. / Energy Procedia 30 (2012) 270 — 278

house 1, where 1800 samples were missing (~78 days). For the solar data that were used for every house,
351 samples were missing (~14 days). An example of the missing data in the consumption forecast can
easily be seen in Fig. 3.

Computation times for solving the individual open loop MPC problem are in the millisecond range.
Simulating a whole year takes around 5-10 seconds for a prediction horizon of 24 hours running Matlab
on an Intel 17 2.67 GHz laptop.

6. Conclusion

The heat dynamics of a smart solar storage tank were modelled and its parameters were found from
maximum likelihood estimation procedures. An Economic MPC was designed to control the power
consumption of the auxiliary heating elements in the storage tank. The MPC minimizes electricity costs
given the price and forecasts of the solar radiation and consumption. Electricity cost savings of 25-30%
compared to current thermostat control strategy were found for six different houses.
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Thermal Storage Power Balancing with Model Predictive Control

Rasmus Halvgaard, Niels K. Poulsen, Henrik Madsen and John B. Jgrgensen

Abstract— The method described in this paper balances
power production and consumption with a large number of
thermal loads. Linear controllers are used for the loads to
track a temperature set point, while Model Predictive Control
(MPC) and model estimation of the load behavior are used
for coordination. The total power consumption of all loads is
controlled indirectly through a real-time price. The MPC incor-
porates forecasts of the power production and disturbances that
influence the loads, e.g. time-varying weather forecasts, in order
to react ahead of time. A si ion scenario d rates that
the method allows for the integration of flexible thermal loads
in a smart energy system in which consumption follows the
changing production.

I. INTRODUCTION

Integration of large amounts of renewable energy sources
in the power system, such as wind and solar energy, in-
troduces large fluctuations in power production. This type
of green energy must be either stored or consumed right
away. Consuming all of it as it is produced requires a very
flexible and controllable power consumption. Thermal loads,
in particular, consume power and often have flexible oper-
ating temperatures and thermal storage capacity. Examples
of controllable electric thermal loads are heat pumps in
buildings [1], auxiliary heating in solar collector storage
tanks [2], and commercial and domestic refrigeration systems
[3]. In a smart energy system these loads can potentially
offer flexibility if they are pooled together into a large-scale
system with large power consumption. With the right control
scheme this large-scale system of flexible thermal loads can
help balance changing power production levels by adjusting
the consumption of the loads accordingly [4]. However,
an incentive to help balance the power and a method for
coordinating must be established.

In this paper an indirect control strategy is proposed where
a control signal, referred to as a control price, communicates
the need for balancing. The control price is linearly linked to
the temperature set points and therefore indirectly influences
the total power consumption of a group of thermal loads.
This group is often referred to as an aggregation of loads, and
all loads are connected to an aggregator [5]. The aggregator
broadcasts the current control price, which is translated by
each load individually into a local temperature set point
to be followed. Based on a model of the aggregated con-
sumption response to the control price, closed-loop feedback
is provided at the aggregator level by measuring the total
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power consumption. In this way the aggregator is able to
balance instantaneous power or track an amount of power
already bought from a market [6]. In this paper the aggregator
controller is based on Model Predictive Control (MPC) [7].
The MPC uses an estimated low-order autoregressive (ARX)
model for real-time power balancing. Moreover, an integrator
model is added to eliminate model and forecast errors and
to achieve offset-free tracking.

For control, the MPC needs a model of the aggregated
thermal loads. This model should predict the effect of a
price change and calculate a single control price, which is
broadcast to all loads. The aggregator model is estimated
from the price response and may be very small compared to
a centralized model that includes detailed information about
all loads.

Compared to a centralized direct control strategy, the
decentralized indirect method described in this paper re-
duces the aggregator problem complexity considerably. The
computation efforts are decreased dramatically and the need
for two-way communication is eliminated. The relationship
between control price and set point in this paper was inspired
by [8]. A similar concept of balancing is found in [9],
where simple hysteresis control is used. In [10] an indirect
price strategy based on bilevel programming and a large
centralized model is proposed to minimize power imbalances
accounting for the load’s response to the price signal. An
example of a centralized direct control strategy can be
found in [11]. Note that most centralized formulations can
be solved more efficiently through decomposition of the
optimization problem into smaller subproblems. However,
two-way communication is still needed for coordination and
as the number of loads increase a decentralized approach is
needed. A completely decentralized approach, where opti-
mization variables are exchanged between loads as dynamic
prices, is considered in [12].

This paper is organized as follows. In Section II we
formulate an aggregated model of a large-scale system of
thermal loads. Section IIT describes the MPC that controls
the aggregated loads. In Section IV the control method is
demonstrated through simulation. The control price concept
is discussed further in Section V, while Section VI provides
conclusions.

II. MODELING

First we model the dynamics of the thermal loads and
their closed loop behavior with Linear Quadratic (LQ) con-
trollers. Then connection to the aggregator and the estimated
aggregated model is described. For notational simplicity,
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the discrete time step subscript k has been omitted in the —i
following while the superscript * denotes k + 1. d
A. Thermal load » " IR l y

u
T _t<:> li

Each thermal load is modeled by the discrete-time state
space model

xt =Ax+Bu+Ed+w
y=0Cx

(la)
(1b)

y is the output temperature, u is the power consumption, d
and w € N(0,02) are disturbances influencing the states x.
The disturbance d could be an outdoor temperature acting
on a building, or solar radiation, while w is the unmodeled
process noise. For the method described in this paper we de-
sign LQ controllers to track a temperature set point » . When
choosing linear controllers, the aggregated model is also
linear and allows for a linear MPC at the aggregator level.
The unconstrained LQ controller should be able to track the
set point with no offset by rejecting any disturbances. Offset-
free integral control is achieved by augmenting the state
vector x with an integrating state ¥, such that x; = [xT )ZT} T
From now on the different loads are subscripted i to denote
the L different loads. With integral control the ith load is
then modeled by

X7 = Axi+ Biu + Fyri + Eid; + Giw; (2a)
yi = Cixi (2b)
with
A0 B
A,:LC 1} B,-:[O] c=[c o Gy
0 E 1
ol o] ol o

The following linear control law is applied to track the
temperature set point 7;

u; = —Kix; Ki=[Kk -K] @

A stationary control gain K; has been designed for each load
with the weights Q; > 0 and R; > 0 on the states x; and
control action u;, respectively. All loads are assumed stable
and controllable. The assumption of full-state feedback is
justified by the use of SISO models later in the numerical
example in Section IV. Alternatively, a Kalman filter could
be applied to estimate any unmeasured states. The controller
weights should be tuned separately for each load to trade
off long settling times for temperature overshoot and power
consumption.

As the aggregator objective is to manipulate power con-
sumption indirectly through the set point, the relationship
between u; and r; must be modeled. In our case a linear
expression for power consumption is readily available from
the control law (4). Inserting (4) in (2) gives us the closed-
loop model

x = (Ai = BiKi)xi + F fi(p) + Eidi + Giw;
zi = uj = —Kix;

(52)
(5b)

s T_
K

Load i with system /; : (A;,B;,C;, E;) and LQ integral controller.

Fig. 1.

T T v

+1 P

Fig. 2. Function f(p) from control price to temperature set point

The aggregator measures the power consumption and not the
temperature. Therefore, power consumption is now defined as
the model output z; from the ith load. y; still indicates the
temperature output. In (5) the temperature set point r; has
been replaced by a function f; with the aggregator control
price p as argument. The control price is a scalar that is
broadcast to all loads, reflecting the need for balancing. A
block diagram of the controlled load is shown in Fig. 1.
Here it is seen how the control price is added as input to the
closed-loop model. Each load must map the control price to
an individual temperature set point. This mapping is done by
the affine function f;(p) defined for each load
Fi—ri

’i:fi(P):*ﬁ ;(pngE (6

When (p,p) = (=1,1) and (r;,77) = (bi — ai,b; + a;), (6)
reduces to
filp) = —aip+bi @

When the price is constrained the function f;(p) also con-
strains the temperature set point to a certain interval defined
by a; and b;. This mapping is illustrated in Fig. 2 and is
key to understanding the role of the control price. Note that
for cooling systems the sign on the slope a will be chosen
opposite of (7).
B. Aggregated model

We can put all the closed-loop models from (5) together

to get a large linear model of all L loads. This augmented
state space model subscripted a is then

X5 = Agxa +Ba(p) + Eud + Gawy

Za = CaXa

(8a)
(8b)
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Regulator

:

Estimator

Fig. 3. System overview of aggregator and loads.

with B,(p) = Fufu(p) and
A, = blkdiag(A; — B1K{,Ay — B2Ka, ..., A — BLKL)
F,= blkdiag(ﬂ o, ,FL>
G, = blkdiag(Gy,Gy,...,Gy)

Lu(p)=[Ailp) £2(p) AN
xa=[ o 1"
wo=[wl wl o w]"
E.=[E[ E] Ef]"
Ca=—[K{ K] K{]-1

The derived closed-loop model (8) of all loads describes
the aggregated response from price to power consumption.
The desired SISO model with z, € R! and p € R! is here
formed by the output matrix C,, which sums all power
consumption contributions z, = Z,‘L:I zi. The disturbance, d €
R!, is assumed from now on to be a scalar influencing
all loads. It is assumed that the main component of this
disturbance can be forecast, while the remaining tracking
errors from disturbances are assumed to be eliminated by
the MPC integral controller.

As the number of loads increase, so does model complex-
ity and, ultimately, controller computation time. However,
this high dimensional model can be well approximated by
a lower-order model [13], [14]. In our method, we reduce
the model by estimating a low-order AR model from the
simulated response

Aar(q")2a = Bar(q " )P+ Earlqg " d+7 ©

1 is the unmodeled disturbances. The model (9) can be used
for model estimation and control. It is assumed to be accurate
enough to enable the aggregator MPC to eliminate model
mismatch errors through an observer and stable closed-loop
feedback. Forecasts of the load disturbance d is also added
to the model with the term E,,.

III. AGGREGATOR CONTROLLER

The MPC is well suited for control at the aggregator level
due to the following reasons. It handles capacity constraints

indirectly through a limit on the price. It rejects disturbances
and is able to track the power consumption reference r, with
a small error, since r, is known ahead of time so the MPC
can react in advance. In practice, r, could be a time-varying
forecast of wind power production, and at every time step
the MPC takes continuously updated forecasts into account.

A. Aggregator objective

The method presented in this paper will indirectly change
the power consumption of all thermal loads through a price
that is linearly related to the temperature set points. In this
way the aggregator puts a price on heating or cooling, and
indirectly on electricity as well. The set points will be set at
a high temperature set point when the price is low, and at a
low temperature when the price is high. However, the interval
within which the temperature set point is allowed to vary and
is up to the individual load, e.g. it could be the temperature
comfort interval in a building heated by a heat pump [1].
The temperature interval could even be set at zero by setting
a; =01in (7), but then the aggregator would have no flexibility
to exploit. Note that the same method holds for refrigeration
systems. However, in this case the set points should set at
a low temperature when the price is low. Controlling the
loads through a price requires a model of the price response
as well as models of the thermal load behavior. The loads
are connected to the aggregator through a control price p as
shown in Fig. 3. The total power consumption of the loads z,
is measured by the aggregator that estimates an aggregated
model and provides closed-loop feedback with an MPC for
tracking the power consumption reference r,.

B. Offset-free ARX MPC

We assume the model (8) to be estimated from data as an
ARX model on the form (9). To obtain offset-free tracking
we replace the unmodeled term 1 by an integrator model
[15]

1 —agq™!

n=g

a is a tuning parameter [15]. The observer error e =z, — 2,
is obtained from measurements of the aggregated response
z4 (8). Adding the integrator model (10) to (9) yields the
controller model in ARMAX form

e 10)

Eear=(1—q NE,  (lla)
Cear=1—0g"" (11b)

Acar= (1= A

Bear=(1-4"")Bar

The final controller model used as a predictor is obtained by

realizing (11) as a discrete state-space model in innovation
form

£ =Aky+Bp+ E.d+Kee

Za=Ccfq

(12a)
(12b)

This is the one-step predictor. For predicting j-steps ahead
the term K.e is omitted.
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Algorithm 1 MPC algorithm i T c a b Q R
For every time step find the optimal control price pj 1 554 132 100 21 1 2
Require 2 = (xa‘k, Pt Adi YV e j}l;’;ol) 2 683 294 122 21 1 2

J 30274 291 144 21 1 2

Zuk = CaXak _ {Measure} 4 586 197 167 21 1 2
ex =Zay — Cefag {Estimate error} 5 532 260 189 21 1 2
{pesYd =(2) {Solve QP} 6 369 128 211 21 1 2
Saiir = Agtait Ffu(po) + E +Gowg | Actuate) 7T 1% 23 2112
a1 =Acfase+ Bepict Ecdi+ Keey {Predict} 9 858 258 278 21 1 2
return py 10 777 292 300 21 1 2

TABLE 1

C. Model Predictive Control
We use the tracking MPC formulation from [16] and
minimize the residual by solving the following optimization
problem at every time step k
- 1S 2 2
minimize > Y leaksr4s = rakrre |3+ Al Apes 13
Jj=0
subject to  (12)
Raks14) = Ackapsj+ Beprsj+ Eedi
Zak+j = Celaprj
—1<pej<1
Apmin < Apk+j < APmax

13)
The optimal control price {p; 7:01 is found over the predic-
tion horizon j=0,1,...,N — 1. The control price minimizes
the deviations from the power consumption reference based
on model predictions of the aggregated thermal loads. The
first control price pjj is broadcast to all loads and the process
is repeated at the next time step. Only the optimal control
price at the current time step is implemented, e.g. the current
price, and consequently closed-loop feedback is obtained.
This is often referred to as the receding horizon principle. A
regularization term is also added to the objective with penalty
A on the price rate Ap to enforce stability.

Algorithm 1 shows the closed-loop MPC algorithm that
runs at every time step [16]. The MPC control law p = u(2)
is evaluated by solving (13), and real-time computation is
enabled from the low-order aggregated controller model.

IV. NUMERICAL EXAMPLE

We model the individual load with a first-order transfer
function G(s) from power consumption u to temperature y
<
AN
T is the time constant and c is the gain. The same model
is used to model the disturbance response from d to y. We
discretize with a zero-order hold and sampling period 7; = 1.
As an example we set up a portfolio of L = 10 loads, each
modeled with (14) and the parameters from Table I. We select
different price scalings in a, but use the same temperature
interval bias b. The tuning weight R is set rather high to
minimize control action and is not tuned separately for each
load.

14

PARAMETERS FOR NUMERICAL EXAMPLE WITH L = 10

Unit price step response

@
=}

IS
S

N
=}

Power consumption

120

-0.05 60 100
Time

20 40 80 120

Fig. 4. Power consumption response and estimated response to unit price
step (upper) and their residual (lower).

A. Estimated controller model

Fig. 4 depicts the unit price step response of the chosen
model. The response fits an AR(2,2) model quite well, except
for a small stationary error, even though the response is the
sum of L = 10 different first-order models. For the chosen
numerical parameters in Table I we find the following model

Aur(qg™") =1-1.756¢"" +0.7798¢ 2 (15a)
Bar(q7") = —12.62¢7 " +12.40¢472 (15b)
Eo(q7") = —2.286¢ 1 4+2.038¢ 2 (15¢)

Also a response from the disturbance to power consumption
was used to estimate the polynomial E,(g~'). The final
controller model is obtained by adding the integrator model
as in (11).

In this numerical example some process noise was added
to simulate unmodeled disturbances with w, € N(0,0.01).
We tune the controller with the parameters to a = 0.7, A =
10° and (Apmin, Apmax) = (—1,1). These parameters matter
considerably when the plant is subject to stochastics [17].
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B. Simulation results

A simulation of the MPC price control with the estimated
models is shown in Fig. 5 and 6. The upper plot of Fig. 5
shows the aggregated response and how the power reference
is tracked by the aggregator MPC with no offset errors.
Since prediction of the reference r, is available to the MPC,
control prices which indirectly change power consumption
are broadcast ahead of time in order to minimize the residual.
The residual is plotted below, along with the control price.
After 55 time steps the control price constraint is active at
—1. At this point the power reference is very high and the
aggregator demands all available power from the thermal
loads. Note that the control price is not constant when the
total reference power consumption is constant, i.e. tracking
a constant power requires a ramping of the price due to the
dynamics of the loads.

There is a small stationary offset error during ramping
of the reference. A double integrator can be added to (10)
to eliminate the error. However, this requires the LQ load
controllers to increase their order as well. This means the
response will be more sensitive to noise and the tuning
parameter ¢ becomes extremely important [17]. In this work
we accept the ramp offset error and use a single integrator.

The bottom plot of Fig. 6 shows the temperatures of the
loads. Some loads are more flexible than others and allow a
wider temperature interval, i.e. bt+a with a large a;, indicated
by the various dashed lines at different levels. Consequently,
a more flexible load will have a more varying temperature.
However, the temperature is still ensured to lie within the
predefined interval, b4-a, due to the constrained control price.
The temperature interval can be adjusted for each load by
the scaling @; and can even be time varying. Naturally, the
temperature does not depend exclusively on the control price;
it also depends on the dynamics, i.e. the time constant, of
the load and its controller tuning. The power consumption
of each load is shown in the upper plot of the figure. As
intended, power consumption mainly occurs when the price
is low, as becomes evident when comparing to the price in
Fig. 5.  The stationary power consumption, when p =0
and d = 0, varies from load to load as observed in Fig. 6
because of the different initial levels of u. In our example
the combined stationary power consumption of all the loads
when disregarding the disturbance is

(16)

i=

In Fig. 5 power consumption was plotted around zero as the
deviation from this stationary consumption z0. From (16) it
can be seen that the stationary power consumption depends
on the number of loads L, their temperature settings (b,a),
their efficiency ¢, and disturbance d. The methods accounts
for local disturbances by forecasting a global disturbance d
that acts on all loads. Any remaining sources of error will
be eliminated by the MPC. A disturbance has also been used
in the simulation shown in Fig. 5. After thirty time steps the
disturbance kicks in, e.g. a change in outdoor temperature

N
1=}

Total power consumption

Control price

150

Time

Fig. 5. Simulation of the aggregator tracking a power consumption r, by
controlling an aggregation of thermal loads. Total power consumption z, is
plotted around zero as the deviation from the stationary consumption zJ.
The normalized residual is plotted below along with the control price p. As
intended, load consumption is highest when the price is low. The disturbance
is forecast dh and eliminated by the MPC. The disturbance shown here is
scaled and does not match the units of the y-axis.

%)
=}

n
=}

Power consumption
>

N
[N

N
=}

Temperature

®

Time

Fig. 6. Load output temperatures y; (lower) and their temperature intervals
bj+a; (dashed lines). Also their power consumptions u; are plotted (upper).

which changes the power consumption. By forecasting the
disturbance, the tracking error can be greatly improved. A
forecast that is close to the real disturbance is implemented
and this is why almost no deviations are seen at the dis-
turbance transitions after 30 and 70 time steps. A single
disturbance acting on all loads can be justified when the loads
are geographically close to each other and the disturbance
considered is the outdoor temperature. Solar radiation has a
more local impact on buildings but can also be forecast for
a larger area [18].
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V. DISCUSSION

The control price used in this method should not be
interpreted as the final billing price for each load. The control
price helps the aggregator meet its balancing objective, but
does not create an incentive for the loads to choose high tem-
perature intervals, a;. High temperature intervals increase the
flexibility and thereby also the regulating power. Moreover,
it lowers temperature variations for all aggregated loads.
Consequently, all loads are forced to help the aggregator
reach its tracking goals regardless of their own optimal
strategy. This method is not optimal for every load in terms
of energy savings, but will ensure that total aggregated
power consumption follows production, e.g. from wind, to
the benefit of the overall energy system.

A negative control price should not be considered a
subsidy. However, the sign on p merely says whether the
aggregator needs up or down regulation. It is evident from the
simulations that if the price is negative a majority of the time,
often the loads with the largest temperature interval will be at
very low temperatures, thus saving a lot of power. If the price
is mostly positive, the loads with low temperature intervals
will save power. The opposite is true if we consider cooling
rather than heating. In this case, the final electricity cost for
each load should not depend exclusively on the control price.
There must be a clear incentive to provide a large temperature
interval, since this will enable more power at the aggregator
level and less discomfort for all loads. Final billing could be
calculated on the basis of consumption u; ;, and temperature
interval 2a;, defining how much load i allows the temperature
to vary. Also the heat capacity of the load, e.g. the time
constant 7;, could play a role if it was measured. Instead
of billing for power consumption using the control price,
we suggest putting a price on flexibility, i.e. the temperature
interval a; which, in practice, could be time varying.

As a consequence of using linear unconstrained controllers
for the loads, no actuator saturation was considered. If
actuator constraints are involved, the price response will not
be linear, and clipping of the power will be observed. As a
result the response in Fig. 2 might look more sigmoidal and
bend at the price limits +1. One way to prevent this problem
is to restrain loads from setting @; too high compared to its
capacity and the expected disturbances. Another way is to
include an adaptive model of the price response. Note that
time-varying linear models can be easily implemented in the
MPC algorithm by changing the coefficients of the controller
model (15).

VI. CONCLUSIONS

The method described in this paper enables a linear MPC,
based on a low-order SISO ARX model, to balance power
production with consumption of a considerable number of
thermal loads in real-time. The method requires linear tem-
perature set point controllers to control the loads as well
as model estimation of the price response at the aggregator
level. The aggregator MPC controls total power consumption
of all loads indirectly through a broadcast real-time price, i.e.
one-way communication. It also handles the load temperature

constraints through price constraints. The MPC incorporates
forecasts of disturbances and power production, e.g. time-
varying wind power forecasts, in order to react ahead of
time. Added integral control eliminates model and forecast
errors, while feedback is provided by measuring total load
power consumption. Individual loads can set their own de-
sired upper and lower temperature bounds. The method was
demonstrated through simulation and allows for integration
of flexible thermal loads a smart energy system in which
consumption follows a changing production.
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Rasmus Halvgaard, Lieven Vandenberghe, Niels K. Poulsen, Henrik Madsen, and John B. Jgrgensen

Abstract—Integration of a large number of flexible consumers
in a Smart Grid requires a scalable power balancing strategy. We
formulate the control problem as an optimization problem to be
solved repeatedly by the aggregator in a Model Predictive Control
(MPC) framework. To solve the large-scale control problem
in real-time requires decomposition methods. We propose a
decomposition method based on Douglas-Rachford splitting to
solve this large-scale control problem. The method decomposes
the problem into smaller subproblems that can be solved in
parallel, e.g. locally by each unit connected to an aggregator.
The total power consumption is controlled through a negotiation
procedure between all cooperating units and an aggregator that
coordinates the overall objective. For large-scale systems this
method is faster than solving the original problem and can
be distributed to include an arbitrary number of units. We
show how different aggregator objectives are implemented and
provide simulations of the controller including the putational
performance.

Index Terms—Smart Grid, Model Predictive Control, Douglas-
Rachford splitting

I. INTRODUCTION

large number of units with flexible power consumption

are expected to be part of the future power system. In
Denmark, examples of these units are electrical heat pumps
for heating in buildings [1], commercial refrigeration [2], and
Electric Vehicles (EVs) with batteries that can be charged and
discharged [3]. If pooled together in a large-scale aggregated
system these smaller consumption units could potentially offer
flexibility to the power system. If the units are controlled and
coordinated well, they can help to partially balance the fluc-
tuating power production caused by renewable energy sources
such as wind and solar. In real-time electricity markets the
aggregated units can help to minimize the imbalances caused
by forecast errors and in general provide ancillary services.
Controlling a large number of units in real-time requires
fast evaluation of the control algorithm that coordinates the
power consumption. Thus methods for solving this large-scale
optimization problem in real-time must be developed.

In this paper we consider the problem of real-time large-
scale power balancing. We apply Douglas-Rachford splitting
[4] to decompose the general problem into smaller dynam-
ically decoupled subproblems. The subproblems can be dis-
tributed and solved in parallel either by a large central com-
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puter or locally by each unit. The latter case requires fast and
very reliable two-way communication between the controller
and the units since the subproblems must be solved many times
at each time step. Each unit has its own model, constraints,
and variables, and can even make decisions based on its
own local control objective. All units must communicate their
predicted consumption plan to an aggregator that coordinates
the need for system level flexibility and minimizes imbalances.
The aggregator continuously communicates control signals
and synchronizes the global negotiation. This negotiation
procedure is required to converge in every time step and thus
requires fast evaluation of the unit subproblems that can be cast
as convex optimal control problems. Convergence is achieved
by coordinating all units’ consumption through a negotiation
procedure that is updated in the coordinating system level
referred to as an aggregator.

With a least-squares tracking objective, the aggregator is
able to control and deliver the requested combined power
consumption of all units in real-time and continuously updates
forecasts of the consumption by applying a receding horizon
control principle. This principle, referred to as Model Pre-
dictive Control (MPC), repeatedly solves the control problem
online for the predicted development of the system [5]. The
first part of the obtained control action is implemented. At
the next sample time, the procedure is repeated by using
new measurements and by moving the prediction window
one step. The sampling time in real-time markets could be
lower than five minutes [6]. The precise sampling time is
dictated by the settlement requirements of the regulating power
market. This short sampling time motivates computational
efficient optimization algorithms for the MPC that balances
the power. For large-scale systems such as power balancing
problems, decomposition methods are one computationally
attractive option. The computation time for MPC problems
grows polynomially in standard solvers as the number of units
increase. By decomposing the problem and solving smaller
subproblems in parallel, we can handle a much larger amount
of units. Fig. 1 shows one month of produced wind power and
the consumption pattern in Denmark. The fluctuating wind
power could be the power reference to be tracked by the
aggregator. However, in practice the consumption plan comes
from the power market. We use the Nordic power market
framework, where the goal of the power balancing aggregator
would be to minimize the deviation from a consumption plan
already negotiated in advance at the day-ahead market. Any
deviations from this day-ahead plan cause power imbalances
that must be settled in the regulating power market. These
imbalances can be minimized by the aggregator by tracking
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Fig. 1. Wind power and consumption in West Denmark January 2012.

the day-ahead plan as accurately as possible, while trying to
eliminate forecast errors and unforeseen disturbances along
the way. If the regulating power prices are predicted, the
aggregator objective can reflect the actual imbalance costs.
Many studies do not consider the imbalances they introduce
when only optimizing over the day-ahead market prices [1],
[2]. We therefore provide an example of taking regulating
power prices into account. Grid capacity constraints on the
total active power can also be applied as an aggregator
constraint.

Compared to dual decomposition that uses the subgra-
dient projection method with rather slow convergence [7],
the Douglas-Rachford splitting used in this paper is often
faster. Another advantage of the presented method is that it
easily evaluates complicated and even non-linear expressions.
Compared to a column generation method like Dantzig-Wolfe
decomposition [8], which only handles linear programming
problems, while the method considered in this paper handles
continuous non-linear convex functions, and converges under
very mild conditions. In our case, the subproblems even reduce
to quadratic optimal control problems that can be solved very
efficiently using the Riccati recursions [9]-[11]. A special
case of Douglas-Rachford splitting is ADMM [12]. [13] use
ADMM for Electric Vehicle charging coordination. [14] de-
scribe a general approach to Distributed MPC problems, while
[15] provides convergence results for the splitting algorithm.

In this paper we illustrate the advantages of the Douglas-
Rachford splitting method and show how an aggregator can
use the method for power balancing flexible consumption
units, exemplified by thermal storage units e.g. heat pumps in
buildings. The method can be completely decentralized down
to communication with neighbors only [16].

This paper is organized as follows. In Section II we for-
mulate the general large-scale optimization problem for an
aggregator with a large number of units in its portfolio. In
Section III we introduce operator splitting and its convex
optimization terminology. This leads to the Douglas Splitting
algorithm explained and applied to the aggregator problem in
Section III-A. Different aggregator objectives are introduced
in Section IV. Finally, the method is demonstrated through
simulations and its convergence and scalability is discussed in
Section VI. Section VII provides conclusions.

Electricity market

Aggregator
!
!

unit unit
) [ )owe

Fig. 2. Aggregator role and portfolio of units. The aggregator gets a
consumption plan q to follow from the market.

II. THE AGGREGATOR PROBLEM

We wish to control the power consumption of a large
number of flexible and controllable units. The motivation for
controlling the units is to continuously adapt their consumption
to the changing stochastic power production from wind and
solar. In the future this power balancing might be done by solv-
ing large-scale control problems. Instead of tracking the wind
power directly, it is currently much more realistic to interface
and bid into electricity markets. We assume that an aggregator
controls a large number of flexible consumption units as shown
in Fig. 2. Based on predictions of the aggregated unit behavior,
the aggregator bids into the day-ahead power market and buys
a certain amount of energy for the coming day. The plan
could be a result of solving a unit commitment problem [17],
where stochastics and integer variables are taken into account.
The resulting consumption plan must be followed to avoid
imbalances and in turn economic penalties. So a real-time
controller must regulate the power to minimize any imbalances
caused by prediction errors.

The power consumption profile is a vector denoted ¢ € RV
and denotes the amount of power to be consumed at each
time step k for the entire prediction horizon k£ = 1,...,N.
This profile must be followed by the aggregator, such that
the combined power consumption from all units sum to this
at every time instant. The centralized large-scale problem
that includes all units and their variables (p, x;, y;, u;) and
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constraints is

N-1 n
minimize Z g(pr) + Z o (ujk) (1a)
PhoUj k
k=0 j=1

n

subject to  py = Z Uj ke (1b)
Jj=1

i1 = Ajej e+ Bjujp + Ejdje (1)

Yik = CiTjk (1d)

vk < vk < Y (le)

Auli < Aujp < Aufp an

P < ugp < ulp (1g)

We model the j = 1,2,...,n units with linear discrete-time
state-space systems and define U; as a closed convex set
containing the model and constraints of the jth unit (I1c)-(1g).
x; € RN is the time varying state vector in the discrete-time
state-space system defined by the matrices (4;, B;, E;, C;)
[1]. y; is the output, of a linear system with controllable
input w;. d; is the modeled and predictable disturbances
(e.g. outdoor temperature). The time-varying input and output
constraints are superscripted with max and min, and account
for the available flexibility for each unit. For thermal storage
units this is the power available and the accepted temperature
interval, respectively. Auj = ujr — ujr—1 is the rate of
movement, where k is the time step in the time varying
input vector u; € RY. The total consumption p € RV is
a sum of the predicted consumption profiles u;. p can also be
constrained to reflect capacity constraints in the power grid.
g is the aggregator objective function. We investigate various
choices of aggregator objectives in Section IV. However, the
simulations in this paper are weighted least squares objective.
This objective contains local control objectives and costs
associated with operating the unit. Examples of local objective
functions are

@‘;w(u]’) = CjUu; (Za)

;"f‘(l/j) =Vj .
59(u;) = 1w | oo
¢}ef"‘l/(yj) =|ly; — ’!/_;'EfH @0
S5 () = [y — 5| oo

(2a) is an economic cost, ¢, of the power consumption; (2b)
is a slack variable, v;, acting as a soft output constraint with
penalty ;. This soft constraint prevents infeasible problems
when the system is subject to noise; (2c) is a regularization
term on the rate of input change; (2d) is a output (temperature)
reference tracking objective; (2e) is an input reference. The
slack variable should be heavily penalized in the the local
objective function ¢; when added. We leave it out for a lighter
notation in the remaining part of the paper. The functions ¢;
and ¢ may be indicator functions that represent constraints
on the variables u; or their sum. We exploit this later when
decomposing the problem.

In this paper we consider three different aggregator objec-
tives, g, sketched in Fig. 3. All objectives track the given power
consumption profile ¢ by minimizing e = p — ¢. First, the

93

Fig. 3. Aggregator objective functions: g1 (25), g2 (20), and g3 (23). e =
p — q is the power imbalance.

traditional tracking MPC with quadratic penalty on the residual
e. Second, we also set up a linear economic MPC that includes
the actual costs for imbalances. Third, the same economic
objective but with asymmetric costs. All objectives are easily
implemented in the decomposition algorithm described later
in Section V where they are evaluated as simple analytic
expressions in all three cases.

A. Decomposing the aggregator problem

With the use of indicator functions (4) the original problem
(1) can be written as
Uj> . 3)
1

Here the constraints in I/; are hidden in an indicator function

i

=

minimize
wy

S fi(w) +g (
j=1 J

if u; € U;
otherwise.

Fi(u;) :{ 2s() @

+00
In decomposition literature [12], [18] a common and general
formulation of the problem is on the form

minimize  g(p) + f(u)
u,p

! (5)
subject to  p = Su.

The functions f; : RN — R and g : RNV — R are assumed
to be closed and convex. We define u = [u} ,ul,... ul]T as
a stacked vector of individual unit consumption profiles and

f(u) as a sum of the unit indicator functions from (4)
n
Fw) =" fi(uy).
j=1
S € RVXN7 simply sums all contributions to the total power
consumption
S=[1 1 - 1], ®)

where [ is the identity matrix. S remains constant even if
we also add power production units by defining production
as negative consumption. We limit .S’ to this simple structure
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that speeds up computation time in Section III-A. This op-
timization problem must be solved at every time instant in
a Receding Horizon manner [19], [20]. We apply Douglas-
Rachford splitting to solve this large-scale control problem in
real-time. This splitting method is explained in the following
section.

III. OPERATOR SPLITTING

We show how operator splitting can be done on a problem
on the form

minimize f(u) 4 g(Su). (7)

This is equivalent to the control problem (1) on the form
(5). The objective (7) can be split in separate functions with
variable u € RY and where f : RN — Rand g : RV — R are
closed convex functions with nonempty domains. It captures
a large class of constrained and unconstrained optimization
problems. For example, if we let g be the indicator function
of a convex set U

atsw = {

the problem (7) is equivalent to the following constrained
optimization problem

0 ifSueld
400 otherwise

®)

minimize f(u)
u
subject to  Su € U.

In order to solve the problem we derive the optimality condi-
tions associated with (7). The first-order optimality condition
are expressed in inclusion form as

0 € df(u) + ST9g(Su), ©)
where Jf(u) denotes the subdifferential of f at u. The dual

optimality condition of (7) is found by first introducing an
extra variable p and a consensus constraint, such that
minimize f(u) + g(p
imize f(u) + g(p) w0
subject to  Su = p.
The Lagrangian of (10) is
L= f(u) +g(p) + =" (Su—p)

where z is the dual variable associated with the equality
constraint. The dual problem is

“1111)sz = inf (z"Su+ f(uw) + ir;f (=2Tp+g9(p)
Two conjugate functions are readily identified in this expres-
sion. Since the conjugate function is defined as [21]
F(p) = sup(p"u = f(w))
the dual of (7) reduces to
—I1(=8"2) —g"(2), an

where f* and g* denote the conjugate functions of f and g.
The first-order dual optimality condition associated with (11)
can now be expressed as

0€ —Saf*(—ST2) + dg*(2).

maximize
E

12)

4

The subdifferential of a closed convex function f satisfies

(0f)~t = af* [22], ie.
y€Of(x) & Of*(y) €x
Hence if we let u = 0f*(—S72) in (12) then

0 ST [u Af (u)

oe % L[]
This is the primal dual optimality conditions that can be solved
to find a solution of (7). Because we deal with subgradients
we use the inclusion sign instead of equality in (13). It
simply means that zero must be included in the set. The
subdifferentials are monotone operators and (13) is a monotone
inclusion problem. The solution to this problem has zero
included in the sum of the two maximal monotone operators
A and B

13)

0 € A(u, z) + B(u, z). (14)
A. Douglas-Rachford splitting

We apply Douglas-Rachford splitting [4] to solve the prob-
lem and identify two splitting operators in (13) as

Alu,2) = [705 50'] [Z] (15)
Blu, z) = [gg(é))] . (16)

The primal-dual Douglas-Rachford splitting algorithm is a
special case of the proximal point algorithm [23] and works
by starting at any v and repeating the following iterations:

2t = (I +tB) (v (17a)
yt =T +tA) (22t —0) (17b)
vt =v+pyt —at). (17¢)

The superscript T indicates the next iterate, e.g. 7+ = z;,1 if i
is the iteration number. Note that this general algorithm fits our
problem (15) when = = [u” 27T The algorithm steps are: 1)
optimize over z 2) keep x fixed and optimize over y 3) sum
the error with gain p € ]0; 2]. Thus the algorithm requires the
resolvents of A and B, but not their sum. The inverse function
of the operators A and B is called a resolvent. The resolvent
of an operator F is the operator (I+¢F)~! with scaling ¢ > 0.
In our case we require the resolvents of the functions Jf and
9dg* from (13). The resolvent of Jf is the proximal mapping

(I +tof) ™! (x) = prox,;(x). (18)

This proximal mapping is defined as the prox-operator of f,
if f is convex

1 .
prox, ;(z) = argmin (f(u) +—|lu— IHZ) .
/ u 2t
If f is an indicator function similar to (8) the prox-operator
is equivalent to solving the problem

,u7z|‘2

S
minimize %

subject to  u € U.
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This can be even more simplified to a projection on the convex
set U.

The prox-operator of the conjugate g* is related to the prox-
operator of g via

Prox, . (s) = s — tprox, ,,(s/t). (19)

The algorithm can now be compactly written with prox-
operators.

IV. AGGREGATOR OBJECTIVES
A. Tracking objective
If g represents a desired total power consumption profile

to be followed by the aggregated units, we can choose the
differentiable quadratic aggregator objective

1
92(p) = 5
that is easily evaluated by the prox-operator required in the
Douglas-Rachford z* update (28b). The conjugate of go(p) is

. 1
95 (y) = sup(y"p — g2(p)) = S| WWll3 + ¢"y,
P

llp—qll3, (20)

2 @n

and the prox-operator simplifies to the analytic expression

1 t

ESR S

t+1 @

ProX;gs (s) =

to be substituted for (28b).

B. Economic objectives

When the aggregated power consumption p deviates from
the reference plan ¢, this power imbalance, denoted e = p—gq,
has a penalty cost ¢ equal to the regulating power price.
However, the price might depend on the sign of the imbalance
and the overall system imbalance. These regulating power
prices are difficult to forecast, but in the Nordic power market
they have a lower or upper bound depending on imbalance
direction, i.e. the sign of e. When the up and down-regulating
power market prices, ¢t and ¢ respectively, are forecasted
individually, we get the following piecewise linear objective
function to be minimized

N
gs(e) = Z max (7ckfek, c,:ek) . (23)
k=0

This aggregator objective is non-differentiable, but is easily
handled by the prox-operator required in the algorithm (28). In
this case the conjugate function g;(e) is more difficult to find
analytically, and we exploit the relation (19). The objective
(23) is both separable in time and units, so the prox-operator
of (23) becomes

N
. - t 2
pros,,(5/0) = angnin'Y” (50 + 115~ su/113)
Sk k=0
The prox-operator evaluation can be divided into several cases
for the unconstrained minimum to be found, since it is a sum
of a piecewise linear function gs(e) and a quadratic function.

5

Analytically, this leaves the minimum to be found in the
following three cases

(s —cp )/t if si <tqr —cp
[proxgg/t(sk/t)}k =4 (sk+eh)/t if sp >ta+cf
qk otherwise

Inserted into (19) yields the final analytical expression for
(28b) when using the asymmetric economic objective (23)

[on if sp <tqr—cy
[proxmg (sk)] ={ - if s, > tgy +oif  (24)
k s — tqr ~ otherwise

The case with a symmetric price is included as well when
¢ =ct and

gi(e) = c[le]|1. (25

C. Grid constraints

A constraint on p, a limit on power capacity, can also be
added to (1). When g(p) = 0 we get the problem

t 5
minimize §Hp —s/t|3

(26)
subjectto p>h
The prox-operator reduces to a simple projection
prox,g. (s) = (0,5 — th)— = min(0, s — th) 27
where h = —pmax. A zero lower bound on the total power is

already ensured through (1g), i.e. negative consumption is not
allowed as this is production.

V. DOUGLAS-RACHFORD SPLITTING ALGORITHM

When the specific operators (15) from our problem (13) are
inserted into the general Douglas-Rachford splitting algorithm
(17) we get

ut = prox,;(v) (28a)
2t = ProX,g- (s) (28b)
wt I ST 17 2ut —w
[ m* - [ —tS I [ 22t — s ] (289)
vt o= v+ plwt —ut) (28d)
st = s+pmt —2z"). (28e)

The A-operator from (15) is linear. The resolvent in (28¢c) is
the matrix inverse.

In our case the algorithm has the following interpretation:

1) The aggregator sends suggested consumption profiles v;
to the units
The units evaluate their subproblems, i.e. the prox-
operator in (28a), by solving a QP with their local unit
model, costs, constraints, and variables
The units respond in parallel with their updated con-
sumption profiles u}”

4) The remaining steps (28b)-(28e) simply updates the

other variables and are computed by the aggregator alone

It is important to note that the prox-operators don’t have to
be evaluated by the units. If the units upload their objective

2

=

3

N
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and constraints to the aggregator a large parallel computer
could solve all the subproblems. This significantly reduces
convergence speed and communication requirements in a
practical system.

A. Step (28a)

The prox-operator evaluation in the first step (28a) is defined
as

. - 1.
pros.(0) = argmin (1(5) + 5,10 = ol )
o
In our case we must solve this subproblem for all units and
stack their solutions in u* . Since all units are decoupled,
separability of f(u) = >, fj(u;) implies that
prox,(v) = (prox;s, (v1), ..., prox, s (vn)) -

Here v = [vf, 0], ..., vT]7 and each of these prox-operators
involve only one unit. We thus have the jth unit subproblem

. 1 .
pros, () = anganin £5(u5) + 1y — 513)

with the standard QP formulation

11
§?ufuj - ?UJTU] + ¢5(uy)

minimize
uj 29
subject to  wu; € Uj .
Note that ¢; contains slack variables and regularization (2c).
v; can be interpreted as a tracking reference trajectory or
an individual linear coefficient for each unit. In our case,
all of these quadratic subproblems reduce to finite horizon
constrained LQR problems that can be solved efficiently by
methods based on the Riccati recursion [11], [24].

B. Step (28¢)

The (w,m)-update in (28c) gathers the unit consumption
profiles and involves only multiplications with S and S Due
to the simple structure of S, defined in (6), we can simplify
this update with a matrix inversion lemma to

I STt (1 0] 1] -tsT
[45 1] =loot7l 1 [ 1]
where 7 = 1 + nt?. Due to the simple structure of S this
update reduces to

T N T
w]:vjfﬁ ts+tZZvJ
j=1

wt

Il
&
s
NS

=

where v; = Zu;r —wvj and § = 227 — 5. For a large-scale
system with nt? > 1 we get expressions involving the mean
. A 1san o~
consumption plan & = ;- 377, 7,
S 1.
wj ~ U5 — 0 mT~ %
t
wy; is the difference between the unit consumption plan and
the average 9.

6

C. Convergence

The primal and dual optimality conditions from (13) provide
a measure of convergence, i.e.
—ut +
Tp = v tu + 872+ rg =
These expressions are obtained from the prox-operators (28a)
and (28b) that defines the subgradients df(u) and dg*(z) in
(13), respectively. The algorithm is converged when the norm
of these residuals are below some user-defined tolerance. See
[15] for more general convergence results.

From theory, it is known that the step size ¢ in the algorithm
must remain constant. However, various heuristics provide
adaptive strategies, see for instance the references in [12]. In
the numerical example provided in this paper, ¢ was found
experimentally, based on the observed convergence behavior.
Also the scaling gain p €]0;2] must be selected and usually
p = 1.5 is good choice.

5— 2z
— Sut.

(30)

VI. NUMERICAL EXAMPLE

To illustrate the method we provide a two simulations. One
with only n = 2 different thermal storage systems, and one
with n = 100. We model a portfolio of different thermal
storage systems as second order systems on the form
Yi(s) _ K
Uj(s) (tfs+ 1)(‘r]bs +1)

Gils) =

u; is the consumption and y; is the output temperature. One
time constant is usually much bigger than the other. Realistic
values for the dominating time constant in buildings with
heat pumps or refrigeration systems is 7* € {10;120} h [1],
[2]. In our simulations we also set 7% = 7%/5 and pick 7¢
randomly. The same model works for disturbances d;, e.g.
ambiant temperature, and is easily converted to the state space
form (1c)-(1d). The constraints were selected equal for both
units: (ymin1 ymax) — (157 25) °C, (umin’ umax) — ([)7 5()) w,
(Aumin Aymax) = (—50,50) W, and output slack variable
penalty v = 10%.

We scale the gain K with 1/n such that the maximum
possible power consumption automatically adds to pmax = 1.
The reference ¢ is also scaled to always lie between 0 and 1.
Better numerical performance and sensitivity to the step size
t is obtained in this way.

A. Case study (n = 2)

Fig. 4 shows the simulation results with ¢ = 0.5 using 25
iterations for every open loop problem. Full state information
was used to produce these closed profiles. Both the temper-
atures and the consumption are kept within their operating
intervals. Their combined consumption p is seen to match the
reference ¢ very well. The plot illustrates two cases where
it is not always possible to follow the plan g. Obviously in
periods where ¢ is larger than the maximum total power. And
in periods where ¢ is close to zero and the outputs are near
the constraints, e.g. around 20 h. It is simply not possible to
follow the plan in that situation without violating the output
constraints. However, around 45 h there is enough capacity
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Temperature (y,d)

80

Power (u)

Power
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Time [h]
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Fig. 4. Closed loop simulation of power balancing with n = 2 thermal
storage units. Prediction horizon was N = 24 and we used a quadratic
objective function. The first plot shows the output temperatures of the two units
in blue and green respectively. The two sinusoids below are the disturbances.
The second plot shows the input power consumption. Right below is the
resulting total power p and tracking profile q. All powers are scaled, such
that the total maximum power of p is equal to 1. Consequently for n = 2
units their maximum power is 1/n = 0.5.

to turn the units completely off for a short period of time. ¢
could be any profile but was selected here as a scaled version
of the difference between the wind power and the load from
Fig. 1.

B. Case study (n = 100)

To demonstrate that the algorithm works for a larger number
of units, we chose 7 = 100 units with uniform randomly gen-
erated parameters as before. In Fig. 5 the same consumption
profile ¢ from the previous case study is tracked, but we only
plotted the first open-loop profile.

C. Convergence

Fig. 6 shows how the Douglas-Rachford splitting algorithm
converges during the iterations of one open-loop simulation.
The optimality conditions (30) both reach a threshold below
1072 after 25 iterations. The step size ¢ was tuned to ¢ = 0.8.
This was done for different number of units in Fig. 7. For
the simulation with n = 100 units, the algorithm is seen to
converge within 50 iterations. As the number of units increases
the computation time also increases. This is shown in Fig.
8. We measured the computation of all the subproblems and
took the average (labeled DR parallel) to illustrate the unit
scaling behavior. The total computation time for the serial
implementation is labeled DR. For a large number of units
the Douglas-Rachford splitting algorithm is faster than just
solving the original problem, even the serial implementation.

Power (u) Temperature (y,d)

Power

Fig.

I I I
0 10 15

Time [h]

5. Open loop simulation of power balancing with n = 100 thermal

storage units. Otherwise shows the same as Fig. 4.

Residual

Fig.

Iterations

102
—o— |||
10° |- a
1072 - g
| | | | |
0 5 10 15 20 25 30
Iterations
6. Convergence for open-loop problem n =3 and t = 0.8
——n=2
——n=10
——n =30
——n =50
n = 80

——n = 100
——n =150
——n = 200

Step size t

Fig. 7. Tuning of step size ¢ as a function of the number of units . Maximum
number of iterations was limited to 200.
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Fig. 8. Convergence for open-loop problem with tuned step sizes ¢ from

We solved all QPs including the large scale problem using
MOSEK in MATLAB running on an Intel Core i7 2.67 GHz
laptop. It should be noted that MOSEK computes a much more
accurate solution than the splitting algorithm. For most MPC
applications a low accuracy is tolerated with a fast sampling
closed-loop feedback [19].

VII. CONCLUSION

We solved the power balancing problem using a constrained
model predictive controller with a least squares tracking error
criterion. This is an example of a large-scale optimization
problem that must be solved reliably and in real-time. We
demonstrated how Douglas-Rachford splitting can be applied
in solving this problem. By decomposing the original op-
timization problem thousands of units can be controlled in
real-time by computing the problem in a distributed (par-
allel) manner. We considered a large-scale power balancing
problem with flexible thermal storage units. A given power
consumption profile can be followed by controlling the total
power consumption of all flexible units through a negotiation
procedure with the dual variables introduced in the method.
An economic aggregator objective that takes the regulating
power prices into account was derived. The obtained solution
converges towards the original problem solution and requires
two-way communication between units and the coordinating
level. The resulting power balancing performance runs in
closed loop while the local constraints and objectives for each
unit are satisfied and aggregator operation costs are reduced.
‘We showed that the decomposition algorithm scales well with
the number of units compared to a standard solver, even when
solving the subproblems serially.
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Abstract: Dual decomposition is applied to power balancing of flexible thermal storage units.
The centralized large-scale problem is decomposed into smaller subproblems and solved locally
by each unit in the Smart Grid. Convergence is achieved by coordinating the units consumption
through a negotiation procedure with the dual variables.
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1. INTRODUCTION

A large number of flexible thermal storage units, e.g.
electrical heating in buildings or cooling in refrigeration
systems, will soon part of the Danish power system.
These units could potentially provide a large flexible
consumption by aggregating or pooling them together.
This will enable them to be coordinated and help follow
the fluctuating energy production from renewables such
as wind power. We formulate an optimization problem
of tracking a power reference. To solve this large-scale
control problem in real-time, we decompose the original
problem into smaller subproblems to be solved locally by
each unit. Each unit has its own model and variables and
can make decisions based on its own local control strategy.
The need for system level flexibility is communicated
to the units from an aggregator that broadcasts dual
variables to the units and coordinates the negotiation until
global convergence is reached. This negotiation procedure
is required in every time step and requires fast evaluation
of the subproblems that can be cast as linear quadratic
optimal control problems. The subgradient method is used
to minimize the system level power imbalance. The cost
function of this imbalance can be non-differentiable, which
is the case in power balancing, due to the nonlinear
penalties on imbalances. A simple example with models of
thermal storage systems is used to show how an aggregator
can apply dual decomposition for power balancing in a
smart energy system. Power capacity constraints in the
distribution system can also be accounted for by the
aggregator.

2. PROBLEM FORMULATION

The centralized large-scale problem to be solved at every
time instant ¢ is

minimize

9(p(t), q(t))

n

subject to  p(t) = Zuk (t)
k=1

zr(t+ 1) = Agzp(t) + Brug(t) (1)

yr(t) = Cray(t)

g < un(t) <

wP < () < uPE
q(t),t = 1,...,N represents a desired power consumption
profile over a period of length N.p(t) is the actual power
demand and is a sum of the power demands pi(t),k =
1,...,n for each of the n units. A power capacity limitation
can also be included by adding the inequality constraint
p(t) < p™@(t). yr(t) is the output of a linear system with
input u(t). The variables are p(t), pr(t), z(t), and u(t).

We define the set Fj, as a bounded polyhedron containing
the linear state space system and its constraints in (1). To
lighten notation further the time argument will be omitted
from here on. The unit constraints in F}, can be moved to
the objective by expressing them as an indicator function
_ 0 if up € Fy
Filux) = { +oo otherwise
Finally, the optimization problem to be solved by the
receding horizon controller at every time instant is

minimize  g(p) + Z fre(ur)
k

2
subject to p = Zuk
k

3. DUAL DECOMPOSITION

‘We solve the problem (2) by solving its unconstrained dual
problem with the subgradient descent method Vanden-
berghe (2011); Bertsekas (1999). The dual is obtained via
the Lagrangian L
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1
L=3llp- all> + > frlwr) + 27 (P - gw)
where z is the dual variable. The dual function is
: Lo, 2 . T
inf L, = Il + a7z = Izl +2k:17{1kf (fulur) = 2"u)

up

L2, 7 T
= gl a2 = Ssup (T fu(un)
Finally, the dual problem is
. 1 .
maximize — §HZH2 +q'z— ; Sk(z) (3)

with

Sik(z) = sup 2Tuy.

up €Fy

Sk(z) is the support function of Fj. If Fj is a bounded
polyhedron, we can evaluate Sy by solving an LP sub-
problem

uf = argmin (27 uy,) (4)

uy € Fy

and the optimal wuj gives us a subgradient of Sj at z.
Solving (3) with the subgradient projection method gives
us the updates

z*:z+t+<2u;7(z+q)). (5)
k

The step size t+ must be decreasing at each iteration j,
ie tt = f — 0, for j — oo. If ¢t doesn’t decrease the
subgradient method will not converge to the minimum.

With the chosen LP subproblems the dual gradient
method converges but the primal solution is not easily
recoverable from the dual. An extra strictly convex term
can be added to the subproblems, e.g. a temperature
reference on the output

1 2, 1 2
5”2}3% —ql| +§Zk:Hyk — 71|

uy € Fy, .

minimize

subject to
The LP subproblems from (4) are now QPs on the form

uf = argmin (1”1/&- —rill? + ZTU%) .
ueF, \2

This problem formulation is equivalent to the ordinary

optimal control problem with an added linear term, that

can be solved efficiently by methods based on the Riccati

recursion Jgrgensen et al. (2004, 2012).

If an upper bound on the power p is added, the dual
variable z can be clipped in (5) by keeping 0 < p < p™a*,

4. NUMERICAL EXAMPLE

An example with two different first order thermal storage
systems is was simulated. The models have unity gain, time
constants 5 and 10, and both a temperature reference equal
to 7 = yp'". The results for step size ¢t = 0.3 after 100
iterations is shown in Fig. 1. The power tracking profile
is seen match most of the time, but it is not possible
to control the consumption amplitude of each unit very
accurate through the dual variables, since each unit has
its own objective leaving the tracking at some compromise.

Time

Fig. 1. Simulation of power balancing with two first or-
der systems. The two input/output pairs (blue/red)
with constraints (dotted) are shown above the result-
ing power tracking profile. The lower plot shows the
converged dual variable (black), its iterations (gray),
and the optimal dual variable of the original problem
(dotted blue). Also the optimal dual variable when
using (4) as the subproblem is shown (dotted green).

However, shifting the load in time is quite accurate, since
the sharp variations in the dual variables, that can be
interpreted as prices, causes the consumption to be placed
in this cheap period.

5. CONCLUSION

Controlling the consumption of a large number of flexible
thermal storage units in a Smart Grid was achieved
by distributing the optimization problem to be solved
and coordinating the total consumption through dual
variables. The resulting power balancing performance is
a compromise between system level balancing needs and
the state and objectives of each unit.
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